C-746-S&T Landfills Second Quarter Calendar Year 2018 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release	ase per review by:
FRNP Classification Support	8-23-18 Date

C-746-S&T Landfills
Second Quarter Calendar Year 2018
(April_June)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—August 2018

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURE	S		v
TA	BLES	5		v
ΑC	CRON	YMS		vii
1.	INTF	RODUC	TION	1
	1.1	BACK	GROUND	1
	1.2		TORING PERIOD ACTIVITIES	
		1.2.1	Groundwater Monitoring	
		1.2.2	Methane Monitoring	
		1.2.3	Surface Water Monitoring	
	1.3	KEY F	RESULTS	
2.	DAT	'A EVA	LUATION/STATISTICAL SYNOPSIS	9
	2.1	STATI	STICAL ANALYSIS OF GROUNDWATER DATA	10
		2.1.1	Upper Continental Recharge System	10
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	
	2.2	DATA	VERIFICATION AND VALIDATION	
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	13
4.	REF	ERENC	ES	15
ΑF	PENE	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PENE	OIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PENE	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PENE	OIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PENE	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PENE	OIX F:	NOTIFICATIONS	F-1
ΑF	PENE	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PENE	OIX H:	METHANE MONITORING DATA	H-1
ΔF	PPFNI	OIX I	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	T-1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
	C-746-S&T Landfills Surface Water Monitoring Locations	
	TADI EC	
	TABLES	
1.	Summary of MCL Exceedances	6
2.	Exceedances of Statistically Derived Historical Background Concentrations	6
	Exceedances of Current Background UTL in Downgradient Wells	
	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

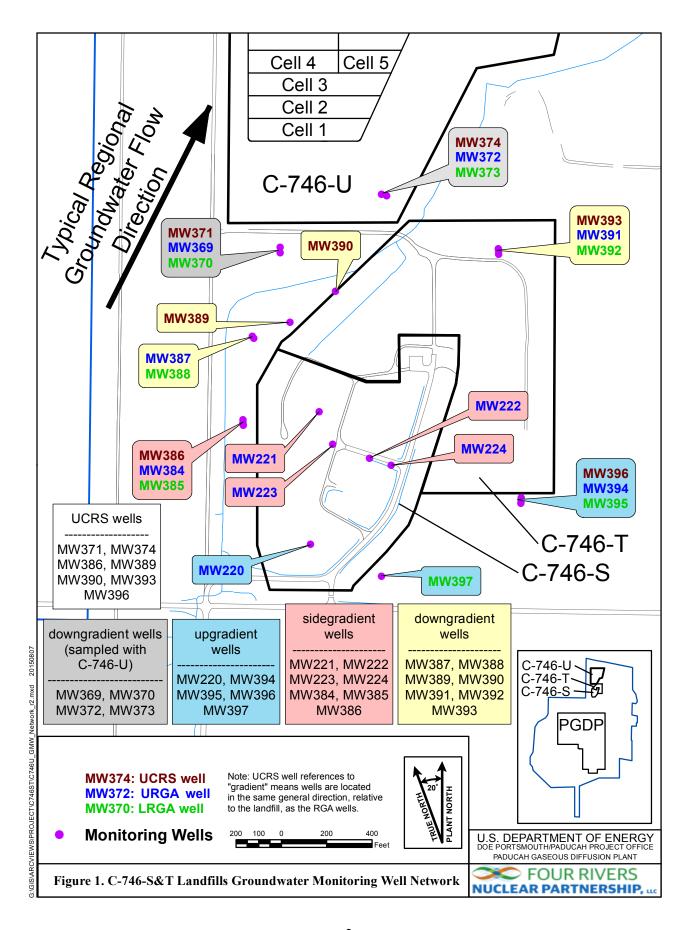
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Second Quarter Calendar Year 2018 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014) UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the second quarter 2018 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 25, 2018, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is north to northeastward, toward the Ohio River. During April, RGA groundwater flow in the area of the landfill was oriented primarily southeastward to south. While this varies from typical regional flow, this same flow trend was observed previously in April 2015. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in April was 3.59×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 4.31×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.491 to 1.25 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in 1 on-site building location, 4 locations along the landfill boundary, and 27 passive-gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on May 29, 2018. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application

Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014) which is Technical Application, Attachment 25, of the Solid Waste Landfill Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL during the second quarter 2018, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW372, MW373, MW387, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW369, MW387, and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances because the source(s) of these exceedances is not determined. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. MW369, MW387, and MW388 had no increasing Mann-Kendall trends for beta activity and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

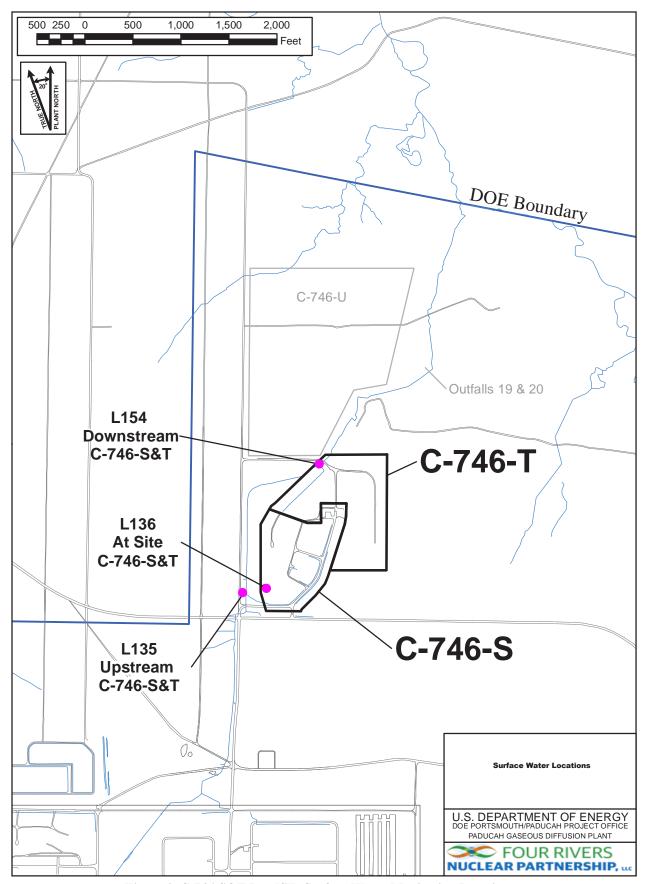


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
MW390: Beta activity	MW369: Beta activity	MW373: Trichloroethene
	MW372: Trichloroethene MW385: Beta activity	
	MW384: Beta activity	MW388: Beta activity
	MW387: Beta activity, trichloroethene	MW392: Trichloroethene
	MW391: Trichloroethene	

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW220: Sulfate	MW370: Oxidation-reduction
potential		potential, sulfate, technetium-99
MW390: Beta activity, oxidation-	MW223: Sulfate	MW373: Calcium, conductivity,
reduction potential, technetium-99		dissolved solids, oxidation-reduction
		potential, sulfate
MW393: Oxidation-reduction	MW369: Beta activity, sulfate,	MW385: Beta activity, oxidation-
potential	technetium-99	reduction potential, sulfate,
		technetium-99
MW396: Oxidation-reduction	MW372: Calcium, dissolved solids,	MW388: Beta activity,
potential	magnesium, sulfate, technetium-99	oxidation-reduction potential,
		sulfate, technetium-99
	MW384: Beta activity, sulfate,	MW392: Oxidation-reduction
	technetium-99	potential
	MW387: Beta activity, sodium,	MW395: Chemical oxygen demand,
	sulfate, technetium-699	oxidation-reduction potential
	MW391: Chemical oxygen demand,	MW397: Oxidation-reduction
	sulfate	potential

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Upgradient wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA			
MW369: Beta activity, technetium-99	MW370: Sulfate, technetium-99			
MW372: Calcium, magnesium, sulfate,	MW373: Calcium, conductivity, dissolved solids,			
technetium-99	sulfate			
MW387: Beta activity, sodium, technetium-99	MW388: Beta activity, sulfate, technetium-99			
MW391: Sulfate				

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All of these preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
	MW369	Beta Activity	8	0.05	0.089	12	No Trend
	WW 309	Technetium-99	8	0.05	0.089	12	No Trend
	MW270	Sulfate	8	0.05	0.119	8	No Trend
	MW370	Technetium-99	8	0.05	0.138	10	No Trend
		Calcium	8	0.05	0.452	-2	No Trend
	MANAGO	Magnesium	8	0.05	0.138	-10	No Trend
	MW372	Sulfate	8	0.05	0.274	-6	No Trend
		Technetium-99	8	0.05	0.274	6	No Trend
C-746-S&T	MW373	Calcium	8	0.05	0.274	-6	No Trend
Landfills		Conductivity	8	0.05	0.119	-8	No Trend
		Dissolved Solids	8	0.05	0.089	-12	No Trend
		Sulfate	8	0.05	0.016	-18	Negative Trend
		Beta Activity	8	0.05	0.089	12	No Trend
	MW387	Sodium	8	0.05	0.138	10	No Trend
		Technetium-99	8	0.05	0.360	4	No Trend
		Beta Activity	8	0.05	0.360	-4	No Trend
	MW388	Sulfate	8	0.05	0.119	8	No Trend
		Technetium-99	8	0.05	0.089	-12	No Trend
	MW391	Sulfate	8	0.05	0.548	0	No Trend

Footnotes:

Note: Statistics generated using ProUCL.

¹ An alpha of 0.05 represents a 95% confidence interval.

²The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 KAR 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 KAR 34:060 § 12.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS well MW390 with beta activity and technetium-99 values that exceed both the historical and current backgrounds (Table 5). Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered to be a Type 1 exceedance.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW390: Beta activity, technetium-99
*In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2018 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389**	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396***	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	, 10
	MW387	
	MW391	
	MW394 (upgradient)	

^{*}A map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the UCRS. During the second quarter, beta activity, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity and technetium-99 exceeded the current background UTL and are included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the URGA. During the second quarter, beta activity, calcium, chemical oxygen demand, dissolved solids, magnesium, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^{**}MW389 had insufficient water to permit a water sample for laboratory analysis.

^{***}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the second quarter, beta activity, calcium, chemical oxygen demand, conductivity, dissolved solids, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

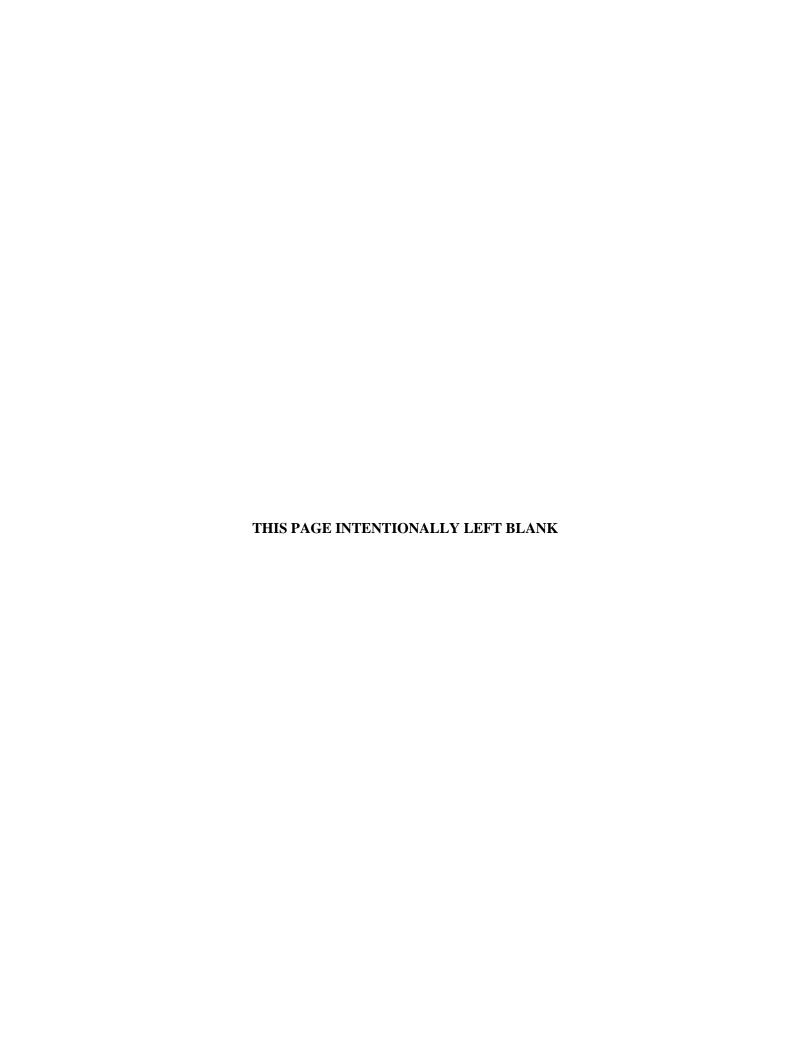
DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

Second Quarter Calendar Year 2018 (April-June)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0028/V2)


Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

OF STATE OF THE POSSIONAL PROPERTY OF STATE OF S

Kenneth R Davis

PG113927

Date

4. REFERENCES

- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:				as Diffusion Plant M Permit Face)		Activity:	C-746-S&T Landfills
Permit No:	SW073 SW073 SW073	00015,	Fi 	nds/Unit No:	_	Quarter & Yes	ar 2nd Qtr. CY 2018
Please check the	following	as applic	able:				
Character	ization	X	Quarterly	Semiannua	al	Annua	Assessment
Please check app	licable sui	omittal(s)): <u>X</u>	Groundwater		<u>X</u>	Surface Water
				Leachate		X	Methane Monitoring
jurisdiction of the D hours of making the lab report is No pages. I certify under pena accordance with a s Based on my inquiry best of my knowledge	ne determine the	Waste Ma nation usi red notifi that the gned to as son or per f, true, ac	nagement. Young statistica cation. Instruction document assure that quisons directly curate, and courate, and courate, and courate.	ou must report any in all analyses, direct con- uctions for completing and all attachments we alified personnel prope responsible for gatheri	ndication nparison the form are prepa erly gathe ing infor at there a	n of contamin n, or other sin n are attached. Tred under my er and evaluate mation, the inf	e water monitoring under the ation within forty-eight (48 ailar techniques. Submitting Do not submit the instruction direction or supervision in the the information submitted. Formation submitted is, to the penalties for submitting false
Myrna E. Redfie Four Rivers Nuc				er		Date	1/20/18
Jennifer Woodar	// Paduca		lead		e.	Date	30/18

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: April 2018 Surface water: April/May 2 Methane: May 2018		y: McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045
Facility Name:	U.S. DOE—Paducah Gaseo		<u> </u>	_	
		lly shown on DWM Permit Face)			
Site Address:	5600 Hobbs Road	Kevil, Kentuc	ky		42053
•	Street	City/State	,		Zip
Phone No:	(270) 441-6800 La	ntitude: N 37° 07'	37.70"	Longitude:	W 88° 47' 55.41"
		OWNER INFORMATIO)N		
Facility Owner:	U.S. DOE, Robert E. Edwar	ds III, Manager		Phone No:	(859) 227-5020
Contact Person:	James Miller	,		-	(270) 441-5068
Contact Person Ti	Director, Waste, Mate	erials, and Environmental Service Partnership, LLC	ces Project,		
Mailing Address:	5511 Hobbs Road	Kevil, Kentuc	eky		42053
	Street	City/State			Zip
Company: Contact Person:	GEO Consultants, LLC Sam Martin			Phone No:	(270) 441-6755
Mailing Address:		Kevil, Kentuc	eky		42053
	Street	City/State LABORATORY RECORD) #1		Zip
Laboratory:	GEL Laboratories, LLC		Lab ID No: _ k	XY90129	
Contact Person:	Valerie Davis			Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charleston, South	Carolina		29407
	Street	City/State			Zip
		LABORATORY RECORD) #2		
Laboratory:	N/A		Lab ID No:	N/A	
Contact Person:	N/A			Phone No:	N/A
Mailing Address:	N/A				
	Street	City/State			Zip
		LABORATORY RECORI) #3		
Laboratory:	N/A		Lab ID No:	N/A	
Contact Person:	N/A			Phone No:	N/A
Mailing Address:	N/A				
	Street	City/State			Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520 ²	1	8000-52	202	8000-52	242	8000-524	13
Facility's Loc	cal Well or Spring Number (e.g., N	IW-1	L, MW-2, etc	:.)	220		221		222		223	
Sample Sequence	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/17/2018 12	2:04	4/17/2018	07:54	4/17/2018	09:39	4/17/2018 0	8:59
Duplicate ("Y	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW220SG3	-18	MW221S	G3-18	MW222S0	G3-18	MW223SG	3-18
Laboratory San	oratory Sample ID Number (if applicable)					1	448239	003	448239	007	4482390	09
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis.	4/20/2018	3	4/20/20)18	4/20/20	18	4/20/201	8	
Gradient with	respect to Monitored Unit (UP, DC	, NW	, SIDE, UNKN	IOWN)	UP		SIDE	Ī	SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
24959-67-9	Bromide	Т	mg/L	9056	0.208		0.402		0.427		0.388	
16887-00-6	Chloride(s)	Т	mg/L	9056	19	*	30.4	*	31.4	*	26.8	*
16984-48-8	Fluoride	Т	mg/L	9056	0.211		0.178		0.32		0.23	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.08		0.973		0.864		0.809	
14808-79-8	Sulfate	т	mg/L	9056	21.1		16.6		13.6		19.9	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30		30.04		30.03		30.03	
s0145	Specific Conductance	т	μ MHO/cm	Field	388		394		368		407	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

 $^{^{6}}$ "<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242		8000-5243	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.79		327.04		327.17		327.3	
N238	Dissolved Oxygen	т	mg/L	Field	4.19		4.38		3.82		3.22	
s0266	Total Dissolved Solids	т	mg/L	160.1	183		174		197		197	
s0296	рн	Т	Units	Field	6.3		6.1		6.31		6.2	
NS215	Eh	т	mV	Field	305		363		321		343	
s0907	Temperature	т	°C	Field	16.5		13.94		16.33		15.89	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.043	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00204	J	0.00204	J	0.00216	J	0.00208	J
7440-39-3	Barium	т	mg/L	6020	0.213		0.218		0.292		0.239	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00876	J	0.0155		0.0107	J	0.00847	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.6		23.2		19.7		22.9	
7440-47-3	Chromium	т	mg/L	6020	0.00565	J	<0.01		<0.01		0.0158	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000338	J	0.000402	J	0.00109	
7440-50-8	Copper	Т	mg/L	6020	0.000992	J	0.000936	J	0.000572	J	0.00089	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		<0.1		0.0701	J	0.0702	J
7439-92-1	Lead	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	9.63		10		8.64		9.68	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.00176	J	0.00366	J	0.021	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

11128, 01111 1110 050

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8000-520	01	8000-52	02	8000-524	12	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.0015		0.00334		0.000626		0.00473	
7440-02-0	Nickel	т	mg/L	6020	0.0221		0.0343		0.0371		0.236	
7440-09-7	Potassium	т	mg/L	6020	1.81		2.02		0.53		4.54	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	44.6		47.7		47.3		47.7	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		0.00377	J
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		0.00595	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8000-520	1	8000-520)2	8000-52	242	8000-52	243		
Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0009	J	<0.001		<0.001		0.0044	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520 ⁻	1	8000-5202	2	8000-524	42	8000-52	43
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000197		<0.0000195		<0.0000198		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.92	*	3.41	*	-0.939	*	3.23	*
12587-47-2	Gross Beta	Т	pCi/L	9310	14.4	*	13	*	-1.74	*	5.11	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0	*	0	*	0	*	0.617	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.82	*	2.32	*	2.73	*	1.04	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	19.9	*	22.5	*	7.88	*	12.1	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.527	*	0.871	*	1.08	*	1.27	*
10028-17-8	Tritium	Т	pCi/L	906.0	-28.4	*	-22	*	-52.2	*	-33.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	26.3	*	29.5	*	32.7	*	29.5	*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.66	J	0.838	J	0.752	J	0.878	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00904	BJ	0.0147	В	0.0113	В	0.0115	В

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

							Ī		i			
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., N	MW−1	, MW-2, etc	.)	224		369		370		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/17/2018 10	0:20	4/11/2018	12:59	4/11/2018	13:43	4/12/2018 0	8:05
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW224SG3	-18	MW369U	G3-18	MW370U0	G3-18	MW372UG	3-18
Laboratory Sam	mple ID Number (if applicable)		44823901	1	447938	007	447938	009	44795000	03		
Date of Analys	ce of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					3	4/17/20)18	4/17/20	18	4/19/201	8
Gradient with	respect to Monitored Unit (UP, DO	NWC	SIDE, UNKN	OWN)	SIDE		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
24959-67-9	Bromide	Т	mg/L	9056	0.429		0.407		0.43		0.572	
16887-00-6	Chloride(s)	Т	mg/L	9056	32.5	*	35.5	*	35.6	*	43.2	
16984-48-8					0.262		0.177		0.168		0.197	
s0595			mg/L	9056	0.865		0.976		0.965		0.413	
14808-79-8	Sulfate	т	mg/L	9056	13.2		24		21.1		78.2	*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.02		30.15		30.15		29.94	
S0145	Specific Conductance	т	μ M H0/cm	Field	416		425		445		614	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1, 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.22		327.15		327.2		327.35	
N238	Dissolved Oxygen	т	mg/L	Field	3.58		1.27		3.18		1.22	
S0266	Total Dissolved Solids	Т	mg/L	160.1	194		281	В	236	В	356	В
s0296	Нд	Т	Units	Field	6.3		6.34		6.1		6.18	
NS215	Eh	T	mV	Field	320		397		368		348	
s0907	Temperature	Т	°C	Field	16.11		17.11		16.28		16.89	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0247	J	<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00216	J	0.00289	J	0.00311	J	0.00285	J
7440-39-3	Barium	Т	mg/L	6020	0.204		0.505		0.222		0.0537	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0196		0.0244		0.0285		0.953	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	21.2		28.7		28.5		49.9	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.000454	J	0.000935	J	0.00041	J	0.00118	
7440-50-8	Copper	Т	mg/L	6020	0.000526	J	0.00321		0.000661	J	0.000793	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.0697	J	<0.1		0.0669	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	9.25		12.6		12.7		19.4	
7439-96-5	Manganese	Т	mg/L	6020	0.00695		0.0127		0.00452	J	0.00775	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.000355	J	<0.0005		<0.0005		0.000358	J
7440-02-0	Nickel	Т	mg/L	6020	0.0175		0.00122	J	0.000797	J	0.00132	J
7440-09-7	Potassium	Т	mg/L	6020	0.872		1.59		2.56		2.19	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	51.4		49.2		42.1		46.4	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	T	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		0.00366	J	0.00355	J	0.00362	J
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00665	J	0.00456	J	0.00689	J
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00107		0.0006	J	0.00788	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07 00014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	1	8004-4820)	8004-481	18	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	L, MW-2, et	:c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000197		<0.0000197		<0.0000198		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	į .
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0952		<0.0962		<0.0962	
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.0952		<0.0962		<0.0962	
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0952		<0.0962		<0.0962	
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0952		<0.0962		<0.0962	
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0952		<0.0962		<0.0962	
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.0952		<0.0962		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

111100,01111 1110 050

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820)	8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0952		<0.0962		<0.0962	
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.0952		<0.0962		<0.0962	
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0952		<0.0962		<0.0962	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-2.52	*	-4.88	*	2.77	*	-3.97	*
12587-47-2	Gross Beta	Т	pCi/L	9310	6.07	*	102	*	50	*	20.9	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.364	*	-0.19	*	0.166	*	0.258	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.9	*	-2.29	*	-0.792	*	0.551	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	0.389	*	142	*	107	*	36.6	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.697	*	0.0378	*	0.287	*	-0.178	*
10028-17-8	Tritium	Т	pCi/L	906.0	-35.8	*	28.1	*	-104	*	-158	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	32.7	*	24.7		<20		10.7	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5	*	<0.5	*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.698	J	1.29	J	1.07	J	0.849	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00368	BJ	0.00398	J	<0.01		0.00596	J

C-14

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	2	8004-48	309	8004-48	10	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g., N	w−1	L, MW-2, etc	:.)	373		384		385		386	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/12/2018 09	9:31	4/18/2018	09:35	4/18/2018	10:48	4/18/2018 1	0:09
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG3	3-18	MW384S0	G3-18	MW385S0	93-18	MW386SG	3-18
Laboratory San	poratory Sample ID Number (if applicable)						448375	003	4483750	005	44837500	07
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						4/25/20	18	4/25/20	18	4/25/201	8
Gradient with	respect to Monitored Unit (UP, DC	, NW	, SIDE, UNKN	IOWN)	DOWN		SIDE	Ē	SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.58		0.329		0.258		0.143	J
16887-00-6	Chloride(s)	Т	mg/L	9056	43.1		35.1	*	34.1	*	12.3	*
16984-48-8	Fluoride	т	mg/L	9056	0.167		0.226		0.107		0.629	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.09		0.962		1.06		0.171	J
14808-79-8	Sulfate	т	mg/L	9056	89.5	*	23.5		22.2		48.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.94		29.72		29.73		29.73	
s0145	Specific Conductance	т	μ MH 0/cm	Field	662		485		416		593	

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	ocal Well or Spring Number (e.g., MW	I-1,	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.37		327.54		327.59		346.76	
N238	Dissolved Oxygen	Т	mg/L	Field	2.78		4.31		4.85		3.24	
s0266	Total Dissolved Solids	т	mg/L	160.1	386	В	237		217		350	
s0296	рн	Т	Units	Field	6.18		6.12		6.07		6.77	
NS215	Eh	Т	mV	Field	350		321		317		302	
s0907	Temperature	Т	°C	Field	17.94		17.72		17.89		17.67	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	T	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	T	mg/L	6020	0.00298	J	0.00251	J	0.00249	J	0.00233	J
7440-39-3	Barium	T	mg/L	6020	0.0314		0.144		0.202		0.136	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	T	mg/L	6020	1.18		0.0219		0.02		0.00614	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	53.2		25.8		22.3		19.7	
7440-47-3	Chromium	T	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000498	J	0.000887	J	0.000792	J	0.00132	
7439-89-6	Iron	т	mg/L	6020	0.0668	J	0.175		<0.1		0.0583	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	20.6		10.8		9		8.51	
7439-96-5	Manganese	Т	mg/L	6020	0.00864		0.00732		<0.005		0.0205	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

11NDB/0N11- R10 090

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.	., MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		0.00048	J
7440-02-0	Nickel	Т	mg/L	6020	<0.002		0.00108	J	0.00121	J	0.000948	J
7440-09-7	Potassium	Т	mg/L	6020	2.39		1.24		1.58		0.297	J
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.0023	J	<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	47.9		55.6		47.7		107	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		0.000076	BJ
7440-62-2	Vanadium	Т	mg/L	6020	0.00376	J	<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	0.006	J	<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	$oxed{oxed}$
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-480	09	8004-48	310	8004-48	304
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00771		0.00254		0.00231		0.00165	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-4809)	8004-481	10	8004-48	04
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002		<0.0000197		<0.0000195		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0952			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0952			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809)	8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0952			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0952			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0952			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.32	*	-0.702	*	4.15	*	-4.3	*
12587-47-2	Gross Beta	Т	pCi/L	9310	4.99	*	95	*	72.5	*	-2.25	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	-0.0404	*	0.0474	*	0.792	*	0.425	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.912	*	0.0652	*	-2.27	*	-2.03	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	30.2	*	162	*	207	*	1.13	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.299	*	-0.279	*	0.739	*	0.032	*
10028-17-8	Tritium	Т	pCi/L	906.0	-4.51	*	11.6	*	100	*	100	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	24.7		24.7	*	34.3	*	24.7	*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.09	J	1	J	0.907	J	4.02	
s0586	Total Organic Halides	Т	mg/L	9020	0.0132	В	0.00772	BJ	0.0104	В	0.104	В
												—
		-						<u> </u>				—

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-OUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-481	2	8004-481	1
Facility's Loc	cal Well or Spring Number (e.g., 1	/W−1	, MW-2, etc	.)	387		388		389		390	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/18/2018 08	3:19	4/18/2018	08:57	NA		4/18/2018 07	7:36
Duplicate ("Y'	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW387SG3	-18	MW388S0	G3-18	NA		MW390SG3	s-18
Laboratory San	oratory Sample ID Number (if applicable)						448375	011	NA		44837500	1
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						4/25/20	18	NA		4/25/2018	3
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.519		0.308			*	0.429	
16887-00-6	Chloride(s)	т	mg/L	9056	42.3	*	33.1	*		*	41.1	*
16984-48-8	Fluoride	т	mg/L	9056	0.49		0.243			*	0.285	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.59		1.08			*	2.14	
14808-79-8	Sulfate	т	mg/L	9056	19.1		23.8	*		*	34	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.72		29.72			*	29.73	
s0145	Specific Conductance	т	μ M H0/cm	Field	522		437			*	650	

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

 $^{^{6}}$ "<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	ocal Well or Spring Number (e.g., MV	I-1 , 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.68		327.6			*	327.75	
N238	Dissolved Oxygen	т	mg/L	Field	3.15		3.81			*	5.46	
s0266	Total Dissolved Solids	Т	mg/L	160.1	270		207			*	356	
s0296	рн	Т	Units	Field	6.23		6.07			*	6.32	
NS215	Eh	T	mV	Field	319		325			*	324	
s0907	Temperature	Т	°C	Field	17.11		17.11			*	15.94	
7429-90-5	Aluminum	Т	mg/L	6020	0.0259	J	0.02	J		*	0.126	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00308	J	0.00272	J		*	0.00206	J
7440-39-3	Barium	Т	mg/L	6020	0.156		0.168			*	0.24	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.018		0.0189			*	0.0187	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	Т	mg/L	6020	30		24.3			*	28	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00561		0.000958	J		*	0.00302	
7439-89-6	Iron	Т	mg/L	6020	0.151		0.0505	J		*	0.113	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	12.4		10.8			*	12.3	
7439-96-5	Manganese	Т	mg/L	6020	0.0256		<0.005			*	0.00101	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Mumber: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-4811	1
Facility's L	ocal Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		<0.0005			*	0.000409	J
7440-02-0	Nickel	Т	mg/L	6020	0.00113	J	0.00141	J		*	0.00224	
7440-09-7	Potassium	Т	mg/L	6020	1.22		1.76			*	0.362	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	Т	mg/L	6020	59.7		46.1			*	102	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.000181	BJ
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01			*	0.00348	J
7440-66-6	Zinc	Т	mg/L	6020	0.00471	J	<0.01			*	0.00339	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Mumber: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None
For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-48	812	8004-48	11
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	cc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00505		0.00308			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-4816	5	8004-48	12	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g., I	MW-1	L, MW-2, et	:c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000195		<0.0000199			*	<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816	5	8004-481	2	8004-4811	ı
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.95	*	4.37	*		*	2.36	*
12587-47-2	Gross Beta	Т	pCi/L	9310	143	*	113	*		*	53.8	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.572	*	0.6	*		*	0.126	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.27	*	0.16	*		*	-0.628	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	213	*	157	*		*	80.4	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.292	*	1.06	*		*	0.495	*
10028-17-8	Tritium	Т	pCi/L	906.0	75.2	*	-26.2	*		*	71.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	21.6	*	23.1	*		*	37.4	*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.13	J	0.911	J		*	2.16	
s0586	Total Organic Halides	Т	mg/L	9020	0.0176		0.00654	J		*	0.0093	J

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	307	8004-480)2
Facility's Loc	cal Well or Spring Number (e.g., N	₩-1	L, MW-2, etc	·•)	391		392		393		394	
Sample Sequence	e #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/18/2018 13	3:24	4/18/2018	12:13	4/18/2018	12:48	4/19/2018 0	8:40
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW391SG3	-18	MW392S	G3-18	MW393S0	G3-18	MW394SG	3-18
Laboratory Sam	poratory Sample ID Number (if applicable)					3	448375	015	448375	017	4484400	03
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					3	4/25/20	18	4/25/20	18	4/26/201	8
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE				DOWN		DOW	N	DOW	N	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	Т	mg/L	9056	0.45		0.632		0.167	J	0.572	
16887-00-6	Chloride(s)	Т	mg/L	9056	35.3	*	48.4	*	13.8	*	43	*
16984-48-8	Fluoride	Т	mg/L	9056	0.162		0.213		0.157		0.141	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.79		0.481		0.2	J	1.55	
14808-79-8	Sulfate	т	mg/L	9056	70.3	*	7.44	*	19.6	*	10.4	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.72		29.72		29.72		30.26	
s0145	Specific Conductance	т	μ MHO /cm	Field	523		422		445		381	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	•	8004-4802	
Facility's Lo	ocal Well or Spring Number (e.g., MW	/-1, i	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.53		327.55		339.57		326.71	
N238	Dissolved Oxygen	т	mg/L	Field	3.38		3.65		1.67		4.64	
s0266	Total Dissolved Solids	Т	mg/L	160.1	270		216		260		271	*
s0296	рн	Т	Units	Field	6.03		6.15		6.22		5.99	
NS215	Eh	Т	mV	Field	304		297		293		310	
s0907	Temperature	Т	°C	Field	18.89		19.5		19.67		15.39	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.0234	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00214	J	0.00217	J	0.00345	J	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.129		0.191		0.102		0.265	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.237		0.0281		0.0213		0.0188	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	32.1		26.5		12.4		25.4	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000824	J	0.000558	J	0.000768	J	0.00067	BJ
7439-89-6	Iron	т	mg/L	6020	0.0479	J	0.0894	J	0.278		0.0622	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	14.3		9.8		3.88		11.7	
7439-96-5	Manganese	Т	mg/L	6020	0.00184	J	0.0466		0.0101		0.00191	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	05	8004-48	06	8004-480	07	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		0.000201	J	<0.0005		<0.0005	
7440-02-0	Nickel	Т	mg/L	6020	0.00115	J	0.00125	J	<0.002		0.00332	
7440-09-7	Potassium	Т	mg/L	6020	1.57		1.73		0.439		1.56	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	45.2		35.9		90.4		30.4	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	0.00397	J	<0.01		<0.01		0.00341	J
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	96	8004-48	307	8004-48	302
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		0.00111		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00672		0.0149		0.00113		0.00434	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-480)7	8004-480)2
Facility's Loc	cal Well or Spring Number (e.g., 1	w−1	l, MW-2, et	cc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000198		<0.0000196		<0.0000202		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805		8004-4806	i	8004-480	7	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	6.79	*	0.732	*	5.39	*	-0.824	*
12587-47-2	Gross Beta	Т	pCi/L	9310	0.899	*	-0.905	*	-3.14	*	8.1	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.163	*	-0.258	*	-0.112	*	0.379	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.572	*	-1.99	*	0.000651	*	-1.35	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-1.67	*	-2.23	*	-4.44	*	0.158	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.429	*	1.53	*	0.678	*	-0.642	*
10028-17-8	Tritium	т	pCi/L	906.0	-13.3	*	74.7	*	-24.7	*	12.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	37.4	*	15.2	*J	24.7	*	18.4	*J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.874	J	0.912	J	2.38		0.865	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0086	J	0.0237		0.0174		0.0169	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480°	1	8004-48	803	8004-48	317	0000-000	0
Facility's Loc	cal Well or Spring Number (e.g., N	1W-1	L, MW-2, etc	.)	395		396		397		E. BLAN	K
Sample Sequence	ce #				1		1		1		1	
If sample is a H	Slank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		E	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/19/2018 07	7:24	4/19/2018	08:04	4/17/2018	12:42	4/17/2018 0	6:35
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW395SG3	-18	MW396S0	G3-18	MW397S0	G3-18	RI1SG3-1	18
Laboratory Sam	mple ID Number (if applicable)				44844000	1	448440	005	448239	013	44823901	5
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis					3	4/26/20	18	4/20/20	18	4/20/201	8
Gradient with	adient with respect to Monitored Unit (UP, DOWN, SIDE,				UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.57		1.03		0.367			*
16887-00-6	Chloride(s)	Т	mg/L	9056	46.5	*	62.5	*	30.7	*		*
16984-48-8	Fluoride	т	mg/L	9056	0.128		0.646		0.143			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.5		0.185		1.17			*
14808-79-8	Sulfate	т	mg/L	9056	10.5		23.4		9.21			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.22		30.26		29.96			*
s0145	Specific Conductance	т	μ MHO/cm	Field	372		749		307			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

 $^{^{6}}$ "<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	•	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MW	I-1, I	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.01		372.53		326.84			*
N238	Dissolved Oxygen	Т	mg/L	Field	4.61		3.19		6.4			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	257	*	413	*	124			*
s0296	рн	Т	Units	Field	5.85		6.35		6.34			*
NS215	Eh	Т	mV	Field	367		275		319			*
s0907	Temperature	Т	°C	Field	12.33		14.72		16.17			*
7429-90-5	Aluminum	Т	mg/L	6020	0.0245	J	<0.05		0.04	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.255		0.362		0.131		<0.002	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0191		<0.015		0.00968	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	24.5		32		16.8		<0.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.000374	J	<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00125	В	0.00123	В	0.000709	J	<0.001	
7439-89-6	Iron	Т	mg/L	6020	0.0551	J	0.0727	J	0.0661	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	11.4		15.5		6.89		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	0.0013	J	0.0571		0.00225	J	<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	ΙΚ
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	0.000292	J	0.000464	J	<0.0005		<0.0005	
7440-02-0	Nickel	Т	mg/L	6020	0.000875	J	<0.002		0.000606	J	<0.002	
7440-09-7	Potassium	T	mg/L	6020	1.65		0.958		1.66		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	30.8		99.2		34.7		<0.25	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	T	mg/L	6020	<0.0002		0.00007	J	<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00365	J	<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		0.00093	J
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-00	000
Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	:c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0046		0.00057	J	<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	395		396		397		E. BLAN	1K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000195		<0.0000194		<0.0000196		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	T	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803	3	8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	4.32	*	1.8	*	-1.82	*	1.38	*
12587-47-2	Gross Beta	Т	pCi/L	9310	5.4	*	3.35	*	5.57	*	0.798	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.316	*	0.277	*	0	*	-0.0903	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.67	*	0.513	*	0.721	*	2.58	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	9.83	*	-10.3	*	18.9	*	6.25	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.03	*	0.0522	*	0.747	*	1.56	*
10028-17-8	Tritium	Т	pCi/L	906.0	-21	*	45.8	*	31.1	*	-2.75	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	42.2	*	23.1	*	37.4	*		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		0.182	J	<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.585	J	4.8		0.568	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00532	J	0.0713		0.00386	BJ		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u>

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., 1	ſW−1	L, MW-2, etc	.)	F. BLAN	K	T. BLAN	K 1	T. BLAN	ζ2	T. BLANK	3
Sample Sequence	e#				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	F		Т		Т		Т	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)					8:10	4/17/2018 (06:30	4/18/2018 (6:40	4/19/2018 0	6:30
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl	Facility Sample ID Number (if applicable)						TB1SG3	-18	TB2SG3-	18	TB3SG3-	18
Laboratory Sam	Laboratory Sample ID Number (if applicable)					16	4482390	17	4483750	19	44844000)7
Date of Analys	sis (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	4/20/201	8	4/20/20	18	4/25/201	8	4/26/201	8
Gradient with	respect to Monitored Unit (UP, DO	, NW	, SIDE, UNKN	OWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MHO /cm	Field	_	*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-E	r, etc.)	F. BLAN	<	T. BLANK	1	T. BLANK	2	T. BLANK 3	i
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	Т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	Т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	Т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	Т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	T	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	Т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	Т	mg/L	6020	0.000301	J		*		*		*
7439-89-6	Iron	Т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	Т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLANI	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	Т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	T	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	T	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	Т	mg/L	6020	<0.01			*		*		*
7440-66-6	Zinc	Т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	0.0143		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		0.00092	J	0.00094	J	0.00095	J
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-000	00	0000-00	000	0000-00	000
Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	:c.)	F. BLAN	(T. BLAN	(1	T. BLAN	IK 2	T. BLAN	IK 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	0.0246		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	1 W−1	l, MW-2, et	:c.)	F. BLAN	(T. BLANK	1	T. BLAN	< 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	0.00314	J	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000197		<0.0000195		<0.0000199		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont)

AKGWA NUMBER , Facility Well/Spring Number 0000-0000 0000-0000 0000-0000 0000-0000 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) F. BLANK T. BLANK 1 T. BLANK 2 T. BLANK 3 CAS RN4 DETECTED F DETECTED DETECTED CONSTITUENT METHOD F DETECTED F Unit D VALUE VALUE VALUE VALUE OF L L L L MEASURE Α OR OR Α OR Α OR Α POL⁶ POL⁶ POL⁶ G G POL⁶ G G s s S 11097-69-1 PCB-1254 Т ug/L 8082 11096-82-5 PCB-1260 т ug/L 8082 т 11100-14-4 PCB-1268 ug/L 8082 0.596 12587-46-1 Gross Alpha Т pCi/L 9310 5.24 12587-47-2 Gross Beta Т pCi/L 9310 10043-66-0 Iodine-131 т pCi/L 0.0841 13982-63-3 Radium-226 т pCi/L HASL 300 0.889 10098-97-2 Strontium-90 т pCi/L 905.0 10.8 14133-76-7 Technetium-99 Т pCi/L Tc-02-RC 1.4 Т 14269-63-7 Thorium-230 pCi/L Th-01-RC -4.2 10028-17-8 т 906.0 Tritium pCi/L s0130- -Chemical Oxygen Demand т 410.4 mg/L 57-12-5 Cyanide Т mg/L 9012 < 0.5 20461-54-5 Iodide т 300.0 mg/L S0268- -Total Organic Carbon 9060 Т mg/L S0586- -Total Organic Halides т 9020 mg/L

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5202	2						
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	, MW-2, etc	.)	221							
Sample Sequenc	e #				2						/	
If sample is a B	clank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA							
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)				4/17/2018 07	7:54						
Duplicate ("Y"	Ouplicate ("Y" or "N") ²				Υ							
Split ("Y" or	split ("Y" or "N") ³				N							
Facility Sampl	e ID Number (if applicable)				MW221DSG	3-18					/	
Laboratory Sam	ple ID Number (if applicable)				44823900	5						
Date of Analys	Date of Analysis (Month/Day/Year) For Volatile Organics Analysis				4/20/2018	3						
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	OWN)	SIDE				\times	/		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G s ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.402				/			
16887-00-6	Chloride(s)	Т	mg/L	9056	30.5	*						
16984-48-8	Fluoride	Т	mg/L	9056	0.186							
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.977							
14808-79-8	Sulfate	Т	mg/L	9056	16.3							
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.04							
s0145	Specific Conductance	т	μ MH0/cm	Field	394							

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	2						
Facility's Lo	cal Well or Spring Number (e.g., MV	-1, I	MW-2, BLANK-	F, etc.)	221							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	327.04							
N238	Dissolved Oxygen	т	mg/L	Field	4.38							
s0266	Total Dissolved Solids	т	mg/L	160.1	196							
s0296	рн	т	Units	Field	6.1							
NS215	Eh	т	mV	Field	363							
s0907	Temperature	Т	°C	Field	13.94							
7429-90-5	Aluminum	Т	mg/L	6020	<0.05					/		
7440-36-0	Antimony	Т	mg/L	6020	<0.003							
7440-38-2	Arsenic	Т	mg/L	6020	<0.005				X			
7440-39-3	Barium	Т	mg/L	6020	0.214							
7440-41-7	Beryllium	т	mg/L	6020	<0.0005							
7440-42-8	Boron	т	mg/L	6020	0.0136	J						
7440-43-9	Cadmium	т	mg/L	6020	<0.001						\	
7440-70-2	Calcium	т	mg/L	6020	22.3							
7440-47-3	Chromium	т	mg/L	6020	<0.01							
7440-48-4	Cobalt	т	mg/L	6020	0.000329	J	,					
7440-50-8	Copper	т	mg/L	6020	0.00101							
7439-89-6	Iron	т	mg/L	6020	<0.1							
7439-92-1	Lead	т	mg/L	6020	<0.002							
7439-95-4	Magnesium	Т	mg/L	6020	9.47							
7439-96-5	Manganese	т	mg/L	6020	0.00163	J						
7439-97-6	Mercury	т	mg/L	7470	<0.0002						_	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520)2	\setminus					
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	221							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	Т	mg/L	6020	0.00332							
7440-02-0	Nickel	Т	mg/L	6020	0.0319							
7440-09-7	Potassium	Т	mg/L	6020	1.98							
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			`				
7782-49-2	Selenium	Т	mg/L	6020	<0.005							
7440-22-4	Silver	Т	mg/L	6020	<0.001							
7440-23-5	Sodium	Т	mg/L	6020	45.9							
7440-25-7	Tantalum	Т	mg/L	6020	<0.005							
7440-28-0	Thallium	T	mg/L	6020	<0.002				X			
7440-61-1	Uranium	т	mg/L	6020	<0.0002							
7440-62-2	Vanadium	т	mg/L	6020	<0.01							
7440-66-6	Zinc	т	mg/L	6020	0.00337	J						
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005							
67-64-1	Acetone	т	mg/L	8260	<0.005				/			
107-02-8	Acrolein	т	mg/L	8260	<0.005							
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005							
71-43-2	Benzene	Т	mg/L	8260	<0.001							
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001							
1330-20-7	Xylenes	Т	mg/L	8260	<0.003							
100-42-5	Styrene	Т	mg/L	8260	<0.001							
108-88-3	Toluene	Т	mg/L	8260	<0.001							
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		/					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number					2						
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	221							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001							
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001							
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005						/	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005					/		
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005							
75-00-3	Chloroethane	Т	mg/L	8260	<0.001							
67-66-3	Chloroform	т	mg/L	8260	<0.001							
74-87-3	Methyl chloride	т	mg/L	8260	<0.001				X			
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001				/ \			
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001							
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001					\ \ \		
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001							
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		/					
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		7					
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001							
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		7					
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		✓					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5202	2						$\overline{}$
Facility's Loc	al Well or Spring Number (e.g., N	иw−1	., MW-2, et	.c.)	221							$\overline{\mathcal{L}}$
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005							
74-88-4	Iodomethane	Т	mg/L	8260	<0.005							
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001							
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005							
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196							
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				X			
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001							
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001						\	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001							
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001							
1336-36-3	PCB,Total	т	ug/L	8082		*						
12674-11-2	PCB-1016	Т	ug/L	8082		*						
11104-28-2	PCB-1221	Т	ug/L	8082		*						
11141-16-5	PCB-1232	Т	ug/L	8082		*						
53469-21-9	PCB-1242	Т	ug/L	8082		*						
12672-29-6	PCB-1248	т	ug/L	8082		*						

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

, Facility Well/Spring Number				8000-5202	2						
cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	221							
CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
PCB-1254	Т	ug/L	8082		*						
PCB-1260	Т	ug/L	8082		*						
PCB-1268	Т	ug/L	8082		*						
Gross Alpha	Т	pCi/L	9310	2.66	*						
Gross Beta	Т	pCi/L	9310	9.34	*						
Iodine-131	Т	pCi/L			*						
Radium-226	Т	pCi/L	AN-1418	0.248	*				Y		
Strontium-90	Т	pCi/L	905.0	-0.915	*						
Technetium-99	Т	pCi/L	Tc-02-RC	15.2	*						
Thorium-230	Т	pCi/L	Th-01-RC	0.326	*			/ \			
Tritium	Т	pCi/L	906.0	-46.7	*						
Chemical Oxygen Demand	Т	mg/L	410.4	20	*J			/			
Cyanide	Т	mg/L	9012	<0.2			/				
Iodide	Т	mg/L	300.0	<0.5							
Total Organic Carbon	Т	mg/L	9060	0.821	J						
Total Organic Halides	Т	mg/L	9020	0.00762	BJ						
	CONSTITUENT CONSTITUENT PCB-1254 PCB-1260 PCB-1268 Gross Alpha Gross Beta Iodine-131 Radium-226 Strontium-90 Technetium-99 Thorium-230 Tritium Chemical Oxygen Demand Cyanide Iodide Total Organic Carbon	CONSTITUENT CONSTITUENT CONSTITUENT PCB-1254 PCB-1260 PCB-1268 Gross Alpha Gross Beta Todine-131 Radium-226 Strontium-90 Technetium-99 Thorium-230 Tritium Chemical Oxygen Demand T Iodide T Todide T Todide T Total Organic Carbon T	CONSTITUENT CONSTITUENT CONSTITUENT T Unit OF MEASURE PCB-1254 PCB-1260 PCB-1268 Gross Alpha Gross Beta T pCi/L Iodine-131 T pCi/L Radium-226 Strontium-90 T pCi/L Technetium-99 T pCi/L Thorium-230 T pCi/L Thorium-230 T pCi/L Thorium-230 T pCi/L Chemical Oxygen Demand T mg/L Todal Organic Carbon T mg/L Todal Organic Carbon T mg/L	Facility Well/Spring Number Cal Well or Spring Number (e.g., MW-1, MW-2, etc.) CONSTITUENT	Facility Well/Spring Number 8000-5202	Facility Well/Spring Number 8000-5202	Pacility Well/Spring Number Racility Well/Spring Number (e.g., MW-1, MW-2, etc.) Z21 Z21 Z21 Z21 Z21	Facility Well/Spring Number 221	Recipion Number Recipion Recipion	Real Head of Spring Number Real Head of S	Reality Well/Spring Number Reality Well/Spring Number (e.g., MW-1, MW-2, etc.) Reality Well or Spring Number (e.g., MW-1, MW-2, etc.) Reality Walle of the policy

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW22	20 MW220SG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 3.77. Rad error is 3.77.
		Gross beta		TPU is 7.21. Rad error is 6.82.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.333. Rad error is 0.333.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 3.32. Rad error is 3.26.
		Technetium-99		TPU is 8.54. Rad error is 8.25.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.798. Rad error is 0.787.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 122. Rad error is 122.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221SG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.91. Rad error is 4.88.
		Gross beta		TPU is 6.22. Rad error is 5.83.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.33. Rad error is 0.33.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 3.94. Rad error is 3.92.
		Technetium-99		TPU is 11.2. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.993. Rad error is 0.971.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 123. Rad error is 123.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5242 MW222 MW222SG3-18		Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.73. Rad error is 3.73.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.19. Rad error is 5.19.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.323. Rad error is 0.323.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.92. Rad error is 2.88.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 10.8. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.996. Rad error is 0.965.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 122. Rad error is 122.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5243 MW223 MW223SG3-18		Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.17. Rad error is 5.15.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.95. Rad error is 4.87.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.829. Rad error is 0.824.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.85. Rad error is 2.85.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 8. Rad error is 7.89.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.09. Rad error is 1.06.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 122. Rad error is 122.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

	Facility Sample ID	Constituent	Flag	Description
 000-5244 MW224 M ^N	W224SG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.93. Rad error is 3.93.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.53. Rad error is 4.41.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.575. Rad error is 0.571.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.6. Rad error is 2.56.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 9.44. Rad error is 9.44.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.29. Rad error is 1.27.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 123. Rad error is 123.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
04-4820 MW369 M	W369UG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.82. Rad error is 3.82.
		Gross beta		TPU is 22.4. Rad error is 14.8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.198. Rad error is 0.198.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.32. Rad error is 2.32.
		Technetium-99		TPU is 21.8. Rad error is 15.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.619. Rad error is 0.617.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 131. Rad error is 131.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

ū	Facility Sample ID	Constituent	Flag	Description
3004-4818 MW370 MV	N370UG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.88. Rad error is 4.86.
		Gross beta		TPU is 14.6. Rad error is 12.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.332. Rad error is 0.331.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.89. Rad error is 1.89.
		Technetium-99		TPU is 18.3. Rad error is 14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. This 0.843. Rad error is 0.838.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. This 125. Rad error is 125.
		Iodide	W	Post-digestion spike recovery out of control limits.
004-4808 MW372 MV	N372UG3-18	Sulfate	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. This 3.6. Rad error is 3.6.
		Gross beta		TPU is 9.52. Rad error is 8.84.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. This 0.424. Rad error is 0.419.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 1.3. Rad error is 1.3.
		Technetium-99		TPU is 12.5. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.938. Rad error is 0.934.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 123. Rad error is 123.
004-4792 MW373 MV	N373UG3-18	Sulfate	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 4.24. Rad error is 4.22.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 8.49. Rad error is 8.45.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 0.18. Rad error is 0.179.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 1.74. Rad error is 1.74.
		Technetium-99		TPU is 10.9. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.473. Rad error is 0.472.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 122. Rad error is 122.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4809 MW384 MW384SG3-18		Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		1,1,1-Trichloroethane	L	LCS or LCSD recovery outside of control limits
		Carbon tetrachloride	L	LCS or LCSD recovery outside of control limits
		Trichlorofluoromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.98. Rad error is 5.98.
		Gross beta		TPU is 19.9. Rad error is 12.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.481. Rad error is 0.481.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.98. Rad error is 1.98.
		Technetium-99		TPU is 23.1. Rad error is 14.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.419. Rad error is 0.417.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 135. Rad error is 135.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4810 MW385 MW385SG3-18		Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		1,1,1-Trichloroethane	L	LCS or LCSD recovery outside of control limits
		Carbon tetrachloride	L	LCS or LCSD recovery outside of control limits
		Trichlorofluoromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
	PCB-1248		Analysis of constituent not required and not performed.	
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.69. Rad error is 5.61.
		Gross beta		TPU is 16.2. Rad error is 11.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.873. Rad error is 0.87.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.15. Rad error is 3.15.
		Technetium-99		TPU is 27.7. Rad error is 15.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.07. Rad error is 1.04.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 140. Rad error is 139.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW386 MW386SG3-18		Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		1,1,1-Trichloroethane	L	LCS or LCSD recovery outside of control limits
		Carbon tetrachloride	L	LCS or LCSD recovery outside of control limits
		Trichlorofluoromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.3. Rad error is 3.3.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.58. Rad error is 6.57.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.583. Rad error is 0.581.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.95. Rad error is 1.95.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 9.2. Rad error is 9.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.606. Rad error is 0.603.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 139. Rad error is 138.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW38	37 MW387SG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		1,1,1-Trichloroethane	L	LCS or LCSD recovery outside of control limits
		Carbon tetrachloride	L	LCS or LCSD recovery outside of control limits
		Trichlorofluoromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.1. Rad error is 5.08.
		Gross beta		TPU is 28.1. Rad error is 15.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.697. Rad error is 0.692.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.54. Rad error is 2.54.
		Technetium-99		TPU is 28. Rad error is 15.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.695. Rad error is 0.688.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 139. Rad error is 138.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4816 MW38	88 MW388SG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		1,1,1-Trichloroethane	L	LCS or LCSD recovery outside of control limits
		Carbon tetrachloride	L	LCS or LCSD recovery outside of control limits
		Trichlorofluoromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.31. Rad error is 5.26.
		Gross beta		TPU is 23.5. Rad error is 13.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.688. Rad error is 0.679.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.04. Rad error is 2.04.
		Technetium-99		TPU is 22.7. Rad error is 14.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.55. Rad error is 1.51.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 132. Rad error is 132.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample was collected.
		рН		During sampling, the well was dry; therefore, no sample w collected.
		Eh		During sampling, the well was dry; therefore, no sample w collected.
		Temperature		During sampling, the well was dry; therefore, no sample w collected.
		Aluminum		During sampling, the well was dry; therefore, no sample w collected.
		Antimony		During sampling, the well was dry; therefore, no sample w collected.
		Arsenic		During sampling, the well was dry; therefore, no sample w collected.
		Barium		During sampling, the well was dry; therefore, no sample w collected.
		Beryllium		During sampling, the well was dry; therefore, no sample w collected.
		Boron		During sampling, the well was dry; therefore, no sample w collected.
		Cadmium		During sampling, the well was dry; therefore, no sample w collected.
		Calcium		During sampling, the well was dry; therefore, no sample w collected.
		Chromium		During sampling, the well was dry; therefore, no sample w collected.
		Cobalt		During sampling, the well was dry; therefore, no sample w collected.
		Copper		During sampling, the well was dry; therefore, no sample w collected.
		Iron		During sampling, the well was dry; therefore, no sample w collected.
		Lead		During sampling, the well was dry; therefore, no sample w collected.
		Magnesium		During sampling, the well was dry; therefore, no sample w collected.
		Manganese		During sampling, the well was dry; therefore, no sample w collected.
		Mercury		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample was collected.
		Silver		During sampling, the well was dry; therefore, no sample was collected.
		Sodium		During sampling, the well was dry; therefore, no sample was collected.
		Tantalum		During sampling, the well was dry; therefore, no sample was collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well was dry; therefore, no sample was collected.
		Zinc		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample w collected.
		Acetone		During sampling, the well was dry; therefore, no sample w collected.
		Acrolein		During sampling, the well was dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample w collected.
		Benzene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		Xylenes		During sampling, the well was dry; therefore, no sample w collected.
		Styrene		During sampling, the well was dry; therefore, no sample w collected.
		Toluene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample w collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample w collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample w collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample w collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample w collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample w collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample w collected.
		lodomethane		During sampling, the well was dry; therefore, no sample w collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample w collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample we collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample we collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample w collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample w collected.
		Gross beta		During sampling, the well was dry; therefore, no sample w collected.
		lodine-131		During sampling, the well was dry; therefore, no sample v collected.
		Radium-226		During sampling, the well was dry; therefore, no sample v collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample w collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample w collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample w collected.
		Tritium		During sampling, the well was dry; therefore, no sample w collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample w collected.
		Cyanide		During sampling, the well was dry; therefore, no sample w collected.
		lodide		During sampling, the well was dry; therefore, no sample w collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample v collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample v collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
 004-4811 MW39	0 MW390SG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		1,1,1-Trichloroethane	L	LCS or LCSD recovery outside of control limits
		Carbon tetrachloride	L	LCS or LCSD recovery outside of control limits
		Trichlorofluoromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.45. Rad error is 6.44.
		Gross beta		TPU is 13.9. Rad error is 10.8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.401. Rad error is 0.401.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.02. Rad error is 2.02.
		Technetium-99		TPU is 15.8. Rad error is 13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.868. Rad error is 0.855.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 138. Rad error is 137.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4805 MW391 MW391SG3-18		Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		1,1,1-Trichloroethane	L	LCS or LCSD recovery outside of control limits
		Carbon tetrachloride	L	LCS or LCSD recovery outside of control limits
		Trichlorofluoromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 8.19. Rad error is 8.11.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.51. Rad error is 4.51.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.615. Rad error is 0.614.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.4. Rad error is 2.4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 9.02. Rad error is 9.02.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.603. Rad error is 0.599.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 134. Rad error is 134.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4806 MW39	92 MW392SG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		1,1,1-Trichloroethane	L	LCS or LCSD recovery outside of control limits
		Carbon tetrachloride	L	LCS or LCSD recovery outside of control limits
		Trichlorofluoromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.03. Rad error is 6.03.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.15. Rad error is 5.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.417. Rad error is 0.414.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.66. Rad error is 1.66.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.32. Rad error is 1.27.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 137. Rad error is 136.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4807 MW39	3 MW393SG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		1,1,1-Trichloroethane	L	LCS or LCSD recovery outside of control limits
		Carbon tetrachloride	L	LCS or LCSD recovery outside of control limits
		Trichlorofluoromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
	PCB-1232		Analysis of constituent not required and not performed.	
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.44. Rad error is 7.38.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.56. Rad error is 3.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.322. Rad error is 0.32.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.37. Rad error is 2.37.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 8.99. Rad error is 8.99.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.12. Rad error is 1.11.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 125. Rad error is 125.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4802 MW39	94 MW394SG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Dichloromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.15. Rad error is 3.15.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.98. Rad error is 6.86.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.634. Rad error is 0.626.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.6. Rad error is 1.6.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 9.63. Rad error is 9.63.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.667. Rad error is 0.663.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 132. Rad error is 132.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4801 MW39	5 MW395SG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Dichloromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.62. Rad error is 6.57.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.3. Rad error is 5.21.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.621. Rad error is 0.617.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.97. Rad error is 1.95.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 10.2. Rad error is 10.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.15. Rad error is 1.12.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 134. Rad error is 134.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4803 MW39	96 MW396SG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Dichloromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.15. Rad error is 5.14.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.91. Rad error is 4.87.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.545. Rad error is 0.539.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.61. Rad error is 1.61.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 8.6. Rad error is 8.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.889. Rad error is 0.887.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 133. Rad error is 133.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW397 MW397SG3-18		Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
	PCB-1016		Analysis of constituent not required and not performed.	
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
	PCB-1260		Analysis of constituent not required and not performed.	
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.36. Rad error is 3.36.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.49. Rad error is 4.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.291. Rad error is 0.289.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.96. Rad error is 1.96.
		Technetium-99		TPU is 11.3. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.39. Rad error is 1.37.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 130. Rad error is 130.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG3-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. Ti is 4.57. Rad error is 4.57.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.73. Rad error is 4.73.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 0.308. Rad error is 0.308.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.5. Rad error is 2.46.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 7.75. Rad error is 7.72.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.34. Rad error is 1.29.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 124. Rad error is 124.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG3-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.75. Rad error is 3.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.84. Rad error is 4.76.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.456. Rad error is 0.456.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.04. Rad error is 2.04.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 8.92. Rad error is 8.84.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.43. Rad error is 1.39.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 124. Rad error is 123.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG3-18	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG3-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG3-18	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
	Iron Lead	Analysis of constituent not required and not performed		
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

	Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG3-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		1,1,1-Trichloroethane	L	LCS or LCSD recovery outside of control limits
		Carbon tetrachloride	L	LCS or LCSD recovery outside of control limits
		Trichlorofluoromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG3-18	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
	• •	Analysis of constituent not required and not performed		
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG3-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Dichloromethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221DSG3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.89. Rad error is 4.87.
		Gross beta		TPU is 5.65. Rad error is 5.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.61. Rad error is 0.609.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.57. Rad error is 2.57.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 10.7. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.783. Rad error is 0.776.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 122. Rad error is 121.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 2nd CY 2018

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u> Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2018 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The second quarter 2018 data used to conduct the statistical analyses were collected in April 2018. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background, using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
$MW386^1$	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
$MW390^1$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2018. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

lower $TL = X - (K \times S)$

-

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Aluminum Beta Activity Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride cis-1,2-Dichloroethene Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iodide Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium Sulfate Technetium-99 Total Organic Carbon (TOC) Total Organic Halides (TOX) Trichloroethene Vanadium

Zinc

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	2	2	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Beta activity	4	3	1	Yes
Boron	4	1	3	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	0	4	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	3	1	Yes
Conductivity	4	0	4	Yes
Copper	4	0	4	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Oxygen Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	4	3	1	Yes
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	0	4	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	3	1	Yes
Nickel	4	2	2	Yes
Oxidation-Reduction Potential	4	0	4	Yes
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	3	1	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	2	2	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	8	3	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	5	6	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	0	11	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	11	0	No
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	5	6	Yes
Conductivity	11	0	11	Yes
Copper	11	1	10	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	3	8	Yes
Magnesium	11	0	11	Yes
Manganese	11	1	10	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	5	6	Yes
Nickel	11	0	11	Yes
Oxidation-Reduction Potential	11	0	11	Yes
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	5	6	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	3	8	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	3	8	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	8	3	Yes
Vinyl Acetate	11	11	0	No
Zinc	11	5	6	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	4	3	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Beta activity	7	4	3	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	1	6	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	6	1	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	2	5	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Magnesium	7	0	7	Yes
Manganese	7	2	5	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	6	1	Yes
Nickel	7	1	6	Yes
Oxidation-Reduction Potential	7	0	7	Yes
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	2	5	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	2	5	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	5	2	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	5	2	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 28, 28, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background UTL for beta activity, oxidation-reduction potential, and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chemical oxygen demand (COD), dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chemical oxygen demand (COD), conductivity, dissolved solids, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Sulfate	MW370: Oxidation-reduction potential, sulfate, technetium-99
MW390: Beta activity, oxidation-reduction potential, technetium-99	MW223: Sulfate	MW373: Calcium, conductivity, dissolved solids, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW369: Beta activity, sulfate, technetium-99	MW385: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW372: Calcium, dissolved solids, magnesium, sulfate, technetium-99	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99
	MW384: Beta activity, sulfate, technetium-99	MW392: Oxidation-reduction potential
	MW387: Beta activity, sodium, sulfate, technetium-99	MW395: Chemical oxygen demand (COD), oxidation-reduction potential
	MW391: Chemical oxygen demand (COD), sulfate	MW397: Oxidation-reduction potential

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	1.17	Current results exceed statistically derived historical background concentration in MW390.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW369, MW384, and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentration in MW391.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW387.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW223, MW369, MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW385 and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	Current results exceed statistically derived historical background concentration in MW395.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.52	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.81	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the upper TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 8, and 8 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

LRGA
MW370: Sulfate, technetium-99
MW373: Calcium, conductivity, dissolved solids, sulfate
MW388: Beta activity, sulfate, technetium-99
•

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the beta activity and technetium-99 concentration in one UCRS well (i.e., MW390) was higher than the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	2.09	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.29	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-2.55	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.78	MW369, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.16	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.51	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Solids	Tolerance Interval	0.32	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.15	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sodium	Tolerance Interval	0.15	MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.32	MW372 and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.60	MW369, MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.54	MW385 and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.22	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.74	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Conductivity	Tolerance Interval	0.09	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.13	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.26	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.06	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.53	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

S = 0.182 CV(1) = 0.567

K factor=** 3.188

TL(1)= 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259 S =

S = 0.503 CV(2) = -0.400

K factor**= 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.393 -0.9349/16/2002 0.2 -1.60910/16/2002 0.2 -1.6091/13/2003 0.501 -0.6914/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/14/2004 0.668 -0.403

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A
MW390	Downgradien	t Yes	0.126	NO	-2.071	N/A
MW393	Downgradien	t Yes	0.0234	NO	-3.755	N/A
MW396	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 4.298

CV(1) = 1.166

K factor=** 3.188

TL(1)= 20.277

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.294

S= 0.988

S = 5.012

CV(2) = 0.764

K factor**= 3.188

TL(2)= 2.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:		MW396			
	Date Collected	Result	LN(Result)		
	8/13/2002	2.2	0.788		
	9/16/2002	0.727	-0.319		
	10/16/2002	7.28	1.985		
	1/13/2003	6.97	1.942		
	4/8/2003	13.9	2.632		
	7/16/2003	2.08	0.732		
	10/14/2003	-2.42	#Func!		
	1/14/2004	3.65	1.295		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	-2.25	N/A	#Error	N/A
MW390	Downgradien	t Yes	53.8	N/A	3.985	YES
MW393	Downgradien	t No	-3.14	N/A	#Error	N/A
MW396	Upgradient	No	3.35	N/A	1.209	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

CV(1) = 1.282

K factor=** 3.188

TL(1)= 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S

 $S= 1.066 \quad CV(2)=-1.031$

S = 0.833

K factor**= 3.188

188 **TL(2)=** 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00614	N/A	-5.093	NO	
MW390	Downgradien	t Yes	0.0187	N/A	-3.979	NO	
MW393	Downgradien	t Yes	0.0213	N/A	-3.849	NO	
MW396	Upgradient	No	0.015	N/A	-4.200	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

S = 0.327 CV(1) = 0.236

K factor=** 3.188

TL(1)= 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.301

S = 0.252

CV(2) = 0.838

K factor**= 3.188

TL(2)= 1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.143	NO	-1.945	N/A		
MW390	Downgradien	t Yes	0.429	NO	-0.846	N/A		
MW393	Downgradien	t Yes	0.167	NO	-1.790	N/A		
MW396	Upgradient	Yes	1.03	NO	0.030	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor=** 3.188

TL(1) = 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.711 **S**= 0.241

CV(2) = 0.065

K factor=** 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	19.7	NO	2.981	N/A	
MW390	Downgradien	t Yes	28	NO	3.332	N/A	
MW393	Downgradien	t Yes	12.4	NO	2.518	N/A	
MW396	Upgradient	Yes	32	NO	3.466	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744

K factor**= 3.188

TL(1)= 37.747

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.566 **S**= 0.021

CV(2) = 0.006

CV(1)=0.021

K factor**= 3.188

TL(2)= 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	24.7	NO	3.207	N/A		
MW390	Downgradien	t Yes	37.4	NO	3.622	N/A		
MW393	Downgradien	t Yes	24.7	NO	3.207	N/A		
MW396	Upgradient	Yes	23.1	NO	3.140	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

CV(1) = 0.052

K factor=** 3.188

TL(1)= 118.447

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.621

S = 0.053

CV(2) = 0.011

K factor=** 3.188

TL(2)= 4.789

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	12.3	NO	2.510	N/A	
MW390	Downgradien	t Yes	41.1	NO	3.716	N/A	
MW393	Downgradien	t Yes	13.8	NO	2.625	N/A	
MW396	Upgradient	Yes	62.5	NO	4.135	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

S= 0.011 **CV(1)**=1.340

K factor=** 3.188

TL(1)= 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.645

 $S= 1.339 \quad CV(2)=-0.237$

K factor=** 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW390	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW396	Upgradient	Yes	0.00037	4 N/A	-7.891	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor=** 3.188

TL(1)= 1265.579 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.822

 $S = 0.111 \quad CV(2) = 0.016$

K factor=** 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:		MW396			
	Date Collected	Result	LN(Result)		
	8/13/2002	784	6.664		
	9/30/2002	871	6.770		
	10/16/2002	868	6.766		
	1/13/2003	912	6.816		
	4/8/2003	942	6.848		
	7/16/2003	910	6.813		
	10/14/2003	935	6.841		
	1/14/2004	1158	7.054		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	593	NO	6.385	N/A	
MW390	Downgradien	t Yes	650	NO	6.477	N/A	
MW393	Downgradien	t Yes	445	NO	6.098	N/A	
MW396	Upgradient	Yes	749	NO	6.619	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1)=0.481 S = 0.014

K factor=** 3.188

TL(1) = 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414

CV(2) = -0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00132	NO	-6.630	N/A
MW390	Downgradien	t Yes	0.00302	NO	-5.802	N/A
MW393	Downgradien	t Yes	0.00076	8 NO	-7.172	N/A
MW396	Upgradient	Yes	0.00123	NO	-6.701	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

CV(1)= 1.202

K factor=** 3.188

TL(1)= 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043

S = 0.814 CV(2) = -18.867

S = 1.677

K factor=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	3.24	N/A	1.176	NO	
MW390	Downgradien	t Yes	5.46	N/A	1.697	NO	
MW393	Downgradien	t Yes	1.67	N/A	0.513	NO	
MW396	Upgradient	Yes	3.19	N/A	1.160	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor=** 3.188

TL(1)= 882.980 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.298

S = 0.162 CV(2) = 0.026

K factor=** 3.188

TL(2)= 6.815

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	350	NO	5.858	N/A	
MW390	Downgradien	t Yes	356	NO	5.875	N/A	
MW393	Downgradien	t Yes	260	NO	5.561	N/A	
MW396	Upgradient	Yes	413	NO	6.023	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

S = 0.283 CV(1) = 0.132

K factor=** 3.188

TL(1) = 3.052

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.759

S= 0.123

CV(2) = 0.162

K factor**= 3.188

TL(2)=1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396		
Date Collected	Result	LN(Result)	
8/13/2002	2	0.693	
9/16/2002	2	0.693	
10/16/2002	2	0.693	
1/13/2003	2	0.693	
4/8/2003	2	0.693	
7/16/2003	2.7	0.993	
10/14/2003	2.5	0.916	
1/14/2004	2	0.693	

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A	
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW396	Upgradient	Yes	0.182	NO	-1.704	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

CV(1) = 0.478

K factor=** 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880

S= 0.723

S = 3.723

CV(2) = 0.384

K factor**= 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:		MW396	
	Date Collected	Result	LN(Result)
	8/13/2002	1.8	0.588
	9/16/2002	9.53	2.254
	10/16/2002	7.43	2.006
	1/13/2003	9.93	2.296
	4/8/2003	10.2	2.322
	7/16/2003	9.16	2.215
	10/14/2003	11.9	2.477
	1/14/2004	2.42	0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.0583	NO	-2.842	N/A	
MW390	Downgradien	t Yes	0.113	NO	-2.180	N/A	
MW393	Downgradien	t Yes	0.278	NO	-1.280	N/A	
MW396	Upgradient	Yes	0.0727	NO	-2.621	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 16.876 **S**= 3.313

CV(1)=0.196

K factor=** 3.188

TL(1)= 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S= 0.240

CV(2) = 0.086

K factor=** 3.188

TL(2)= 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	8.51	NO	2.141	N/A		
MW390	Downgradien	t Yes	12.3	NO	2.510	N/A		
MW393	Downgradien	t Yes	3.88	NO	1.356	N/A		
MW396	Upgradient	Yes	15.5	NO	2.741	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

S = 0.353CV(1) = 0.456 **K factor**=** 3.188

TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.566 S = 1.192

CV(2) = -2.105

K factor=** 3.188

TL(2)= 3.235

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0205	NO	-3.887	N/A
MW390	Downgradien	t Yes	0.00101	NO	-6.898	N/A
MW393	Downgradien	t Yes	0.0101	NO	-4.595	N/A
MW396	Upgradient	Yes	0.0571	NO	-2.863	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-18

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S= 0.011 **CV(1)**=1.507

K factor=** 3.188

TL(1)= 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.928

S = 1.420 C

CV(2) = -0.240

K factor**= 3.188

TL(2)= -1.400

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current (Quarter	Data
-----------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00048	N/A	-7.642	NO
MW390	Downgradien	t No	0.00040	9 N/A	-7.802	N/A
MW393	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW396	Upgradient	No	0.00046	4 N/A	-7.676	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

S= 0.021 **CV(1)**=1.272

K factor=** 3.188

TL(1)= 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

CV(2) = -0.225

K factor=** 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter D	ata
-------------------	-----

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00094	8 N/A	-6.961	NO
MW390	Downgradien	t Yes	0.00224	N/A	-6.101	NO
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A
MW396	Upgradient	No	0.002	N/A	-6.215	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor=** 3.188

TL(1)= 210.502 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.364

S = 0.333CV(2) = 0.076 **K factor**=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	302	N/A	5.710	YES
MW390	Downgradien	t Yes	324	N/A	5.781	YES
MW393	Downgradien	t Yes	293	N/A	5.680	YES
MW396	Upgradient	Yes	275	N/A	5.617	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393 MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-21

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison pH **UNITS: Std Unit**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

CV(1) = 0.054S = 0.350

K factor=** 3.736

TL(1) = 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X = 1.864S = 0.054 CV(2) = 0.029

K factor=** 3.736

TL(2) = 2.067

LL(2)=1.6621

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) > TL(2)?
				Result <ll(1)?< td=""><td></td><td>LN(Result) <ll(2)?< td=""></ll(2)?<></td></ll(1)?<>		LN(Result) <ll(2)?< td=""></ll(2)?<>
MW386	Sidegradient	Yes	6.77	NO	1.913	N/A
MW390	Downgradien	t Yes	6.32	NO	1.844	N/A
MW393	Downgradien	t Yes	6.22	NO	1.828	N/A
MW396	Upgradient	Yes	6.35	NO	1.848	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-22

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

CV(1) = 0.282

K factor=** 3.188

TL(1)= 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311

S = 0.399S = 0.271

CV(2) = 0.870

K factor**= 3.188

TL(2)= 1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.297	NO	-1.214	N/A	
MW390	Downgradien	t Yes	0.362	NO	-1.016	N/A	
MW393	Downgradien	t Yes	0.439	NO	-0.823	N/A	
MW396	Upgradient	Yes	0.958	NO	-0.043	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor=** 3.188

TL(1)= 208.973 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.595 S = 0.492

CV(2) = 0.107

K factor=** 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	107	NO	4.673	N/A	
MW390	Downgradien	t Yes	102	NO	4.625	N/A	
MW393	Downgradien	t Yes	90.4	NO	4.504	N/A	
MW396	Upgradient	Yes	99.2	NO	4.597	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.463 S = 8.876 CV(1) = 0.395

K factor=** 3.188

TL(1)= 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.054 **S**= 0.351

CV(2)=0.115

K factor**= 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Num	ber: MV	V396	
Date Colle	cted Res	sult	LN(Result)
8/13/2002	41.	9	3.735
9/16/2002	26.	3	3.270
10/16/2002	2 20.	6	3.025
1/13/2003	16.	6	2.809
4/8/2003	23.	9	3.174
7/16/2003	18.	8	2.934
10/14/2003	3 12.	9	2.557
1/14/2004	18.	7	2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	48.2	NO	3.875	N/A		
MW390	Downgradien	t Yes	34	NO	3.526	N/A		
MW393	Downgradien	t Yes	19.6	NO	2.976	N/A		
MW396	Upgradient	Yes	23.4	NO	3.153	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1) = 0.860

K factor=** 3.188

TL(1)= 28.531

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.498

S= 1.321

S = 6.558

CV(2)=0.882

K factor**= 3.188

TL(2)= 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number	: MW396	
Date Collecte	d Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	1.13	N/A	0.122	N/A
MW390	Downgradien	t Yes	80.4	YES	4.387	N/A
MW393	Downgradien	t No	-4.44	N/A	#Error	N/A
MW396	Upgradient	No	-10.3	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

S= 4.696 **CV(1)**=0.470

K factor=** 3.188

TL(1)= 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S= 0.454

CV(2) = 0.205

K factor**= 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	4.02	NO	1.391	N/A			
MW390	Downgradien	t Yes	2.16	NO	0.770	N/A			
MW393	Downgradien	t Yes	2.38	NO	0.867	N/A			
MW396	Upgradient	Yes	4.8	NO	1.569	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

K factor=** 3.188

TL(1)= 313.314 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 4.896 **S**= 0.390

CV(2)=0.080

K factor=** 3.188

TL(2)= 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	104	NO	4.644	N/A		
MW390	Downgradien	t Yes	9.3	NO	2.230	N/A		
MW393	Downgradien	t Yes	17.4	NO	2.856	N/A		
MW396	Upgradient	Yes	71.3	NO	4.267	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.021

S= 0.002 **CV(1)**=0.109

K factor=** 3.188

TL(1)= 0.029

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.856 S = 0.103

0.103 **CV(2)=**-0.027

K factor=** 3.188

TL(2) = -3.527

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number	r: MW396	
Date Collecte	ed Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW390	Downgradien	t Yes	0.00348	NO	-5.661	N/A		
MW393	Downgradien	t No	0.01	N/A	-4.605	N/A		
MW396	Upgradient	No	0.01	N/A	-4.605	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

CV(1) = 0.786

K factor=** 3.188

TL(1)= 0.156

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.342 S

S= 0.682 **CV**

S = 0.035

CV(2) = -0.204

K factor=** 3.188

TL(2) = -1.168

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW390	Downgradien	t Yes	0.00339	NO	-5.687	N/A		
MW393	Downgradien	t No	0.01	N/A	-4.605	N/A		
MW396	Ungradient	Ves	0.00365	NO	-5 613	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.221 S = 0.061 CV(1) = 0.277 K factor**= 2.523
 TL(1) = 0.376 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.534 X = 0.212 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.609-0.851 10/13/2003 0.427 1/13/2004 0.309 -1.1744/13/2004 0.2 -1.609 7/21/2004 0.202 -1.599Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.2 -1.6099/16/2002 0.2 -1.609 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 -1.6090.2 1/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.05	N/A	-2.996	N/A	
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW222	Sidegradient	Yes	0.043	NO	-3.147	N/A	
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW369	Downgradien	t Yes	0.0247	NO	-3.701	N/A	
MW372	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW387	Downgradien	t Yes	0.0259	NO	-3.654	N/A	
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW394	Upgradient	No	0.05	N/A	-2.996	N/A	
N/A - Resu	Its identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

Statistics-Background Data

X= 14.273 **S**= 13.883 **CV(1)**=0.973

K factor=** 2.523

TL(1)= 49.300

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.213 **S**= 1.033

CV(2) = 0.467

K factor**= 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.615
Date Collected	Result	` ´
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Bata						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	14.4	N/A	2.667	N/A
MW221	Sidegradient	Yes	13	N/A	2.565	N/A
MW222	Sidegradient	No	-1.74	N/A	#Error	N/A
MW223	Sidegradient	No	5.11	N/A	1.631	N/A
MW224	Sidegradient	No	6.07	N/A	1.803	N/A
MW369	Downgradien	t Yes	102	YES	4.625	N/A
MW372	Downgradien	t Yes	20.9	N/A	3.040	N/A
MW384	Sidegradient	Yes	95	YES	4.554	N/A
MW387	Downgradien	t Yes	143	YES	4.963	N/A
	Well No. MW220 MW221 MW222 MW223 MW224 MW369 MW372 MW384	MW220 Upgradient MW221 Sidegradient MW222 Sidegradient MW223 Sidegradient MW224 Sidegradient MW369 Downgradien MW372 Downgradien MW378 Sidegradient	Well No. Gradient Detected? MW220 Upgradient Yes MW221 Sidegradient Yes MW222 Sidegradient No MW223 Sidegradient No MW224 Sidegradient No MW369 Downgradient Yes MW372 Downgradient Yes MW384 Sidegradient Yes	Well No. Gradient Detected? Result MW220 Upgradient Yes 14.4 MW221 Sidegradient Yes 13 MW222 Sidegradient No -1.74 MW223 Sidegradient No 5.11 MW224 Sidegradient No 6.07 MW369 Downgradient Yes 102 MW372 Downgradient Yes 20.9 MW384 Sidegradient Yes 95	Well No. Gradient Detected? Result Result >TL(1)? MW220 Upgradient Yes 14.4 N/A MW221 Sidegradient Yes 13 N/A MW222 Sidegradient No -1.74 N/A MW223 Sidegradient No 5.11 N/A MW224 Sidegradient No 6.07 N/A MW369 Downgradient Yes 102 YES MW372 Downgradient Yes 20.9 N/A MW384 Sidegradient Yes 95 YES	Well No. Gradient Detected? Result Result >TL(1)? LN(Result) MW220 Upgradient Yes 14.4 N/A 2.667 MW221 Sidegradient Yes 13 N/A 2.565 MW222 Sidegradient No -1.74 N/A #Error MW223 Sidegradient No 5.11 N/A 1.631 MW224 Sidegradient No 6.07 N/A 1.803 MW369 Downgradient Yes 102 YES 4.625 MW372 Downgradient Yes 20.9 N/A 3.040 MW384 Sidegradient Yes 95 YES 4.554

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

N/A

0.899

8.1

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW391

MW394 Upgradient

Wells with Exceedances

N/A

N/A

MW369 MW384

-0.106

2.092

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Downgradient No

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.425 S = 0.615 CV(1) = 1.447 K factor** = 2.523
 TL(1) = 1.976 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.322 S = 0.786 CV(2) = -0.595 K factor** = 2.523
 TL(2) = 0.663 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.60910/13/2003 0.2 -1.6091/13/2004 0.2 -1.6094/13/2004 0.2 -1.609 7/21/2004 0.2 -1.609Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00876	N/A	-4.738	NO	
MW221	Sidegradient	Yes	0.0155	N/A	-4.167	NO	
MW222	Sidegradient	Yes	0.0107	N/A	-4.538	NO	
MW223	Sidegradient	Yes	0.00847	N/A	-4.771	NO	
MW224	Sidegradient	Yes	0.0196	N/A	-3.932	NO	
MW369	Downgradien	t Yes	0.0244	N/A	-3.713	NO	
MW372	Downgradien	t Yes	0.953	N/A	-0.048	NO	
MW384	Sidegradient	Yes	0.0219	N/A	-3.821	NO	
MW387	Downgradien	t Yes	0.018	N/A	-4.017	NO	
MW391	Downgradien	t Yes	0.237	N/A	-1.440	NO	
MW394	Upgradient	Yes	0.0188	N/A	-3.974	NO	
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A Data

Historical Background Data from

Upgradient Wells with Transformed Result

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	` '
Date Collected 8/13/2002	Result	0.000
Date Collected 8/13/2002 9/16/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.208	NO	-1.570	N/A		
MW221	Sidegradient	Yes	0.402	NO	-0.911	N/A		
MW222	Sidegradient	Yes	0.427	NO	-0.851	N/A		
MW223	Sidegradient	Yes	0.388	NO	-0.947	N/A		
MW224	Sidegradient	Yes	0.429	NO	-0.846	N/A		
MW369	Downgradien	t Yes	0.407	NO	-0.899	N/A		
MW372	Downgradien	t Yes	0.572	NO	-0.559	N/A		
MW384	Sidegradient	Yes	0.329	NO	-1.112	N/A		
MW387	Downgradien	t Yes	0.519	NO	-0.656	N/A		
MW391	Downgradien	t Yes	0.45	NO	-0.799	N/A		
MW394	Upgradient	Yes	0.572	NO	-0.559	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

MW387

MW391

MW394

Downgradient Yes

Downgradient Yes

Yes

Upgradient

Statistics-Background Data

X= 27.638 **S**= 4.743

K factor**= 2.523

TL(1)= 39.604

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.304 **S**= 0.183

CV(2) = 0.055

CV(1) = 0.172

K factor=** 2.523

TL(2) = 3.765

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 23.6 3.161 1/15/2003 25.9 3.254 4/10/2003 30.4 3.414 7/14/2003 33.9 3.523 10/13/2003 21.3 3.059 1/13/2004 20.3 3.011 4/13/2004 23.8 3.170 7/21/2004 19 2.944 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 29.5 3.384 9/16/2002 29.9 3.398 10/16/2002 31.2 3.440 1/13/2003 30.7 3.424 4/10/2003 34.4 3.538 7/16/2003 29.6 3.388 10/14/2003 30.3 3.411

28.4

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
•	MW220	Upgradient	Yes	22.6	NO	3.118	N/A
	MW221	Sidegradient	Yes	23.2	NO	3.144	N/A
	MW222	Sidegradient	Yes	19.7	NO	2.981	N/A
	MW223	Sidegradient	Yes	22.9	NO	3.131	N/A
	MW224	Sidegradient	Yes	21.2	NO	3.054	N/A
	MW369	Downgradien	t Yes	28.7	NO	3.357	N/A
	MW372	Downgradien	t Yes	49.9	YES	3.910	N/A
	MW384	Sidegradient	Yes	25.8	NO	3.250	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

NO

NO

3.401

3.469

3.235

MW372

30

32.1

25.4

Conclusion of Statistical Analysis on Historical Data

3.346

Wells with Exceedances

N/A

N/A

N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 35.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 35.000
 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 3.555
 S= 0.000
 CV(2)=0.000
 K factor**= 2.523
 TL(2)= 3.555
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	26.3	NO	3.270	N/A		
MW221	Sidegradient	Yes	29.5	NO	3.384	N/A		
MW222	Sidegradient	Yes	32.7	NO	3.487	N/A		
MW223	Sidegradient	Yes	29.5	NO	3.384	N/A		
MW224	Sidegradient	Yes	32.7	NO	3.487	N/A		
MW369	Downgradien	t Yes	24.7	NO	3.207	N/A		
MW372	Downgradien	t Yes	10.7	NO	2.370	N/A		
MW384	Sidegradient	Yes	24.7	NO	3.207	N/A		
MW387	Downgradien	t Yes	21.6	NO	3.073	N/A		
MW391	Downgradien	t Yes	37.4	YES	3.622	N/A		
MW394	Upgradient	Yes	18.4	NO	2.912	N/A		
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not								

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor=** 2.523

TL(1) = 77.499

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.866

S = 0.244

CV(2)=0.063

K factor=** 2.523

TL(2)= 4.482

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 44.6 3.798 1/15/2003 43.2 3.766 4/10/2003 31.5 3.450 7/14/2003 30.8 3.428 10/13/2003 40.9 3.711 1/13/2004 40.8 3.709 4/13/2004 37.5 3.624 7/21/2004 40.8 3.709 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 60.4 4.101 9/16/2002 60.3 4.099 10/16/2002 58 4.060 1/13/2003 60.7 4.106 4/10/2003 62.9 4.142 7/16/2003 58.1 4.062 10/14/2003 58.2 4.064 1/13/2004 56 4.025

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	19	NO	2.944	N/A		
MW221	Sidegradient	Yes	30.5	NO	3.418	N/A		
MW222	Sidegradient	Yes	31.4	NO	3.447	N/A		
MW223	Sidegradient	Yes	26.8	NO	3.288	N/A		
MW224	Sidegradient	Yes	32.5	NO	3.481	N/A		
MW369	Downgradien	t Yes	35.5	NO	3.570	N/A		
MW372	Downgradien	t Yes	43.2	NO	3.766	N/A		
MW384	Sidegradient	Yes	35.1	NO	3.558	N/A		
MW387	Downgradien	t Yes	42.3	NO	3.745	N/A		
MW391	Downgradien	t Yes	35.3	NO	3.564	N/A		
MW394	Upgradient	Yes	43	NO	3.761	N/A		
N/A Dogu	Ita identified on N	Ion Dotooto	dumin a lab	oratory analysis or	data validatio	n and ryana nat		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.016 S = 0.040 CV(1) = 2.440 K factor** = 2.523
 TL(1) = 0.116 LL(1) = N/A

 Statistics-Transformed Background
 X = -5.582 S = 1.573 CV(2) = -0.282 K factor** = 2.523
 TL(2) = -1.613 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.4971/15/2003 0.00496 -5.3060.00289 4/10/2003 -5.8467/14/2003 0.161 -1.826 10/13/2003 -3.790 0.0226 1/13/2004 0.00464 -5.3734/13/2004 0.001 -6.908 7/21/2004 0.00264 -5.937Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 -6.908 0.001 -6.908 7/16/2003 0.001 10/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.001	N/A	-6.908	N/A	
MW221	Sidegradient	Yes	0.00033	8 N/A	-7.992	NO	
MW222	Sidegradient	Yes	0.00040	2 N/A	-7.819	NO	
MW223	Sidegradient	Yes	0.00109	N/A	-6.822	NO	
MW224	Sidegradient	Yes	0.00045	4 N/A	-7.697	NO	
MW369	Downgradien	t Yes	0.00093	5 N/A	-6.975	NO	
MW372	Downgradien	t Yes	0.00118	N/A	-6.742	NO	
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW394	Upgradient	No	0.001	N/A	-6.908	N/A	
N/A - Resu	lts identified as N	Jon-Detects	during labo	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor=** 2.523

TL(1)= 652.432 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2)= 8.652

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 368 5.908 1/15/2003 433.2 6.071 489 4/10/2003 6.192 7/14/2003 430 6.064 10/13/2003 346 5.846 1/13/2004 365 5.900 4/13/2004 416 6.031 7/21/2004 353 5.866 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 406 6.006 9/16/2002 418 6.035 10/16/2002 411 6.019 1/13/2003 422 6.045 4/10/2003 420 6.040 7/16/2003 438 6.082

3.91

395

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	Yes	388	NO	5.961	N/A		
MW221	Sidegradient	Yes	394	NO	5.976	N/A		
MW222	Sidegradient	Yes	368	NO	5.908	N/A		
MW223	Sidegradient	Yes	407	NO	6.009	N/A		
MW224	Sidegradient	Yes	416	NO	6.031	N/A		
MW369	Downgradien	t Yes	425	NO	6.052	N/A		
MW372	Downgradien	t Yes	614	NO	6.420	N/A		
MW384	Sidegradient	Yes	485	NO	6.184	N/A		
MW387	Downgradien	t Yes	522	NO	6.258	N/A		
MW391	Downgradien	t Yes	523	NO	6.260	N/A		
MW394	Upgradient	Yes	381	NO	5.943	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.364

5.979

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.010 CV(1) = 0.429 K factor**= 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background Data
 X = -3.794 S = 0.312 CV(2) = -0.082 K factor**= 2.523
 TL(2) = -3.007 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.8581/15/2003 0.02 -3.9120.02 4/10/2003 -3.9127/14/2003 0.02 -3.912 -3.912 10/13/2003 0.02 1/13/2004 0.02 -3.912 4/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996 10/16/2002 0.02 -3.9121/13/2003 0.02 -3.9124/10/2003 0.02 -3.912 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW220	Upgradient	Yes	0.00099	2 NO	-6.916	N/A				
MW221	Sidegradient	Yes	0.00101	NO	-6.898	N/A				
MW222	Sidegradient	Yes	0.00057	2 NO	-7.466	N/A				
MW223	Sidegradient	Yes	0.00089	NO	-7.024	N/A				
MW224	Sidegradient	Yes	0.00052	6 NO	-7.550	N/A				
MW369	Downgradien	t Yes	0.00321	NO	-5.741	N/A				
MW372	Downgradien	t Yes	0.00079	3 NO	-7.140	N/A				
MW384	Sidegradient	Yes	0.00088	7 NO	-7.028	N/A				
MW387	Downgradien	t Yes	0.00561	NO	-5.183	N/A				
MW391	Downgradien	t Yes	0.00082	4 NO	-7.101	N/A				
MW394	Upgradient	No	0.00067	N/A	-7.308	N/A				
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not									

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a

well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 3.784
 S= 1.887
 CV(1)=0.499 K factor**= 2.523
 TL(1)=8.545 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.182
 S= 0.612
 CV(2)=0.518 K factor**= 2.523
 TL(2)=2.727 LL(2)=N/A

Data Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 4/10/2003 3.6 1.281 7/14/2003 0.94 -0.06210/13/2003 0.501 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 3.83 1.343 4/10/2003 1.423 4.15 7/16/2003 1.83 0.604 10/14/2003 3.33 1.203 1/13/2004 3.14 1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	4.19	NO	1.433	N/A	
MW221	Sidegradient	Yes	4.38	NO	1.477	N/A	
MW222	Sidegradient	Yes	3.82	NO	1.340	N/A	
MW223	Sidegradient	Yes	3.22	NO	1.169	N/A	
MW224	Sidegradient	Yes	3.58	NO	1.275	N/A	
MW369	Downgradien	t Yes	1.27	NO	0.239	N/A	
MW372	Downgradien	t Yes	1.22	NO	0.199	N/A	
MW384	Sidegradient	Yes	4.31	NO	1.461	N/A	
MW387	Downgradien	t Yes	3.15	NO	1.147	N/A	
MW391	Downgradien	t Yes	3.38	NO	1.218	N/A	
MW394	Upgradient	Yes	4.64	NO	1.535	N/A	
N/A - Resu	lts identified as N	Jon-Detects	during lah	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor=** 2.523

TL(1) = 302.045 LL(1) = N/A

Statistics-Transformed Background Data

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	183	NO	5.209	N/A	
MW221	Sidegradient	Yes	196	NO	5.278	N/A	
MW222	Sidegradient	Yes	197	NO	5.283	N/A	
MW223	Sidegradient	Yes	197	NO	5.283	N/A	
MW224	Sidegradient	Yes	194	NO	5.268	N/A	
MW369	Downgradien	t Yes	281	NO	5.638	N/A	
MW372	Downgradien	t Yes	356	YES	5.875	N/A	
MW384	Sidegradient	Yes	237	NO	5.468	N/A	
MW387	Downgradien	t Yes	270	NO	5.598	N/A	
MW391	Downgradien	t Yes	270	NO	5.598	N/A	
MW394	Upgradient	Yes	271	NO	5.602	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.897 S = 1.050 CV(1) = 1.170 K factor** = 2.523
 TL(1) = 3.545 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.565 S = 0.951 CV(2) = -1.683 K factor** = 2.523
 TL(2) = 1.834 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.429 -0.8467/14/2003 4.33 1.466 10/13/2003 1.81 0.593 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.0407/21/2004 0.382 -0.962Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38 1/13/2003 1.3 0.262 4/10/2003 0.494-0.7057/16/2003 0.62 -0.47810/14/2003 0.37 -0.9941/13/2004 0.251 -1.382

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.1	N/A	-2.303	N/A	
MW221	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW222	Sidegradient	Yes	0.0701	N/A	-2.658	NO	
MW223	Sidegradient	Yes	0.0702	N/A	-2.656	NO	
MW224	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW369	Downgradien	t Yes	0.0697	N/A	-2.664	NO	
MW372	Downgradien	t Yes	0.0669	N/A	-2.705	NO	
MW384	Sidegradient	Yes	0.175	N/A	-1.743	NO	
MW387	Downgradien	t Yes	0.151	N/A	-1.890	NO	
MW391	Downgradien	t Yes	0.0479	N/A	-3.039	NO	
MW394	Upgradient	Yes	0.0622	N/A	-2.777	NO	
N/A - Resu	lts identified as N	Non-Detects	during lah	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.796 S = 1.703

CV(1)=0.158

K factor=** 2.523

TL(1)= 15.092

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.368

S = 0.158

CV(2) = 0.067

K factor=** 2.523

TL(2)= 2.766

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	9.16	2.215
1/15/2003	10	2.303
4/10/2003	10.8	2.380
7/14/2003	14.7	2.688
10/13/2003	9.03	2.201
1/13/2004	8.49	2.139
4/13/2004	9.7	2.272
7/21/2004	8.06	2.087
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.468
Date Collected	Result	` ´
Date Collected 8/13/2002	Result 11.8	2.468
Date Collected 8/13/2002 9/16/2002	Result 11.8 12.1	2.468 2.493
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.8 12.1 11.3	2.468 2.493 2.425
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.8 12.1 11.3 10.3	2.468 2.493 2.425 2.332
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.8 12.1 11.3 10.3 11.7	2.468 2.493 2.425 2.332 2.460

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	9.63	NO	2.265	N/A
MW221	Sidegradient	Yes	10	NO	2.303	N/A
MW222	Sidegradient	Yes	8.64	NO	2.156	N/A
MW223	Sidegradient	Yes	9.68	NO	2.270	N/A
MW224	Sidegradient	Yes	9.25	NO	2.225	N/A
MW369	Downgradien	t Yes	12.6	NO	2.534	N/A
MW372	Downgradien	t Yes	19.4	YES	2.965	N/A
MW384	Sidegradient	Yes	10.8	NO	2.380	N/A
MW387	Downgradien	t Yes	12.4	NO	2.518	N/A
MW391	Downgradien	t Yes	14.3	NO	2.660	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

2.460

MW372

11.7

Yes

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.287 S = 0.619 CV(1) = 2.156 K factor** = 2.523
 TL(1) = 1.848 LL(1) = N/A

 Statistics-Transformed Background
 X = -2.455 S = 1.619 CV(2) = -0.659 K factor** = 2.523
 TL(2) = 1.630 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.5370.0137 -4.290 4/10/2003 7/14/2003 2.54 0.932 10/13/2003 0.378 -0.9731/13/2004 0.159 -1.8394/13/2004 0.00707 -4.952 7/21/2004 0.0841 -2.476Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.864 10/16/2002 0.103 -2.2731/13/2003 0.128 -2.0564/10/2003 0.005-5.298 7/16/2003 0.272 -1.30210/14/2003 0.0795 -2.532 1/13/2004 0.0658 -2.721

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.005	N/A	-5.298	N/A	
MW221	Sidegradient	Yes	0.00176	N/A	-6.342	NO	
MW222	Sidegradient	Yes	0.00366	N/A	-5.610	NO	
MW223	Sidegradient	Yes	0.021	N/A	-3.863	NO	
MW224	Sidegradient	Yes	0.00695	N/A	-4.969	NO	
MW369	Downgradien	t Yes	0.0127	N/A	-4.366	NO	
MW372	Downgradien	t Yes	0.00775	N/A	-4.860	NO	
MW384	Sidegradient	Yes	0.00732	N/A	-4.917	NO	
MW387	Downgradien	t Yes	0.0256	N/A	-3.665	NO	
MW391	Downgradien	t Yes	0.00184	N/A	-6.298	NO	
MW394	Upgradient	Yes	0.00191	N/A	-6.261	NO	
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.006 S = 0.008 CV(1) = 1.261 K factor**= 2.523
 TL(1) = 0.026 LL(1) = N/A

 Statistics-Transformed Background
 X = -5.747 X = 1.205 X = -0.210 X = -0

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.00558 -5.1891/15/2003 0.00983 -4.6220.0109 -4.519 4/10/2003 7/14/2003 0.00245 -6.012 0.00566 -5.174 10/13/2003 1/13/2004 0.00572 -5.1644/13/2004 0.001 -6.908 7/21/2004 0.00392 -5.542Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 -6.908 0.001 -6.908 7/16/2003 0.001 10/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.0015	N/A	-6.502	NO	
MW221	Sidegradient	Yes	0.00334	N/A	-5.702	NO	
MW222	Sidegradient	Yes	0.00062	6 N/A	-7.376	NO	
MW223	Sidegradient	Yes	0.00473	N/A	-5.354	NO	
MW224	Sidegradient	Yes	0.00035	5 N/A	-7.943	NO	
MW369	Downgradien	t No	0.0005	N/A	-7.601	N/A	
MW372	Downgradien	t Yes	0.00035	8 N/A	-7.935	NO	
MW384	Sidegradient	No	0.0005	N/A	-7.601	N/A	
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A	
MW391	Downgradien	t No	0.0005	N/A	-7.601	N/A	
MW394	Upgradient	No	0.0005	N/A	-7.601	N/A	
N/A - Resu	lts identified as N	Ion-Detects	during labo	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.127 S = 0.228 CV(1) = 1.790 K factor** = 2.523
 TL(1) = 0.701 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.617 S = 1.837 CV(2) = -0.508 K factor** = 2.523
 TL(2) = 1.019 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.3044/10/2003 0.544 -0.6097/14/2003 0.106-2.244-2.93910/13/2003 0.0529 1/13/2004 0.0209 -3.8684/13/2004 0.005 -5.298 7/21/2004 0.0192 -3.953Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996 10/16/2002 0.005 -5.2981/13/2003 0.005-5.298 4/10/2003 -5.298 0.005 7/16/2003 0.005 -5.298 10/14/2003 0.005 -5.298 1/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.0221	N/A	-3.812	NO	
MW221	Sidegradient	Yes	0.0343	N/A	-3.373	NO	
MW222	Sidegradient	Yes	0.0371	N/A	-3.294	NO	
MW223	Sidegradient	Yes	0.236	N/A	-1.444	NO	
MW224	Sidegradient	Yes	0.0175	N/A	-4.046	NO	
MW369	Downgradien	t Yes	0.00122	N/A	-6.709	NO	
MW372	Downgradien	t Yes	0.00132	N/A	-6.630	NO	
MW384	Sidegradient	Yes	0.00108	N/A	-6.831	NO	
MW387	Downgradien	t Yes	0.00113	N/A	-6.786	NO	
MW391	Downgradien	t Yes	0.00115	N/A	-6.768	NO	
MW394	Upgradient	Yes	0.00332	N/A	-5.708	NO	
N/A - Resu	lts identified as N	Von-Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor=** 2.523

TL(1)= 397.652 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.861 S = 1.252 CV(2) = 0.258

K factor=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	305	NO	5.720	N/A	
MW221	Sidegradient	Yes	363	NO	5.894	N/A	
MW222	Sidegradient	Yes	321	NO	5.771	N/A	
MW223	Sidegradient	Yes	343	NO	5.838	N/A	
MW224	Sidegradient	Yes	320	NO	5.768	N/A	
MW369	Downgradien	t Yes	397	NO	5.984	N/A	
MW372	Downgradien	t Yes	348	NO	5.852	N/A	
MW384	Sidegradient	Yes	321	NO	5.771	N/A	
MW387	Downgradien	t Yes	319	NO	5.765	N/A	
MW391	Downgradien	t Yes	304	NO	5.717	N/A	
MW394	Upgradient	Yes	310	NO	5.737	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.138 S = 0.282 CV(1) = 0.046 K factor**= 2.904 TL(1) = 6.957 LL(1) = 5.3179

Statistics-Transformed Background Data

S= 0.047 **CV(2)**= 0.026

X = 1.813

K factor=** 2.904

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.798 6.04 1/15/2003 6.31 1.842 4/10/2003 6.5 1.872 7/14/2003 6.3 1.841 10/13/2003 6.34 1.847 1/13/2004 6.33 1.845 4/13/2004 6.3 1.841 7/21/2004 5.9 1.775 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/30/2002 5.93 1.780 10/16/2002 5.42 1.690 1/13/2003 6 1.792 4/10/2003 6.04 1.798 7/16/2003 6.2 1.825 10/14/2003 1.856 6.4 1/13/2004 6.39 1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2) = 1.950

Current	Ouarter	Data
Current	Qual ttl	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.3	NO	1.841	N/A
MW221	Sidegradient	Yes	6.1	NO	1.808	N/A
MW222	Sidegradient	Yes	6.31	NO	1.842	N/A
MW223	Sidegradient	Yes	6.2	NO	1.825	N/A
MW224	Sidegradient	Yes	6.3	NO	1.841	N/A
MW369	Downgradien	t Yes	6.34	NO	1.847	N/A
MW372	Downgradien	t Yes	6.18	NO	1.821	N/A
MW384	Sidegradient	Yes	6.12	NO	1.812	N/A
MW387	Downgradien	t Yes	6.23	NO	1.829	N/A
MW391	Downgradien	t Yes	6.03	NO	1.797	N/A
MW394	Upgradient	Yes	5.99	NO	1.790	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.654 S = 9.310 CV(1) = 1.399 K factor**= 2.523 TL(1) = 30.144 LL(1) = N/A Statistics-Transformed Background X = 1.130 S = 1.208 CV(2) = 1.069 K factor**= 2.523 TL(2) = 4.178 LL(2) = N/A Data

Historical Background Data from

Upgradient Wells with Transformed Result

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.7	1.902
1/15/2003	29.7	3.391
4/10/2003	24.9	3.215
7/14/2003	1.13	0.122
10/13/2003	3.43	1.233
1/13/2004	6.71	1.904
4/13/2004	19.3	2.960
7/21/2004	3.97	1.379
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 1.03	0.693 0.693 0.030
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2 1.03 1.1	0.693 0.693 0.030 0.095
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2 1.03 1.1 1.24	0.693 0.693 0.030 0.095 0.215

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	1.81	N/A	0.593	NO			
MW221	Sidegradient	Yes	2.02	N/A	0.703	NO			
MW222	Sidegradient	Yes	0.53	N/A	-0.635	NO			
MW223	Sidegradient	Yes	4.54	N/A	1.513	NO			
MW224	Sidegradient	Yes	0.872	N/A	-0.137	NO			
MW369	Downgradien	t Yes	1.59	N/A	0.464	NO			
MW372	Downgradien	t Yes	2.19	N/A	0.784	NO			
MW384	Sidegradient	Yes	1.24	N/A	0.215	NO			
MW387	Downgradien	t Yes	1.22	N/A	0.199	NO			
MW391	Downgradien	t Yes	1.57	N/A	0.451	NO			
MW394	Upgradient	Yes	1.56	N/A	0.445	NO			
N/A Dogu	Its identified as N	Ion Dotoots	during lob	oratory analysis or	data validatio	n and ware not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 36.363 S = 8.666 CV(1) = 0.238 K factor**= 2.523 TL(1) = 58.227

Statistics-Transformed Background Data

X= 3.570 **S**= 0.222 **CV(2)**= 0.062

K factor**= 2.523

TL(2)= 4.129

LL(1)=N/A LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35.4 3.567 1/15/2003 40.6 3.704 4/10/2003 51 3.932 7/14/2003 58.2 4.064 10/13/2003 38.1 3.640 1/13/2004 37 3.611 4/13/2004 43.2 3.766 7/21/2004 33.8 3.520 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 32.9 3.493 9/16/2002 29.9 3.398 10/16/2002 29 3.367 1/13/2003 27.1 3.300 4/10/2003 24.8 3.211 7/16/2003 35.6 3.572 10/14/2003 33.9 3.523 1/13/2004 31.3 3.444

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	44.6	NO	3.798	N/A			
MW221	Sidegradient	Yes	47.7	NO	3.865	N/A			
MW222	Sidegradient	Yes	47.3	NO	3.857	N/A			
MW223	Sidegradient	Yes	47.7	NO	3.865	N/A			
MW224	Sidegradient	Yes	51.4	NO	3.940	N/A			
MW369	Downgradien	t Yes	49.2	NO	3.896	N/A			
MW372	Downgradien	t Yes	46.4	NO	3.837	N/A			
MW384	Sidegradient	Yes	55.6	NO	4.018	N/A			
MW387	Downgradien	t Yes	59.7	YES	4.089	N/A			
MW391	Downgradien	t Yes	45.2	NO	3.811	N/A			
MW394	Upgradient	Yes	30.4	NO	3.414	N/A			
N/A Poss	lta idontified on N	Ion Datasta	dumin a lab	orotory analysis or	data validatio	n and women not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.481 **S**= 2.648

CV(1) = 0.253 K fac

K factor**= 2.523

TL(1)= 17.161

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.322

S = 0.239

CV(2) = 0.103

K factor**= 2.523

TL(2)= 2.925

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 10.4 2.342 1/15/2003 9.8 2.282 4/10/2003 15.4 2.734 7/14/2003 14.9 2.701 10/13/2003 13.5 2.603 1/13/2004 10.3 2.332 4/13/2004 14.3 2.660 7/21/2004 10.5 2.351 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 11.2 2.416 9/16/2002 8.3 2.116 10/16/2002 8 2.079 1/13/2003 8.5 2.140 4/10/2003 7.9 2.067 7/16/2003 8.4 2.128 10/14/2003 2.104 8.2 1/13/2004 8.1 2.092

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	21.1	YES	3.049	N/A			
MW221	Sidegradient	Yes	16.6	NO	2.809	N/A			
MW222	Sidegradient	Yes	13.6	NO	2.610	N/A			
MW223	Sidegradient	Yes	19.9	YES	2.991	N/A			
MW224	Sidegradient	Yes	13.2	NO	2.580	N/A			
MW369	Downgradien	t Yes	24	YES	3.178	N/A			
MW372	Downgradien	t Yes	78.2	YES	4.359	N/A			
MW384	Sidegradient	Yes	23.5	YES	3.157	N/A			
MW387	Downgradien	t Yes	19.1	YES	2.950	N/A			
MW391	Downgradien	t Yes	70.3	YES	4.253	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

2.342

10.4

Yes

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW220	
MW223	
MW369	
MW372	
MW384	
MW387	
MW391	

N/A

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 9.354 S= 9.280 CV(1)=0.992 K factor**= 2.523 TL(1)= 32.768 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.270 S= 0.849 CV(2)=0.374 K factor**= 2.523 TL(2)= 3.262 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 19.7 2.981 1/15/2003 26.1 3.262 1.270 4/10/2003 3.56 7/14/2003 0 #Func! 10/13/2003 3.045 2.1 1/13/2004 6.32 1.844 4/13/2004 3 1.099 7/21/2004 14.6 2.681 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 14 2.639 9/16/2002 5.45 1.696 0.912 10/16/2002 2.49 1/13/2003 18.3 2.907 4/10/2003 #Func! -1.457/16/2003 -1.71#Func! 10/14/2003 18.3 2.907 1/13/2004 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	19.9	NO	2.991	N/A			
MW221	Sidegradient	Yes	22.5	NO	3.114	N/A			
MW222	Sidegradient	No	7.88	N/A	2.064	N/A			
MW223	Sidegradient	No	12.1	N/A	2.493	N/A			
MW224	Sidegradient	No	0.389	N/A	-0.944	N/A			
MW369	Downgradien	t Yes	142	YES	4.956	N/A			
MW372	Downgradien	t Yes	36.6	YES	3.600	N/A			
MW384	Sidegradient	Yes	162	YES	5.088	N/A			
MW387	Downgradien	t Yes	213	YES	5.361	N/A			
MW391	Downgradien	t No	-1.67	N/A	#Error	N/A			
MW394	Upgradient	No	0.158	N/A	-1.845	N/A			
N/A - Resu	lts identified as N	Jon-Detects	during lah	oratory analysis or	data validatio	n and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.494 S = 0.737 CV(1) = 0.493 K factor**= 2.523 TL(1) = 3.353 LL(1) = N/A Statistics-Transformed Background X = 0.315 S = 0.402 CV(2) = 1.279 K factor**= 2.523 TL(2) = 1.330 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1.1 0.095 1 4/10/2003 0.000 7/14/2003 3.3 1.194 10/13/2003 1.8 0.588 1/13/2004 1 0.000 4/13/2004 2 0.693 7/21/2004 3.1 1.131 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.3 0.262 9/16/2002 1 0.000 10/16/2002 1 0.000 1/13/2003 1.6 0.470 4/10/2003 1 0.0007/16/2003 1.4 0.336 10/14/2003 1.3 0.262 1/13/2004 1 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	0.66	NO	-0.416	N/A			
MW221	Sidegradient	Yes	0.838	NO	-0.177	N/A			
MW222	Sidegradient	Yes	0.752	NO	-0.285	N/A			
MW223	Sidegradient	Yes	0.878	NO	-0.130	N/A			
MW224	Sidegradient	Yes	0.698	NO	-0.360	N/A			
MW369	Downgradien	t Yes	1.29	NO	0.255	N/A			
MW372	Downgradien	t Yes	0.849	NO	-0.164	N/A			
MW384	Sidegradient	Yes	1	NO	0.000	N/A			
MW387	Downgradien	t Yes	1.13	NO	0.122	N/A			
MW391	Downgradien	t Yes	0.874	NO	-0.135	N/A			
MW394	Upgradient	Yes	0.865	NO	-0.145	N/A			
N/A - Recui	Its identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison **Total Organic Halides (TOX)** UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor=** 2.523

TL(1) = 475.063 LL(1) = N/A

Statistics-Transformed Background Data

X = 3.103 S = 1.145 CV(2) = 0.369

K factor=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.912 1/15/2003 10 2.303 10 4/10/2003 2.303 7/14/2003 10 2.303 10/13/2003 10 2.303 1/13/2004 10 2.303 4/13/2004 10 2.303 7/21/2004 10 2.303 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 50 3.912 9/16/2002 672 6.510 10/16/2002 50 3.912 1/13/2003 36.1 3.586 4/10/2003 10 2.303 7/16/2003 42.7 3.754 10/14/2003 22 3.091

12.8

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	9.04	N/A	2.202	N/A		
MW221	Sidegradient	Yes	14.7	N/A	2.688	NO		
MW222	Sidegradient	Yes	11.3	N/A	2.425	NO		
MW223	Sidegradient	Yes	11.5	N/A	2.442	NO		
MW224	Sidegradient	No	3.68	N/A	1.303	N/A		
MW369	Downgradien	t Yes	3.98	N/A	1.381	NO		
MW372	Downgradien	t Yes	5.96	N/A	1.785	NO		
MW384	Sidegradient	No	7.72	N/A	2.044	N/A		
MW387	Downgradien	t Yes	17.6	N/A	2.868	NO		
MW391	Downgradien	t Yes	8.6	N/A	2.152	NO		
MW394	Upgradient	Yes	16.9	N/A	2.827	NO		
M/A Dagu	Ita idantified on N	Ion Datasta	ما در است	orotory analysis or	data validatio	n and ryons not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.549

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 8.813 S = 8.376 CV(1) = 0.951 K factor**= 2.523 TL(1) = 29.946 LL(1) = N/A Statistics-Transformed Background X = 1.395 S = 1.449 CV(2) = 1.039 K factor**= 2.523 TL(2) = 5.052 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 0.000 4/10/2003 0.000 7/14/2003 1 0.000 10/13/2003 1 0.000 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 19 7/16/2003 2.944

20

16

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.9	N/A	-0.105	N/A		
MW221	Sidegradient	No	1	N/A	0.000	N/A		
MW222	Sidegradient	No	1	N/A	0.000	N/A		
MW223	Sidegradient	Yes	4.4	N/A	1.482	N/A		
MW224	Sidegradient	No	1	N/A	0.000	N/A		
MW369	Downgradien	t Yes	1.07	N/A	0.068	N/A		
MW372	Downgradien	t Yes	7.88	NO	2.064	N/A		
MW384	Sidegradient	Yes	2.54	N/A	0.932	N/A		
MW387	Downgradien	t Yes	5.05	NO	1.619	N/A		
MW391	Downgradien	t Yes	6.72	NO	1.905	N/A		
MW394	Upgradient	Yes	4.34	N/A	1.468	N/A		
N/A Pagu	Its identified as N	Jon Detects	during lab	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.996

2.773

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.021 S = 0.002 CV(1) = 0.083 K factor** = 2.523
 TL(1) = 0.025 LL(1) = N/A

 Statistics-Transformed Background Data
 X = -3.884 S = 0.076 CV(2) = -0.020 CV(2) = -0.020

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.02 -3.9121/15/2003 0.02 -3.912-3.912 4/10/2003 0.02 7/14/2003 0.02 -3.912 -3.912 10/13/2003 0.02 1/13/2004 0.02 -3.9124/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.02 -3.9121/13/2003 0.02 -3.9124/10/2003 0.02 -3.912 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	No	0.01	N/A	-4.605	N/A			
MW221	Sidegradient	No	0.01	N/A	-4.605	N/A			
MW222	Sidegradient	No	0.01	N/A	-4.605	N/A			
MW223	Sidegradient	Yes	0.00377	NO	-5.581	N/A			
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A			
MW369	Downgradien	t Yes	0.00366	NO	-5.610	N/A			
MW372	Downgradien	t Yes	0.00362	NO	-5.621	N/A			
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A			
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A			
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A			
MW394	Upgradient	No	0.01	N/A	-4.605	N/A			
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validation	n and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.036 S = 0.026 CV(1) = 0.722 K factor**= 2.523 TL(1) = 0.101 LL(1) = N/A Statistics-Transformed Background X = -3.485 S = 0.525 CV(2) = -0.151 K factor**= 2.523 TL(2) = -2.162 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.025 -3.6891/15/2003 0.035 -3.3524/10/2003 0.035 -3.3527/14/2003 0.0389 -3.24710/13/2003 0.026 -3.6501/13/2004 0.02 -3.912 4/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.1 -2.3039/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.352 4/10/2003 0.035-3.352 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	No	0.01	N/A	-4.605	N/A			
MW221	Sidegradient	No	0.01	N/A	-4.605	N/A			
MW222	Sidegradient	No	0.01	N/A	-4.605	N/A			
MW223	Sidegradient	Yes	0.00595	NO	-5.124	N/A			
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A			
MW369	Downgradien	t Yes	0.00665	NO	-5.013	N/A			
MW372	Downgradien	t Yes	0.00689	NO	-4.978	N/A			
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A			
MW387	Downgradien	t Yes	0.00471	NO	-5.358	N/A			
MW391	Downgradien	t Yes	0.00397	NO	-5.529	N/A			
MW394	Upgradient	Yes	0.00341	NO	-5.681	N/A			
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

S = 0.221

CV(1)=0.856 **K factor****= 2.523

523 **TL(1)=** 0.815

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.266 S = 2.485

CV(2) = -1.097

K factor**= 2.523

TL(2)= 4.003

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.194
Date Collected	Result	` ´
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	No	0.05	N/A	-2.996	N/A		
MW373	Downgradient	No	0.05	N/A	-2.996	N/A		
MW385	Sidegradient	No	0.05	N/A	-2.996	N/A		
MW388	Downgradient	Yes	0.02	NO	-3.912	N/A		
MW392	Downgradient	No	0.05	N/A	-2.996	N/A		
MW395	Upgradient	Yes	0.0245	NO	-3.709	N/A		
MW397	Upgradient	Yes	0.04	NO	-3.219	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 7.183
 S= 2.612
 CV(1)=0.364 K factor**= 2.523
 TL(1)=13.773 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.870
 S= 0.552
 CV(2)=0.295 K factor**= 2.523
 TL(2)=3.261 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.09 0.086 9/16/2002 5.79 1.756 10/16/2002 6.82 1.920 1/13/2003 5.01 1.611 4/10/2003 6.1 1.808 7/16/2003 8.51 2.141 10/14/2003 4.99 1.607 1/13/2004 6.58 1.884 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 9.57 2.259 9/16/2002 11 2.398 10/17/2002 9.3 2.230 1/13/2003 8.63 2.155 4/8/2003 10 2.303 7/16/2003 6.89 1.930 10/14/2003 10.1 2.313 1/13/2004 4.55 1.515

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	50	NO	3.912	N/A		
MW373	Downgradient	No	4.99	N/A	1.607	N/A		
MW385	Sidegradient	Yes	72.5	YES	4.284	N/A		
MW388	Downgradient	Yes	113	YES	4.727	N/A		
MW392	Downgradient	No	-0.905	N/A	#Error	N/A		
MW395	Upgradient	No	5.4	N/A	1.686	N/A		
MW397	Upgradient	No	5.57	N/A	1.717	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.650 S = 0.805 CV(1) = 1.238 K factor** = 2.523
 TL(1) = 2.681 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.034 X = 1.030 X = 0.805 X

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/17/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	0.0285	N/A	-3.558	NO		
MW373	Downgradient	Yes	1.18	N/A	0.166	NO		
MW385	Sidegradient	Yes	0.02	N/A	-3.912	NO		
MW388	Downgradient	Yes	0.0189	N/A	-3.969	NO		
MW392	Downgradient	Yes	0.0281	N/A	-3.572	NO		
MW395	Upgradient	Yes	0.0191	N/A	-3.958	NO		
MW397	Upgradient	Yes	0.00968	8 N/A	-4.638	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.000 9/16/2002 1 0.000 10/16/2002 0.000 1/13/2003 1 0.000 1 4/10/2003 0.000 7/16/2003 1 0.000 10/14/2003 1 0.000 1/13/2004 1 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 0.000 1/13/2003 0.0004/8/2003 0.0007/16/2003 1 0.000 10/14/2003 0.000 1 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result	lt) >TL(2)						
MW370 Downgradient Yes 0.43 NO -0.844 N/A							
MW373 Downgradient Yes 0.58 NO -0.545 N/A							
MW385 Sidegradient Yes 0.258 NO -1.355 N/A							
MW388 Downgradient Yes 0.308 NO -1.178 N/A							
MW392 Downgradient Yes 0.632 NO -0.459 N/A							
MW395 Upgradient Yes 0.57 NO -0.562 N/A							
MW397 Upgradient Yes 0.367 NO -1.002 N/A							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 23.103 **S**= 11.538 **CV(1)**= 0.499

K factor=** 2.523

TL(1)= 52.213

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.357

S= 2.411

CV(2) = 1.023

K factor=** 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.965
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	28.5	NO	3.350	N/A		
MW373	Downgradient	Yes	53.2	YES	3.974	N/A		
MW385	Sidegradient	Yes	22.3	NO	3.105	N/A		
MW388	Downgradient	Yes	24.3	NO	3.190	N/A		
MW392	Downgradient	Yes	26.5	NO	3.277	N/A		
MW395	Upgradient	Yes	24.5	NO	3.199	N/A		
MW397	Upgradient	Yes	16.8	NO	2.821	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.035**K factor**=** 2.523 Statistics-Background Data X = 35.313 S = 1.250TL(1)= 38.466 LL(1)=N/A **Statistics-Transformed Background** X = 3.564CV(2) = 0.009S = 0.033**K factor**=** 2.523 **TL(2)=** 3.648 LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 40 3.689 9/16/2002 35 3.555 10/17/2002 35 3.555 1/13/2003 35 3.555 4/8/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	. No	20	N/A	2.996	N/A		
MW373	Downgradient	Yes	24.7	NO	3.207	N/A		
MW385	Sidegradient	Yes	34.3	NO	3.535	N/A		
MW388	Downgradient	Yes	23.1	NO	3.140	N/A		
MW392	Downgradient	Yes	15.2	NO	2.721	N/A		
MW395	Upgradient	Yes	42.2	YES	3.742	N/A		
MW397	Upgradient	Yes	37.4	NO	3.622	N/A		
NI/A D	1, 11 ,10 1 N	D			1 / 11 /	1 ,		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW395

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor=** 2.523

TL(1)= 81.242

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.924

S = 0.229 CV(2) = 0.058

K factor=** 2.523

TL(2)= 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 62.2 4.130 9/16/2002 64.7 4.170 10/16/2002 62.2 4.130 1/13/2003 63.5 4.151 4/10/2003 64.1 4.160 7/16/2003 64 4.159 10/14/2003 63.2 4.146 1/13/2004 60.6 4.104 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 38.9 3.661 9/16/2002 39.8 3.684 10/17/2002 39.3 3.671 1/13/2003 40.5 3.701 4/8/2003 42.1 3.740 7/16/2003 42 3.738 10/14/2003 40.8 3.709 1/13/2004 41.6 3.728

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	35.6	NO	3.572	N/A	
MW373	Downgradient	Yes	43.1	NO	3.764	N/A	
MW385	Sidegradient	Yes	34.1	NO	3.529	N/A	
MW388	Downgradient	Yes	33.1	NO	3.500	N/A	
MW392	Downgradient	Yes	48.4	NO	3.879	N/A	
MW395	Upgradient	Yes	46.5	NO	3.839	N/A	
MW397	Upgradient	Yes	30.7	NO	3.424	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 1.609 4/10/2003 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 1.609 4/8/2003 5 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradien	t No	1	N/A	0.000	N/A	
MW373	Downgradien	t No	1	N/A	0.000	N/A	
MW385	Sidegradient	No	1	N/A	0.000	N/A	
MW388	Downgradien	t No	1	N/A	0.000	N/A	
MW392	Downgradien	t Yes	1.11	NO	0.104	N/A	
MW395	Upgradient	No	1	N/A	0.000	N/A	
MW397	Upgradient	No	1	N/A	0.000	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.011 CV(1) = 1.515

K factor=** 2.523

TL(1)= 0.034

LL(1)=N/A

Statistics-Transformed Background Data

X= -6.053 **S**= 1.416

CV(2) = -0.234

K factor=** 2.523

TL(2) = -2.480

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:		
well Nullibel.	MW397	
Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	• • •
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW370	Downgradient	Yes	0.00041	N/A	-7.799	NO			
MW373	Downgradient	No	0.001	N/A	-6.908	N/A			
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A			
MW388	Downgradient	No	0.001	N/A	-6.908	N/A			
MW392	Downgradient	No	0.001	N/A	-6.908	N/A			
MW395	Upgradient	No	0.001	N/A	-6.908	N/A			
MW397	Upgradient	No	0.001	N/A	-6.908	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor=** 2.523

TL(1)= 509.326 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 405 6.004 9/16/2002 401 5.994 5.971 10/16/2002 392 1/13/2003 404 6.001 4/10/2003 488 6.190 7/16/2003 450 6.109 10/14/2003 6.016 410 1/13/2004 413 6.023 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 322 5.775 9/16/2002 315 5.753 10/17/2002 317 5.759 1/13/2003 320 5.768 4/8/2003 390 5.966 7/16/2003 354 5.869 10/14/2003 331 5.802 1/13/2004 334 5.811

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	Yes	445	NO	6.098	N/A				
MW373	Downgradient	Yes	662	YES	6.495	N/A				
MW385	Sidegradient	Yes	416	NO	6.031	N/A				
MW388	Downgradient	Yes	437	NO	6.080	N/A				
MW392	Downgradient	Yes	422	NO	6.045	N/A				
MW395	Upgradient	Yes	372	NO	5.919	N/A				
MW397	Upgradient	Yes	307	NO	5.727	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.028 S = 0.013 CV(1) = 0.474 K factor**= 2.523
 TL(1) = 0.061 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.662 S = 0.406 CV(2) = -0.111 K factor**= 2.523
 TL(2) = -2.638 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.99610/16/2002 0.0281 -3.5721/13/2003 0.02 -3.912 0.02 -3.912 4/10/2003 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996 10/17/2002 0.02 -3.912 1/13/2003 0.02 -3.912 4/8/2003 0.02 -3.912 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW370	Downgradient	Yes	0.00066	1 NO	-7.322	N/A				
MW373	Downgradient	Yes	0.00049	8 NO	-7.605	N/A				
MW385	Sidegradient	Yes	0.00079	2 NO	-7.141	N/A				
MW388	Downgradient	Yes	0.00095	8 NO	-6.951	N/A				
MW392	Downgradient	Yes	0.00055	8 NO	-7.491	N/A				
MW395	Upgradient	Yes	0.00125	NO	-6.685	N/A				
MW397	Upgradient	Yes	0.00070	9 NO	-7.252	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Dissolved Oxygen** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 4.678S = 2.431CV(1) = 0.520TL(1) = 10.812LL(1)=N/A **Statistics-Transformed Background TL(2)=** 2.802

Data

X = 1.414S = 0.550CV(2) = 0.389 **K factor**=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 7.29 1.987 9/30/2002 4.03 1.394 10/16/2002 3.85 1.348 1/13/2003 2.36 0.859 4/10/2003 1.14 0.131 7/16/2003 1.76 0.565 10/14/2003 4.05 1.399 1/13/2004 4.26 1.449 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 11.56 2.448 9/16/2002 5.86 1.768 10/17/2002 5.94 1.782 1/13/2003 4.66 1.539 4/8/2003 3.77 1.327 7/16/2003 3.47 1.244 10/14/2003 5.34 1.675 1/13/2004 5.51 1.707

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW370	Downgradient	Yes	3.18	NO	1.157	N/A				
MW373	Downgradient	Yes	2.78	NO	1.022	N/A				
MW385	Sidegradient	Yes	4.85	NO	1.579	N/A				
MW388	Downgradient	Yes	3.81	NO	1.338	N/A				
MW392	Downgradient	Yes	3.65	NO	1.295	N/A				
MW395	Upgradient	Yes	4.61	NO	1.528	N/A				
MW397	Upgradient	Yes	6.4	NO	1.856	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor=** 2.523

TL(1) = 305.301

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 249 5.517 9/16/2002 272 5.606 10/16/2002 255 5.541 1/13/2003 211 5.352 4/10/2003 289 5.666 7/16/2003 236 5.464 10/14/2003 224 5.412 1/13/2004 235 5.460 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 187 5.231 9/16/2002 197 5.283 10/17/2002 183 5.209 1/13/2003 182 5.204 4/8/2003 5.380 217 7/16/2003 196 5.278 10/14/2003 198 5.288 1/13/2004 177 5.176

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW370	Downgradient	Yes	236	NO	5.464	N/A				
MW373	Downgradient	Yes	386	YES	5.956	N/A				
MW385	Sidegradient	Yes	217	NO	5.380	N/A				
MW388	Downgradient	Yes	207	NO	5.333	N/A				
MW392	Downgradient	Yes	216	NO	5.375	N/A				
MW395	Upgradient	Yes	257	NO	5.549	N/A				
MW397	Upgradient	Yes	124	NO	4.820	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-71

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.400

CV(1) = 1.286S = 0.514

K factor=** 2.523

TL(1)= 1.698

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.197 S = 2.634

CV(2) = -1.199

K factor=** 2.523

TL(2) = 4.449

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.457
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 1.58	0.457
Date Collected 8/13/2002 9/16/2002	Result 1.58 0.232	0.457 -1.461
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.58 0.232 0.0002	0.457 -1.461 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.58 0.232 0.0002 0.453	0.457 -1.461 -8.517 -0.792
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.58 0.232 0.0002 0.453 0.2	0.457 -1.461 -8.517 -0.792 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data										
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW370	Downgradient	No	0.1	N/A	-2.303	N/A				
MW373	Downgradient	Yes	0.0668	N/A	-2.706	NO				
MW385	Sidegradient	No	0.1	N/A	-2.303	N/A				
MW388	Downgradient	Yes	0.0505	N/A	-2.986	NO				
MW392	Downgradient	Yes	0.0894	N/A	-2.415	NO				
MW395	Upgradient	Yes	0.0551	N/A	-2.899	NO				
MW397	Upgradient	Yes	0.0661	N/A	-2.717	NO				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-72

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 9.102 S= 4.685 CV(1)=0.515 K factor**= 2.523 TL(1)=20.922 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.423 S= 2.408 CV(2)=1.692 K factor**= 2.523 TL(2)=7.500 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 12.5 2.526 9/16/2002 13 2.565 10/16/2002 0.0127 -4.3661/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 13.4 2.595 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 10/17/2002 0.00658 -5.0241/13/2003 6.69 1.901 4/8/2003 1.985 7.28 7/16/2003 7.82 2.057 10/14/2003 7.94 2.072 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW370	Downgradient	Yes	12.7	NO	2.542	N/A			
MW373	Downgradient	Yes	20.6	NO	3.025	N/A			
MW385	Sidegradient	Yes	9	NO	2.197	N/A			
MW388	Downgradient	Yes	10.8	NO	2.380	N/A			
MW392	Downgradient	Yes	9.8	NO	2.282	N/A			
MW395	Upgradient	Yes	11.4	NO	2.434	N/A			
MW397	Upgradient	Yes	6.89	NO	1.930	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.131 S = 0.195 CV(1) = 1.487 K factor**= 2.523
 TL(1) = 0.624 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.104 S = 1.529 CV(2) = -0.493 K factor**= 2.523
 TL(2) = 0.755 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.764
Date Collected	Result	` '
Date Collected 8/13/2002	Result 0.466	-0.764
Date Collected 8/13/2002 9/16/2002	Result 0.466 0.077	-0.764 -2.564
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.466 0.077 0.028	-0.764 -2.564 -3.576
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.466 0.077 0.028 0.0164	-0.764 -2.564 -3.576 -4.110
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.466 0.077 0.028 0.0164 0.0407	-0.764 -2.564 -3.576 -4.110 -3.202

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW370	Downgradien	t Yes	0.00452	N/A	-5.399	NO				
MW373	Downgradien	t Yes	0.00864	N/A	-4.751	NO				
MW385	Sidegradient	No	0.005	N/A	-5.298	N/A				
MW388	Downgradien	t No	0.005	N/A	-5.298	N/A				
MW392	Downgradien	t Yes	0.0466	N/A	-3.066	NO				
MW395	Upgradient	Yes	0.0013	N/A	-6.645	NO				
MW397	Upgradient	Yes	0.00225	N/A	-6.097	NO				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.007 S = 0.011 CV(1) = 1.451 K factor**= 2.523 TL(1) = 0.034 LL(1) = N/A

Statistics-Transformed Background Data

X= -5.990 **S**= 1.443 **CV(2)**= -0.241

K factor=** 2.523

TL(2)= -2.349

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.9081/13/2003 0.00609 -5.101 -6.908 0.001 4/10/2003 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/17/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/8/2003 -6.908 0.001 -6.908 7/16/2003 0.001 10/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW370	Downgradient	. No	0.0005	N/A	-7.601	N/A			
MW373	Downgradient	. No	0.0005	N/A	-7.601	N/A			
MW385	Sidegradient	No	0.0005	N/A	-7.601	N/A			
MW388	Downgradient	. No	0.0005	N/A	-7.601	N/A			
MW392	Downgradient	Yes	0.00020	1 N/A	-8.512	NO			
MW395	Upgradient	No	0.00029	2 N/A	-8.139	N/A			
MW397	Upgradient	No	0.0005	N/A	-7.601	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

S = 0.020

CV(1) = 1.089 K factor

K factor=** 2.523

TL(1)= 0.068

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.540 S = 1.020

1.020 **CV(2)=**-0.225

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.99610/16/2002 0.00702 -4.9591/13/2003 0.029 -3.5400.0091 4/10/2003 -4.6997/16/2003 0.00627 -5.07210/14/2003 0.005 -5.298 1/13/2004 0.005 -5.298Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996 10/17/2002 0.005 -5.2981/13/2003 0.00502 -5.294 4/8/2003 0.005-5.298 7/16/2003 0.005 -5.298 10/14/2003 0.005 -5.2981/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data										
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW370	Downgradient	Yes	0.00079	7 N/A	-7.135	NO				
MW373	Downgradient	No	0.002	N/A	-6.215	N/A				
MW385	Sidegradient	Yes	0.00121	N/A	-6.717	NO				
MW388	Downgradient	Yes	0.00141	N/A	-6.564	NO				
MW392	Downgradient	Yes	0.00125	N/A	-6.685	NO				
MW395	Upgradient	Yes	0.00087	5 N/A	-7.041	NO				
MW397	Upgradient	Yes	0.00060	6 N/A	-7.409	NO				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor=** 2.523

TL(1)= 289.395 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.003 S = 0.348 CV(2) = 0.069

K factor=** 2.523

TL(2)= 5.880

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 4.745
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	368	YES	5.908	N/A		
MW373	Downgradient	Yes	350	YES	5.858	N/A		
MW385	Sidegradient	Yes	317	YES	5.759	N/A		
MW388	Downgradient	Yes	325	YES	5.784	N/A		
MW392	Downgradient	Yes	297	YES	5.694	N/A		
MW395	Upgradient	Yes	367	YES	5.905	N/A		
MW397	Upgradient	Yes	319	YES	5.765	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW370
MW373
MW385
MW388
MW392
MW395

MW397

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.048 S = 0.248 CV(1) = 0.041 K factor** = 2.904 TL(1) = 6.767 LL(1) = 5.3289

Statistics-Transformed Background Data

X= 1.799 **S**= 0.042 **CV(2)**= 0.023

K factor**= 2.904

TL(2)= 1.920

LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/16/2002 1.792 5.47 10/16/2002 1.699 1/13/2003 6 1.792 4/10/2003 6.18 1.821 7/16/2003 6 1.792 10/14/2003 6.31 1.842 1/13/2004 6.24 1.831 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 5.84 1.765 9/30/2002 1.792 6 10/17/2002 5.75 1.749 1/13/2003 6 1.792 4/8/2003 6.3 1.841 7/16/2003 6.2 1.825 10/14/2003 1.850 6.36 1/13/2004 6.32 1.844

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	Current	Ouarter	Data
----------------------	---------	----------------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradien	t Yes	6.1	NO	1.808	N/A
MW373	Downgradien	t Yes	6.18	NO	1.821	N/A
MW385	Sidegradient	Yes	6.07	NO	1.803	N/A
MW388	Downgradien	t Yes	6.07	NO	1.803	N/A
MW392	Downgradien	t Yes	6.15	NO	1.816	N/A
MW395	Upgradient	Yes	5.85	NO	1.766	N/A
MW397	Upgradient	Yes	6.34	NO	1.847	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Potassium LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.404**K factor**=** 2.523 Statistics-Background Data X = 1.590S = 0.642TL(1) = 3.208LL(1)=N/A **Statistics-Transformed Background** X = -0.306 S = 2.457CV(2) = -8.028**K factor**=** 2.523 TL(2) = 5.892LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 9/16/2002 2 0.693 0.00129 10/16/2002 -6.6531/13/2003 1.51 0.412 4/10/2003 1.67 0.513 7/16/2003 1.73 0.548 10/14/2003 1.7 0.531 1/13/2004 1.58 0.457 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 2.03 0.708 9/16/2002 0.693 2 0.00145 10/17/2002 -6.5361/13/2003 1.69 0.525 4/8/2003 1.73 0.548 7/16/2003 2 0.693 10/14/2003 1.92 0.652 1/13/2004 1.87 0.626

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	2.56	NO	0.940	N/A
MW373	Downgradient	Yes	2.39	NO	0.871	N/A
MW385	Sidegradient	Yes	1.58	NO	0.457	N/A
MW388	Downgradient	Yes	1.76	NO	0.565	N/A
MW392	Downgradient	Yes	1.73	NO	0.548	N/A
MW395	Upgradient	Yes	1.65	NO	0.501	N/A
MW397	Upgradient	Yes	1.66	NO	0.507	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-79

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison Sodium** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor=** 2.523

TL(1)= 64.616

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.615 S = 2.411CV(2) = 0.922 **K factor**=** 2.523

TL(2)= 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	42.1	NO	3.740	N/A	
MW373	Downgradient	Yes	47.9	NO	3.869	N/A	
MW385	Sidegradient	Yes	47.7	NO	3.865	N/A	
MW388	Downgradient	Yes	46.1	NO	3.831	N/A	
MW392	Downgradient	Yes	35.9	NO	3.581	N/A	
MW395	Upgradient	Yes	30.8	NO	3.428	N/A	
MW397	Upgradient	Yes	34.7	NO	3.547	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-80

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1) = 0.200 K:

K factor=** 2.523

TL(1)= 16.173

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.356

S = 0.203

CV(2) = 0.086

K factor**= 2.523

TL(2)= 2.869

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.639
Date Collected	Result	
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	21.1	YES	3.049	N/A
MW373	Downgradient	Yes	89.5	YES	4.494	N/A
MW385	Sidegradient	Yes	22.2	YES	3.100	N/A
MW388	Downgradient	Yes	23.8	YES	3.170	N/A
MW392	Downgradient	Yes	7.44	NO	2.007	N/A
MW395	Upgradient	Yes	10.5	NO	2.351	N/A
MW397	Upgradient	Yes	9.21	NO	2.220	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 11.359
 S= 9.138
 CV(1)=0.805 K factor**= 2.523
 TL(1)=34.414 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.398
 S= 0.859
 CV(2)=0.358 K factor**= 2.523
 TL(2)=3.246 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.802
Date Collected	Result	
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	107	YES	4.673	N/A
MW373	Downgradient	Yes	30.2	NO	3.408	N/A
MW385	Sidegradient	Yes	207	YES	5.333	N/A
MW388	Downgradient	Yes	157	YES	5.056	N/A
MW392	Downgradient	No	-2.23	N/A	#Error	N/A
MW395	Upgradient	No	9.83	N/A	2.285	N/A
MW397	Upgradient	Yes	18.9	NO	2.939	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.544 S = 0.856 CV(1) = 0.554 K factor** = 2.523
 TL(1) = 3.702 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 0.325 S = 0.452 CV(2) = 1.393 K factor** = 2.523
 TL(2) = 1.465 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.6 0.470 9/16/2002 1.1 0.095 10/16/2002 1 0.000 1/13/2003 2 0.693 4/10/2003 3.4 1.224 7/16/2003 2 0.693 10/14/2003 0.000 1 1/13/2004 1 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 3.6 1.281 1.9 4/8/2003 0.642 7/16/2003 1.1 0.095 10/14/2003 0.000 1 1/13/2004 1 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	1.07	NO	0.068	N/A		
MW373	Downgradient	Yes	1.09	NO	0.086	N/A		
MW385	Sidegradient	Yes	0.907	NO	-0.098	N/A		
MW388	Downgradient	Yes	0.911	NO	-0.093	N/A		
MW392	Downgradient	Yes	0.912	NO	-0.092	N/A		
MW395	Upgradient	Yes	0.585	NO	-0.536	N/A		
MW397	Upgradient	Yes	0.568	NO	-0.566	N/A		
AT/A D	1, 11 (10 1 N	. D.	1 . 11		1 . 11	1 .		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX)** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 31.513 S = 18.609 CV(1) = 0.591

K factor=** 2.523

TL(1) = 78.462

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.240

S = 0.707

CV(2) = 0.218

K factor=** 2.523

TL(2)= 5.024

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	No	10	N/A	2.303	N/A		
MW373	Downgradient	Yes	13.2	NO	2.580	N/A		
MW385	Sidegradient	Yes	10.4	NO	2.342	N/A		
MW388	Downgradient	Yes	6.54	NO	1.878	N/A		
MW392	Downgradient	Yes	23.7	NO	3.165	N/A		
MW395	Upgradient	Yes	5.32	NO	1.671	N/A		
MW397	Upgradient	No	3.86	N/A	1.351	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-84

C-746-S/T Second Quarter 2018 Statistical Analysis **Historical Background Comparison Trichloroethene** UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.780**K factor**=** 2.523 Statistics-Background Data X = 7.313S = 5.701TL(1) = 21.695LL(1)=N/A **Statistics-Transformed Background** X = 1.467S = 1.213CV(2) = 0.827

Data

K factor=** 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 2.398 9/30/2002 14 2.639 10/16/2002 12 2.485 1/13/2003 14 2.639 14 4/10/2003 2.639 7/16/2003 13 2.565 10/14/2003 12 2.485 1/13/2004 11 2.398 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 1 0.000 1/13/2003 0.0004/8/2003 0.0007/16/2003 1 0.000 10/14/2003 0.000 1 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradien	t Yes	0.6	N/A	-0.511	N/A		
MW373	Downgradien	t Yes	7.71	NO	2.043	N/A		
MW385	Sidegradient	Yes	2.31	N/A	0.837	N/A		
MW388	Downgradien	t Yes	3.08	N/A	1.125	N/A		
MW392	Downgradien	t Yes	14.9	NO	2.701	N/A		
MW395	Upgradient	Yes	4.6	N/A	1.526	N/A		
MW397	Upgradient	No	1	N/A	0.000	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-85

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.021 S = 0.002 CV(1) = 0.105 K factor** = 2.523
 TL(1) = 0.027 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.856 S = 0.100 CV(2) = -0.026 K factor** = 2.523
 TL(2) = -3.604 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689-3.912 10/16/2002 0.02 1/13/2003 0.02 -3.912 7/16/2003 -3.912 0.02 10/14/2003 0.02 -3.9121/13/2004 0.02 -3.912 4/12/2004 0.02 -3.912Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/17/2002 0.02 -3.9121/13/2003 0.02 -3.912 4/8/2003 0.02 -3.912 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	0.00355	NO	-5.641	N/A		
MW373	Downgradient	Yes	0.00376	NO NO	-5.583	N/A		
MW385	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW388	Downgradient	No	0.01	N/A	-4.605	N/A		
MW392	Downgradient	No	0.01	N/A	-4.605	N/A		
MW395	Upgradient	No	0.01	N/A	-4.605	N/A		
MW397	Upgradient	No	0.01	N/A	-4.605	N/A		
MI/A Dane	14 - 1 - 1 - 1 - 1 N	D-44-	J 1 . 1.		4-41:4-4:			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.044 S = 0.034 CV(1) = 0.760 K factor**= 2.523
 TL(1) = 0.129 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.342 S = 0.659 CV(2) = -0.197 K factor**= 2.523
 TL(2) = -1.679 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.1 -2.3039/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.3520.035 4/10/2003 -3.352 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/17/2002 0.025 -3.6891/13/2003 0.035 -3.352 4/8/2003 0.035-3.352 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	0.00456	NO NO	-5.390	N/A		
MW373	Downgradient	Yes	0.006	NO	-5.116	N/A		
MW385	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW388	Downgradient	No	0.01	N/A	-4.605	N/A		
MW392	Downgradient	No	0.01	N/A	-4.605	N/A		
MW395	Upgradient	No	0.01	N/A	-4.605	N/A		
MW397	Upgradient	No	0.01	N/A	-4.605	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Second Quarter 2018 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.132

S = 2.370 (

CV(1)=2.094 K fac

K factor**= 3.188

TL(1) = 8.688

LL(1)=N/A

Statistics-Transformed Background

X = -0.264 S = 2.078

CV(2) = -7.876

K factor=** 3.188

TL(2) = 1.675

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
4/18/2016	2.89	1.061
7/19/2016	-2.66	#Func!
10/12/2016	2.09	0.737
1/17/2017	0.0175	-4.046
4/20/2017	0.34	-1.079
7/19/2017	1.07	0.068
10/9/2017	-0.033	#Func!
1/23/2018	5.34	1.675

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradien	Yes	53.8	N/A	3 985	YES

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 254.500 S = 74.929 CV(1) = 0.294

K factor=** 3.188

TL(1)= 493.372 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.504

 $S = 0.280 \quad CV(2) = 0.051$

K factor=** 3.188

TL(2) = 6.396

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
4/18/2016	384	5.951
7/19/2016	339	5.826
10/12/2016	221	5.398
1/17/2017	209	5.342
4/20/2017	172	5.147
7/19/2017	291	5.673
10/9/2017	217	5.380
1/23/2018	203	5.313

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	302	NO	5.710	N/A			
MW390	Downgradien	t Yes	324	NO	5.781	N/A			
MW393	Downgradien	t Yes	293	NO	5.680	N/A			
MW396	Upgradient	Yes	275	NO	5.617	N/A			

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = -2.814	S = 7.168	CV(1) = -2.548	K factor**= 3.188	TL(1)= 20.038	LL(1)= N/A
Statistics-Transformed Background Data	X = 1.153	S = 0.684	CV(2) =0.593	K factor**= 3.188	TL(2)= 1.766	LL(2)= N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 4/18/2016 -7.52#Func! 7/19/2016 3.89 1.358 10/12/2016 -10.9#Func! 1.314 1/17/2017 3.72 4/20/2017 -7.44 #Func! 7/19/2017 1.19 0.174 10/9/2017 -11.3 #Func! 1.766 1/23/2018 5.85

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradien	t Yes	80.4	YES	4.387	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 9.736	S = 7.633	CV(1) =0.784	K factor**= 2.523	TL(1)= 28.995	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.255	S = 0.657	CV(2)= 0.291	K factor**= 2.523	TL(2)= 3.114	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/12/2016	14.2	2.653
7/19/2016	6.61	1.889
10/10/2016	21.7	3.077
1/11/2017	13.6	2.610
4/19/2017	20.1	3.001
7/19/2017	22.5	3.114
10/9/2017	13.1	2.573
1/23/2018	12.8	2.549
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.020
Date Collected	Result	` ′
Date Collected 4/18/2016	Result 7.54	2.020
Date Collected 4/18/2016 7/19/2016	Result 7.54 4.04	2.020 1.396
Date Collected 4/18/2016 7/19/2016 10/12/2016	Result 7.54 4.04 2.51	2.020 1.396 0.920
Date Collected 4/18/2016 7/19/2016 10/12/2016 1/17/2017	Result 7.54 4.04 2.51 5.57	2.020 1.396 0.920 1.717

-3.27

1/23/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	Yes	102	YES	4.625	N/A
MW384	Sidegradient	Yes	95	YES	4.554	N/A
MW387	Downgradient	Yes	143	YES	4.963	N/A

Conclusion of Statistical Analysis on Current Data

#Func!

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW384 MW387

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 24.175 **S**= 3.815

CV(1)=0.158

K factor=** 2.523

TL(1) = 33.800

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.173

S = 0.161

CV(2) = 0.051

K factor=** 2.523

TL(2) = 3.580

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 4/12/2016 25.7 3.246 7/19/2016 2.970 19.5 3.020 10/10/2016 20.5 19.6 1/11/2017 2.976 4/19/2017 20.8 3.035 7/19/2017 22.7 3.122 10/9/2017 19.9 2.991 2.934 1/23/2018 18.8

MW394	
Result	LN(Result)
29.5	3.384
28.8	3.360
28.6	3.353
26.7	3.285
27.9	3.329
26.1	3.262
25.7	3.246
	Result 29.5 28.8 28.6 26.7 27.9 26.1

1/23/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Vec	/Q Q	VES	3 910	N/Δ

Conclusion of Statistical Analysis on Current Data

3.258

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis **Current Background Comparison Chemical Oxygen Demand (COD) URGA** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 19.941 S = 10.129 CV(1) = 0.508**K factor**=** 2.523 TL(1)= 45.496 **Statistics-Background Data** LL(1)=N/A

MW391 Downgradient Yes

Statistics-Transformed Background Data

X = 2.896S = 0.432CV(2) = 0.149 **K factor**=** 2.523

LL(2)=N/A

TL(2) = 3.985

LN(Result) > TL(2)

N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/12/2016	15.8	2.760
7/19/2016	33.1	3.500
10/10/2016	13.9	2.632
1/11/2017	12.7	2.542
4/19/2017	24	3.178
7/19/2017	46.8	3.846
10/9/2017	14.2	2.653
1/23/2018	18.9	2.939

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

3.622

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)		

37.4

NO

Well Number:	MW394	
Date Collected	Result	LN(Result)
4/18/2016	20	2.996
7/19/2016	34.9	3.552
10/12/2016	13.6	2.610
1/17/2017	9.95	2.298
4/20/2017	16.1	2.779
7/19/2017	20	2.996
10/9/2017	12.5	2.526
1/23/2018	12.6	2.534

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-8

C-746-S/T Second Quarter 2018 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 215.000 S = 69.140 CV(1) = 0.322

K factor=** 2.523

TL(1)= 389.441 L

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.336 S = 0.251 CV(2) = 0.047

K factor=** 2.523

TL(2) = 5.968

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/12/2016 273 5.609 7/19/2016 200 5.298 10/10/2016 187 5.231 1/11/2017 201 5.303 4/19/2017 193 5.263 7/19/2017 451 6.111 10/9/2017 147 4.990 5.094 1/23/2018 163

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Qual tel	Dutu

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	356	NO	5.875	N/A

Well Number:	MW394	
Date Collected	Result	LN(Result)
4/18/2016	199	5.293
7/19/2016	231	5.442
10/12/2016	219	5.389
1/17/2017	213	5.361
4/20/2017	203	5.313
7/19/2017	203	5.313
10/9/2017	170	5.136
1/23/2018	187	5.231

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Current B Magnesium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.259

CV(1)=0.152

K factor**= 2.523

TL(1)= 14.198

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.317

S = 0.157 CV(2) = 0.068

S = 1.561

K factor=** 2.523

TL(2) = 2.713

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/12/2016 10.5 2.351 7/19/2016 7.99 2.078 10/10/2016 8.7 2.163 1/11/2017 8.48 2.138 4/19/2017 9.11 2.209 7/19/2017 9.36 2.236 10/9/2017 8.67 2.160 2.084 1/23/2018 8.04

Well Number: MW394 Date Collected Result LN(Result) 4/18/2016 11.9 2.477 7/19/2016 11.7 2.460 10/12/2016 12.1 2.493 1/17/2017 11.7 2.460 4/20/2017 11.6 2.451 7/19/2017 11.4 2.434

11.4

11.5

10/9/2017

1/23/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW372	Downgradien	t Yes	19 4	YES	2.965	N/A

Conclusion of Statistical Analysis on Current Data

2.434

2.442

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Sodium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 37.038 **S**= 5.418

CV(1)=0.146

K factor**= 2.523

TL(1) = 50.707

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.602

S = 0.145 CV(2) = 0.040

K factor=** 2.523

TL(2)= 3.968

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 4/12/2016 49.2 3.896 7/19/2016 39.8 3.684 10/10/2016 39.6 3.679 1/11/2017 41 3.714 4/19/2017 41.4 3.723 7/19/2017 42. 3.738 10/9/2017 40.9 3.711 1/23/2018 38.8 3 658

1/23/	2010	30.0	3.030
Well	Number:	MW394	
Date	Collected	Result	LN(Result)
4/18/	/2016	31.8	3.459
7/19/	/2016	31.4	3.447
10/12	2/2016	34.9	3.552
1/17/	/2017	35.3	3.564
4/20/	/2017	30.7	3.424
7/19/	/2017	28.7	3.357

33.6

33.5

10/9/2017

1/23/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW387	Downgradien	t Yes	59.7	YES	4.089	N/A

Conclusion of Statistical Analysis on Current Data

3.515

3.512

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Cu Sulfate UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

Statistics-Background Data

X = 14.784 S = 4.772

K factor=** 2.523

TL(1) = 26.823

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.644 **S**= 0.323

CV(2) = 0.122

CV(1)=0.323

K factor=** 2.523

TL(2) = 3.460

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/12/2016	21.8	3.082
7/19/2016	17.9	2.885
10/10/2016	18.7	2.929
1/11/2017	18.4	2.912
4/19/2017	19.9	2.991
7/19/2017	22.7	3.122
10/9/2017	17.6	2.868
1/23/2018	16.4	2.797
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.286
Date Collected	Result	
Date Collected 4/18/2016	Result 9.84	2.286
Date Collected 4/18/2016 7/19/2016	Result 9.84 10.5	2.286 2.351
Date Collected 4/18/2016 7/19/2016 10/12/2016	Result 9.84 10.5 10.4	2.286 2.351 2.342
Date Collected 4/18/2016 7/19/2016 10/12/2016 1/17/2017	Result 9.84 10.5 10.4 10.8	2.286 2.351 2.342 2.380
Date Collected 4/18/2016 7/19/2016 10/12/2016 1/17/2017 4/20/2017	Result 9.84 10.5 10.4 10.8 10.5	2.286 2.351 2.342 2.380 2.351

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	21.1	NO	3.049	N/A
MW223	Sidegradient	Yes	19.9	NO	2.991	N/A
MW369	Downgradient	t Yes	24	NO	3.178	N/A
MW372	Downgradient	t Yes	78.2	YES	4.359	N/A

N/A MW384 Sidegradient 23.5 NO 3.157 Yes MW387 Downgradient Yes 19.1 NO 2.950 N/A MW391 Downgradient Yes 70.3 YES 4.253 N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 14.163 S = 8.482 CV(1) = 0.599 K factor** = 2.523
 TL(1) = 35.564 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.433 S = 0.746 CV(2) = 0.307 K factor** = 2.523
 TL(2) = 4.317 LL(2) = N/A

Data

from Ungradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Background Data from Upgradient
Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/12/2016	13	2.565
7/19/2016	28.9	3.364
10/10/2016	12.3	2.510
1/11/2017	23.2	3.144
4/19/2017	20.7	3.030
7/19/2017	22.7	3.122
10/9/2017	18.3	2.907
1/23/2018	27.4	3.311
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.708
Date Collected	Result	
Date Collected 4/18/2016	Result 15	2.708
Date Collected 4/18/2016 7/19/2016	Result 15 5.87	2.708 1.770
Date Collected 4/18/2016 7/19/2016 10/12/2016	Result 15 5.87 4.39	2.708 1.770 1.479
Date Collected 4/18/2016 7/19/2016 10/12/2016 1/17/2017	Result 15 5.87 4.39 7.79	2.708 1.770 1.479 2.053
Date Collected 4/18/2016 7/19/2016 10/12/2016 1/17/2017 4/20/2017	Result 15 5.87 4.39 7.79 7.82	2.708 1.770 1.479 2.053 2.057

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradien	t Yes	142	YES	4.956	N/A
MW372	Downgradien	t Yes	36.6	YES	3.600	N/A
MW384	Sidegradient	Yes	162	YES	5.088	N/A
MW387	Downgradien	t Yes	213	YES	5.361	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 6.629	S = 3.563	CV(1) =0.538	K factor**= 2.523	TL(1)= 15.619	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.892	S = 0.432	CV(2)= 0.228	K factor**= 2.523	TL(2)= 2.493	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

**** 11.3.7	1.00.5	
Well Number:	MW395	
Date Collected	Result	LN(Result)
4/18/2016	6.43	1.861
7/19/2016	-1.87	#Func!
10/12/2016	3.62	1.286
1/17/2017	5.31	1.670
4/20/2017	7.61	2.029
7/19/2017	5.16	1.641
10/9/2017	8.17	2.100
1/23/2018	7.50	2.027
1/23/2018	7.59	2.027
Well Number:	7.59 MW397	2.027
-,,,,	,,,,,	LN(Result)
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Well Number: Date Collected 4/14/2016	MW397 Result 10.2	LN(Result) 2.322
Well Number: Date Collected 4/14/2016 7/19/2016	MW397 Result 10.2 7.53	LN(Result) 2.322 2.019
Well Number: Date Collected 4/14/2016 7/19/2016 10/11/2016	MW397 Result 10.2 7.53 5.73	LN(Result) 2.322 2.019 1.746
Well Number: Date Collected 4/14/2016 7/19/2016 10/11/2016 1/11/2017	MW397 Result 10.2 7.53 5.73 4.42	LN(Result) 2.322 2.019 1.746 1.486

2.66

1/23/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW385	Sidegradient	Yes	72.5	YES	4.284	N/A	
MW388	Downgradien	t Yes	113	YES	4.727	N/A	

Conclusion of Statistical Analysis on Current Data

0.978

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.544 S = 5.051

CV(1) = 0.215

K factor**= 2.523

TL(1)= 36.287

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.138

S = 0.211CV(2) = 0.067

K factor=** 2.523

utilizing TL(1).

TL(2) = 3.671

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected LN(Result) Result 4/18/2016 27.6 3.318 7/19/2016 26.3 3.270 10/12/2016 27.2 3.303 1/17/2017 25.9 3.254 4/20/2017 28.2 3.339 7/19/2017 26.2 3.266 10/9/2017 25.3 3.231 3.199 1/23/2018 24.5

Current Quarter Data

Well No. Gradient Result | Result >TL(1)? LN(Result) | LN(Result) >TL(2) MW373 Downgradient Yes 53.2 YES 3.974 N/A

Date Collected Result LN(Result) 4/14/2016 18.1 2.896 7/19/2016 35.1 3.558 10/11/2016 19.3 2.960
7/19/2016 35.1 3.558
10/11/2016 10.3 2.060
10/11/2010 19.5 2.900
1/11/2017 19.5 2.970
4/20/2017 18.2 2.901
7/19/2017 17.2 2.845
10/9/2017 18.7 2.929
1/23/2018 19.4 2.965

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-15

C-746-S/T Second Quarter 2018 Statistical Analysis **Current Background Comparison Chemical Oxygen Demand (COD) LRGA** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.623 S = 16.646 CV(1) = 0.736

K factor=** 2.523

TL(1)= 64.620

LL(1)=N/A

Statistics-Transformed Background

X = 2.957

S = 0.534CV(2) = 0.181 **K factor**=** 2.523

TL(2) = 4.304

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/18/2016 30.8 3.428 7/19/2016 74.1 4.305 10/12/2016 11.7 2.460 1/17/2017 20 2.996 4/20/2017 12.6 2.534 7/19/2017 12.7 2.542 10/9/2017 14.2 2.653 2.939 1/23/2018 18.9

Well Number: MW397 Date Collected Result LN(Result) 4/14/2016 20 2.996 7/19/2016 49.1 3.894 10/11/2016 16.7 2.815 1/11/2017 18.9 2.939 4/20/2017 9.17 2.216 7/19/2017 20 2.996 10/9/2017 14.2 2.653 1/23/2018 18.9 2.939

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW395	Ungradient	Yes	42.2	NO	3 742	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-16

C-746-S/T Second Quarter 2018 Statistical Analysis **Current Background Comparison Conductivity LRGA UNITS:** umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 357.688 S = 31.956 CV(1) = 0.089

K factor=** 2.523

TL(1) = 438.312 LL(1) = N/A

Statistics-Transformed Background

X = 5.876S = 0.090

CV(2) = 0.015

K factor=** 2.523

utilizing TL(1).

TL(2) = 6.102

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/18/2016	399	5.989
7/19/2016	394	5.976
10/12/2016	377	5.932
1/17/2017	386	5.956
4/20/2017	392	5.971
7/19/2017	392	5.971
10/9/2017	378	5.935
1/23/2018	384	5.951

Current Quarter Data

Well No. Gradient Result | Result >TL(1)? LN(Result) | LN(Result) >TL(2) MW373 Downgradient Yes YES 6.495

Well Number:	MW397	
Date Collected	Result	LN(Result)
4/14/2016	323	5.778
7/19/2016	333	5.808
10/11/2016	334	5.811
1/11/2017	337	5.820
4/20/2017	320	5.768
7/19/2017	315	5.753
10/9/2017	333	5.808
1/23/2018	326	5.787

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-17

C-746-S/T Second Quarter 2018 Statistical Analysis **Current Background Comparison Dissolved Solids** UNITS: mg/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 188.000 S = 23.681 CV(1) = 0.126

K factor=** 2.523

TL(1)= 247.748

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.229S = 0.124

CV(2) = 0.024

K factor=** 2.523

utilizing TL(1).

TL(2) = 5.543

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected Result LN(Result) 4/18/2016 224 5.412 7/19/2016 219 5.389 10/12/2016 214 5.366 5.407 1/17/2017 223 4/20/2017 204 5.318 7/19/2017 210 5.347 10/9/2017 163 5.094 5.170 1/23/2018 176

Current (Juarter Dat	a
-----------	--------------------	---

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW373	Downgradien	Ves	386	VES	5 956	N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
4/14/2016	167	5.118
7/19/2016	169	5.130
10/11/2016	166	5.112
1/11/2017	187	5.231
4/20/2017	180	5.193
7/19/2017	171	5.142
10/9/2017	156	5.050
1/23/2018	179	5.187

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-18

C-746-S/T Second Quarter 2018 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 358.000 S = 93.658 CV(1) = 0.262

K factor=** 2.523

TL(1)= 594.300

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.846 S = 0.282

CV(2) = 0.048

K factor=** 2.523

TL(2) = 6.556

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/18/2016	325	5.784
7/19/2016	428	6.059
10/12/2016	357	5.878
1/17/2017	299	5.700
4/20/2017	190	5.247
7/19/2017	392	5.971
10/9/2017	385	5.953
1/23/2018	195	5.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 6.373
Date Collected	Result	
Date Collected 4/14/2016	Result 586	6.373
Date Collected 4/14/2016 7/19/2016	Result 586 420	6.373 6.040
Date Collected 4/14/2016 7/19/2016 10/11/2016	Result 586 420 378	6.373 6.040 5.935
Date Collected 4/14/2016 7/19/2016 10/11/2016 1/11/2017	Result 586 420 378 416	6.373 6.040 5.935 6.031
Date Collected 4/14/2016 7/19/2016 10/11/2016 1/11/2017 4/20/2017	Result 586 420 378 416 282	6.373 6.040 5.935 6.031 5.642

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	368	NO	5.908	N/A	
MW373	Downgradient	Yes	350	NO	5.858	N/A	
MW385	Sidegradient	Yes	317	NO	5.759	N/A	
MW388	Downgradient	Yes	325	NO	5.784	N/A	
MW392	Downgradient	Yes	297	NO	5.694	N/A	
MW395	Upgradient	Yes	367	NO	5.905	N/A	
MW397	Upgradient	Yes	319	NO	5.765	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis C Sulfate UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 10.394 S = 0.665 CV(1) = 0.064 K factor**= 2.523
 TL(1) = 12.072 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.339 S = 0.063 CV(2) = 0.027 K factor**= 2.523
 TL(2) = 2.498 LL(2) = N/A

MW388 Downgradient Yes

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/18/2016	9.73	2.275
7/19/2016	9.9	2.293
10/12/2016	9.86	2.288
1/17/2017	10.1	2.313
4/20/2017	10.4	2.342
7/19/2017	10	2.303
10/9/2017	10.1	2.313
1/23/2018	10.4	2.342
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.263
Date Collected	Result	
Date Collected 4/14/2016	Result 9.61	2.263
Date Collected 4/14/2016 7/19/2016	Result 9.61 11	2.263 2.398
Date Collected 4/14/2016 7/19/2016 10/11/2016	Result 9.61 11 11.3	2.2632.3982.425
Date Collected 4/14/2016 7/19/2016 10/11/2016 1/11/2017	Result 9.61 11 11.3 11.6	2.263 2.398 2.425 2.451
Date Collected 4/14/2016 7/19/2016 10/11/2016 1/11/2017 4/20/2017	Result 9.61 11 11.3 11.6 9.7	2.263 2.398 2.425 2.451 2.272

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

3.170

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	21.1	YES	3.049	N/A
MW373	Downgradient	t Yes	89.5	YES	4.494	N/A
MW385	Sidegradient	Yes	22.2	YES	3.100	N/A

YES

23.8

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

N/A

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2018 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 12.176 **S**= 6.460

CV(1)=0.531

K factor=** 2.523

TL(1) = 28.474

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.347

S = 0.625 CV(2) = 0.266

K factor=** 2.523

TL(2) = 3.924

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/18/2016 8.36 2.123 7/19/2016 13.2 2.580 10/12/2016 2.15 0.765 1/17/2017 11.4 2.434 4/20/2017 9.95 2.298 7/19/2017 19.2 2.955 10/9/2017 3.67 1.300

1/23/2018	15.7	2.754	
Well Number:	MW397		
Date Collected	Result	LN(Result)	
4/14/2016	7.44	2.007	
7/19/2016	14.9	2.701	
10/11/2016	9.1	2.208	
1/11/2017	8.85	2.180	
4/20/2017	14.9	2.701	
7/19/2017	29.8	3.395	
10/9/2017	13	2.565	
1/23/2018	13.2	2.580	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	107	YES	4.673	N/A
MW385	Sidegradient	Yes	207	YES	5.333	N/A
MW388	Downgradient	t Yes	157	YES	5.056	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

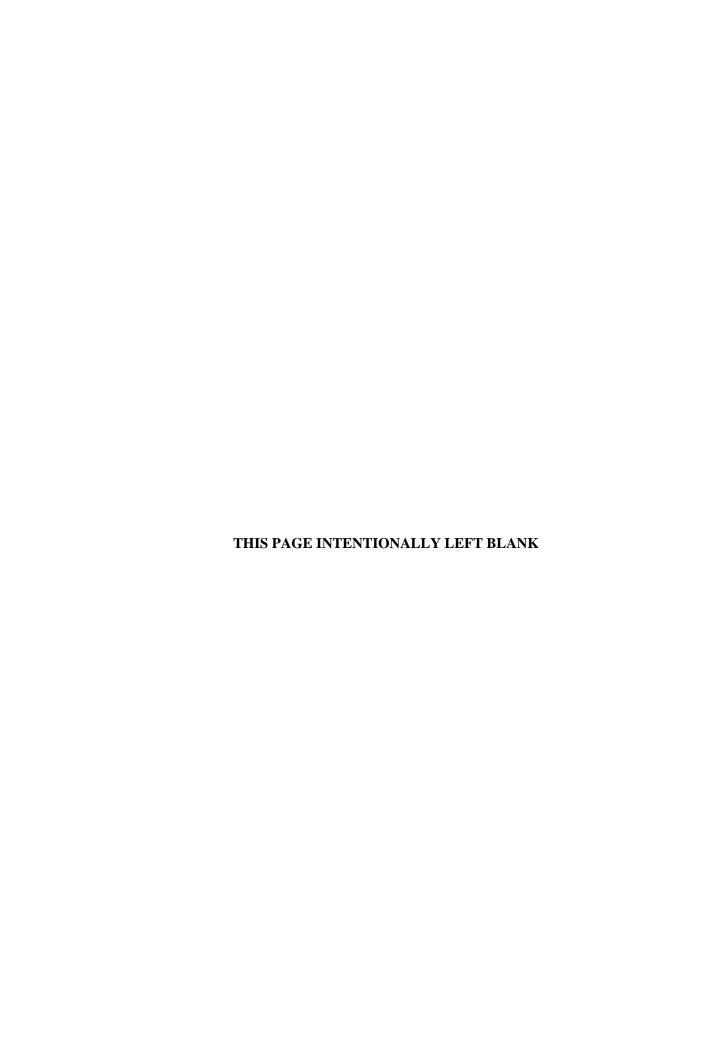
MW370 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$


TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

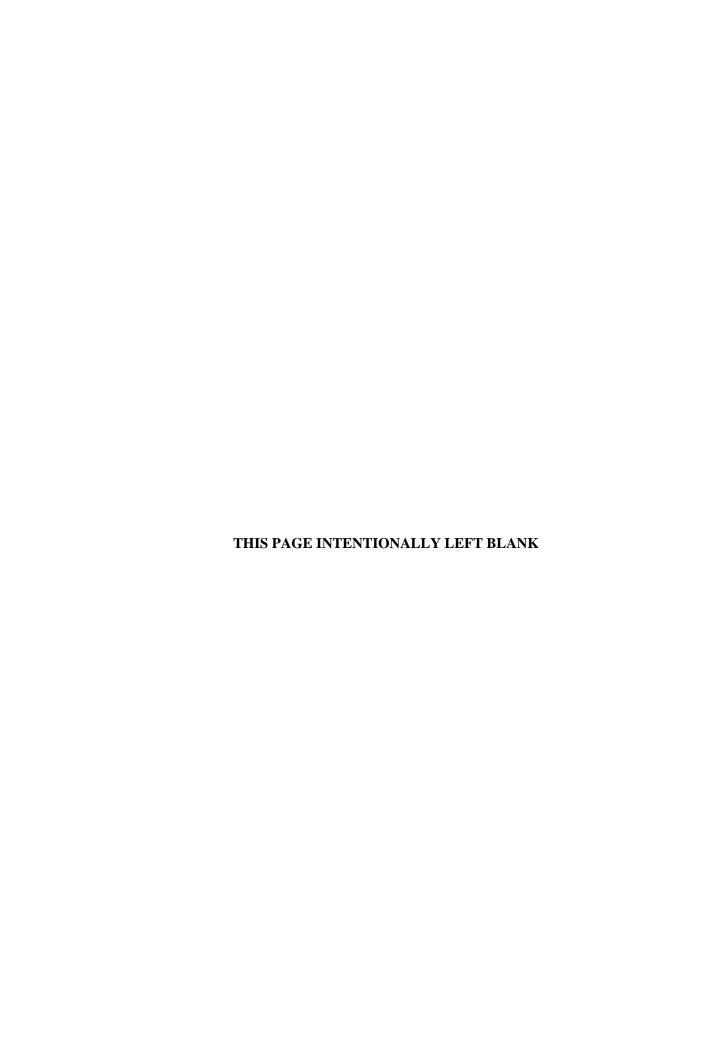
Four Rivers Nuclear Partnership, LLC

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

July 17, 2018

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:


This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an Environmental Scientist, with a bachelor's degree in science, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the second quarter 2018 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Da

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—QUARTERLY, 2nd CY 2018
Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Numbers: SW07300014, SW07300015, SW07300045 For Official Use Only

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2018 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on April 25, 2018. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 4.31×10^{-4} feet (ft)/ft. Additional water level measurements in April (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 3.59×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for April 2018, the groundwater flow direction in the immediate area of the landfill was oriented southeastward to south. While this varies from typical regional flow, this same flow trend was observed previously in April 2015.

_

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

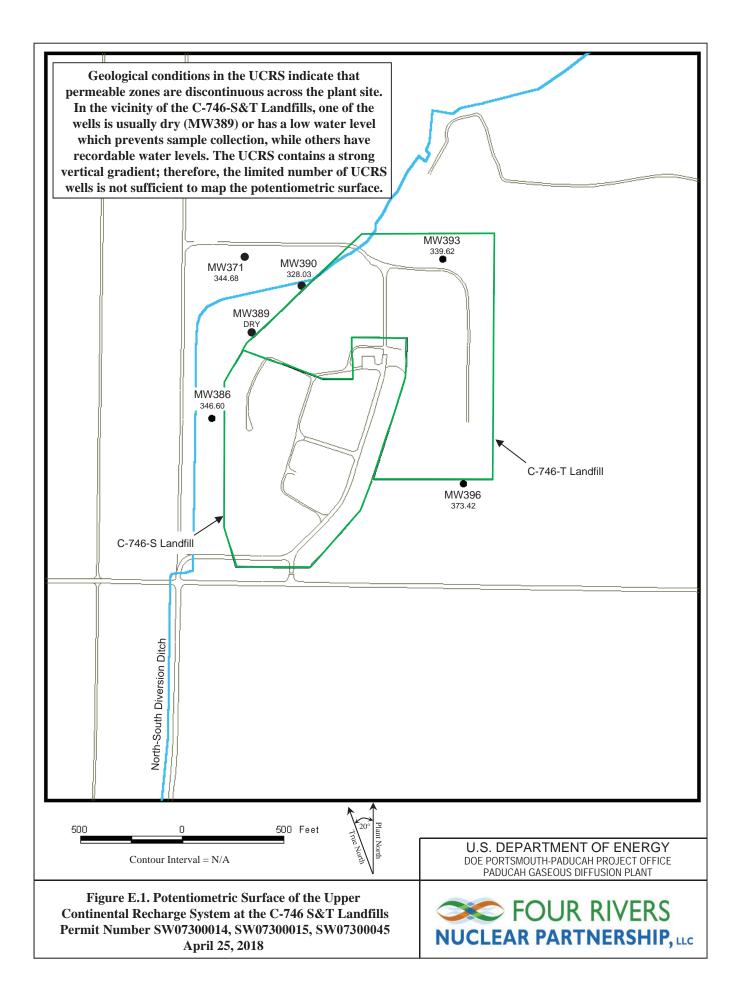


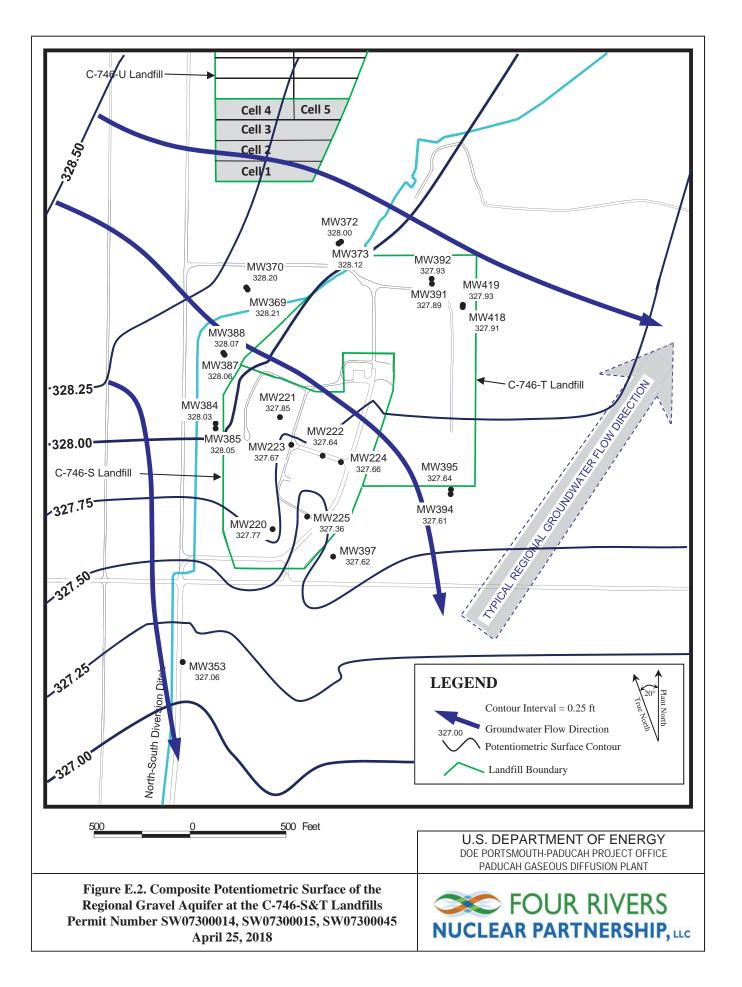
Table E.1. C-746-S&T Landfills Second Quarter 2018 (April) Water Levels

Date Time Well Formation Datum Elev (ft amsl) BP (in Hg) Delta BP (ft H ₂ 0) DTW (ft amsl) Elev (ft amsl) DTW (ft amsl) DTM (ft amsl) DTM (ft amsl) DTM (ft amsl)																		
							Raw Data *Corrected Data eta BP (t H ₂ 0) DTW (ft) Elev (ft amsl) DTW (ft) Elev (ft amsl) 0.00 54.50 327.77 54.50 327.77 0.00 63.66 327.85 63.66 327.85 0.00 67.75 327.64 67.75 327.64 0.00 66.82 327.66 68.16 327.66 0.00 58.52 327.36 58.52 327.36 0.00 48.06 327.06 48.06 327.06 0.00 37.39 328.03 37.39 328.03 0.00 37.81 328.05 37.81 328.05 0.00 35.59 328.06 35.59 328.06 0.00 35.57 328.07 35.57 328.07 DRY DRY 0.00 38.94 327.89 38.94 327.89 0.00 38.14 327.93 38.14 327.93 0.00 37.19											
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev								
				(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)								
4/25/2018	9:37	MW220	URGA	382.27	30.01	0.00	54.50	327.77	54.50	327.77								
4/25/2018	9:47	MW221	URGA	391.51	30.01	0.00	63.66	327.85	63.66	327.85								
4/25/2018	9:42	MW222	URGA	395.39	30.01	Delta BP (ft H₂0) DTW (ft) Elev (ft amsl) DTW (ft) Elev (ft amsl) 0.00 54.50 327.77 54.50 327.77 0.00 63.66 327.85 63.66 327.75 0.00 67.75 327.64 67.75 327.67 0.00 66.82 327.66 68.16 327.60 0.00 58.52 327.36 58.52 327.06 0.00 48.06 327.06 48.06 327.06 0.00 37.39 328.03 37.39 328.03 0.00 37.81 328.05 37.81 328.05 0.00 35.59 328.06 35.59 328.06 0.00 35.57 328.03 32.57 328.03 0.00 38.94 327.89 38.94 327.00 0.00 38.14 327.93 38.14 327.00 0.00 37.81 339.62 27.19 339.00 0.00 31.00 32.57 328.03 32.57												
4/25/2018	9:44	MW223	URGA	394.49	30.01	$\begin{array}{ c c c c c c } \hline \textbf{Polta BP} \\ \textbf{g)} & \textbf{fit } \textbf{H_20} \\ \textbf{o} & \textbf{fit } \textbf{H_20} \\ \textbf{o} & \textbf{o} & \textbf{o} \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} & \textbf{o} \\ \textbf{o} & \textbf{o} & \textbf{o} & $												
4/25/2018	9:40	MW224	URGA	395.82	30.01	0.00	68.16	327.66	Elev DTW It (amsl) (ft) (ft) 27.77 54.50 32 27.85 63.66 32 27.64 67.75 32 27.67 66.82 32 27.66 68.16 32 27.36 58.52 32 27.06 48.06 32 28.03 37.39 32 28.05 37.81 32 28.06 35.59 32 28.07 35.57 32 27.89 38.94 32 27.93 38.14 32 27.61 51.03 32 27.64 51.70 32 27.62 59.50 32 27.91 39.46 32									
4/25/2018	9:35	MW225	URGA	385.88	30.01	0.00	58.52	327.36	58.52	327.36								
4/25/2018	8:54	MW353	LRGA	375.12	30.01	0.00	48.06	327.06	48.06	327.06								
4/25/2018	9:26	MW384	URGA	365.42	30.01	0.00	37.39	328.03	37.39	328.03								
4/25/2018	9:24	MW385	LRGA	365.86	30.01	0.00	37.81	328.05	37.81	328.05								
4/25/2018	9:25	MW386	UCRS	365.47	30.01	0.00	18.87	346.60	18.87	346.60								
4/25/2018	9:27	MW387	URGA	363.65	30.01	0.00	35.59	328.06	35.59	328.06								
4/25/2018	9:28	MW388	LRGA	363.64	30.01	0.00	35.57	328.07	35.57	328.07								
4/25/2018		MW389	UCRS	364.26	30.01		DRY		DRY									
4/25/2018	9:31	MW390	UCRS	360.60	30.01	0.00 37.39 328.03 37.39 328.03 0.00 37.81 328.05 37.81 328.05 0.00 18.87 346.60 18.87 346.60 0.00 35.59 328.06 35.59 328.06 0.00 35.57 328.07 35.57 328.07 DRY DRY												
4/25/2018	9:10	MW391	URGA	366.83	30.01	0.00	38.94	327.36 58.52 327.36 327.06 48.06 327.06 328.03 37.39 328.03 328.05 37.81 328.05 346.60 18.87 346.60 328.06 35.59 328.06 328.07 DRY 328.03 32.57 328.03 327.89 38.94 327.89 327.93 38.14 327.93										
4/25/2018	9:08	MW392	LRGA	366.07	30.01	0.00	38.14	327.93	38.14	327.93								
4/25/2018	9:09	MW393	UCRS	366.81	30.01	0.00	27.19	339.62	27.19	339.62								
4/25/2018	9:16	MW394	URGA	378.64	30.01	0.00	51.03	327.61	51.03	327.61								
4/25/2018	9:15	MW395	LRGA	379.34	30.01	0.00	51.70	327.64	51.70	327.64								
4/25/2018	9:17	MW396	UCRS	378.84	30.01	0.00	5.42	373.42	5.42	373.42								
4/25/2018	9:20	MW397	LRGA	387.12	30.01	0.00	59.50	327.62	59.50	327.62								
4/25/2018	9:11	MW418	URGA	367.37	30.01	0.00	39.46	327.91	39.46	327.91								
4/25/2018	9:12	MW419	0.00	39.29	327.93	39.29	327.93											
Initial Baro	metric P	ressure	30.01															

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

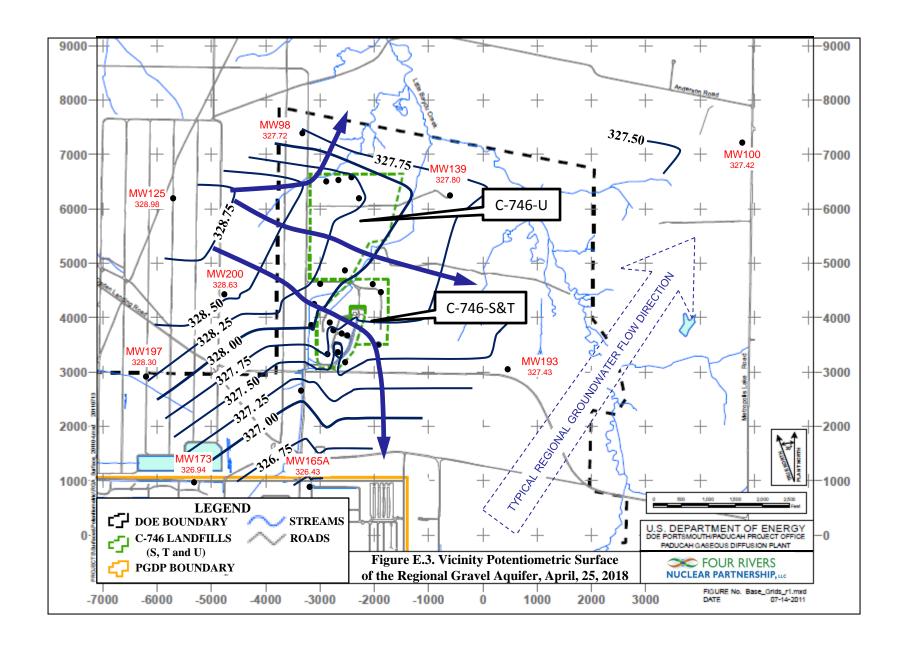


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	4.31×10^{-4}
Vicinity	3.59×10^{-4}

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific l	Discharge (q)	Average	e Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.313	1.10×10^{-4}	1.25	4.41×10^{-4}
425	0.150	0.183	6.47×10^{-5}	0.733	2.59×10^{-4}
Vicinity					
725	0.256	0.260	9.19 × 10 ⁻⁵	1.04	3.67×10^{-4}
425	0.150	0.152	5.38 × 10 ⁻⁵	0.610	2.15×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the second quarter 2018 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).*

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Technetium-99	MW369, MW372, MW384, MW387
	Sodium	MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

5/22/2018

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS SOLID WASTE PERMIT NUMBER SW07300014 and SW07300015 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4820	MW369	Beta activity	9310	102	pCi/L	50
8004-4808	MW372	Trichloroethene	8260B	7.88	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	7.71	ug/L	5
8004-4809	MW384	Beta activity	9310	95	pCi/L	50
8004-4810	MW385	Beta activity	9310	72.5	pCi/L	50
8004-4815	MW387	Beta activity Trichloroethene	9310 8260B	143 5.05	pCi/L ug/L	50 5
8004-4816	MW388	Beta activity	9310	113	pCi/L	50
8004-4811	MW390	Beta activity	9310	53.8	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	6.72	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	14.9	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

Groundwater Flow System			UCRS								URGA	_							_	LRG	_		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002				-	•																		
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Ouarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003		-	*				*	*					*	*									
Quarter 4, 2003		-					*	*			*		-	*									
Quarter 1, 2004		-	*				*	*			*			-4"									
Quarter 2, 2004 Quarter 2, 2004		-	-				*	***						*									
		-					*							*									
Quarter 3, 2004			u u				不							不									
Quarter 4, 2004		igspace	*					<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>									
Quarter 1, 2005			*																				
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007		-					*										*						
Quarter 1, 2007 Quarter 2, 2007							*										*						
,		\vdash															_						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												
Quarter 2, 2011		-	*				-				*												
			*								т.												
Quarter 2, 2012			不				4																
Quarter 3, 2012							*																
Quarter 1, 2013							*				*												
Quarter 3, 2013			*																				
Quarter 1, 2014							*																
Quarter 2, 2014											*												
Quarter 4, 2014			*																				
Quarter 1, 2016							*																
Quarter 2, 2016								1	1		1		1	*									
Quarter 1, 2017		H					*																
Quarter 4, 2017		H																					*
Quarter 1, 2018		\vdash					*	1	1		1		1	 						-	-	-	H
BARIUM																							
Quarter 3, 2003																							
Quarter 3, 2003 Quarter 4, 2003		-				_													_				-
,								_															
BETA ACTIVITY																							
Quarter 4, 2002		igspace						<u> </u>	<u> </u>		<u> </u>			<u> </u>			_						
					Ī		l	l	l		I	1		1		1			l	i	i	l	1
Quarter 1, 2003		\vdash	_	_													_			-	_		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2003																							
Quarter 1, 2004			_										_				_		_				
Quarter 2, 2004													_										
Quarter 3, 2004			_										_										
Quarter 4, 2004													_										
Quarter 1, 2005										•			-				H						
Quarter 2, 2005																	-			-			
Quarter 3, 2005																							
Quarter 4, 2005										=													
Quarter 1, 2006										-		-	-				H						
Quarter 2, 2006			-							-			=				H						
Quarter 3, 2006	-									-			=				-						
Quarter 4, 2006 Quarter 1, 2007	<u> </u>												-										
Quarter 2, 2007																	H						
Quarter 3, 2007			-							i			i				H		-	i			
Quarter 4, 2007							<u> </u>			-			-		<u> </u>		H	<u> </u>					
Quarter 4, 2007 Quarter 1, 2008	_					-				-			=				H		-				\vdash
Quarter 1, 2008 Quarter 2, 2008							<u> </u>					-			<u> </u>		H	<u> </u>	-				
Quarter 2, 2008 Quarter 3, 2008			Ι-			_				-			=				H						\vdash
Quarter 4, 2008										i			┪				H			-			
Quarter 1, 2009	\vdash				H	\vdash	_			i			=	 	_		H	_	<u> </u>				H
Quarter 2, 2009			-							i			=				H						\vdash
Quarter 3, 2009										Ē							Ħ						
Quarter 4, 2009																				-			
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015										•			•				•						
Quarter 3, 2015										•			-				•						
Quarter 4, 2015										•			-				•						
Quarter 1, 2016										-			-				-						
Quarter 2, 2016													_					<u> </u>					
Quarter 3, 2016										_			_				_						
Quarter 4, 2016										-	•		-				_						
Quarter 1, 2017			<u> </u>				<u> </u>			_			_		<u> </u>			<u> </u>	<u> </u>	_			<u> </u>
Quarter 2, 2017			<u> </u>			L_	<u> </u>			_			_		<u> </u>				<u> </u>	_			<u> </u>
Quarter 3, 2017			<u> </u>			<u> </u>	<u> </u>			_		L_	_		<u> </u>				<u> </u>	_			<u> </u>
Quarter 4, 2017			<u> </u>				<u> </u>			_			_		<u> </u>		_	<u> </u>	<u> </u>	_			<u> </u>
Quarter 1, 2018										_	_		_							_			
Quarter 2, 2018			•							•	•		•				•			•			
BROMIDE			w w																				
Quarter 1, 2003	!		*			-	-							-	-			<u> </u>	<u> </u>				<u> </u>
Quarter 4, 2003	_		*			-													<u> </u>				<u> </u>
Quarter 1, 2004	_		*														_		_				_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	3						1	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BROMIDE																							
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				<u> </u>
Quarter 4, 2003			*									*		-14					*				!
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				-
Quarter 3, 2004			*									*							*				-
Quarter 4, 2004			•									*							*				
Quarter 1, 2005 Quarter 2, 2005												*							*				_
	<u> </u>					 						*							*				-
Quarter 4, 2005	-					-	<u> </u>			<u> </u>		*						<u> </u>	*	<u> </u>			
Quarter 4, 2005	-					-	<u> </u>			<u> </u>		*						<u> </u>	*	<u> </u>			
Quarter 1, 2006	-					-	-			-		*						-	*	-			₩
Quarter 2, 2006 Quarter 3, 2006												*							*				_
Quarter 3, 2006 Quarter 4, 2006	-					-	<u> </u>			<u> </u>		*						<u> </u>	*	<u> </u>			
												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007 Quarter 3, 2007												*							*				
Quarter 3, 2007 Quarter 4, 2007												*							*				-
•												*							*				-
Quarter 1, 2008 Quarter 2, 2008												*							*				
-												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008 Quarter 1, 2009												*							*				├
Quarter 2, 2009												*							*				┝
Quarter 3, 2009												*							*				-
Quarter 4, 2009												*							*				-
Quarter 1, 2010												*							*				-
Quarter 2, 2010												*							*				-
Quarter 3, 2010												*							*				-
Quarter 4, 2010												*							*				-
Quarter 1, 2011												*							*				-
-												*	*						*				-
Quarter 2, 2011 Quarter 3, 2011	<u> </u>					 						*	~						*				-
Quarter 4, 2011 Quarter 4, 2011						 	<u> </u>			<u> </u>		*					-	<u> </u>	*	<u> </u>			-
Quarter 4, 2011 Quarter 1, 2012	<u> </u>					 						*							*				-
Quarter 1, 2012 Quarter 2, 2012	-						-			-		*						-	*	-			-
Quarter 3, 2012	-						-			-		*						-	*	-			-
Quarter 4, 2012												*							*				
Quarter 1, 2013	-					-	-			-		*						-	*	-			<u> </u>
Quarter 2, 2013							<u> </u>			<u> </u>		*						<u> </u>	*	<u> </u>			
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014	-					-	-			-		Ë						*	*	-			<u> </u>
Quarter 1, 2014 Quarter 2, 2014							<u> </u>			<u> </u>		*						<u> </u>	*	<u> </u>			
Quarter 3, 2014 Quarter 3, 2014	-						-			-		*						*	*	-			-
Quarter 4, 2014						 	<u> </u>			<u> </u>		*					-		*	<u> </u>			<u> </u>
Quarter 1, 2015	-					-						*	*						*				_
Quarter 1, 2015 Quarter 2, 2015	-					-						*	*						*				_
Quarter 3, 2015	-						-			-		*						-	*	-			-
Quarter 4, 2015						 	<u> </u>			<u> </u>		*					-	<u> </u>	*	<u> </u>			<u> </u>
Quantil 4, 2013	_					_						·*					_		·*				_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						Ţ	URGA	A								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016		-										*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017		-										*							*				
Quarter 3, 2017		-										*							*				
Quarter 4, 2017	—	-										*							*				
Quarter 1, 2018	 	-										*							*				
Quarter 2, 2018	<u> </u>	-										*							*				
CARBON DISULFIDE												т							т-				
Quarter 4, 2010	—										*												
											т	*									*		
Quarter 1, 2011		-										*	*								*		
Quarter 2, 2017													不										
CHEMICAL OXYGEN DEMANI	ט			<u>.</u>																			
Quarter 1, 2003	<u> </u>			*		_																	-
Quarter 2, 2003	<u> </u>	₩		*		!	ىد			JL.			-	-							<u> </u>	-	-
Quarter 3, 2003	<u> </u>	₩		*			*			*			<u> </u>								<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2003	4	—		*		!	<u> </u>						<u> </u>	-							<u> </u>	<u> </u>	-
Quarter 1, 2004	*	₩		*			<u> </u>						<u> </u>								<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2004	*	<u> </u>		<u> </u>			<u> </u>						<u> </u>								<u> </u>	<u> </u>	
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*	-																					
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*	-																		*			
Quarter 3, 2009	*	-																					
Quarter 4, 2009	*	-																					
Quarter 1, 2010	*	-																					
	*	1				-															-		-
Quarter 2, 2010	414	 		-		 	-						-	 							-	-	-
Quarter 3, 2010	*					_																	-
Quarter 4, 2010		├			_	-								 					_	_			-
Quarter 3, 2011	*	—		<u> </u>		!	<u> </u>						<u> </u>	-							<u> </u>	<u> </u>	-
Quarter 4, 2011	*	Ь—												<u> </u>									
Quarter 1, 2012	*	<u> </u>		<u> </u>			<u> </u>						<u> </u>								<u> </u>	<u> </u>	
Quarter 1, 2013	*	<u> </u>		<u> </u>			<u> </u>						<u> </u>	<u> </u>							<u> </u>	<u> </u>	
Quarter 3, 2013	*	<u> </u>											<u> </u>										
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014							*																
Quarter 2, 2015	L		L									L			L	*		L					L
Quarter 3, 2015															*								
Quarter 3, 2016			*								*												
Quarter 4, 2016																	*						
Quarter 2, 2017							*																
Quarter 3, 2017	*														*								
Quarter 4, 2017						*																	
, - · · · · · · · · · · · · · · · · · ·		\leftarrow	—		-	1	—	\vdash		_				— —	<u> </u>	_	—	<u> </u>	—	—			+
Quarter 2, 2018	1													*								*	

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Graediscant S D D D D U S S S S S D D D D D U S S D D D D	Groundwater Flow System			UCRS	S						1	URGA	A								LRGA	A		_
Monitoring Well	Gradient	S	_			U	S	S	S	S				D	D	U	U	S	D				U	U
CHLORNE (CHLORNE)	Monitoring Well																							397
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 8, 2009 Quarter 7, 2009 Quarter 8, 2009 Quarter 7, 2009 Quarter 8, 2009 Quarter 9, 2009 Quarter 9, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2002 Quarter 6, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 8, 2009 Quarter 8, 2009 Quarter 9, 200	_																							
Quarter 2, 2003				*																				
Deuter 1, 2003 Deuter 1, 2004 Deuter 2, 2004 Deuter 2, 2004 Deuter 3, 2004 Deuter 3, 2005 Deuter 4, 2005 Deuter 4, 2005 Deuter 4, 2005 Deuter 5, 2006 Deuter 5, 2006 Deuter 6, 2006 Deuter 6, 2006 Deuter 7, 2006 Deuter 1, 2006 Deuter 1, 2006 Deuter 1, 2007 Deuter 2, 2008 Deuter 2, 2008 Deuter 3, 2007 Deuter 4, 2008 Deuter 5, 2009 Deuter 5, 2009 Deuter 6, 2009 Deuter 7, 2009 Deuter 7, 2009 Deuter 8, 2009	Quarter 2, 2003			*																				
Quarter 4, 2003				*																				
Quarter 1, 2004	Quarter 4, 2003			*																				
Quarter 2, 2004	-			*																				
Quarter 3, 2004	Quarter 2, 2004			*																				
Quarter 4, 2004				*																				
Quarter 1, 2005				*																				
Dearer 2, 2005 Dearer 3, 2005 Dearer 4, 2005 Dearer 4, 2005 Dearer 4, 2005 Dearer 5, 2006 Dearer 1, 2006 Dearer 2, 2006 Dearer 3, 2006 Dearer 4, 2006 Dearer 4, 2007 Dearer 4, 2008 Dearer 4, 2009 Dearer 4, 2011 Dearer 4, 2011 Dearer 4, 2011 Dearer 4, 2011 Dearer 4, 2001 Dearer 4, 2002 Dearer 4, 2003 Dearer 4, 2004 Dearer 4, 2004 Dearer 4, 2005 Dearer				*																				
Dearer 4, 2005 Dearer 9, 2005 Dearer 9, 2005 Dearer 9, 2005 Dearer 9, 2006 Dearer 9, 2007 Dearer 9, 2008 Dearer 9, 2009 Dearer 9, 2009 Dearer 9, 2001 Dearer 9, 2010 Dearer 9, 2010 Dearer 9, 2011 Dearer 9, 2012 Dearer 9, 2013 Dearer 9, 2013 Dearer 9, 2014 Dearer 9, 2013 Dearer 9, 2014 Dearer 9, 2015 Dearer 9, 2016 Dearer 9, 2017 Dearer 9, 2018 Dearer 9, 2019 Dearer 9, 2019 Dearer 9, 2010 Dearer 9, 2010				*																				
Deuter 1, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2010 Quarter 4, 2001 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2003 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter				*																				
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2000 Quarter 4, 200	-																							
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2003 Quarter 4, 2001 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 200																			*					
Quarter 1, 2006	-			*																				
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2003 Quarter 4, 2003 Quarter 5, 2003 Quarter 4, 2003 Quarter 7, 2003 Quarter 7, 2003 Quarter 6, 2003 Quarter 7, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005																								
Quarter 1, 2007 *																								
Quarter 2, 2007 *			_				 	_																\vdash
Quarter 4, 2007 *							-																	\vdash
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000			 				-	 						 					 		 			├-
Quarter 1, 2008	,																							
Quarter 2, 2008							_																	<u> </u>
Quarter 4, 2008 *			<u> </u>				-	<u> </u>						<u> </u>					<u> </u>		<u> </u>			<u> </u>
Quarter 4, 2008																								
Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 ** Quarter 4, 2000 Quarter 3, 2010 ** Quarter 3, 2010 ** Quarter 4, 2011 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 ** ** ** ** ** ** ** ** **																								
Quarter 2, 2009																								
Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2014 CHROMIUM Quarter 4, 2004 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2009 Quarter 1, 2004 Quarter 3, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quart																								
Quarter 4, 2009	,																							
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2014 CHROMIUM Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 W																								
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2011 ** Quarter 3, 2011 ** Quarter 3, 2011 ** Quarter 4, 2011 Quarter 4, 2011 ** Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 ** Quarter 4, 2010 Quarter 1, 2003 Quarter 1, 2003 Quarter 3, 2009 COBALT Quarter 4, 2002 Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2003 Quarter 3, 2003 CONDUCTIVIY Quarter 4, 2002 Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2003 CONDUCTIVIY Quarter 2, 2003 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 X X X X X X X X X X X X X																								
Quarter 3, 2010																								
Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2009 Quarter 3, 2000 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005	Quarter 2, 2010																							
Quarter 2, 2011	Quarter 3, 2010			*																				
Quarter 3, 2011	Quarter 4, 2010																							
Quarter 3, 2012	Quarter 2, 2011			*																				
Quarter 3, 2012	Quarter 3, 2011			*																				
Quarter 3, 2013	Quarter 4, 2011			*																				
Quarter 4, 2013	Quarter 3, 2012			*																				
CHROMIUM	Quarter 3, 2013			*																				
CHROMIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2009 COBALT Quarter 3, 2003 * Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 * * * * * * * * * * * * *	Quarter 4, 2013			*																				
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005	Quarter 4, 2014			*																				
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2009 COBALT Quarter 3, 2003 W CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 W Quarter 1, 2003 W W W W W W W W W W W W W	CHROMIUM																							
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2009 COBALT Quarter 3, 2003 W CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 W Quarter 1, 2003 W W W W W W W W W W W W W																								
Quarter 3, 2009 COBALT Quarter 3, 2003 * Quarter 4, 2002 Quarter 1, 2003 * Quarter 3, 2003 * * * * * * * * * * Quarter 3, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 * * * * * * * * * * * * *	Quarter 1, 2003																							
Quarter 3, 2009 COBALT Quarter 3, 2003 * Quarter 4, 2002 Quarter 1, 2003 * Quarter 3, 2003 * * * * * * * * * * Quarter 3, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 * * * * * * * * * * * * *	Quarter 2, 2003																							
COBALT Quarter 3, 2003 * Image: Composition of the property of the p	Quarter 3, 2009																							
CONDUCTIVITY Quarter 4, 2002	COBALT																							
Quarter 4, 2002	Quarter 3, 2003							*																
Quarter 1, 2003	CONDUCTIVITY																							
Quarter 2, 2003	Quarter 4, 2002										*									*				
Quarter 3, 2003	Quarter 1, 2003			*							*									*				
Quarter 4, 2003	Quarter 2, 2003			*							*									*				
Quarter 1, 2004	Quarter 3, 2003			*					*		*									*				
Quarter 2, 2004 * * * * Quarter 3, 2004 * <t< td=""><td>Quarter 4, 2003</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td></t<>	Quarter 4, 2003			*							*									*				
Quarter 3, 2004 * * * * * Quarter 4, 2004 * <t< td=""><td>Quarter 1, 2004</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td></t<>	Quarter 1, 2004																			*				
Quarter 4, 2004 *	Quarter 2, 2004										*									*				
Quarter 1, 2005 * * * Quarter 2, 2005 * * * Quarter 3, 2005 * * * Quarter 4, 2005 * * *	Quarter 3, 2004										*									*				
Quarter 2, 2005	Quarter 4, 2004			*							*									*				
Quarter 3, 2005	Quarter 1, 2005										*		*							*				
Quarter 4, 2005 * * * *	Quarter 2, 2005												*							*				
Ç , = 0.0	Quarter 3, 2005																			*				
Quarter 1, 2006 * * * *	Quarter 4, 2005										*		*							*				
	Quarter 1, 2006												*							*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	l		UCRS	;						1	URGA	4								LRGA	A		_
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*					*		*				
Quarter 4, 2009												*					*		*				ļ
Quarter 1, 2010	!					-						*					-		*				\vdash
Quarter 2, 2010	!					-						*					-		*				-
Quarter 3, 2010 Quarter 4, 2010		<u> </u>				-	<u> </u>					*					-	<u> </u>	*	<u> </u>			
										*		*							*				-
Quarter 1, 2011 Quarter 2, 2011										*		*							*				
Quarter 2, 2011 Quarter 3, 2011												*							*				-
Quarter 4, 2011												*							*				-
Quarter 1, 2012											*	*							*				-
Quarter 2, 2012											т-	*							*				-
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				\vdash
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016																			*				
Quarter 3, 2016												*							*				
Quarter 4, 2016																			*				
Quarter 1, 2017																			*				
Quarter 2, 2017																			*				
Quarter 3, 2017																			*				
Quarter 4, 2017																			*				
Quarter 1, 2018																			*				
Quarter 2, 2018																			*				
DISSOLVED OXYGEN			47.																				
Quarter 3, 2006			*			_		*									_						
DISSOLVED SOLIDS										, I									11.				
Quarter 4, 2002		<u> </u>	L			<u> </u>	<u> </u>			*		<u> </u>					<u> </u>	<u> </u>	*	<u> </u>			<u> </u>
Quarter 1, 2003			*			<u> </u>				*							<u> </u>		*				
Quarter 2, 2003	!	<u> </u>	*			-	ىلو	JU.		*		ىد	-				-	<u> </u>	*	<u> </u>			-
Quarter 3, 2003	!	<u> </u>	*			-	*	*	JL.	*		*	-				-	<u> </u>	*	<u> </u>			<u> </u>
Quarter 4, 2003			*			<u> </u>	*		*	*		*					<u> </u>		*				<u> </u>
Quarter 1, 2004	!	<u> </u>	*			-	<u> </u>			JU.		*	-				-	<u> </u>	*	<u> </u>			<u> </u>
Quarter 2, 2004						_				*		*					_		*				<u> </u>
Quarter 3, 2004						_				*							_						<u> </u>
Quarter 4, 2004			ш			_				*		*					_		*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	A								LRG	Ι.		_
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*	*						*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*	-1-						*				
Quarter 1, 2014												*	*						*				
Quarter 2, 2014									.			*							*				
Quarter 3, 2014									*			*	*						*				ļ
Quarter 4, 2014	\vdash	-	-					-				*	*	-	-		-	-	*	-			<u> </u>
Quarter 1, 2015	-											*		<u> </u>			-		*				-
Quarter 2, 2015												*							*				
Quarter 3, 2015 Quarter 4, 2015							-		*			*	-				-	*	*				
Quarter 4, 2015 Quarter 1, 2016							-		Φ.			*	-				-	_	*				
Quarter 2, 2016	1	_	_				 	_				*	*	*	_		\vdash	_	*	_			
Quarter 3, 2016		 	-					-				*	Ė	<u> </u>	 			 	*	 			_
Quarter 4, 2016		 	-					-				*		-	 			 	*	 			
Quarter 1, 2017												*							*				
Quarter 2, 2017	H											*					\vdash		*				\vdash
Quarter 3, 2017												*		*	*				*				\vdash
Quarter 4, 2017												*							*				
Quarter 1, 2018												*							*				
Quarter 2, 2018												*							*				
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System Gradient Monitoring Well	S	D	UCRS D	D	U	c	-	-	_		URGA		-	_						LRG			
	_				U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
	386	389	390	393	396		222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003	1									*	*	*	*										
Quarter 3, 2003	1						*	*	*	*	*	*											
Quarter 4, 2003	1										*	-											
Quarter 1, 2004	1										*												
Quarter 2, 2004	1									*	*												
Quarter 3, 2004	1									*													
Quarter 4, 2004	1									*													
	-									т		*											
Quarter 1, 2005	1										*	*											
Quarter 2, 2005											不	不											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											1
Quarter 2, 2007											*												
Quarter 2, 2008												*											П
Quarter 3, 2008	1											*											П
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003	1		*									*							*				Н
Quarter 3, 2003	1		*				*					*											Н
Quarter 4, 2003	1		*									*							*				
Quarter 1, 2004	1		*									*		*					*				
Quarter 2, 2004	1		*									*							*				
Quarter 3, 2004	1		*									*							*				
Quarter 4, 2004	1		*									*							*				
• ,	-		т.									*							*				
Quarter 1, 2005																							
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007	1											*							*				
Quarter 4, 2007	1											*							*				
Quarter 1, 2008	1											*							*				\vdash
	-											*							*				
Quarter 2, 2008	1-	-				<u> </u>										_	<u> </u>			_			$\vdash \vdash$
Quarter 3, 2008	1											*			-				*				Ш
Quarter 4, 2008	1											*							*				ш
Quarter 1, 2009	1											*							*				ш
Quarter 2, 2009	1											*							*				ш
Quarter 3, 2009	<u> </u>											*	*						*				ليا
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010												*							*				П
Quarter 4, 2010	1											*							*				М
Quarter 1, 2011	t											*							*				
Quarter 2, 2011	1											*	*		1				*				$\vdash \vdash$
Quarter 3, 2011	1											*	<u> </u>						*				Н
	1	-	-				-					*	-	-	-				*				Н
Quarter 4, 2011	1-														-								
Quarter 1, 2012	1											*							*				
Quarter 2, 2012		L										*			L				*				
Quarter 3, 2012	1											*	*						*				
Quarter 4, 2012												*	*						*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Seriested S. D. D. D. D. U. S. S. S. S. D. D. D. D. U. U. S. D. D. D. U. U. S. D. D. D. D. U. U. S. D. D. D. D. U. U. S. D. D. D. D. D. D. U. U. S. D. D. D. D. D. D. U. U. S. D. D. D. D. D. D. U. U. S. D. D. D. D. D. D. U. U. S. D. D. D. D. D. D. U. U. S. D. D. D. D. D. D. U. U. S. D.	Groundwater Flow System			UCRS	S						1	URGA	4								LRGA	Α		
Monter Care Well MAKINSHUM Journel 1, 2013 Journel 2, 2013 Journel 3, 2013 Journel 3, 2013 Journel 4, 2014 Journel 4, 2014 Journel 4, 2014 Journel 4, 2014 Journel 4, 2015 Journel 4, 2014 Journel 4,	Gradient	S				U	S	S	S	S				D	D	U	U	S	D				U	U
MAGNESH M. Journet J. 2013 Journet J. 2014 Journet J. 2015 Journet J. 2016 Journet J. 2017 Journet J. 2017	Monitoring Well																							397
Quarter 1, 2013	_																							
Danter 4, 2013 Danter 4, 2014 Danter 4, 2015 Danter 5, 2015 Danter 2, 2015 Danter 5, 2015 Danter 6, 2015 Danter 6, 2015 Danter 6, 2015 Danter 6, 2015 Danter 7, 2015 Danter 8, 2016 Danter 8, 2016 Danter 9, 2016 Danter 1, 2005 Danter 2, 2004 Danter 1, 2005 Danter 2, 2004 Danter 1, 2005 Danter 2, 2006 Danter 2, 2007 Danter 2, 2006 Danter 2, 2006 Danter 2, 2006 Danter 2, 2007 Danter 2, 2007 Danter 2, 2007 Danter 2, 2007 Danter 2, 2008 Danter 2, 2009 Danter 2, 2009 Danter 3, 2009 Danter 2, 2009 Danter 3, 2009 Danter 3, 2009 Danter 2, 2009 Danter 3, 2009 Danter 4, 2009 Danter 4, 2009 Danter 4, 2009 Danter 5, 2009 Danter 6, 2009 Danter 8, 2009 Danter 8, 2009 Danter 9, 2001 Danter	Quarter 1, 2013												*							*				
Danter 4, 2013 Danter 2, 2014 Danter 2, 2014 Danter 3, 2014 Danter 3, 2014 Danter 4, 2015 Danter 4, 2015 Danter 5, 2016 Danter 5, 2016 Danter 6, 2017 Danter 6, 2018 Danter 6, 2007 Danter 6, 2008 Danter 6, 2009 Danter 6, 2005 Danter	Quarter 2, 2013												*							*				
Quarter 4, 2013	Ouarter 3, 2013												*							*				1
Desire 1, 19014 Desire 2, 2014 Desire 3, 2014 Desire 1, 2015 Desire 2, 2014 Desire 3, 2015 Desire 4, 2015 Desire 4, 2015 Desire 4, 2015 Desire 4, 2016 Desire 4, 2016 Desire 4, 2016 Desire 4, 2017 Desire 4, 2007 Desire 4, 2007 Desire 4, 2008 Desire 4, 2005 Des													*							*				1
Danter 2, 2014 Danter 3, 2014 Danter 4, 2015 Danter 5, 2015 Danter 5, 2015 Danter 5, 2015 Danter 6, 2015 Danter 7, 2015 Danter 7, 2015 Danter 1, 2016 Danter 1, 2016 Danter 1, 2016 Danter 1, 2016 Danter 1, 2017 Danter 1, 2018 Danter 1, 2018 Danter 1, 2018 Danter 1, 2018 Danter 1, 2008 Danter 1, 2005 Danter 2, 2004 Danter 1, 2005 Danter 2, 2006 Danter 3, 2007 Danter 3, 2007 Danter 3, 2007 Danter 4, 2009 Danter 4, 2009 Danter 2, 2009 Danter 3, 2009 Danter 3, 2009 Danter 3, 2009 Danter 4, 2009 Danter 4, 2009 Danter 4, 2009 Danter 3, 2009 Danter 4, 2009 Danter 4, 2009 Danter 4, 2009 Danter 4, 2009 Danter 3, 2009 Danter 4, 2009 Danter 4, 2009 Danter 4, 2009 Danter 4, 2009 Danter 6, 2009 Danter																			*	*				
Description 2, 2014 Description 2, 2015													*	*						*				-
Description of the control of the co																								
Dauter 1, 2015 Dauter 2, 2015 Dauter 3, 2015 Dauter 4, 2016 Dauter 4, 2017 Dauter 4, 2018 Dauter 4, 2000 Dauter														*										-
Dauter 2, 2015 Dauter 3, 2015 Dauter 4, 2015 Dauter 4, 2015 Dauter 5, 2016 Dauter 6, 2016 Dauter 6, 2016 Dauter 1, 2016 Dauter 1, 2016 Dauter 1, 2017 Dauter 2, 2017 Dauter 2, 2017 Dauter 3, 2017 Dauter 3, 2017 Dauter 3, 2017 Dauter 4, 2017 Dauter 4, 2017 Dauter 4, 2017 Dauter 5, 2017 Dauter 6, 2017 Dauter 7, 2017 Dauter 8, 2017 Dauter 9, 2017 Dauter	• ,																							-
Daurier 2, 2015 Daurier 3, 2015 Daurier 4, 2016 Daurier 2, 2016 Daurier 3, 2016 Daurier 3, 2016 Daurier 3, 2016 Daurier 4, 2017 Daurier 2, 2017 Daurier 2, 2017 Daurier 2, 2017 Daurier 3, 2017 Daurier 4, 2017 Daurier 4, 2017 Daurier 4, 2018 Daurier 4, 2002 Daurier 4, 2002 Daurier 4, 2003 Daurier 4, 2004 Daurier 4, 2005 Daurier 4, 2006 Daurier 4, 2007 Daurier 4, 2007 Daurier 4, 2007 Daurier 4, 2008 Daurier 4, 2009 Daurier 4, 2	• /													-										-
Danter 4, 2015 Danter 9, 2016 Danter 9, 2016 Danter 9, 2016 Danter 9, 2016 Danter 1, 2016 Danter 1, 2016 Danter 1, 2017 Danter 1, 2018 Danter 1, 2018 Danter 4, 2007 Danter 4, 2003 Danter 4, 2003 Danter 4, 2003 Danter 4, 2003 Danter 4, 2004 Danter 1, 2005 Danter 1, 2005 Danter 1, 2006 Danter 1, 2006 Danter 1, 2006 Danter 2, 2001 Danter 2, 2000 Danter 4, 2000 Danter 5, 2000 Danter 6, 2000 Danter 6, 2000 Danter 7, 2000 Danter 8, 2000 Danter 8, 2000 Danter 8, 2000 Danter																								
Daurer 1, 2016 Daurer 2, 2016 Daurer 3, 2016 Daurer 4, 2016 Daurer 4, 2017 Daurer 4, 2018 Daurer 2, 2018 Daurer 5, 2017 Daurer 6, 2017 Daurer 1, 2018 Daurer 1, 2008 Daurer 1, 2009 Daurer 1, 2005 Daurer 1, 2005 Daurer 2, 2006 Daurer 2, 2005 Daurer 2, 2006 Daurer 3, 2006 Daurer 3, 2009 Daurer 4, 2003 Daurer 4, 2003 Daurer 4, 2003 Daurer 4, 2003 Daurer 4, 2004 Daurer 4, 2005 Daurer 5, 2006 Daurer 6, 2005 Daurer 6, 2005 Daurer 7, 2006 Daurer 7, 2006 Daurer 8, 2006 Daurer 9, 2007 Daurer 9, 2007 Daurer 9, 2007 Daurer 9, 2007 Daurer 1, 2009 Daurer 1, 2006 Daurer 2, 2007 Daurer 3, 2009 Daurer 4, 2009 Daurer 5, 2009 Daurer 6, 2009 Daurer 8, 2009 Daurer 8, 2009 Daurer 9, 2009	-																							-
Damer 2, 2016 Damer 3, 2016 Damer 4, 2001 Damer 4, 2003 Damer 4, 2003 Damer 2, 2004 Damer 2, 2004 Damer 2, 2004 Damer 2, 2004 Damer 3, 2005 Damer 4, 2006 Damer 4, 2006 Damer 5, 2006 Damer 5, 2006 Damer 6, 2007 Damer 6, 2008 Damer 6, 2008 Damer 6, 2008 Damer 6, 2009 Damer																								
Damer 2016															*									
Descript 2016 Descript 2017 Descript 2018 Descript 2019 Descript																								
Dauter 1, 2017															*									
Doubret 2, 2017																								\vdash
Danter 3, 2017 Danter 4, 2017 Danter 5, 2018 Danter 6, 2018 Danter 6, 2018 Danter 7, 2018 Danter 7, 2018 Danter 1, 2008 Danter 1, 2004 Danter 1, 2004 Danter 1, 2005 Danter 1, 2005 Danter 1, 2005 Danter 3, 2005 Danter 4, 2001 Danter 4, 2001 Danter 6, 2005 Danter 7, 2005 Danter 7, 2006 Danter 7, 2007 Danter 7, 2007 Danter 7, 2008 Danter 7, 2009 Danter 7, 2009	Quarter 2, 2017																	Н						
Quarter 4, 2017	,						\vdash								*									\vdash
Quarter 1, 2018													*							*				<u> </u>
Quarter 2, 2018	Quarter 1, 2018												*	*										
Care	Quarter 2, 2018												*											
Quarter 4, 2002 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2008 Quarter 6, 2008 Quarter 6, 2009 Quarter 7, 2008 Quarter 7, 2008 Quarter 7, 2008 Quarter 7, 2009 Quarter 7, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 7, 200	MANGANESE																							
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 3, 2009 ** ** ** ** ** ** ** ** **	Quarter 4, 2002																					*		
Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2005 ** ** ** ** ** ** ** ** **	Quarter 3, 2003							*	*															
Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2009 X DATION REDUCTION POTENTIAL Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 X Quarter 3, 2000 X Quarter 3, 2000 X Quarter 2, 2000 X Quarter 3, 2000 X Quarter 3, 2000 X Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 X Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 X Quarter 3, 2000 X Quarter 3, 2000 X Quarter 4, 2000 Quarter 3, 2000 X Quarter 3, 2000 X Quarter 3, 2000 X Quarter 4, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 1, 2000 X X X X X X X X X X X X X X X X X X	Quarter 4, 2003							*	*															
Quarter 4, 2004	Quarter 1, 2004							*																
Quarter 1, 2005	Quarter 2, 2004							*																
Quarter 3, 2005 Quarter 3, 2009 *	Quarter 4, 2004							*	*															
Quarter 3, 2009 *	Quarter 1, 2005							*																
DXIDATION-REDUCTION POTENTIAL Quarter 4, 2003	Quarter 3, 2005																					*		
Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 ** Quarter 2, 2005 ** Quarter 3, 2005 ** Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 ** Quarter 4, 2006 ** Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 ** Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 ** ** ** ** ** ** ** ** **	Quarter 3, 2009	*																						
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 8, 2000 Quarter 9, 200	OXIDATION-REDUCTION POT	ENT	TAL																					
Quarter 1, 2004	Quarter 4, 2003			*																				
	Quarter 2, 2004			*																				
Quarter 1, 2005	Quarter 3, 2004			*															*					
Quarter 1, 2005	Quarter 4, 2004			*			*																	
Quarter 3, 2005	Quarter 1, 2005			*															*					
Quarter 4, 2005	Quarter 2, 2005	*		*																				
Quarter 2, 2006	Quarter 3, 2005	*		*																				
Quarter 3, 2006	Quarter 4, 2005			*																				
Quarter 4, 2006	Quarter 2, 2006			*																				
Quarter 1, 2007 Quarter 2, 2007 R*	Quarter 3, 2006			*															*					
Quarter 2, 2007	Quarter 4, 2006			*																				
Warter 3, 2007	Quarter 1, 2007																							
Quarter 4, 2007	Quarter 2, 2007		L				L						L	L		L					L			L
Quarter 1, 2008 *	Quarter 3, 2007							*																
Quarter 2, 2008 *	Quarter 4, 2007																							
Quarter 3, 2008	Quarter 1, 2008									*														
Quarter 4, 2008	Quarter 2, 2008	*																						
Warter 1, 2009	Quarter 3, 2008																			*				
Quarter 3, 2009 * * * * * * * * * * * * * * * * * * *	Quarter 4, 2008				*		*											*						
Quarter 4, 2009 * <td>Quarter 1, 2009</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Quarter 1, 2009							*	*	*				*	*									
Quarter 1, 2010 * <td>Quarter 3, 2009</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td>	Quarter 3, 2009				*													*		*				
Quarter 2, 2010 *	Quarter 4, 2009						*			*									*					<u> </u>
Quarter 3, 2010 * <td>Quarter 1, 2010</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ــــــــــــــــــــــــــــــــــــــ</td> <td></td>	Quarter 1, 2010									ــــــــــــــــــــــــــــــــــــــ														
Quarter 4, 2010 * <td>Quarter 2, 2010</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td>	Quarter 2, 2010									*				*										
Quarter 1, 2011 * <td>Quarter 3, 2010</td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td>	Quarter 3, 2010	*			*		*																	
Quarter 2, 2011 * * * * * * * * * * * * * * * * * *	Quarter 4, 2010			*																*				
Ç,	Quarter 1, 2011						*				ــــــــــــــــــــــــــــــــــــــ													
Quarter 3, 2011 * * * * * * * * *	Quarter 2, 2011		<u> </u>							*		*	<u> </u>		*	<u> </u>						*		
	Quarter 3, 2011	*	<u> </u>	*	*		<u> </u>	*	*		*			*		*		*	*	*	*			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System Gradient Monitoring Well OXIDATION-REDUCTION POTT Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 7, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 2, 2015	S 386 ENT * * * * *	D 389	UCRS D 390 * * *	D 393 * * *	U 396	\$ 221 *	S 222 * *	S 223 *	S 224	S 384	JRGA D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373	D 388	D 392	U 395	U 397
OXIDATION-REDUCTION POT Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015	** ** **		* *	* *	396	*	*			384		372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015	* * * * *	TAL	*	*			*	*			4												
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015	* * *		*	*			*	*			f												
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015	* * *		*	*				*			不						*	*		*			
Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015	* *					*	*		*	*			*	*			*	*	*	*	*		
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015	*		*			¥	_~		*		*		*	*			*	*	*	*	*		
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015	*					*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015	*			*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015	*					*		*	*		*		*	*				*		*	*		
Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015	*			*			*		*		*		*				*	*	*	*	*		
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015			*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 4, 2014 Quarter 1, 2015			*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*		*											*	*	*	*			
	*		*	*							*		*				*	*	*	*	*		
Quarter 2, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*	Ļ	*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*		*	*	d.	*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*		<u> </u>	*	*						*		47:	*		*		*	*
Quarter 2, 2017	*		*	*	*												*			*	*		
Quarter 3, 2017	*		*	*	*				-1-	-1.	-1.						*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 1, 2018	*		*	*	*	*											J	*	*	*	*	.	*
Quarter 2, 2018	*		*	*	*												*	*	*	*	*	*	*
PCB-1016							<u>.</u>	.			.							.					
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004							*				*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*	*											
Quarter 1, 2007 Quarter 2, 2007											•	*											
											*	•											
Quarter 3, 2007 Quarter 2, 2008											*	*											
Quarter 3, 2008											*	т —											
											*												
Quarter 4, 2008																							
Quarter 1, 2009						_					*												\vdash
Quarter 2, 2009											*												
Quarter 3, 2009						<u> </u>					*												<u> </u>
Quarter 4, 2009		-	<u> </u>	<u> </u>		-	<u> </u>				*												<u> </u>
Quarter 1, 2010			<u> </u>	<u> </u>		<u> </u>	<u> </u>				*												<u> </u>
Quarter 2, 2010			<u> </u>	<u> </u>			<u> </u>				*												<u> </u>
Quarter 3, 2010			<u> </u>	<u> </u>			<u> </u>				*												<u> </u>
Quarter 4, 2010											*												
PCB-1232											All r												
Quarter 1, 2011						_					*												<u> </u>
PCB-1248												JL.											
Quarter 2, 2008						_						*											_
PCB-1260																		J.					
Quarter 2, 2006																		*					
pH																	J.						
Quarter 4, 2002			<u> </u>	<u> </u>			<u> </u>										*						<u> </u>
Quarter 2, 2003			<u> </u>	<u> </u>			<u> </u>										*						
Quarter 3, 2003							L										*						<u> </u>
Quarter 4, 2003			<u> </u>	<u> </u>			*										*						
Quarter 1, 2004			<u> </u>	<u> </u>			*										*						
Quarter 2, 2004																	*						
Quarter 3, 2004			L_	L_	L	Щ	L_										*						<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		,	UCRS	S						1	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370		388	392	395	397
pH												-									-		
Quarter 4, 2004																	*						
Quarter 3, 2005										*							*				*		
Quarter 4, 2005										*							*						
Quarter 1, 2006																	*						
Quarter 2, 2006																	*						
Quarter 3, 2006																	*						
Quarter 3, 2007																	*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						
Quarter 2, 2011											*						-11						
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2012										*			*				*						
										т.			т-				-				*		
Quarter 4, 2014	 	-					-					-	-		-	-	-	*	*	-	_ T		-
Quarter 2, 2016																		*	*				
POTASSIUM																		3k	3 42				
Quarter 4, 2002	_					_												*	*				_
Quarter 3, 2004						<u> </u>													*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
Quarter 3, 2014									*			*											
Quarter 4, 2014			*								*							*					
Quarter 1, 2015			*				*			*		*						*					
Quarter 2, 2015			*				*			*		*						*					
Quarter 3, 2015			*																				
Quarter 4, 2015					*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016																		*					
Quarter 4, 2016	*		*			*			*				*		*					*		*	
Quarter 1, 2017	1		*							*	*							*					
Quarter 2, 2017																	*	*		*	*		
Quarter 3, 2017	1				*				*	*	*									*			
Quarter 4, 2017																		*		*			
Quarter 1, 2018	1											*						*		*			
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005	1						_				_												
Quarter 4, 2005	1	-				_			-			-	-		-	-					-		-
Quarter 1, 2006	-	_				 	-					_	-		_	-					_		<u> </u>
SELENIUM																							
Quarter 4, 2002	-		-			_											<u> </u>		_	-			<u> </u>
Quarter 1, 2003					-																	_	
Quarter 2, 2003	!		-			_																	<u> </u>
Quarter 3, 2003																							
Quarter 4, 2003	<u> </u>	<u> </u>				Ц_	<u> </u>		Ц.	Ц.	Ц.	<u> </u>	L_	Ц.	<u> </u>	L_	Ц_	Ц.			<u> </u>		L

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	1		UCRS	S						1	URGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						
Quarter 1, 2007									*			*											
Quarter 2, 2007	1		-	-		-	-		*	*	-		-					-	 	-			
Quarter 3, 2007	1								*	Ë													
Quarter 4, 2007	1		_	_		\vdash	_		*		_		_		 			_	_	_			_
Quarter 1, 2008	-		-	-		-	-		*		-		-					-	-	-			-
Quarter 3, 2008									·			*											
Quarter 4, 2008									*	*		-											
									*	•		*							*				
Quarter 1, 2009									*			*							*				
Quarter 3, 2009									*			*											
Quarter 4, 2009									不														
Quarter 1, 2010										J		*											
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014									*	*		*	*										
Quarter 1, 2015													*										
Quarter 2, 2015												*											
Quarter 3, 2015										*		*											
Quarter 4, 2015									*	*		*											
Quarter 2, 2016											*												
Quarter 3, 2016											*												*
Quarter 1, 2017										*	*		*					*					
Quarter 2, 2017									*	*	*												
Quarter 2, 2018													*										
STRONTIUM-90																							
Quarter 2, 2003										•													
Quarter 1, 2004																							
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003			<u> </u>	<u> </u>		L	<u> </u>			*	<u> </u>	*	*				L	*	*	<u> </u>			<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394	385	370	373	388	392	395	397
SULFATE																							
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005										*		*	*					*	*	*			
Quarter 1, 2006										*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008	1		-	-		-		*		*	*	*	*	*	 		*	*	*	*	-		
Quarter 3, 2008								Ë		*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*	-	*	-			
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
	*								f	*		*	*				*	*	*	•			
Quarter 4, 2009	*								*	*		*	*				*	•	*				
Quarter 1, 2010									*	*		*	*				*	*	*	*			
Quarter 2, 2010	-								*	*		*	*				*	*	*	*			
Quarter 3, 2010	3E																			*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011														4						4			
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*			
Quarter 4, 2013										*		*	*				*	*	*	*			
Quarter 1, 2014								*		*		*	*				*	*	*	*			
Quarter 2, 2014										*		*	*	*			*	*	*	*			
Quarter 3, 2014										*		*	*	*			*	*	*	*			
Quarter 4, 2014										*		*	*				*	*	*	*			
Quarter 1, 2015										*		*	*				*	*	*	*			
Quarter 2, 2015										*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2015										*		*	*	*			*		*	*			
Quarter 1, 2016								*		*		*	*	*			*	*	*	*			
Quarter 2, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2016										*		*	*	*	*		*	*	*	*			
Quarter 1, 2017										*		*	*	*	*		*	*	*	*			
Quarter 2, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2017										*		*	*	*	*		*	*	*	*			
Quarter 1, 2018										*		*	*	*			*	*	*	*			
Quarter 2, 2018								*		*	*	*	*	*	*		*	*	*	*			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Montorie Well 86 89 900 903 906 221 222 224 84 860 972 887 901 220 904 885 970 973 98 892 905 907 906 906 906 906 906 906 906 906 906 906	Groundwater Flow System			UCRS	S						1	URGA	4								LRGA	Λ		
FECHNEY 1909	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Journel 2, 10002 Journel 2, 10003 Journel 3, 10003 Journel 3, 10003 Journel 3, 10003 Journel 3, 10005 Journe	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Deserter 1,0003	TECHNETIUM-99																							
Danter 2, 2008	Quarter 4, 2002																							
Danter 4, 2003 Danter 1, 2004 Danter 2, 2004 Danter 2, 2004 Danter 3, 2004 Danter 3, 2004 Danter 3, 2004 Danter 4, 2005 Danter 4, 2006 Danter 4, 2007 Danter 5, 2006 Danter 4, 2007 Danter 5, 2006 Danter 4, 2007 Danter 5, 2006 Danter 4, 2007 Danter 4, 2008 Danter 4, 2009 Danter 5, 2009 Danter 6, 2009 Danter 6, 2009 Danter 7, 2009 Danter 8, 2009 Danter 8, 2009 Danter 8, 2009 Danter 9, 2009 Danter	Quarter 1, 2003																			*				
Danter 4, 2008 Danter 1, 2004 Danter 2, 2004 Danter 2, 2004 Danter 3, 2004 Danter 3, 2005 Danter 3, 2005 Danter 3, 2005 Danter 3, 2005 Danter 3, 2006 Danter 4, 2007 Danter 4, 2007 Danter 4, 2007 Danter 4, 2007 Danter 5, 2008 Danter 6, 2008 Danter 6, 2009 Danter 6, 2007 Danter 6, 2007 Danter 8, 2007 Danter 9, 2007 Danter		*									*													
Damer 1, 1904 Damer 2, 2004 Damer 3, 2004 Damer 3, 2005 Damer 4, 2005 Damer 4, 2005 Damer 4, 2005 Damer 4, 2005 Damer 6, 2006 Damer 6, 2006 Damer 1, 2006 Damer 2, 2006 Damer 2, 2006 Damer 3, 2006 Damer 3, 2006 Damer 4, 2006 Damer 1, 2008 Damer 1, 2008 Damer 1, 2008 Damer 1, 2008 Damer 2, 2007 Damer 3, 2008 Damer 3, 2008 Damer 4, 2009 Damer 4, 2001 Damer											.									4				
Danter 2, 2004											*										*			
Seators 2, 2004	· ,																				*			
Danter 4, 2004 Danter 1, 2005 Danter 2, 2005 Danter 2, 2005 Danter 3, 2005 Danter 1, 2006 Danter 1, 2006 Danter 1, 2006 Danter 1, 2006 Danter 2, 2006 Danter 3, 2006 Danter 3, 2006 Danter 4, 2006 Danter 4, 2007 Danter 4, 2007 Danter 4, 2007 Danter 4, 2007 Danter 5, 2008 Danter 5, 2008 Danter 6, 2008 Danter 6, 2008 Danter 6, 2008 Danter 6, 2009 Danter 1, 2009 Danter 2, 2009 Danter 1, 2009 Danter 2, 2009 Danter 1, 2009 Danter 1, 2009 Danter 1, 2009 Danter 1, 2009 Danter 2, 2009 Danter 1, 2009 Danter 2, 2009 Danter 2, 2009 Danter 2, 2009 Danter 3, 2009 Danter 3, 2009 Danter 4, 2009 Danter 4, 2009 Danter 4, 2009 Danter 2, 2010 Danter 2, 2010 Danter 2, 2010 Danter 2, 2011 Danter 3, 2011 Danter 4, 2015 Danter 4, 2015 Danter 4, 2015 Danter 2, 2011 Danter 2, 2011 Danter 3, 2011 Danter 2, 2012 Danter 4, 2015 Danter 2, 2015 Danter 2, 2015 Danter 2, 2015 Danter 2, 2016 Danter 3, 2016 Danter 3, 2016 Danter 2, 2016 Danter 2, 2016 Danter 3, 2016 Danter 3, 2016 Danter 2, 2016 Danter 3, 2016 Danter 2, 2016 Danter 3, 2016 Danter 3, 2016 Danter 4, 2016 Danter 4, 2016 Danter 2, 2016 Danter 3, 2016 Danter 4, 2016 Danter 4, 2016 Danter 2, 2016 Danter 3, 2016 Danter 3, 2016 Danter 4, 2016 Danter 4, 2016 Danter 4, 2016 Danter 2, 2016 Danter 3, 2016 Danter 3, 2016 Danter 4, 2016 Danter 4, 2016 Danter 4, 2016 Danter 4, 2016 Danter 5, 2016 Danter 6, 2016 Danter 6, 2016 Danter 7, 2016 Danter 8, 2016 Danter 8, 2016 Danter 9, 2016 Danter 9, 2016 Danter 9, 2017 Danter 9, 2017 Danter 9, 2017 Danter 9, 2018 Danter 1, 2016 Danter 1, 2017 Danter 1, 2016 Danter 1, 2017 Danter 2, 2017 Danter 2, 2017 Danter 3, 2016 Danter 3, 2016 Danter 4, 2016 Danter 1, 2017 Danter 2, 2017 Danter 3, 2016 Danter 1, 2017 Danter 3, 2016 Danter 1, 2016 Danter 2, 2016														•							Ψ.			
Dauter 1, 2005											*			*					*					
Description																					*			
Searce 3, 2005																			*	*				
Descript (2,0005				*							*										*			
Deuter 1, 2006				*							*		*	*				*		*	*			
Deuter 2, 2006	Quarter 1, 2006										*		*	*						*	*			
Daurier 4, 2006	Quarter 2, 2006			*							*			*				*	*	*	*			
Daurier 1, 2007	Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 1, 2007	Quarter 4, 2006	*									*		*	*						*	*			
Daurier 2, 2007 *	Quarter 1, 2007			*							*			*				*		*	*			
Quarter 4, 2007 Quarter 1, 2008 ** ** ** ** ** ** ** **	Quarter 2, 2007			*							*		*	*				*	*		*			
Daurier 1, 2008 *	Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 2, 2008	Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2012 Quarter 5, 2012 Quarter 6, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 4, 2017 Quarter 3, 2017 R	Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 4, 2008	Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 7, 2011 Quarter 9, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 1, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2015 Quarter 3, 2016 Quarter 4, 2015 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 5, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 7, 2017 Quarter 8, 2017 Quarter 8, 2017 Quarter 9, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2017	Quarter 3, 2008										*		*	*				*			*			
Quarter 2, 2009	Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 4, 2009	Quarter 1, 2009			*							*		*	*				*						
Quarter 1, 2010 *	Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 1, 2010	Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 2, 2010	Quarter 4, 2009			*							*		*	*				*						
Quarter 3, 2010	Quarter 1, 2010												*											
Duarter 4, 2010	Quarter 2, 2010																		*		*			
Quarter 1, 2011	Quarter 3, 2010											*												
Quarter 2, 2011				*									*											
Quarter 1, 2011																								
Quarter 4, 2011																								
Quarter 1, 2012																					*			
Quarter 2, 2012												*	*											
Quarter 3, 2012	• .																			4				
Quarter 4, 2012																				*	*			
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2015 X Quarter 2, 2015 X Quarter 3, 2015 X Quarter 3, 2015 X Quarter 4, 2015 X Quarter 4, 2015 X Quarter 3, 2016 X X X X X X X X X X X X X X X X X X X	• .			*																4	.			
Quarter 2, 2013													*											
Quarter 3, 2013		\vdash	-	-			-	-	-	-			*			-	-							\vdash
Quarter 4, 2013 *		-	<u> </u>	*			-	<u> </u>	<u> </u>	<u> </u>			.	L.		<u> </u>	<u> </u>			<u> </u>	.			
Warter 1, 2014		\vdash	_				_	_	_	_						_	_							\vdash
The second color of the		-	-					-	-	-		*	_ T			-	-							
Quarter 3, 2014		\vdash	-					-	-	-			-		*	-	-							\vdash
Quarter 4, 2014												-			-					Ë				
Quarter 1, 2015 *		H										*	*							*				
Quarter 2, 2015 *							1																	
Quarter 3, 2015 * <td>Quarter 2, 2015</td> <td></td>	Quarter 2, 2015																							
Quarter 4, 2015 *	Quarter 3, 2015												*						*	*				
Quarter 1, 2016 * <td>Quarter 4, 2015</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td> <td></td>	Quarter 4, 2015			*							*	*						*	*		*			
	Quarter 1, 2016			*							*	*		*				*		*	*			
Quarter 3, 2016 *	Quarter 2, 2016			*			*				*			*				*	*		*			
Quarter 4, 2016 * <td>Quarter 3, 2016</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td> <td></td>	Quarter 3, 2016			*							*		*	*				*	*		*			
Quarter 1, 2017 * * * * * * Quarter 2, 2017 * * * * * * Quarter 3, 2017 * * * * * *	Quarter 4, 2016			*							*	*		*				*			*			
Quarter 3, 2017 * * * * * * *	Quarter 1, 2017			*							*			*				*	*		*			
	Quarter 2, 2017			*							*			*				*	*		*			
Quarter 4, 2017 * * * * * * * * * * * * * * * * * * *	Quarter 3, 2017			*							*	*		*				*	*		*			
	Quarter 4, 2017			*							*	*	*	*				*	*		*			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	I		UCRS	3						1	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 1, 2018			*							*	*		*				*	*		*			
Quarter 2, 2018			*							*	*	*	*				*	*		*			
THORIUM-230																							
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*		*																				
Quarter 3, 2015	*								*	*			*		*								
Quarter 1, 2017			*							*							*						
THORIUM-234																							
Quarter 2, 2003						*			*					*									
Quarter 4, 2007									*														
TOLUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2003				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003							*		*	*													
Quarter 1, 2004										*													
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 2, 2005										*											*		
Quarter 3, 2005										*		*									*		
Quarter 4, 2005										*											*		
Quarter 1, 2006										*													
Quarter 2, 2006										*		*											
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2011											*												
Quarter 3, 2012	*																						
Quarter 3, 2016	l																		*				
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003	l			*														*			*		
Quarter 3, 2003	l			*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006	Ī																*						
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																L				*		
Quarter 1, 2008	*																						
Quarter 4, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																				*		
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	1		UCRS	S						1	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOTAL ORGANIC HALIDES																							
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		
TRICHLOROETHENE																							
Quarter 4, 2002														_		_					_	_	
Quarter 1, 2003														_		_					_	_	
Quarter 2, 2003																_						_	
Quarter 3, 2003																-						_	
Quarter 4, 2003																						-	
Quarter 1, 2004 Quarter 2, 2004																=						=	-
Quarter 3, 2004																							
Quarter 4, 2004												Ħ		H		Ŧ	-	i	H		i	=	-
Quarter 1, 2005																=		i	H		Ħ	i	
Quarter 2, 2005												i		i		Ŧ		Ħ	i		Ħ	Ī	
Quarter 3, 2005																	1						
Quarter 4, 2005																_		_					\vdash
Quarter 1, 2006												ī						ī	=		=		\vdash
Quarter 2, 2006																							t
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009														•									
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010														•		-							
Quarter 3, 2010												_							_			_	
Quarter 4, 2010																_						_	
Quarter 1, 2011																							
Quarter 2, 2011																lladli.							-
Quarter 3, 2011																=							
Quarter 4, 2011 Quarter 1, 2012																=						-	
Quarter 1, 2012 Quarter 2, 2012																-						-	
Quarter 3, 2012												Ħ		H					H		i		
Quarter 4, 2012											_	Ħ		Ħ		_			Ħ				
Quarter 4, 2012 Quarter 1, 2013	\vdash	-	-			-		-					-			=	 						
Quarter 2, 2013	1																		i		=		\vdash
Quarter 3, 2013																							\vdash
Quarter 4, 2013																							\vdash
Quarter 1, 2014																							t
Quarter 2, 2014	t																						\vdash
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015																							
Quarter 3, 2015																							
Quarter 4, 2015																							
Quarter 1, 2016																							
Quarter 2, 2016																							
Quarter 3, 2016	L																						
Quarter 4, 2016																							
Quarter 1, 2017																							
Quarter 2, 2017																							
Quarter 3, 2017																							
Quarter 4, 2017												L_											
Quarter 1, 2018													L_										
Quarter 2, 2018		<u> </u>	<u> </u>					<u> </u>															

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						ī	URGA	\]	LRGA	A.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
* Statistical test results indicate an	n elev	ated o	conce	ntratio	on (i.e	e., a st	atisti	cally s	signif	icant	increa	ase)											
■ MCI Evceedance									_														

■ Previously reported as an MCL exceedance; however, result was equal to MCL

UCRS Upper Continental Recharge System

URGA Upper Regional Gravel Aquifer

LRGA Lower Regional Gravel Aquifer

S Sidegradient; D Downgradient; U Upgradient

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:		05/	29/2	018			Т	ime	:		C	930	am			Мо	nitor	:		R	obert Kirby
Weather Con Mostly cloud			irees	s wit	h sc	atte	red :	sho	we	rs				***************************************				L			
Monitoring E RAE System	quipm	ent:																			
						loni	torir	ng L	.oc	ati	on										Reading (% LEL)
Ogden Landin Road Entrance	ıg e	Che	eckec	d at g	round	d leve	el														0
North Landfill	Gate	Che	ecked	d at g	round	d leve	el														0
West Side of Landfill: North 37° 0 West 88° 4		Che	ecked	dat g	round	d leve	el														0
East Side of Landfill: North 37° 0 West 88° 4	7.628			d at g		d leve														-	0
Cell 1 Gas Ver	nt (17)	1 0	2 0	3 0	4 0	5 0	6 0	7 0		8	9	10	11 0	12 0	13 0	14 0	15 0	16 0	- 1	17 0	0
Cell 2 Gas Ve	ent (3)	1	2 0	3 0																	0
Cell 3 Gas Ve	ent (7)	1 0	2 0	3 0	4 0	5 0	6 0	7 0													0
Landfill		Che	ecked	d at fl	oor le	evel															0
	oblem Areas	No	area	s note	ed																N/A
Remarks:																					
ALL VENTS		CKE	D 1"	FR	OM.	THE	Ξ Μ (יטס	TH	O	F VE	ENT									
Performed b	y:			_	Lan Si	nn	u	S.) en	ż	Z						٠	5/	12	9)	118
				_	Si	gna	ure	<i></i>												- /	Date

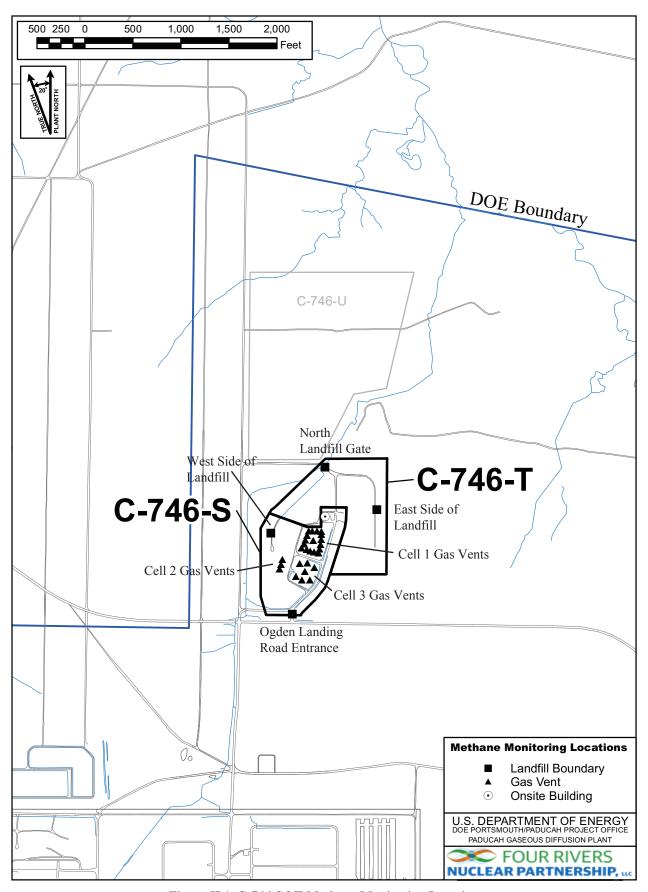


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	IPST	REAM", or "Do	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNSTI	REAM	L136 AT SI	TE		
Sample Sequer	ce	#				1		1		1			
If sample is a	a Bl	ank, specify Type: (F)ield, (T)ri	p, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	ınd	Time (Month/Day/Year hour: m	inu	tes)		4/14/2018 09:	26	4/14/2018 09	:12	4/23/2018 0	7:02		
Duplicate ("Y	?" c	or "N") ¹				N		N		N			\mathcal{I}
Split ('Y' or	. "I	T") ²				N		N		N			7
Facility Samp	le	ID Number (if applicable)				L135SS3-18	3	L154US3-1	8	L136SS3-	18		
Laboratory Sa	mpl	e ID Number (if applicable)				448147001		448154002	<u>)</u>	44864700)1	\ /	
Date of Analy	rsis	(Month/Day/Year)				4/24/2018		4/24/2018		5/5/2018	3	\ /	
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G						
A200-00-0	0	Flow	Т	MGD	Field	1.63		3.52		0.03		/ \	
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	3.35		1.94		0.28	*	/ /	J
14808-79-8	0	Sulfate	Т	MG/L	300.0	4.21		4.35		7.59			
7439-89-6	0	Iron	Т	MG/L	200.8	2.21		2.37		0.597			\mathbb{I}
7440-23-5	0	Sodium	Т	MG/L	200.8	4.81		3.11		1.2			\prod
S0268	0	Organic Carbon ⁶	Т	MG/L	9060	19.7		16.5		7.98			
s0097	0	BOD ⁶	Т	MG/L	not applicable		*		*		*	/	
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.4	96	*B	68.3	*B	68		/	

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM")				L135 UPSTREAM		L154 DOWNSTREAM		L136 AT SITE		\			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	A G S ⁷
s0145	1	Specific Conductance	т	µнмs/см	Field	144		123		224			
s0270	0	Total Suspended Solids	Т	MG/L	160.2	36.4		46.8		5.2		/	
S0266	0	Total Dissolved Solids	Т	MG/L	160.1	137	В	137	В	173	В	\ /	
S0269	0	Total Solids	Т	MG/L	SM-2540 B 17	176	*	170	*	165		\ /	
s0296	0	рН	Т	Units	Field	7.24		7.33		6.84		\ /	
7440-61-1		Uranium	Т	MG/L	200.8	0.00321		0.00252		0.00195		\ /	
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	2.66	*	0.136	*	0.64	*	$\setminus /$	
12587-47-2		Gross Beta (β)	т	pCi/L	9310	10.4	*	8.07	*	4.87	*	X	
												/\	
												/ \	
												/ \	
												/ \	
												/	1
													$ \downarrow $
													\perp
												Y [

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 & 073-00015

Finds/Unit:	KY8-890-008-982 /	1				
LAB ID:	None	_				
For Official U	official Use Only					

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
L135	L135SS3-18	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limits
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.04. Rad error is 4.02.
		Beta activity		TPU is 6.4. Rad error is 6.17.
L154	L154US3-18	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	Ν	Sample spike (MS/MSD) recovery not within control limits
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.22. Rad error is 4.22.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.87. Rad error is 6.74.
L136	L136SS3-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.35. Rad error is 4.35.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.9. Rad error is 4.83.

