

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000 August 24, 2023

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Ms. Jamie Nielsen
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-S&T LANDFILLS SECOND QUARTER CALENDAR YEAR 2023 (APRIL–JUNE) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0294/V2, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the second quarter calendar year (CY) 2023 has been uploaded to the Kentucky eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). This report includes groundwater analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses of the second quarter CY 2023 monitoring well (MW) data collected from the C-746-S&T Landfills were performed in accordance with Monitoring Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

A statistically significant exceedance was indicated for sulfate in MW388. This statistical exceedance is a Type 2 Exceedance—Source Unknown. Continued evaluation of sulfate levels through future quarterly monitoring events is recommended. This report also serves as the statistical exceedance notification for the second quarter CY 2023, in accordance with Monitoring Condition GSTR0001, Standard Requirement 5, of the Permit.

PPPO-02-10025294-23B

If you have any questions or require additional information, please contact Ryan Callihan at (740) 970-0255.

Sincerely,

APRIL LADD Digitally signed by APRIL LADD Date: 2023.08.24 13:48:30 -05'00'

April Ladd Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills Second Quarter Calendar Year 2023 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0294/V2

cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov FRNP christopher.travis@ky.gov, KDEP dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jaime.morrow@pad.pppo.gov, FRNP joel.bradburne@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov reinhard.knerr@pppo.gov, PPPO ryan.callihan@pppo.gov, PPPO stephaniec.brock@ky.gov, KYRHB

cc via KY eForms portal: jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	ity Name: U.S. DOE–Paducah Gaseous Diffusion Plant (As officially shown on DWM Permit Face)			nt_	A	ctivity:	C	-746-S&T Landfills		
Permit No:	SW0730 SW0730	00015,		Find	s/Unit No:		Quart	er & Y	ear -	2nd Qtr. CY 2023
Please check the	following	as appli	cable:							
Characte	rization	X	Quarterly	/ _	Semi	annual		Annı	ıal	Assessment
Please check app	olicable sub	mittal(s	s): <u> </u>	Κ	Groundwa	iter		X	Su	rface Water
					Leachate			X	Me	ethane Monitoring
certify under penal vith a system designquiry of the perso chowledge and beliencluding the possib	ty of law that the description of the description o	ation using the control of the contr	ng statistice. on. Instruct cument and ualified per responsible complete. isonment for	al ana ions for all att sonne for g I am a or such	achments were arthuring the interest that the interest that the introductions.	the form and even formation, reare significant control of the cont	n, or oth re attache under my aluate th , the info	er similed. Do not directed to information nalties for	or tec ot sub on or s nation subm or sub	n within forty-eight (48) hniques. Submitting the smit the instruction pages. Supervision in accordance submitted. Based on my itted is, to the best of my mitting false information, EDFIELD (Affiliate) 5'00'
Myrna E. Redf Four Rivers Nu								Dat	e	
APRIL	LA[DD			/\	itally sig te: 2023	_	-		LADD 5 -05'00'
April Ladd, Pac U.S. Departmen								Dat	e	

C-746-S&T Landfills
Second Quarter Calendar Year 2023
(April–June)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

CLEARED FOR PUBLIC RELEASE

C-746-S&T Landfills
Second Quarter Calendar Year 2023
(April—June)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—August 2023

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CLEARED FOR PUBLIC RELEASE

CONTENTS

FI	GURE		v
ΤA	ABLES		v
A(CRONYMS		vii
1.	1.1 BACE 1.2 MON 1.2.1 1.2.2	CTION KGROUND ITORING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring.	1 1 3
	1.2.3 1.3 KEY	Surface Water MonitoringRESULTS	
2.	2.1 STAT 2.1.1 2.1.2 2.1.3	ALUATION/STATISTICAL SYNOPSIS ISTICAL ANALYSIS OF GROUNDWATER DATA Upper Continental Recharge System Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer A VERIFICATION AND VALIDATION	
3.	PROFESSIO	ONAL GEOLOGIST AUTHORIZATION	13
4.	REFERENC	CES	15
Αŀ	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑI	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
Αŀ	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑI	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑĪ	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
Αŀ	PPENDIX F:	NOTIFICATIONS	F-1
Αŀ	PPENDIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑI	PPENDIX H:	METHANE MONITORING DATA	H-1
ΑI	PPENDIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
ΑĪ	PPENDIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

APPENDIX K:	LABORATORY ANALYTICAL METHODS	.K-1
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERS	. L-1

FIGURE

	C-746-S&T Landfills Groundwater Monitoring Well Network	
۷.	C-/40-5&1 Landinis Surface water Monitoring Locations	3
	TABLES	
	Summary of MCL Exceedances	
2.	Exceedances of Statistically Derived Historical Background Concentrations	6
	Exceedances of Current Background UTL in Downgradient Wells	
	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations
COD chemical oxygen demand

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit

MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Second Quarter Calendar Year 2023 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit No. SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micro-purging stability parameter results are provided in Appendix L.

1.1 BACKGROUND

The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit No. 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit No. 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter, except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a sample.

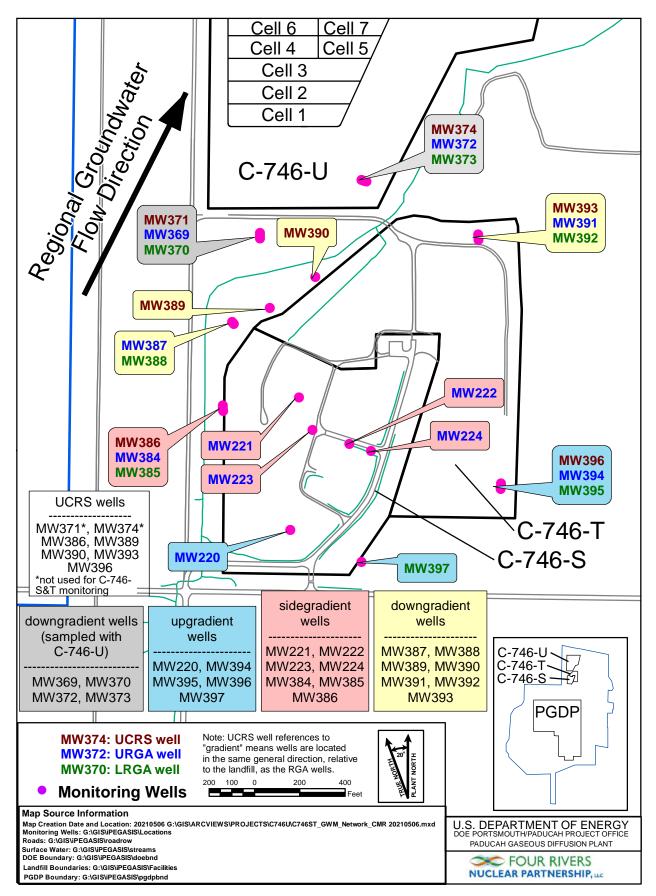


Figure 1. C-746-S&T Landfills Groundwater Monitoring Well Network

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139 (Groundwater Monitoring Plan), UCRS wells are included in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL (for background), and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the second quarter 2023 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the second quarter 2023 was conducted on April 24-27, 2023, and May 1, 2023. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 24-25, 2023, in MWs of the C-746-S&T Landfills (see Appendix E, Table E.1); in MWs of the C-746-S&T Landfills; and in MWs of the surrounding region (shown on Appendix E, Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During April, RGA groundwater flow was directed inward and then north towards the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in April was 2.49×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was approximately 1.98×10^{-4} ft/ft (see Appendix E, Table E.2). Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills ranged from 0.337 to 0.575 ft/day (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the Solid Waste Landfill Permit. Industrial Hygiene staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on June 12, 2023. Appendix H provides a map of the monitoring locations (Appendix H, Figure H.1). Monitoring results identified that all locations were compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Monitoring Report provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed on May 8, 2023, at the three locations monitored for the C-746-S&T Landfills: (1) upstream location L135, (2) instream location L154, and (3) instream location L136 (Figure 2). Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059 (FRNP 2021), which is Technical Application Attachment 24 of the Solid Waste Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters that exceeded their MCL and also exceeded their historical background UTL, as well as other parameters that do not have MCLs but have concentrations that exceeded the statistically derived historical background UTL¹ during the second quarter 2023. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells designated as background wells (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW372: Trichloroethene	MW395: Trichloroethene

4

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL.

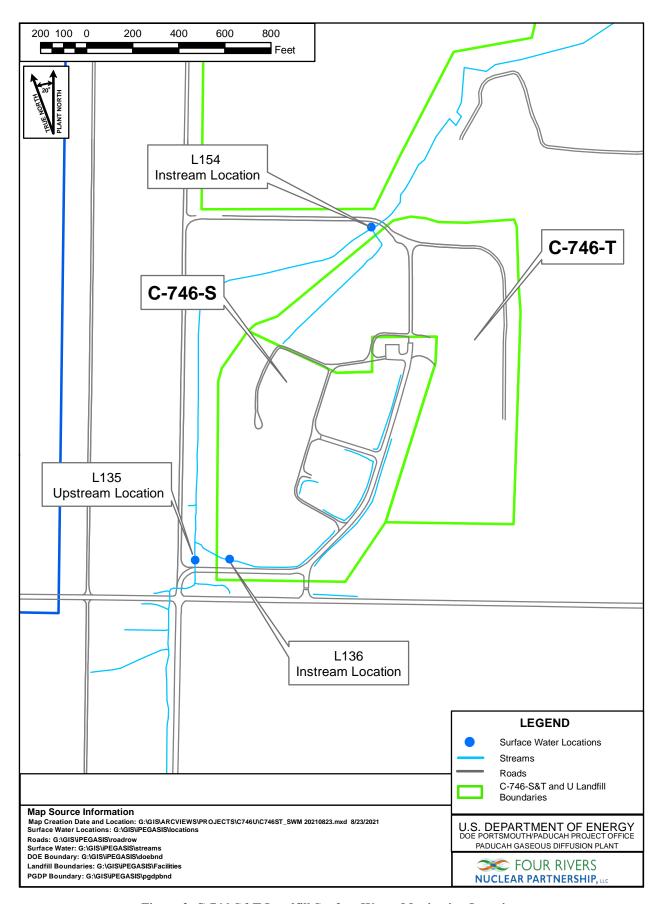


Figure 2. C-746-S&T Landfill Surface Water Monitoring Locations

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

URGA	LRGA
MW220: Oxidation-reduction	MW370: Oxidation-reduction
potential ^b and sulfate	potential ^b and sulfate
MW221: Oxidation-reduction	MW373: Calcium, conductivity,
potential ^b	dissolved solids, magnesium,
	oxidation-reduction potential, ^b
	and sulfate
MW222: Oxidation-reduction	MW385: Oxidation-reduction
potential ^b	potential, ^b sulfate, and
	technetium-99
MW223: Oxidation-reduction	MW388: Oxidation-reduction
potential ^b	potential ^b and sulfate
MW224: Oxidation-reduction	MW392: Oxidation-reduction
potential ^b and sodium	potential ^b
MW369: Oxidation-reduction	MW397: Oxidation-reduction
potential ^b and technetium-99	potential ^b
MW372: Calcium, conductivity,	
dissolved solids, magnesium,	
oxidation-reduction potential, ^b	
sodium, sulfate, and technetium-99	
MW384: Oxidation-reduction	
potential, b sulfate, and technetium-99	
MW387: COD, magnesium,	
oxidation-reduction potential, ^b sulfate,	
and technetium-99	
MW394: Oxidation-reduction	
potential ^b	
	MW220: Oxidation-reduction potential ^b and sulfate MW221: Oxidation-reduction potential ^b MW222: Oxidation-reduction potential ^b MW223: Oxidation-reduction potential ^b MW224: Oxidation-reduction potential ^b and sodium MW369: Oxidation-reduction potential ^b and technetium-99 MW372: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 MW384: Oxidation-reduction potential, sulfate, and technetium-99 MW387: COD, magnesium, oxidation-reduction potential, sulfate, and technetium-99 MW384: Oxidation-reduction potential, sulfate, and technetium-99 MW394: Oxidation-reduction

^a Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, and MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, and MW393 Background wells: MW220, MW394, MW395, MW396, and MW397

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate
MW372: Calcium, conductivity, dissolved solids,	MW373: Calcium, conductivity, dissolved
magnesium, sodium, sulfate, and technetium-99	solids, magnesium, and sulfate
MW387: Magnesium, sulfate, and technetium-99	MW388: Sulfate

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), the MCL exceedance for TCE in downgradient well MW372 did not exceed the historical background concentration and is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

^b Oxidation-reduction potential calibrated as Eh.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit No. SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL to identify if the current downgradient well concentrations are consistent with current background values. The current background UTL was developed using the most recent eight quarters of data from wells identified as background wells. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-S&T Landfills source; therefore, they are Type 1 exceedances—not attributable to the C-746-S&T Landfills.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL and do not have an identified source are considered preliminarily to be Type 2 exceedances, per the approved Groundwater Monitoring Plan (LATA Kentucky 2014). To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. Seventeen of the 18 preliminary Type 2 exceedances in downgradient wells do not have increasing trends and are considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

One of the 18 preliminary Type 2 exceedances in downgradient wells had increasing trends. Specifically, the Mann-Kendall statistical test indicates an increasing trend for sulfate in MW388 over the past eight quarters. The observed trend should be considered a Type 2 exceedance—source unknown. Evaluation of sulfate trends through future quarterly monitoring events is recommended.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 39:090.

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alphaa	p- Value ^b	Sc	Decision ^d
	MW369	Technetium-99	8	0.05	0.089	-12	No Trend
	MW370	Sulfate	8	0.05	0.016	-19	Decreasing
		Calcium	8	0.05	0.031	-16	Decreasing
C-746-		Conductivity	8	0.05	0.548	0	No Trend
S&T Landfills	MW372	Dissolved Solids	8	0.05	0.007	-20	Decreasing
		Magnesium	8	0.05	0.138	-11	No Trend
		Sodium	8	0.05	0.138	-10	No Trend
		Sulfate	8	0.05	0.119	-8	No Trend

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters (Continued)

Location	Well ID	Parameter	Sample Size	Alphaa	p- Value ^b	Sc	Decision ^d
	MW372	Technetium-99	8	0.05	0.452	2	No Trend
		Calcium	8	0.05	0.36	-5	No Trend
		Conductivity	8	0.05	0.138	11	No Trend
C-746-	MW373	Dissolved Solids	8	0.05	0.138	-11	No Trend
S&T		Magnesium	8	0.05	0.452	2	No Trend
Landfills		Sulfate	8	0.05	0.548	0	No Trend
		Magnesium	8	0.05	0.548	1	No Trend
	MW387	Sulfate	8	0.05	0.089	-12	No Trend
		Technetium-99	8	0.05	0.089	-12	No Trend
	MW388	Sulfate	8	0.05	0.031	17	Increasing

^a An alpha of 0.05 represents a 95% confidence interval.

Note: Statistics generated using ProUCL.

The statistical evaluation of UCRS concentrations against the current UCRS background UTL identified a technetium-99 level in UCRS well MW390 that exceed both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW390: Technetium-99

^{*}In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances reported for this quarter, except for sulfate in MW388, were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

^b The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

^c The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^{}d}$ The Mann-Kendall decision operates on two hypotheses; the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2023 groundwater data collected from the C-746-S&T Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as downgradient wells) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient well concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance—could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

To calculate the UTL, the data were divided into censored (non-detects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis^a

UCRS	URGA	LRGA
MW386	MW220 (background)	MW370
MW389 ^b	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396°	MW224	MW392
	MW369	MW395 (background)
	MW372	MW397 (background)
	MW384	
	MW387	
	MW391	
	MW394 (background)	

^a Map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient well concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the UCRS. During the second quarter, COD, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded the respective historical UTL and are listed in Table 2. Technetium-99 exceeded the current background UTL in downgradient well MW390 and is shown on Table 5.

2.1.2 Upper Regional Gravel Aquifer

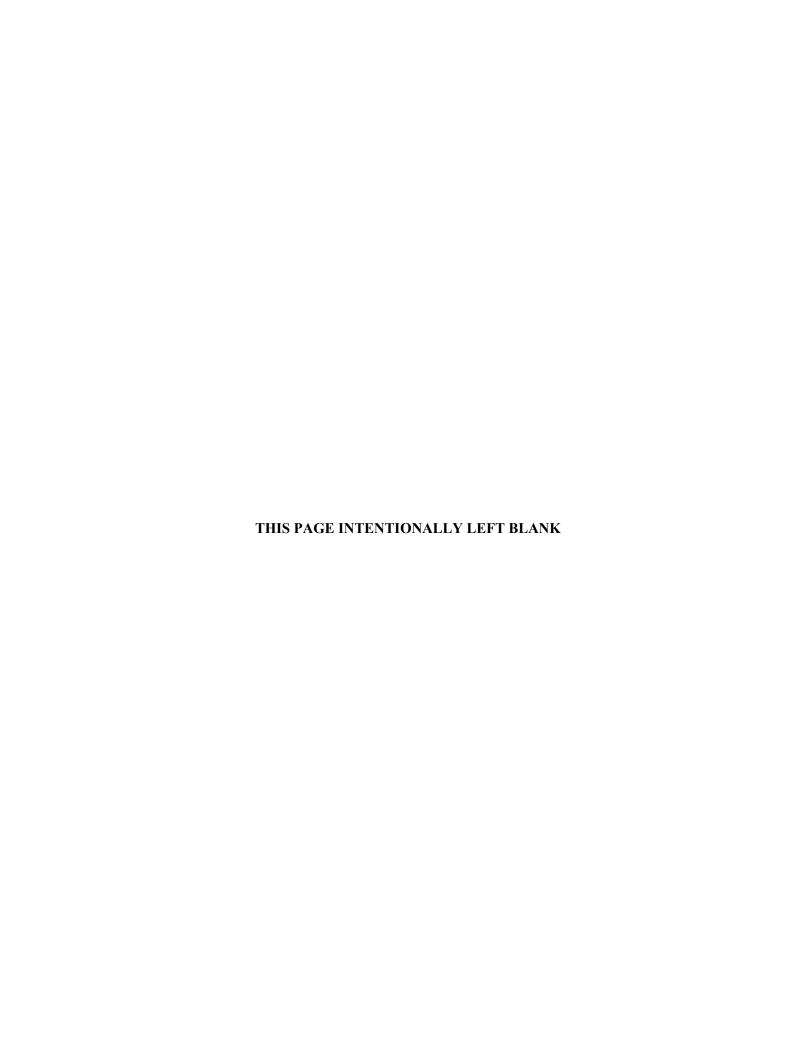
In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the URGA. During the second quarter, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^b Well had insufficient water to permit a water sample for laboratory analysis.

^c In the same direction (relative to the landfill) as RGA wells considered to be background.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the second quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Calcium, conductivity, dissolved solids, magnesium, and sulfate exceeded the current background UTL in downgradient wells and are included in Table 3.


2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan, (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION: C-746-S&T Landfills Second Quarter Calendar Year 2023

(April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0294/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

• Registration for Arofessional George PG-265379

• Registration for Arofession for Arofess

Evan Clark

PG-265379

4. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2021. Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059, Solid Waste Landfill Permit No. SW07300014, SW07300015, SW07300045, Technical Application, Attachment 24, Four Rivers Nuclear Partnership, LLC, Paducah, KY, March.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit No. SW07300014, SW07300015, SW07300045, Technical Application, Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DO	E-Pad	lucah Gase	ous l	Activity:	C-746-S&T Landfills		
	(As o	fficially	shown on D	WM P				
SW07300014, Permit No: SW07300015, SW07300045			Find	s/Unit No:	Quarter & Ye	2nd Qtr. CY 2023		
Please check the	following a	s appli	cable:					
Characte	rization _	X	Quarterly	<i>_</i>	Semiannual	Annua	Assessment	
Please check app	licable submittal(s): <u> </u>	ζ	Groundwater	X	Surface Water	
					Leachate	X	Methane Monitoring	
nours of making the ab report is NOT concertify under penal with a system design quiry of the perso	ty of law that tened to assure n or persons of ef, true, accura-	this doo that qualified that qualified that qualified the distribution that and the distribution to the di	ng statistica on. Instruction cument and ualified pers responsible	al ana ions f all at sonne for g	alyses, direct comparison or completing the form a stachments were prepared all properly gather and expathering the information aware that there are significant.	on, or other similar attached. Do not under my direction valuate the information state information state.	ation within forty-eight (48 r techniques. Submitting the transmitted transmitted transmitted transmitted transmitted. Based on my ubmitted is, to the best of my submitting false information	
Myrna E. Redf Four Rivers Nu	, .		_			Date		
April Ladd, Paducah Site Lead						Date		
U.S. Departmen	nt of Energ	y						

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date: Facility Name: Site Address: Phone No:	Groundwater: April–Ma Methane: June 2023 Surface Water: May 202 U.S. DOE—Paducah Ga (As of 5600 Hobbs Road Street	23	ant	McCracken	Permit Nos. Longitude:	SW07300014, SW07300015, SW07300045 42053 Zip W 88° 47' 55.41"							
OWNER INFORMATION													
Facility Owner: Contact Person: Contact Person Ti Mailing Address:	U.S. DOE, Joel Bradburn Bruce Ford tle: Director, Environ 5511 Hobbs Roa Street	mental Services, Fo		Partnership, I	Phone No:	(859) 219-4000 (270) 441-5357 42053 Zip							
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)													
Company:	GEO Consultants Corp	ooration											
Contact Person:	Jason Boulton				Phone No:	(270) 816-3415							
Mailing Address:	199 Kentucky Avenue Street		Kevil, Kentucky City/State	,		42053 Zip							
LABORATORY RECORD #1													
Laboratory:	GEL Laboratories, LL	С	L	ab ID No: K	KY90129								
Contact Person:	Valerie Davis			_	Phone No:	(843) 769-7391							
Mailing Address:	2040 Savage Road	Cł	narleston, South Ca	rolina		29407							
	Street		City/State			Zip							
LABORATORY RECORD #2													
Laboratory:	N/A			Lab ID No:	N/A								
Contact Person:	N/A				Phone No:	N/A							
Mailing Address:	N/A												
	Street		City/State			Zip							
		LABORAT	ORY RECORD #	3									
Laboratory:	N/A			Lab ID No:	N/A								
Contact Person:	N/A		Pho			N/A							
Mailing Address:	N/A		C'. In .										
	Street		City/State			Zip							

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: $\underline{KY8-890-008-982}/\underline{1}$ LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number	•			8000-520	1	8000-52	202	8000-52	242	8000-524	43
Facility's Loc	al Well or Spring Number (e.g., N	/W−1	., MW-2, etc	:.)	220		221		222		223	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		5/1/2023 10):51	5/1/2023	07:44	5/1/2023	09:25	5/1/2023 0	8:42
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW220SG3	3-23	MW221S0	G3-23	MW222S0	G3-23	MW223SG	3-23
Laboratory Sam	boratory Sample ID Number (if applicable)						620318	005	620318	007	6203180	09
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					1	5/4/20	23	5/4/202	23	5/4/202	3
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.183	J	0.451		0.419		0.429	
16887-00-6	Chloride(s)	т	mg/L	9056	15.7	*J	36.3	*J	31.6	*J	37.4	*J
16984-48-8	Fluoride	т	mg/L	9056	0.214	J	0.194	J	0.254	J	0.201	J
s0595					1.15	J	0.973	J	0.822	J	0.848	J
14808-79-8	Sulfate	т	mg/L	9056	20	*	16.9	*	12.6	*	15.6	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.72		29.69		29.72		29.72	
S0145	Specific Conductance	т	μ MH0/cm	Field	420		406		375		395	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Lo	cal Well or Spring Number (e.g., MV	r-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.88		324.98		325.08		325.11	
N238	Dissolved Oxygen	т	mg/L	Field	5.02		5.83		4.62		4.48	
S0266	Total Dissolved Solids	т	mg/L	160.1	202	*	196	*	198	*	179	*
S0296	рн	т	Units	Field	6.16		6.14		6.16		6.12	
NS215	Eh	т	mV	Field	477		469		443		472	
s0907	Temperature	т	°c	Field	16.83		14.78		16.67		16	
7429-90-5	Aluminum	т	mg/L	6020	0.0417	J	<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.269		0.225		0.295		0.247	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00863	J	0.0238		0.0106	J	0.0106	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	28.2		22.6		19.8		22.4	
7440-47-3	Chromium	т	mg/L	6020	0.00641	J	0.00862	J	<0.01		0.0193	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00102		0.000475	J	0.000819	J
7440-50-8	Copper	т	mg/L	6020	0.00116	J	0.00278		0.001	J	0.00174	J
7439-89-6	Iron	т	mg/L	6020	0.108		<0.1		0.0491	J	<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.9		9.64		8.63		9.59	
7439-96-5	Manganese	т	mg/L	6020	0.00196	J	0.00581		0.00879		0.0123	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				8000-520	01	8000-52	02	8000-524	12	8000-52	43
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.00103		0.00629		0.00293		0.00467	
7440-02-0	Nickel	т	mg/L	6020	0.00999		0.0914		0.0259		0.251	
7440-09-7	Potassium	т	mg/L	6020	2.3		2.51		0.576		1.18	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	53		48.7		47.3		46.7	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		0.0053	J	<0.02		0.00389	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-5	243
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	220		221		222		223	ı
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00089	J	0.00035	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520	2	8000-524	42	8000-52	43
Facility's Loc	cal Well or Spring Number (e.g., N	MW-1	L, MW-2, et	:c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000192		<0.0000187		<0.0000189		<0.0000191	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.67	*	-0.805	*	-2.19	*	1.58	*
12587-47-2	Gross Beta	Т	pCi/L	9310	10.7	*	10.9	*	6.83	*	4.13	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.324	*	0.226	*	0.0607	*	-0.0146	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.64	*	6.32	*	1.07	*	2.35	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	11.3	*	1.2	*	4.59	*	15.5	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.14	*	0.416	*	-0.376	*	0.985	*
10028-17-8	Tritium	Т	pCi/L	906.0	-80.5	*	6.62	*	106	*	18.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		13.1	J	<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	0.873	J	0.845	J	0.636	J	0.625	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0102		0.0105		<0.01		<0.01	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: $\underline{KY8-890-008-982}/\underline{1}$ LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g., N	ſW−1	., MW-2, etc	.)	224		369		370		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		5/1/2023 10):09	4/24/2023	12:35	4/24/2023	13:17	4/25/2023	7:49
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW224SG3	3-23	MW369U	G3-23	MW370U0	G3-23	MW372UG	3-23
Laboratory Sam	boratory Sample ID Number (if applicable)						619428	013	619428	015	6196200	03
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis						4/27/20	23	4/27/20	23	4/29/202	23
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	OWN)	SIDE		DOW	N	DOW	N	DOWN	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.306		0.325		0.568		0.483	
16887-00-6	Chloride(s)	т	mg/L	9056	23.1	*J	28.7	J	41.9	J	36.1	J
16984-48-8	Fluoride	Т	mg/L	9056	0.261	J	0.188	J	0.162	J	0.199	J
s0595					0.784	J	0.571	J	0.966	J	0.741	J
14808-79-8	Sulfate	т	mg/L	9056	17.1	*	7		20.2		151	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.72		30.25		30.22		30.15	
S0145	Specific Conductance	т	μ MHO/cm	Field	437		375		470		733	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.24		324.76		324.74		324.86	
N238	Dissolved Oxygen	т	mg/L	Field	3.66		2.06		4.26		1.81	
s0266	Total Dissolved Solids	т	mg/L	160.1	215	*	193		235		428	
s0296	рН	Т	Units	Field	6.14		6.18		6.12		6.03	
NS215	Eh	т	mV	Field	505		439		460		470	
s0907	Temperature	т	°c	Field	16.67		17		16.39		14.56	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0346	J	<0.05		<0.05	*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00214	J
7440-39-3	Barium	т	mg/L	6020	0.233		0.39		0.225		0.0573	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.03		0.0139	J	0.215		1.66	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	23.2		16		30.9		62	
7440-47-3	Chromium	т	mg/L	6020	0.00533	J	<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.0037		<0.001		0.000346	J
7440-50-8	Copper	T	mg/L	6020	0.000896	J	0.00103	J	0.000462	J	0.000968	J
7439-89-6	Iron	Т	mg/L	6020	0.108		0.0632	J	<0.1		0.0435	J
7439-92-1	Lead	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.2		6.87		13.2		23.5	
7439-96-5	Manganese	T	mg/L	6020	0.00639		0.00923		0.00125	J	0.00214	J
7439-97-6	Mercury	Т	mg/L	7470	0.000252		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBE	ER ¹ , Facility Well/Spring Number	:			8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's	Local Well or Spring Number (e.	.g., MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.000723	J	<0.001		<0.001		0.000205	J
7440-02-0	Nickel	т	mg/L	6020	0.012		0.00349		<0.002		0.000889	J
7440-09-7	Potassium	Т	mg/L	6020	0.97		0.508		2.52		2.46	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.0017	J	<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	61.1		55.6		48.3		58.4	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		0.00458	BJ
7440-66-6	Zinc	т	mg/L	6020	<0.02		0.00659	J	<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	20	8004-48	818	8004-48	308
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00073	J	0.00206		0.00601	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	1	8004-4820)	8004-48	18	8004-48	08
Facility's Lo	cal Well or Spring Number (e.g., N	MW−1	L, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.000019		<0.0000192		<0.0000192		<0.0000191	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	т	ug/L	8082		*	<0.0989		<0.103		<0.1	
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0989	*	<0.103	*	<0.1	
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0989		<0.103		<0.1	
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0989		<0.103		<0.1	
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0989		<0.103		<0.1	
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0989		<0.103		<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., N	4W −1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0989		<0.103		<0.1	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0989		<0.103		<0.1	
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0989		<0.103		<0.1	
12587-46-1	Gross Alpha	т	pCi/L	9310	2.34	*	2.11	*	-6.91	*	2.52	*
12587-47-2	Gross Beta	т	pCi/L	9310	3.31	*	13.1	*	-3.67	*	17.6	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.126	*	0.293	*	0.427	*	0.278	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.21	*	2.38	*	0.612	*	-0.329	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	3.29	*	39.1	*	28.3	*	36.3	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.74	*	2.17	*	1.6	*	1.17	*
10028-17-8	Tritium	т	pCi/L	906.0	25.9	*	130	*	78.9	*	3.95	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		23.6		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2	*	<0.2	*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5	*	<0.5	*	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.878	J	1.1	J	1	J	0.788	J
s0586	Total Organic Halides	т	mg/L	9020	0.0077	J	0.0148		0.00514	J	0.045	*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-48	309	8004-48	310	8004-480	04
Facility's Loc	al Well or Spring Number (e.g., M	w−1	, MW-2, etc	:.)	373		384		385		386	
Sample Sequenc	ee #				1		1		1		1	
If sample is a B	Slank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/25/2023 8	3:47	4/26/2023	09:44	4/26/2023	10:16	4/26/2023	10:50
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW373UG3	3-23	MW384S0	G3-23	MW385S0	G3-23	MW386SG	3-23
Laboratory Sam	uple ID Number (if applicable)				61962000)5	619802	001	619802	003	6198020	05
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					3	4/29/20	23	4/29/20	23	4/29/202	23
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)				DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.484		0.265		0.22		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	34.8	J	21.4	J	21.2	J	10.2	J
16984-48-8	Fluoride	т	mg/L	9056	0.182	J	0.171	J	0.16	J	0.705	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.715	J	0.67	J	0.665	J	<10	
14808-79-8	Sulfate	т	mg/L	9056	170		17.4		18.8		40.9	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.16		30.14		30.13		30.13	
S0145	Specific Conductance	т	μ MH 0/cm	Field	831		390		390		557	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.86		324.52		323.54		344.88	
N238	Dissolved Oxygen	т	mg/L	Field	2		5.37		2.84		3.97	
s0266	Total Dissolved Solids	т	mg/L	160.1	472		189		196		343	
s0296	рн	т	Units	Field	6.12		5.91		6.05		6.76	
NS215	Eh	т	mV	Field	457		419		410		343	
s0907	Temperature	т	°c	Field	15.06		16.39		16		15.94	
7429-90-5	Aluminum	т	mg/L	6020	<0.05	*	<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.0023	J	<0.005		<0.005		0.0031	J
7440-39-3	Barium	т	mg/L	6020	0.03		0.174		0.18		0.0997	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.74		0.048		0.0561		0.0139	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	71.1		20.6		23.6		18.6	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00055	J	0.000875	J	0.000692	J	0.000816	J
7439-89-6	Iron	т	mg/L	6020	0.0394	J	0.0836	J	0.0338	J	0.0713	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	27.6		9.39		9.98		8.78	
7439-96-5	Manganese	т	mg/L	6020	0.00775		0.00188	J	0.00177	J	0.024	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	, Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		0.000206	J	0.000727	J
7440-02-0	Nickel	Т	mg/L	6020	0.000829	J	0.000671	J	0.000773	J	0.00108	J
7440-09-7	Potassium	Т	mg/L	6020	2.76		1.27		1.55		0.254	J
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	61.1		41.6		41.7		94.8	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00007	BJ	<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.00518	BJ	<0.02		0.00385	J	0.00462	J
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	09	8004-4	810	8004-4	804
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	cc.)	373		384		385		386	i
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00499		0.0007	J	0.00051	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-4809	9	8004-48	10	8004-480	04
Facility's Lo	cal Well or Spring Number (e.g., N	MW−1	L, MW-2, et	:c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193		<0.0000194		<0.0000196		<0.0000192	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	т	ug/L	8082	<0.104			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.104			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.104			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.104			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.104			*		*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.104			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-4809		8004-481	0	8004-480	4
Facility's Loc	cal Well or Spring Number (e.g., 1	MW−1	L, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.104			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.104			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.104			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-2.75	*	-0.104	*	-0.979	*	-0.616	*
12587-47-2	Gross Beta	т	pCi/L	9310	6.44	*	26	*	18.4	*	6.35	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.146	*	0.693	*	0.0136	*	0.202	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.74	*	1.92	*	1.65	*	3.36	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	14	*	45.2	*	42.5	*	5.25	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.653	*	1.84	*	2.5	*	1.53	*
10028-17-8	Tritium	т	pCi/L	906.0	-63.2	*	-27.5	*	143	*	-39.4	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2	*	<0.2	*	<0.2	*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.22	J	0.937	J	0.787	J	4.19	
s0586	Total Organic Halides	т	mg/L	9020	0.017	*	0.00518	J	0.00762	J	0.134	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> /1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	12	8004-481	1
Facility's Loc	eal Well or Spring Number (e.g., 1	/W−1	., MW-2, etc	:.)	387		388		389		390	
Sample Sequence	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/26/2023 08	8:17	4/26/2023	09:06	NA		4/26/2023 07	7:41
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW387SG3	3-23	MW388S0	G3-23	NA		MW390SG3	3-23
Laboratory Sam	mple ID Number (if applicable)				61980200)7	619802	009	NA		61980201	1
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis					3	4/29/20	23	NA		4/29/2023	}
Gradient with	adient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN						DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.505		0.476			*	0.253	
16887-00-6	Chloride(s)	т	mg/L	9056	37.6	J	36.2	J		*	20.2	J
16984-48-8	Fluoride	т	mg/L	9056	0.894	J	0.339	J		*	0.296	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.87	J	0.82	J		*	0.955	J
14808-79-8	Sulfate	т	mg/L	9056	28.7		21			*	35.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.14		30.14			*	30.13	
s0145	Specific Conductance	т	μ MH 0/cm	Field	552		455			*	603	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	ocal Well or Spring Number (e.g., M	7-1, I	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.58		324.54			*	324.53	
N238	Dissolved Oxygen	т	mg/L	Field	4.85		5.14			*	2.2	
S0266	Total Dissolved Solids	т	mg/L	160.1	302		217			*	352	
S0296	рн	т	Units	Field	6.06		5.94			*	6.02	
NS215	Eh	т	mV	Field	421		408			*	436	
s0907	Temperature	т	°C	Field	15.61		16.39			*	14.56	
7429-90-5	Aluminum	т	mg/L	6020	0.033	J	<0.05			*	0.0372	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00256	J	0.00236	J		*	0.00238	J
7440-39-3	Barium	т	mg/L	6020	0.11		0.156			*	0.218	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0386		0.0306			*	0.023	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	37		27.8			*	27.4	
7440-47-3	Chromium	т	mg/L	6020	0.00416	J	<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000631	J	0.000731	J		*	0.00184	J
7439-89-6	Iron	Т	mg/L	6020	0.112		0.0416	J		*	0.0387	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	17.5		13.1			*	12.5	
7439-96-5	Manganese	т	mg/L	6020	0.00435	J	<0.005			*	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				8004-48	15	8004-48	16	8004-4812		8004-481	1
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-02-0	Nickel	т	mg/L	6020	<0.002		0.000673	J		*	0.0012	J
7440-09-7	Potassium	т	mg/L	6020	1.71		1.74			*	0.346	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	49.7		47.4			*	94.3	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002			*	0.000189	BJ
7440-62-2	Vanadium	т	mg/L	6020	0.00368	J	0.00392	7		*	0.00439	J
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02			*	0.00349	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	4008-4812		8004-481	1
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	cc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00079	J	0.00056	J		*	0.00042	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	3	8004-4812		8004-481	1
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	., MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191		<0.0000191			*	<0.0000192	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB, Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815		8004-4816		8004-4812		8004-481	1
Facility's Lo	cal Well or Spring Number (e.g., N	4W −1	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	2.51	*	1.43	*		*	-0.163	*
12587-47-2	Gross Beta	т	pCi/L	9310	19.9	*	47.2	*		*	25.3	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.286	*	0.257	*		*	0.245	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.863	*	0.533	*		*	5.02	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	47.1	*	26.3	*		*	65.2	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	2.37	*	2.78	*		*	2.23	*
10028-17-8	Tritium	т	pCi/L	906.0	97.9	*	26.5	*		*	53.7	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	38.5		<20			*	<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2	*	<0.2	*		*	<0.2	*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.968	J	0.735	J		*	1.97	J
s0586	Total Organic Halides	т	mg/L	9020	0.0093	J	0.00734	J		*	0.0105	
		П										

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-48	306	8004-4807		8004-480	02
Facility's Loc	cal Well or Spring Number (e.g., M	/W−1	., MW-2, etc	.)	391		392		393		394	
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/27/2023 09	9:23	4/27/2023	10:14	4/27/2023	10:47	4/27/2023 (ე7:35
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	N		N		N		N					
Facility Sampl	MW391SG3	-23	MW392S0	G3-23	MW393S0	G3-23	MW394SG	3-23				
Laboratory Sam	Laboratory Sample ID Number (if applicable)						620026	003	620026005		6200260	07
Date of Analys	sis (Month/Day/Year) For Volatile	Or	ganics Anal	ysis	5/2/2023 5/2/2023		5/2/2023		5/2/202	.3		
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	OWN)	DOWN		DOW	N	DOWN		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.507		0.556		0.127	J	0.551	
16887-00-6	Chloride(s)	т	mg/L	9056	40.1	J	43.2	J	9.63	J	47.6	J
16984-48-8	Fluoride	т	mg/L	9056	0.156	J	0.182	J	0.219	J	0.123	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.915	J	0.535	J	<10		1.31	J
14808-79-8	Sulfate	т	mg/L	9056	14.2		8.22		23.2		11.7	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.95		29.92		29.92		29.97	
S0145	Specific Conductance	т	μ MH0/cm	Field	388		344		474		409	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807		8004-4802	
Facility's Lo	cal Well or Spring Number (e.g., MW	i-1 , 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.76		324.71		337.29		324.72	
N238	Dissolved Oxygen	т	mg/L	Field	4.61		1.92		2.18		5.3	
s0266	Total Dissolved Solids	т	mg/L	160.1	190		156	*	288	*	196	*
s0296	Нд	т	Units	Field	6.1		6.07		6.32		5.84	
NS215	Eh	т	mV	Field	346		377		363		451	
s0907	Temperature	т	°c	Field	15.5		16.22		16.56		14.89	
7429-90-5	Aluminum	т	mg/L	6020	0.0265	J	<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00216	J	0.00516		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.206		0.267		0.0893		0.254	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0242		0.022		0.0202		0.0193	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	24.2		23.9		17.5		26.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000626	J	0.000576	J	0.000387	J	0.00183	J
7439-89-6	Iron	т	mg/L	6020	0.137		0.1		0.545		0.0675	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.1		10.2		4.7		11.3	
7439-96-5	Manganese	т	mg/L	6020	0.00298	J	0.073		0.0542		0.00169	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBE	KGWA NUMBER ¹ , Facility Well/Spring Number					05	8004-48	06	8004-4807		8004-48	02
Facility's	Local Well or Sp	ring Number (e.g., MW	-1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CON	STITUENT T		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		0.000471	J	<0.001	
7440-02-0	Nickel	Т	mg/L	6020	<0.002		0.00133	J	<0.002		0.00396	
7440-09-7	Potassium	Т	mg/L	6020	1.55		2.24		0.608		1.46	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	34.2		25.2		90.7		33.2	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.00678	BJ	0.00686	BJ	0.00969	BJ	0.00618	BJ
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		0.00182	J	0.00193	J
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	e T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromome	ethane T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-4806		8004-4807		8004-48	302
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		0.00036	J	<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00179		0.00171		<0.001		0.00388	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-480	5	8004-4806		8004-4807		8004-48	02
Facility's Lo	cal Well or Spring Number (e.g., N	MW-1	L, MW-2, et	cc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.000019		<0.0000189		<0.0000189		<0.000019	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4805		8004-4806		8004-4807		8004-4802	
Facility's Loc	cal Well or Spring Number (e.g., N	∕ W−1	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	3.99	*	0.92	*	-2.7	*	-2.96	*
12587-47-2	Gross Beta	т	pCi/L	9310	4.38	*	5.9	*	0.212	*	7.26	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.253	*	0.0382	*	0.284	*	0.0467	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-3.06	*	0.488	*	-1.71	*	-0.29	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	5.54	*	7.26	*	2.89	*	6.79	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.00387	*	1.09	*	0.715	*	0.251	*
10028-17-8	Tritium	т	pCi/L	906.0	110	*	-64.2	*	90.2	*	-24.1	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		10.7	J	<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	т	mg/L	9060	0.569	J	0.564	J	2.47		0.718	J
s0586	Total Organic Halides	т	mg/L	9020	0.00992	J	0.0155		0.0202		0.00994	J

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-480	1	8004-48	303	8004-4817		0000-000	0		
Facility's Loc	cal Well or Spring Number (e.g., N	w−1	., MW-2, etc	:.)	395		396		397		E. BLAN	
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA	NA			NA		Е	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/27/2023 08	3:13	4/27/2023	08:47	5/1/2023	11:33	5/1/2023 06	6:50
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl	MW395SG3	3-23	MW396S	G3-23	MW397S0	33-23	RI1SG3-2	3				
Laboratory Sam	Laboratory Sample ID Number (if applicable)						620026	011	620318	013	62031801	6
Date of Analys	sis (Month/Day/Year) For Volatile	Or	ganics Anal	ysis	5/2/2023 5/2/2023		5/4/2023		5/4/2023	3		
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.58		0.82		0.392			*
16887-00-6	Chloride(s)	т	mg/L	9056	47.2	J	54.9	J	34.6	*J		*
16984-48-8	Fluoride	т	mg/L	9056	0.12	J	0.61	J	0.144	J		*
s0595	Nitrate & Nitrite	т	mg/L	9056	<10		0.146	J	0.923	J		*
14808-79-8	Sulfate	т	mg/L	9056	11		29		12.1	*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.97		29.97		29.72			*
S0145	Specific Conductance	т	μ MH0/cm	Field	405		708		320			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

C-34

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817		0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.07		370.18		324.97			*
N238	Dissolved Oxygen	т	mg/L	Field	1.67		1.66		6.65			*
S0266	Total Dissolved Solids	т	mg/L	160.1	194	*	392	*	128	*		*
S0296	рн	т	Units	Field	6.01		6.39		6.04			*
NS215	Eh	т	mV	Field	190		250		476			*
s0907	Temperature	т	°c	Field	15.11		15.06		16.94			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00214	J	<0.005		<0.005		<0.005	
7440-39-3	Barium	T	mg/L	6020	0.31		0.355		0.141		<0.004	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0195		0.00708	J	0.00976	J	<0.015	
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	27.1		32.5		18.7		<0.2	
7440-47-3	Chromium	T	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00116		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000599	J	0.000559	J	0.000541	J	<0.002	
7439-89-6	Iron	Т	mg/L	6020	2.54		0.0416	J	<0.1		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	11.4		14.5		7.95		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	0.206		0.0153		0.00105	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	01	8004-48	03	8004-4817		0000-00	00
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.000655	J	0.000338	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.00178	J	<0.002		0.000688	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	2.01		0.899		1.82		<0.3	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	31		102		35.7		<0.25	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00576	BJ	0.00536	BJ	<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	0.0047	J	<0.005		<0.005		0.004	J
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480)3	8004-4	817	0000-0	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	cc.)	395		396		397	,	E. BLA	.NK
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00578		0.00041	J	<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g., N	MW-1	L, MW-2, et	:c.)	395		396		397		E. BLAN	lK
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000187		<0.0000192		<0.0000185		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4801		8004-4803		8004-481	7	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., N	4W −1	1, MW-2, et	.c.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	2.96	*	7.22	*	7.21	*	-0.0378	*
12587-47-2	Gross Beta	т	pCi/L	9310	1.1	*	7.85	*	14.6	*	1.36	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.236	*	0.0436	*	0.211	*	0.0974	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.453	*	-0.706	*	3.83	*	5.79	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	2.51	*	9.19	*	14.1	*	-3.03	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.534	*	0.844	*	-0.178	*	0.751	*
10028-17-8	Tritium	т	pCi/L	906.0	5.66	*	6.91	*	-7.85	*	-24.4	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		40.1		<20			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.7	J	3.92		0.475	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.00888	J	0.0481		0.00688	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY
Facility: US DOE - Paducah Gaseous Diffusion Plant
Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	Facility Well/Spring Number				0000-000)()	0000-00	00	0000-00	00	0000-0000	
	cal Well or Spring Number (e.g., M	ma _ 1	MWI-2 ata	. \	F. BLAN		T. BLAN				T. BLANK	
		1M -]	., MW-2, etc	,		-		\ 1	T.BLAN	\		
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	F		Т		T		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		5/1/2023 0	7:47	4/26/2023	06:30	4/27/2023 0	6:45	5/1/2023 06:	45
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	Le ID Number (if applicable)				FB1SG3-2	3	TB1SG3	-23	TB2SG3-2	23	TB3SG3-23	,
Laboratory Sam	mple ID Number (if applicable)		62031801	5	6198020)13	62002601	3	620318017	7		
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis						4/29/2	023	5/2/2023		5/4/2023	
Gradient with	respect to Monitored Unit (UP, DC	, NW	, SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595						*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MH 0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

C-4

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number		0000-000	0	0000-000	0	0000-0000)	0000-0000			
Facility's Lo	ocal Well or Spring Number (e.g., MV	i−1 , i	MW-2, BLANK-	F, etc.)	F. BLAN	K	T. BLANK	1	T. BLANK	2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°c	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.004			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	<0.002			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	00	0000-00	00	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	F. BLAN	K	T. BLAN	K 1	T. BLANI	K 2	T. BLANI	₹3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001			*		*		*
7440-02-0	Nickel	Т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	<0.02			*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.02			*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	0.0163		<0.005		<0.005		0.0038	J
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000)	0000-000	00	0000-0	000	0000-0	000
Facility's Lo	cal Well or Spring Number (e.g., I	MW-1	L, MW-2, et	cc.)	F. BLAN	(T. BLANI	< 1	T. BLAN	NK 2	T. BLAN	NK 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	0.0389		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	L, MW-2, et	.c.)	F. BLAN	(T. BLANK	1	T. BLANI	K 2	T. BLANI	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	0.00762		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194		<0.0000189		<0.0000196		<0.0000187	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	T	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000		0000-0000		0000-0000)
Facility's Loc	cal Well or Spring Number (e.g., 1	MW−1	L, MW-2, et	.c.)	F. BLANK		T. BLANK 1		T. BLANK 2		T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.61	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	1.1	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.0346	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	3.68	*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-6.67	*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.522	*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0	-35.6	*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0	<0.5			*		*		*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: $\underline{KY8-890-008-982}/\underline{1}$ LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	2	$\overline{}$					
	eal Well or Spring Number (e.g., N	w−1	L, MW-2, etc	:.)	221							-/-
Sample Sequenc	ce #				2							/
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA							
	nd Time (Month/Day/Year hour: minu				5/1/2023 7:	44						
Duplicate ("Y"	or "N") ²		-		Y							
Split ("Y" or	"N") ³				N			$\overline{}$				
Facility Sampl	e ID Number (if applicable)				MW221DSG	3-23						
Laboratory Sam	oratory Sample ID Number (if applicable)									$\overline{}$		
Date of Analys	sis (Month/Day/Year) For Volatile	ysis.	5/4/2023					$\overline{/}$				
Gradient with	respect to Monitored Unit (UP, DC	WN,	, SIDE, UNKN	IOWN)	SIDE				\setminus	/		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.453							
16887-00-6	Chloride(s)	т	mg/L	9056	36.5	*J						
16984-48-8	Fluoride	т	mg/L	9056	0.188	J						
s0595						J						
14808-79-8	Sulfate	т	mg/L	9056	16.9	*						
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*						
S0145	Specific Conductance	т	μ MH 0/cm	Field		*						

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	2						
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	221							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*						
N238	Dissolved Oxygen	Т	mg/L	Field		*						
s0266	Total Dissolved Solids	Т	mg/L	160.1	197	*						
s0296	рн	т	Units	Field		*			\			
NS215	Eh	Т	mV	Field		*						
s0907	Temperature	Т	°C	Field		*						
7429-90-5	Aluminum	Т	mg/L	6020	<0.05							
7440-36-0	Antimony	т	mg/L	6020	<0.003							
7440-38-2	Arsenic	т	mg/L	6020	<0.005				X			
7440-39-3	Barium	т	mg/L	6020	0.275							
7440-41-7	Beryllium	т	mg/L	6020	<0.0005							
7440-42-8	Boron	Т	mg/L	6020	0.0302							
7440-43-9	Cadmium	Т	mg/L	6020	<0.001						\	
7440-70-2	Calcium	T	mg/L	6020	26.6							
7440-47-3	Chromium	т	mg/L	6020	0.0104							
7440-48-4	Cobalt	Т	mg/L	6020	0.00127							
7440-50-8	Copper	т	mg/L	6020	0.00273							
7439-89-6	Iron	Т	mg/L	6020	<0.1							
7439-92-1	Lead	Т	mg/L	6020	<0.002							
7439-95-4	Magnesium	Т	mg/L	6020	11.3							
7439-96-5	Manganese	т	mg/L	6020	0.00708							
7439-97-6	Mercury	Т	mg/L	7470	<0.0002							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8000-520	02						
Facility's	Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	221							
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	т	mg/L	6020	0.00779							
7440-02-0		Nickel	т	mg/L	6020	0.109							
7440-09-7		Potassium	т	mg/L	6020	2.93							
7440-16-6		Rhodium	т	mg/L	6020	<0.005							
7782-49-2		Selenium	т	mg/L	6020	<0.005							
7440-22-4		Silver	т	mg/L	6020	<0.001							
7440-23-5		Sodium	т	mg/L	6020	58.2							
7440-25-7		Tantalum	т	mg/L	6020	<0.005							
7440-28-0		Thallium	т	mg/L	6020	<0.002				X			
7440-61-1		Uranium	т	mg/L	6020	<0.0002							
7440-62-2		Vanadium	Т	mg/L	6020	<0.02					\setminus		
7440-66-6		Zinc	Т	mg/L	6020	0.00399	J						
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005							
67-64-1		Acetone	Т	mg/L	8260	<0.005				/			
107-02-8		Acrolein	т	mg/L	8260	<0.005							
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005							
71-43-2		Benzene	Т	mg/L	8260	<0.001							
108-90-7		Chlorobenzene	т	mg/L	8260	<0.001							
1330-20-7		Xylenes	Т	mg/L	8260	<0.003						\	
100-42-5		Styrene	т	mg/L	8260	<0.001							
108-88-3		Toluene	т	mg/L	8260	<0.001							
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		/					$ \ \ \ \ \ \ $

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-520	2						
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	221							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	т	mg/L	8260	<0.001							
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001							
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005							
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005					/	/	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005							
75-00-3	Chloroethane	Т	mg/L	8260	<0.001							
67-66-3	Chloroform	Т	mg/L	8260	<0.001							
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001				X			
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001				/_\			
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001							
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001					\		
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001				<u> </u>			
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001			/				
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001							
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001							
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001							
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00075	J						

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5202	2						
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	L, MW-2, et	.c.)	221							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		\					
74-88-4	Iodomethane	т	mg/L	8260	<0.005							
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001							
75-09-2	Dichloromethane	т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005							
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.000019							
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				X			
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001						\	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001							
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		/					
1336-36-3	PCB, Total	т	ug/L	8082		*						
12674-11-2	PCB-1016	т	ug/L	8082		*						
11104-28-2	PCB-1221	т	ug/L	8082		*						
11141-16-5	PCB-1232	т	ug/L	8082		*						
53469-21-9	PCB-1242	т	ug/L	8082		*						
12672-29-6	PCB-1248	т	ug/L	8082		*						

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5202							
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	., MW-2, et	cc.)	221							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DE ÆCTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*						
11096-82-5	PCB-1260	т	ug/L	8082		*						
11100-14-4	PCB-1268	т	ug/L	8082		*						
12587-46-1	Gross Alpha	Т	pCi/L	9310	-3.07	*			\			
12587-47-2	Gross Beta	т	pCi/L	9310	-1.56	*						
10043-66-0	Iodine-131	т	pCi/L			*						
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.0364	*				ľ		
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.32	*						
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	3.14	*						
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.676	*						
10028-17-8	Tritium	т	pCi/L	906.0	-4.83	*						
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20							
57-12-5	Cyanide	т	mg/L	9012	<0.2							
20461-54-5	Iodide	т	mg/L	300.0	<0.5							
S0268	Total Organic Carbon	т	mg/L	9060	0.768	J	/	/				
s0586	Total Organic Halides	т	mg/L	9020	0.00846	J						
											_	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW22	0 MW220SG3-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.03. Rad error is 3.02.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.16. Rad error is 7.98.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.387. Rad error is 0.387.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.9. Rad error is 1.86.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.8. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.13. Rad error is 2.11.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 73.9. Rad error is 73.9.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5202 MW22	1 MW221SG3-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.12. Rad error is 4.12.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.19. Rad error is 7.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.266. Rad error is 0.266.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.63. Rad error is 4.51.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.84. Rad error is 1.83.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 93.5. Rad error is 93.5.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5242 MW22	22 MW222SG3-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
	PCB-1254		Analysis of constituent not required and not performed.	
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.39. Rad error is 3.39.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.37. Rad error is 8.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.234. Rad error is 0.234.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.81. Rad error is 1.8.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.79. Rad error is 1.79.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 115. Rad error is 113.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5243 MW22	23 MW223SG3-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.46. Rad error is 4.45.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.81. Rad error is 8.78.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.243. Rad error is 0.243.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.67. Rad error is 1.63.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.9. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.94. Rad error is 1.93.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 97.5. Rad error is 97.5.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

	Facility Sample ID	Constituent	Flag	Description
000-5244 MW224 MW	/224SG3-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.74. Rad error is 4.72.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.83. Rad error is 6.81.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.25. Rad error is 0.25.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.7. Rad error is 1.69.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.3. Rad error is 2.27.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 98.8. Rad error is 98.7.
004-4820 MW369 MW	/369UG3-23	PCB-1016	L1	LCS/LCSD RPD outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.21. Rad error is 7.19.
		Gross beta		TPU is 7.64. Rad error is 7.32.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.346. Rad error is 0.346.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.96. Rad error is 1.93.
		Technetium-99		TPU is 12. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.98. Rad error is 1.95.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 111. Rad error is 108.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits.
		lodide	W	Post-digestion spike recovery out of control limits.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4818 MW370	MW370UG3-23	PCB-1016	L1	LCS/LCSD RPD outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.2. Rad error is 3.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.09. Rad error is 4.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.711. Rad error is 0.711.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.04. Rad error is 2.03.
		Technetium-99		TPU is 12.3. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.16. Rad error is 2.14.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 98.7. Rad error is 97.5.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits.
		lodide	W	Post-digestion spike recovery out of control limits.
004-4808 MW372	MW372UG3-23	Aluminum	*	Duplicate analysis not within control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.57. Rad error is 5.56.
		Gross beta		TPU is 7.77. Rad error is 7.21.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.292. Rad error is 0.292.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.33. Rad error is 1.33.
		Technetium-99		TPU is 12.9. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.72. Rad error is 2.71.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 93.5. Rad error is 93.4.
		Total Organic Halides	*	Duplicate analysis not within control limits.
004-4792 MW373	MW373UG3-23	Aluminum	*	Duplicate analysis not within control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.73. Rad error is 3.72.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.32. Rad error is 5.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.313. Rad error is 0.313.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.39. Rad error is 1.39.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.1. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.87. Rad error is 0.868.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 79.9. Rad error is 79.9.
		Total Organic Halides	*	Duplicate analysis not within control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4809 MW38	4 MW384SG3-23	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.38. Rad error is 4.38.
		Gross beta		TPU is 9.23. Rad error is 8.19.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.809. Rad error is 0.808.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.26. Rad error is 2.24.
		Technetium-99		TPU is 13. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.17. Rad error is 2.15.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 151. Rad error is 151.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4810 MW38	5 MW385SG3-23	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.98. Rad error is 3.97.
		Gross beta		TPU is 7.32. Rad error is 6.62.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.142. Rad error is 0.142.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.97. Rad error is 1.96.
		Technetium-99		TPU is 12.8. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.21. Rad error is 2.17.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 159. Rad error is 157.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW38	36 MW386SG3-23	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.75. Rad error is 3.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.84. Rad error is 5.74.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.246. Rad error is 0.246.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.48. Rad error is 2.42.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.98. Rad error is 1.96.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 155. Rad error is 155.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4815 MW38	7 MW387SG3-23	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.38. Rad error is 5.36.
		Gross beta		TPU is 8.35. Rad error is 7.68.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.28. Rad error is 0.279.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.4. Rad error is 1.39.
		Technetium-99		TPU is 13.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.42. Rad error is 2.39.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 156. Rad error is 154.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4816 MW38	88 MW388SG3-23	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.8. Rad error is 4.8.
		Gross beta		TPU is 12.3. Rad error is 9.63.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.662. Rad error is 0.661.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.74. Rad error is 1.73.
		Technetium-99		TPU is 12.3. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.33. Rad error is 2.29.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 153. Rad error is 153.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Chloride Chloride During sampling, the well was dry; therefore, no sam collected. Fluoride Nitrate & Nitrite Sulfate Barometric Pressure Reading Specific Conductance Static Water Level Elevation Dissolved Oxygen Total Dissolved Solids During sampling, the well was dry; therefore, no sam collected. Dissolved Oxygen Total Dissolved Solids During sampling, the well was dry; therefore, no sam collected. PH During sampling, the well was dry; therefore, no sam collected. Dissolved Oxygen Dissolved Solids During sampling, the well was dry; therefore, no sam collected. PH During sampling, the well was dry; therefore, no sam collected. Diring sampling, the well was dry; therefore, no sam collected. PH During sampling, the well was dry; therefore, no sam collected. Temperature During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Antimony During sampling, the well was dry; therefore, no sam collected. Arsenic During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry;	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
collected. Fluoride Nitrate & Nitrite Nitrate & Nitrite Nitrate & Nitrite Suffate Barometric Pressure Reading Specific Conductance Static Water Level Elevation Dissolved Oxygen Total Dissolved Solids pH During sampling, the well was dry; therefore, no sam collected. Ph During sampling, the well was dry; therefore, no sam collected. Dissolved Oxygen Dissolved Oxygen Dissolved Solids Diring sampling, the well was dry; therefore, no sam collected. Diring sampling, the well was dry; therefore, no sam collected. Diring sampling, the well was dry; therefore, no sam collected. Diring sampling, the well was dry; therefore, no sam collected. Diring sampling, the well was dry; therefore, no sam collected. Diring sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Aluminum Antimony During sampling, the well was dry; therefore, no sam collected. Artenic During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium Cadmium Cadmium Chromium Chromium Cobalt Cobalt During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collecte	3004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample was collected.
Nitrate & Nitrite Sulfate During sampling, the well was dry; therefore, no sam collected. Sulfate Barometric Pressure Reading Specific Conductance Static Water Level Elevation Dissolved Oxygen Total Dissolved Solids During sampling, the well was dry; therefore, no sam collected. Ph During sampling, the well was dry; therefore, no sam collected. Dissolved Solids During sampling, the well was dry; therefore, no sam collected. Ph During sampling, the well was dry; therefore, no sam collected. Dissolved Solids During sampling, the well was dry; therefore, no sam collected. Ph During sampling, the well was dry; therefore, no sam collected. Dissolved Solids During sampling, the well was dry; therefore, no sam collected. Ph During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no			Chloride		During sampling, the well was dry; therefore, no sample was collected.
collected. Sulfate During sampling, the well was dry; therefore, no sam collected. Specific Conductance Static Water Level Elevation Dissolved Oxygen During sampling, the well was dry; therefore, no sam collected. Dissolved Oxygen Total Dissolved Solids During sampling, the well was dry; therefore, no sam collected. Eh During sampling, the well was dry; therefore, no sam collected. Dissolved Solids During sampling, the well was dry; therefore, no sam collected. Eh During sampling, the well was dry; therefore, no sam collected. Temperature During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no			Fluoride		During sampling, the well was dry; therefore, no sample was collected.
Barometric Pressure Reading During sampling, the well was dry; therefore, no sam collected. Specific Conductance During sampling, the well was dry; therefore, no sam collected. Dissolved Dxygen Dissolved Oxygen During sampling, the well was dry; therefore, no sam collected. Dissolved Solids During sampling, the well was dry; therefore, no sam collected. Dissolved Solids During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Antimony During sampling, the well was dry; therefore, no sam collected. Arsenic During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Du			Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample was collected.
Specific Conductance Static Water Level Elevation During sampling, the well was dry; therefore, no sam collected. Dissolved Oxygen Dissolved Oxygen During sampling, the well was dry; therefore, no sam collected. Total Dissolved Solids During sampling, the well was dry; therefore, no sam collected. PH During sampling, the well was dry; therefore, no sam collected. Eh During sampling, the well was dry; therefore, no sam collected. Temperature During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Antimony During sampling, the well was dry; therefore, no sam collected. Arsenic During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well			Sulfate		During sampling, the well was dry; therefore, no sample was collected.
Static Water Level Elevation Dissolved Oxygen Dissolved Oxygen During sampling, the well was dry; therefore, no sam collected. Total Dissolved Solids During sampling, the well was dry; therefore, no sam collected. PH During sampling, the well was dry; therefore, no sam collected. Eh During sampling, the well was dry; therefore, no sam collected. Eh During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Antimony During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium Collected. Chromium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected.			Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
Dissolved Oxygen Dissolved Solids Total Dissolved Solids During sampling, the well was dry; therefore, no sam collected. PH During sampling, the well was dry; therefore, no sam collected. Eh During sampling, the well was dry; therefore, no sam collected. Eh During sampling, the well was dry; therefore, no sam collected. Temperature During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Antimony During sampling, the well was dry; therefore, no sam collected. Arsenic During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Choalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was			Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
Total Dissolved Solids During sampling, the well was dry; therefore, no sam collected. Eh During sampling, the well was dry; therefore, no sam collected. Eh During sampling, the well was dry; therefore, no sam collected. Temperature During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Antimony During sampling, the well was dry; therefore, no sam collected. Arsenic During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
collected. During sampling, the well was dry; therefore, no sam collected. Temperature During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Antimony During sampling, the well was dry; therefore, no sam collected. Arsenic During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected.			Dissolved Oxygen		During sampling, the well was dry; therefore, no sample was collected.
collected. Eh During sampling, the well was dry; therefore, no sam collected. Temperature During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Antimony During sampling, the well was dry; therefore, no sam collected. Arsenic During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Iron During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Total Dissolved Solids		During sampling, the well was dry; therefore, no sample was collected.
Temperature During sampling, the well was dry; therefore, no sam collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Antimony During sampling, the well was dry; therefore, no sam collected. Arsenic During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Marcury During sampling, the well was dry; therefore, no sam collected.			pH		During sampling, the well was dry; therefore, no sample wa collected.
collected. Aluminum During sampling, the well was dry; therefore, no sam collected. Antimony During sampling, the well was dry; therefore, no sam collected. Arsenic During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Eh		During sampling, the well was dry; therefore, no sample wa collected.
collected. Antimony During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Iron During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Temperature		During sampling, the well was dry; therefore, no sample wa collected.
collected. Arsenic During sampling, the well was dry; therefore, no sam collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Iron During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Aluminum		During sampling, the well was dry; therefore, no sample wa collected.
collected. Barium During sampling, the well was dry; therefore, no sam collected. Beryllium During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Iron During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Antimony		During sampling, the well was dry; therefore, no sample wa collected.
Collected. Beryllium Beryllium During sampling, the well was dry; therefore, no sam collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium Calcium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Iron During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese Manganese During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Arsenic		During sampling, the well was dry; therefore, no sample wa collected.
collected. Boron During sampling, the well was dry; therefore, no sam collected. Cadmium During sampling, the well was dry; therefore, no sam collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Iron During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Barium		During sampling, the well was dry; therefore, no sample wa collected.
Cadmium Calcium Calcium During sampling, the well was dry; therefore, no sam collected. Chromium Collected. Chromium Collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Iron During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese Manganese Mercury During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected.			Beryllium		During sampling, the well was dry; therefore, no sample wa collected.
collected. Calcium During sampling, the well was dry; therefore, no sam collected. Chromium During sampling, the well was dry; therefore, no sam collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Iron During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. Magnesium Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Boron		During sampling, the well was dry; therefore, no sample was collected.
collected. Chromium Cobalt During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Iron During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. Magnesium Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Cadmium		During sampling, the well was dry; therefore, no sample wa collected.
collected. Cobalt During sampling, the well was dry; therefore, no sam collected. Copper During sampling, the well was dry; therefore, no sam collected. Iron During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Calcium		During sampling, the well was dry; therefore, no sample wa collected.
collected. Copper During sampling, the well was dry; therefore, no sam collected. Iron During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Chromium		During sampling, the well was dry; therefore, no sample wa collected.
collected. Iron During sampling, the well was dry; therefore, no sam collected. Lead During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected.			Cobalt		During sampling, the well was dry; therefore, no sample wa collected.
collected. Lead During sampling, the well was dry; therefore, no sam collected. Magnesium Manganese Manganese During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected.			Copper		During sampling, the well was dry; therefore, no sample wa collected.
Lead During sampling, the well was dry; therefore, no sam collected. Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected. During sampling, the well was dry; therefore, no sam collected.			Iron		During sampling, the well was dry; therefore, no sample wa
Magnesium During sampling, the well was dry; therefore, no sam collected. Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam collected.			Lead		During sampling, the well was dry; therefore, no sample was
Manganese During sampling, the well was dry; therefore, no sam collected. Mercury During sampling, the well was dry; therefore, no sam			Magnesium		During sampling, the well was dry; therefore, no sample was
Mercury During sampling, the well was dry; therefore, no sam			Manganese		During sampling, the well was dry; therefore, no sample was
COIIECLEG.			Mercury		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample was collected.
		Nickel		During sampling, the well was dry; therefore, no sample was collected.
		Potassium		During sampling, the well was dry; therefore, no sample was collected.
		Rhodium		During sampling, the well was dry; therefore, no sample was collected.
		Selenium		During sampling, the well was dry; therefore, no sample was collected.
		Silver		During sampling, the well was dry; therefore, no sample was collected.
		Sodium		During sampling, the well was dry; therefore, no sample was collected.
		Tantalum		During sampling, the well was dry; therefore, no sample was collected.
		Thallium		During sampling, the well was dry; therefore, no sample was collected.
		Uranium		During sampling, the well was dry; therefore, no sample was collected.
		Vanadium		During sampling, the well was dry; therefore, no sample was collected.
		Zinc		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample wa collected.
		Acetone		During sampling, the well was dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well was dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample wa collected.
		Benzene		During sampling, the well was dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well was dry; therefore, no sample was collected.
		Styrene		During sampling, the well was dry; therefore, no sample was collected.
		Toluene		During sampling, the well was dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample wa collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample wa collected.

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well was dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well was dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well was dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample wa collected.
		Tritium		During sampling, the well was dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well was dry; therefore, no sample wa collected.
		lodide		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4811 MW39	90 MW390SG3-23	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.13. Rad error is 4.13.
		Gross beta		TPU is 9. Rad error is 8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.511. Rad error is 0.511.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.37. Rad error is 3.27.
		Technetium-99		TPU is 14.3. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.96. Rad error is 1.93.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 159. Rad error is 159.
		Cyanide	N	Sample spike (MS/MSD) recovery not within control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4805 MW39	91 MW391SG3-23	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 4.62. Rad error is 4.57.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 5.29. Rad error is 5.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.253. Rad error is 0.253.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.06. Rad error is 1.06.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.49. Rad error is 1.48.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 158. Rad error is 156.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4806 MW39	92 MW392SG3-23	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.94. Rad error is 3.94.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.82. Rad error is 5.73.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.143. Rad error is 0.143.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.01. Rad error is 1.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.94. Rad error is 1.92.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 154. Rad error is 154.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4807 MW39	93 MW393SG3-23	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.74. Rad error is 1.74.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.44. Rad error is 4.44.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.27. Rad error is 0.27.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.02. Rad error is 2.02.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.6. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.03. Rad error is 2.02.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 153. Rad error is 152.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4802 MW39	94 MW394SG3-23	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.92. Rad error is 2.92.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.05. Rad error is 5.93.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.474. Rad error is 0.474.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.45. Rad error is 1.45.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.55. Rad error is 1.55.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 155. Rad error is 155.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4801 MW395	95 MW395SG3-23	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.98. Rad error is 3.95.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.75. Rad error is 4.75.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.533. Rad error is 0.533.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.32. Rad error is 1.32.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.8. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.24. Rad error is 1.24.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 153. Rad error is 153.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4803 MW39	96 MW396SG3-23	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.57. Rad error is 5.44.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.17. Rad error is 6.04.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.443. Rad error is 0.443.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.13. Rad error is 1.13.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.9. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.78. Rad error is 1.76.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 154. Rad error is 154.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW39	97 MW397SG3-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 6.62. Rad error is 6.51.
		Gross beta		TPU is 8.69. Rad error is 8.34.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.248. Rad error is 0.248.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.64. Rad error is 2.57.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.1. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.78. Rad error is 1.78.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 93.5. Rad error is 93.5.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG3-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.36. Rad error is 3.36.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.14. Rad error is 7.14.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.257. Rad error is 0.257.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.81. Rad error is 4.72.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.09. Rad error is 2.08.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 86.7. Rad error is 86.6.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not pe

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG3-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.05. Rad error is 3.05.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.85. Rad error is 7.85.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.224. Rad error is 0.224.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.57. Rad error is 2.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.38. Rad error is 1.38.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 85.3. Rad error is 85.3.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG3-23	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG3-23	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG3-23	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG3-23	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG3-23	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG3-23	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
		-		

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221DSG3-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.75. Rad error is 4.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.58. Rad error is 7.58.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.34. Rad error is 0.34.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.24. Rad error is 2.17.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.92. Rad error is 1.91.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 91.3. Rad error is 91.3.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u> Lab ID: None

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2023 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The second quarter 2023 data used to conduct the statistical analyses were collected in April and May 2023. The statistical analyses for this report first used data from the initial eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one compliance well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters.

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386a	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ^{a,b}	TW	UCRS
MW390 ^a	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ^a	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ^a	BG	UCRS
MW397	BG	LRGA

^aThe gradients in UCRS wells are downward. The UCRS wells identified as up-, side-, or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: compliance or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded (or is below the LTL for pH), the well has a statistically significant difference in concentration compared to the current background concentration.

^bWell was dry this quarter and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL (or is below the LTL for pH), then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the background wells (identified as "BG"), the compliance or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2023. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

_

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations. upper $TL = X + (K \times S)$

lower $TL = X - (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters
Acetone
Aluminum
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
cis-1,2-Dichloroethene
Cobalt
Conductivity
Copper
Dissolved Oxygen
Dissolved Solids
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential ¹
pH^2
Potassium
Sodium
Sulfate
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Vanadium

Zinc

Oxidation-Reduction Potential calibrated as Eh.

To pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	3	1	Yes
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	3	1	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	0	4	Yes
Bromide	4	1	3	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	2	2	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	4	0	No
Conductivity	4	0	4	Yes
Copper	4	0	4	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	NI.
Litty to chize tie	4	4	0	No

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	1	3	Yes
Nickel	4	2	2	Yes
Oxidation-Reduction Potential	4	0	4	Yes
pН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	2	2	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	3	1	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	10	1	Yes
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	7	4	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	9	2	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	11	0	No
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	6	5	Yes
Conductivity	11	0	11	Yes
Copper	11	1	10	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No
Iodide	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	11	11	0	No
Iron	11	2	9	Yes
Magnesium	11	0	11	Yes
Manganese	11	0	11	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	5	6	Yes
Nickel	11	2	9	Yes
Oxidation-Reduction Potential	11	0	11	Yes
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	7	4	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	2	9	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	3	8	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	10	1	Yes
Vinyl Acetate	11	11	0	No
Zinc	11	8	3	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	6	1	Yes
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	7	0	No
Antimony	7	7	0	No
Beryllium	7	7	0	No
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	6	1	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	6	1	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	2	5	Yes
Magnesium	7	0	7	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	5	2	Yes
Nickel	7	1	6	Yes
Oxidation-Reduction Potential	7	0	7	Yes
pH	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	4	3	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	5	2	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	7	0	No

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. For the UCRS, URGA, and LRGA, the test was applied to 26, 28, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes trichloroethene that exceeded its MCL. A summary of exceedances when compared to statistically derived historical background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background upper tolerance limit (UTL) for chemical oxygen demand (COD), oxidation-reduction potential, and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential*	MW220: Oxidation-reduction potential* and sulfate	MW370: Oxidation-reduction potential* and sulfate
MW390: Oxidation-reduction potential* and technetium-99	MW221: Oxidation-reduction potential*	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential,* and sulfate
MW393: Oxidation-reduction potential*	MW222: Oxidation-reduction potential*	MW385: Oxidation-reduction potential,* sulfate, and technetium-99
MW396: COD and Oxidation-reduction potential*	MW223: Oxidation-reduction potential*	MW388: Oxidation-reduction potential* and sulfate
	MW224: Oxidation-reduction potential* and sodium	MW392: Oxidation-reduction potential*
	MW369: Oxidation-reduction potential* and technetium-99	MW397: Oxidation-reduction potential*
	MW372: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential,* sodium, sulfate, and technetium-99	
	MW384: Oxidation-reduction potential,* sulfate, and technetium-99	
	MW387: COD, magnesium, oxidation-reduction potential,* sulfate, and technetium-99	
	MW394: Oxidation-reduction potential*	

^{*}Oxidation-Reduction Potential calibrated as Eh.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	1.73	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
COD	Tolerance Interval	0.02	Current results exceed statistically derived historical background concentration in MW396.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential ^b	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
TOC	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
TOX	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation

a If CV > 1.0, used log-transformed data.

b Oxidation-Reduction Potential calibrated as Eh.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372.
COD	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentrations in MW387.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential ^b	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220. MW221, MW222, MW223, MW224, MW369, MW372, MW384, MW387, and MW394.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW224 and MW372.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW372, MW384, and MW387.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384, and MW387.
TOC	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
TOX	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ^c	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation

a If CV > 1.0, used log-transformed data.

b Oxidation-Reduction Potential calibrated as Eh.

c Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
COD	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential ^b	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW385.
TOC	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
TOX	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethenec	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation

a If CV > 1.0, used log-transformed data.

b Oxidation-Reduction Potential calibrated as Eh.

c Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. For the UCRS, URGA, and LRGA, the test was applied to 3, 9, and 7 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate
MW372: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, and sulfate
MW387: Magnesium, sulfate, and technetium-99	MW388: Sulfate

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the technetium-99 concentration in UCRS well MW390 exceeded the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for calcium, conductivity, dissolved solids, magnesium, and sulfate.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
COD	Tolerance Interval	0.45	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential ^b	Tolerance Interval	0.31	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-78.2	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

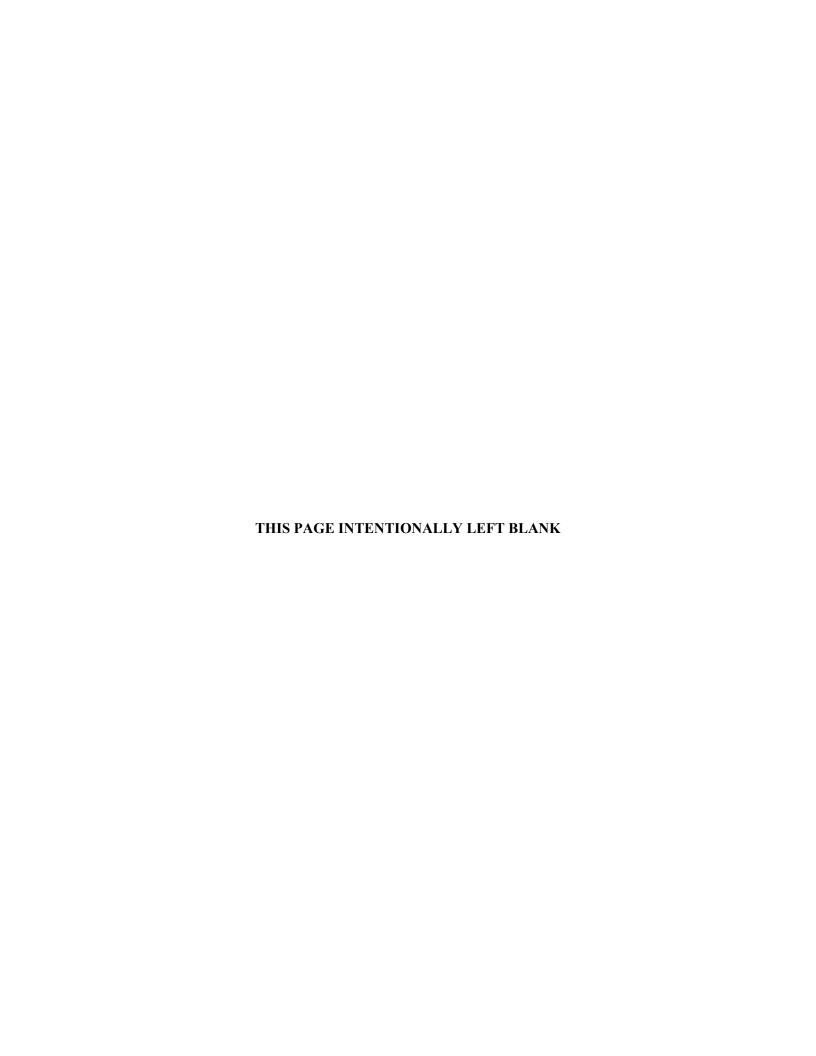
^a If CV > 1.0, used log-transformed data. ^b Oxidation-Reduction Potential calibrated as Eh.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.12	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
COD	Tolerance Interval	0.31	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Conductivity	Tolerance Interval	0.09	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.16	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.13	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential ^b	Tolerance Interval	0.09	MW224 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sodium	Tolerance Interval	0.13	MW224 and MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.28	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.63	MW369, MW372, MW384 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation

a If CV > 1.0, used log-transformed data.
b Oxidation-Reduction Potential calibrated as Eh.


Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.17	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.09	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.12	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.18	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential ^b	Tolerance Interval	0.09	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.02	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.43	MW385 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

^a If CV > 1.0, used log-transformed data.
^b Oxidation-Reduction Potential calibrated as Eh.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Acetone UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 28.375 S = 49.188 CV(1) = 1.733

K factor**= 3.188

TL(1)= 1.85E+02 **LL(1)=**N/A

Statistics-Transformed Background X= 2.712 Data

S= 0.943 **CV(2)**=0.348

K factor=** 3.188

TL(2) = 5.72E + 00 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	1.50E+02	5.01E+00		
9/30/2002	1.60E+01	2.77E+00		
10/16/2002	1.00E+01	2.30E+00		
1/13/2003	1.00E+01	2.30E+00		
4/8/2003	1.00E+01	2.30E+00		
7/16/2003	1.00E+01	2.30E+00		
10/14/2003	1.10E+01	2.40E+00		
4/12/2004	1.00E+01	2.30E+00		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	5.00E+00) N/A	1.61E+00	N/A		
MW390	Downgradien	t No	5.00E+00) N/A	1.61E+00	N/A		

 MW386
 Sidegradient
 No
 5.00E+00
 N/A
 1.61E+00
 N/A

 MW390
 Downgradient
 No
 5.00E+00
 N/A
 1.61E+00
 N/A

 MW393
 Downgradient
 Yes
 1.82E+00
 N/A
 5.99E-01
 NO

 MW396
 Upgradient
 No
 5.00E+00
 N/A
 1.61E+00
 N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-3

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Aluminum **UNITS:** mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.182X = 0.320

CV(1)=0.567

K factor=** 3.188

TL(1)= 9.00E-01

Statistics-Transformed Background X=-1.259 S= 0.503

CV(2) = -0.400

K factor=** 3.188

TL(2) = 3.45E-01 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	3.93E-01	-9.34E-01		
9/16/2002	2.00E-01	-1.61E+00		
10/16/2002	2.00E-01	-1.61E+00		
1/13/2003	5.01E-01	-6.91E-01		
4/8/2003	2.00E-01	-1.61E+00		
7/16/2003	2.00E-01	-1.61E+00		
10/14/2003	2.00E-01	-1.61E+00		
1/14/2004	6.68E-01	-4.03E-01		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter	Data
-----------------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) > TL(2)
MW386	Sidegradient	No	5.00E-02	N/A	-3.00E+00	N/A
MW390	Downgradien	t Yes	3.72E-02	NO	-3.29E+00	N/A
MW393	Downgradien	t No	5.00E-02	N/A	-3.00E+00	N/A
MW396	Upgradient	No	5.00E-02	N/A	-3.00E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA,

^{1989,} based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-4

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison UNITS:** mg/L **UCRS** Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.833X = 0.650

CV(1)=1.282

K factor=** 3.188

TL(1)= 3.31E+00 **LL(1)=**N/A

Statistics-Transformed Background X=-1.034

S= 1.066 CV(2) = -1.031

K factor=** 3.188

TL(2)= 2.36E+00 LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	2.00E+00	6.93E-01		
9/16/2002	2.00E+00	6.93E-01		
10/16/2002	2.00E-01	-1.61E+00		
1/13/2003	2.00E-01	-1.61E+00		
4/8/2003	2.00E-01	-1.61E+00		
7/16/2003	2.00E-01	-1.61E+00		
10/14/2003	2.00E-01	-1.61E+00		
1/14/2004	2.00E-01	-1.61E+00		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)				
MW386	Sidegradient	Yes	1.39E-02	N/A	-4.28E+00	NO				
MW390	Downgradien	t Yes	2.30E-02	N/A	-3.77E+00	NO				
MW393	Downgradien	t Yes	2.02E-02	N/A	-3.90E+00	NO				
MW396	Upgradient	Yes	7.08E-03	N/A	-4.95E+00	NO				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-5

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Bromide UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 1.388S = 0.327 CV(1)=0.236

K factor=** 3.188 TL(1)= 2.43E+00 LL(1)=N/A

Statistics-Transformed Background X=0.301

S = 0.252

CV(2) = 0.838

K factor=** 3.188

TL(2)= 1.10E+00 **LL(2)**=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	1.50E+00	4.05E-01		
9/16/2002	1.60E+00	4.70E-01		
10/16/2002	1.60E+00	4.70E-01		
1/13/2003	1.00E+00	0.00E+00		
4/8/2003	1.00E+00	0.00E+00		
7/16/2003	1.00E+00	0.00E+00		
10/14/2003	1.70E+00	5.31E-01		
1/14/2004	1.70E+00	5.31E-01		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) > TL(2)
MW386	Sidegradient	No	2.00E-01	N/A	-1.61E+00	N/A
MW390	Downgradien	t Yes	2.53E-01	NO	-1.37E+00	N/A
MW393	Downgradien	t Yes	1.27E-01	NO	-2.06E+00	N/A
MW396	Upgradient	Yes	8.20E-01	NO	-1.98E-01	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-6

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Calcium **UNITS:** mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.202

Statistics-Background Data

X = 41.825 S = 8.445

K factor=** 3.188

TL(1) = 6.87E + 01 LL(1) = N/A

Because CV(1) is less than or equal to

Statistics-Transformed Background X=3.711Data

S = 0.241CV(2) = 0.065 **K factor**=** 3.188

TL(2) = 4.48E + 00 LL(2) = N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	3.84E+01	3.65E+00
9/16/2002	4.29E+01	3.76E+00
10/16/2002	4.02E+01	3.69E+00
1/13/2003	4.67E+01	3.84E+00
4/8/2003	4.98E+01	3.91E+00
7/16/2003	4.33E+01	3.77E+00
10/14/2003	4.97E+01	3.91E+00
1/14/2004	2.36E+01	3.16E+00

Dry/Partially Dry Wells

Well No. Gradient MW389 Downgradient 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	1.86E+01	l NO	2.92E+00	N/A			
MW390	Downgradien	t Yes	2.74E+01	l NO	3.31E+00	N/A			
MW393	Downgradien	t Yes	1.75E+01	l NO	2.86E+00	N/A			
MW396	Upgradient	Yes	3.25E+01	l NO	3.48E+00	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-7

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD) UNITS:** mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744

CV(1)=0.021

K factor=** 3.188

TL(1)= 3.77E+01 **LL(1)=**N/A

Statistics-Transformed Background X=3.566Data

S = 0.021CV(2) = 0.006

K factor**= 3.188

TL(2)=3.63E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	3.60E+01	3.58E+00
9/16/2002	3.50E+01	3.56E+00
10/16/2002	3.70E+01	3.61E+00
1/13/2003	3.50E+01	3.56E+00
4/8/2003	3.50E+01	3.56E+00
7/16/2003	3.50E+01	3.56E+00
10/14/2003	3.50E+01	3.56E+00
1/14/2004	3.50E+01	3.56E+00

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
,		

Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) > TL(2)
MW386	Sidegradient	No	2.00E+01	l N/A	3.00E+00	N/A
MW390	Downgradien	t No	2.00E+01	l N/A	3.00E+00	N/A
MW393	Downgradien	t Yes	1.07E+01	l NO	2.37E+00	N/A
MW396	Upgradient	Yes	4.01E+01	l YES	3.69E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW396

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-8

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

CV(1) = 0.052

K factor**= 3.188

TL(1)= 1.18E+02 **LL(1)=**N/A

()

Statistics-Transformed Background X=4.621

Data

S = 0.053

CV(2) = 0.011

K factor=** 3.188

TL(2)=4.79E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	9.16E+01	4.52E+00
9/16/2002	9.83E+01	4.59E+00
10/16/2002	1.01E+02	4.62E+00
1/13/2003	1.08E+02	4.68E+00
4/8/2003	1.01E+02	4.61E+00
7/16/2003	1.03E+02	4.63E+00
10/14/2003	1.07E+02	4.67E+00
1/14/2004	1.04E+02	4.65E+00

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.02E+01	l NO	2.32E+00	N/A
MW390	Downgradien	t Yes	2.02E+01	l NO	3.01E+00	N/A
MW393	Downgradien	t Yes	9.63E+00) NO	2.26E+00	N/A
MW396	Upgradient	Yes	5.49E+01	l NO	4.01E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-9

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 922.500 **S**= 107.616 **CV(1)**=0.117

K factor**= 3.188 TL(1

TL(1)= 1.27E+03 **LL(1)**=N/A

Statistics-Transformed Background X= 6.822

S= 0.111 **CV(2)**=0.016

K factor=** 3.188

TL(2)= 7.17E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	7.84E+02	6.66E+00			
9/30/2002	8.71E+02	6.77E+00			
10/16/2002	8.68E+02	6.77E+00			
1/13/2003	9.12E+02	6.82E+00			
4/8/2003	9.42E+02	6.85E+00			
7/16/2003	9.10E+02	6.81E+00			
10/14/2003	9.35E+02	6.84E+00			
1/14/2004	1.16E+03	7.05E+00			

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	5.57E+02	. NO	6.32E+00	N/A

+00 N/A MW390 Downgradient Yes 6.03E+02NO 6.40E+00 N/A MW393 Downgradient Yes 4.74E+02 NO 6.16E+00 N/A MW396 Upgradient 7.08E+02 NO 6.56E+00 N/A Yes

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-10

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison UNITS:** mg/L **UCRS** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.481

Statistics-Background Data

S = 0.014X = 0.028

K factor=** 3.188

TL(1) = 7.16E-02 LL(1)=N/A

Statistics-Transformed Background X=-3.650 S= 0.414 Data

CV(2) = -0.113**K factor**=** 3.188 TL(2) = -2.33E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	5.00E-02	-3.00E+00			
9/16/2002	5.00E-02	-3.00E+00			
10/16/2002	2.60E-02	-3.65E+00			
1/13/2003	2.00E-02	-3.91E+00			
4/8/2003	2.00E-02	-3.91E+00			
7/16/2003	2.00E-02	-3.91E+00			
10/14/2003	2.00E-02	-3.91E+00			
1/14/2004	2.00E-02	-3.91E+00			

Dry/Partially Dry Wells

Well No. Gradient MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Curr	Current Quarter Data						
Well N	lo. Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)	
MW3	86 Sidegradient	Yes	8.16E-04	NO	-7.11E+00	N/A	
MW3	90 Downgradier	nt Yes	1.84E-03	NO	-6.30E+00	N/A	
MW3	93 Downgradier	nt Yes	3.87E-04	NO	-7.86E+00	N/A	
MW3	96 Upgradient	Yes	5.59E-04	NO	-7.49E+00	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-11

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Dissolved Oxygen UNITS:** mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395S = 1.677 **CV(1)=**1.202

K factor=** 3.188

TL(1) = 6.74E + 00 LL(1) = N/A

Statistics-Transformed Background X=-0.043 S= 0.814

Data

CV(2) = -18.867

K factor=** 3.188

TL(2) = 2.55E + 00 LL(2) = N/A

Historical Background Data from

Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45E+00	1.70E+00
9/16/2002	4.00E-01	-9.16E-01
10/16/2002	5.40E-01	-6.16E-01
1/13/2003	7.20E-01	-3.29E-01
4/8/2003	6.90E-01	-3.71E-01
7/16/2003	1.10E+00	9.53E-02
10/14/2003	7.10E-01	-3.42E-01
1/14/2004	1.55E+00	4.38E-01

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

MW396 Upgradient

Yes

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

5.07E-01

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2	!)
MW386	Sidegradient	Yes	3.97E+00) N/A	1.38E+00	NO	
MW390	Downgradien	t Yes	2.20E+00) N/A	7.88E-01	NO	
MW393	Downgradien	t Yes	2.18E+00) N/A	7.79E-01	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

1.66E+00

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor**= 3.188 TL(1)= 8.83E+02 LL(1)=N/A

Statistics-Transformed Background X=6.298

Data

 $S= 0.162 \quad CV(2)=0.026$

K factor**= 3.188 TL(2)= 6.82E+00 LL(2)=N/A

Historical Background Data from

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.02E+02	6.22E+00
9/16/2002	5.06E+02	6.23E+00
10/16/2002	5.43E+02	6.30E+00
1/13/2003	5.21E+02	6.26E+00
4/8/2003	5.04E+02	6.22E+00
7/16/2003	5.32E+02	6.28E+00
10/14/2003	4.90E+02	6.19E+00
1/14/2004	8.05E+02	6.69E+00

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	3.43E+02	2 NO	5.84E+00	N/A	
MW390	Downgradien	t Yes	3.52E+02	NO NO	5.86E+00	N/A	
MW393	Downgradien	t Yes	2.88E+02	NO NO	5.66E+00	N/A	
MW396	Ungradient	Yes	3.92E±02	NO.	5.97E+00	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-13

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison UNITS:** mg/L **UCRS** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 7.796S = 3.723

S = 0.723

CV(1) = 0.478

CV(2) = 0.384

K factor=** 3.188

TL(1)= 1.97E+01 LL(1)=N/A

Statistics-Transformed Background x=1.880

K factor=** 3.188

TL(2) = 4.18E + 00 LL(2) = N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 1.80E+00 5.88E-01 9/16/2002 9.53E+00 2.25E+00 10/16/2002 7.43E+00 2.01E+00 1/13/2003 9.93E+00 2.30E+00 4/8/2003 1.02E+01 2.32E+00 7/16/2003 9.16E+00 2.21E+00 10/14/2003 1.19E+01 2.48E+00 1/14/2004 2.42E+00 8.84E-01

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	V uui tei	Dutte

Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL
MW386	Sidegradient	Yes	7.13E-02	NO	-2.64E+00	N/A
MW390	Downgradien	t Yes	3.87E-02	NO	-3.25E+00	N/A
MW393	Downgradien	t Yes	5.45E-01	NO	-6.07E-01	N/A
MW396	Upgradient	Yes	4.16E-02	NO	-3.18E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-14

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Magnesium **UNITS:** mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X= 16.876 **S**= 3.313

CV(1)=0.196

K factor=** 3.188

TL(1)= 2.74E+01 LL(1)=N/A

Statistics-Transformed Background X=2.804

S = 0.240

CV(2) = 0.086

Downgradient

K factor=** 3.188

TL(2)=3.57E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.55E+01	2.74E+00
9/16/2002	1.73E+01	2.85E+00
10/16/2002	1.78E+01	2.88E+00
1/13/2003	1.92E+01	2.95E+00
4/8/2003	1.78E+01	2.88E+00
7/16/2003	1.78E+01	2.88E+00
10/14/2003	2.02E+01	3.01E+00
1/14/2004	9.41E+00	2.24E+00

Dry/Partially Dry Wells

Well No. Gradient MW389

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >T	L(1)? LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	8.78E+00) NO	2.17E+00	N/A	
MW390	Downgradien	t Ves	1.25E+01	NO	2.53E+00	N/A	

MW393 Downgradient Yes 4.70E+00 NO 1.55E+00 N/A NO 2.67E+00N/A MW396 Upgradient Yes 1.45E+01

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-15

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Manganese **UNITS:** mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 0.774S = 0.353 CV(1)=0.456

K factor=** 3.188

TL(1)= 1.90E+00 **LL(1)=**N/A

Statistics-Transformed Background X=-0.566 S= 1.192

CV(2) = -2.105

K factor=** 3.188

TL(2)=3.23E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.70E-01	-5.62E-01
9/16/2002	6.47E-01	-4.35E-01
10/16/2002	8.80E-01	-1.28E-01
1/13/2003	1.13E+00	1.24E-01
4/8/2003	9.65E-01	-3.56E-02
7/16/2003	9.83E-01	-1.71E-02
10/14/2003	9.84E-01	-1.61E-02
1/14/2004	3.14E-02	-3.46E+00

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TI	L(1)? LN(Result)	LN(Result) >TL(2	2)
MW386	Sidegradient	Yes	2.40E-02	NO	-3.73E+00	N/A	
MW390	Downgradien	t No	5.00E-03	N/A	-5.30E+00	N/A	
MMM202	Darrmanadian	+ Vaa	5 42E 02	NO	2.025+00	NT/A	

MW393 Downgradient Yes -2.92E+00 N/A 5.42E-02 NO -4.18E+00 N/A MW396 Upgradient Yes 1.53E-02 N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-16

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Molybdenum **UNITS:** mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.011X = 0.007

CV(1) = 1.507

K factor=** 3.188

TL(1)= 4.22E-02 **LL(1)=**N/A

Statistics-Transformed Background x=-5.928 S= 1.420

CV(2) = -0.240

K factor=** 3.188

TL(2) = -1.40E+00 LL(2) = N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2.50E-02	-3.69E+00
9/16/2002	2.50E-02	-3.69E+00
10/16/2002	1.00E-03	-6.91E+00
1/13/2003	1.28E-03	-6.66E+00
4/8/2003	2.71E-03	-5.91E+00
7/16/2003	1.17E-03	-6.75E+00
10/14/2003	1.00E-03	-6.91E+00
1/14/2004	1.00E-03	-6.91E+00

Dry/Partially Dry Wells

Well No. Gradient MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	7.27E-04	N/A	-7.23E+00	NO
MW390	Downgradien	t No	1.00E-03	N/A	-6.91E+00	N/A
MW393	Downgradien	t Yes	4.71E-04	N/A	-7.66E+00	NO
MW396	Upgradient	Yes	3.38E-04	N/A	-7.99E+00	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-17

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 0.016 S = 0.021

K factor=** 3.188

TL(1)= 8.26E-02 LL(1)=N/A

LL(1) 10/21

..... g

Statistics-Transformed Background X=-4.706 S= 1.057

CV(2) = -0.225

CV(1)=1.272

K factor=** 3.188

TL(2)=-1.34E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.00E-02	-3.00E+00
9/16/2002	5.00E-02	-3.00E+00
10/16/2002	5.00E-03	-5.30E+00
1/13/2003	5.00E-03	-5.30E+00
4/8/2003	5.71E-03	-5.17E+00
7/16/2003	5.00E-03	-5.30E+00
10/14/2003	5.00E-03	-5.30E+00
1/14/2004	5.00E-03	-5.30E+00

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) > TL(2)
MW386	Sidegradient	Yes	1.08E-03	N/A	-6.83E+00	NO
MW390	Downgradien	t Yes	1.20E-03	N/A	-6.73E+00	NO
MW393	Downgradien	t No	2.00E-03	N/A	-6.21E+00	N/A
MW396	Upgradient	No	2.00E-03	N/A	-6.21E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-18

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 13.000 **S**= 61.952 **CV(1)**=4.766

K factor**= 3.188

TL(1)= 2.11E+02 **LL(1)=**N/A

Statistics-Transformed Background X=4.364 Data

S = 0.333

CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.74E + 00 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.00E+01	4.09E+00
4/8/2003	7.10E+01	4.26E+00
7/16/2003	-5.60E+01	#Func!
10/14/2003	-5.40E+01	#Func!
1/14/2004	-2.20E+01	#Func!
4/12/2004	-6.00E+00	#Func!
7/20/2004	-3.00E+00	#Func!
10/12/2004	1.14E+02	4.74E+00

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	3.43E+02	N/A	5.84E+00	YES
MW390	Downgradien	t Yes	4.36E+02	N/A	6.08E+00	YES
MW393	Downgradien	t Yes	3.63E+02	N/A	5.89E+00	YES
MW396	Upgradient	Yes	2.50E+02	N/A	5.52E+00	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393 MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-19

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison pН **UNITS: Std Unit UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.350X = 6.460

CV(1)=0.054

K factor=** 3.736

TL(1)= 7.77E+00 **LL(1)=**5.15E+00

Statistics-Transformed Background X=1.864 Data

S = 0.054

CV(2)=0.029 K factor**= 3.736

TL(2)=2.07E+00 **LL(2)**=1.66E+00

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17E+00	1.82E+00
9/16/2002	6.40E+00	1.86E+00
10/16/2002	5.90E+00	1.77E+00
1/13/2003	6.40E+00	1.86E+00
4/8/2003	6.65E+00	1.89E+00
7/16/2003	6.40E+00	1.86E+00
10/14/2003	6.71E+00	1.90E+00
1/14/2004	7.05E+00	1.95E+00

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.76E+00) NO	1.91E+00	N/A
MW390	Downgradien	t Yes	6.02E+00) NO	1.80E+00	N/A
MW393	Downgradien	t Yes	6.32E+00) NO	1.84E+00	N/A
MW396	Upgradient	Yes	6.39E+00) NO	1.85E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X= 1.411 **S**= 0.399

CV(1)=0.282

K factor**= 3.188

TL(1)= 2.68E+00 **LL(1)**=N/A

LL(I)-N/A

Statistics-Transformed Background X=0.311

S = 0.271

CV(2)=0.870

K factor=** 3.188

TL(2)= 1.18E+00 **LL(2)=**N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2.00E+00	6.93E-01
9/16/2002	2.00E+00	6.93E-01
10/16/2002	9.78E-01	-2.22E-02
1/13/2003	1.08E+00	7.70E-02
4/8/2003	1.12E+00	1.13E-01
7/16/2003	1.38E+00	3.22E-01
10/14/2003	1.24E+00	2.15E-01
1/14/2004	1.49E+00	3.99E-01

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Qua	arter Data
-------------	------------

Well No.	Gradient	Detected?	Result	Result >TL((1)? LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	2.54E-01	NO	-1.37E+00	N/A
MW390	Downgradien	t Yes	3.46E-01	NO	-1.06E+00	N/A
MW393	Downgradien	t Yes	6.08E-01	NO	-4.98E-01	N/A
MW396	Upgradient	Yes	8.99E-01	NO	-1.06E-01	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5. Appendix B of Statistical Analysis of Ground-Water

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-21

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor=** 3.188

TL(1)= 2.09E+02 **LL(1)**=N/A

Statistics-Transformed Background X=4.595 Data

S= 0.492 **CV(2)**=0.107

K factor=** 3.188

TL(2)= 6.16E+00 **LL(2)**=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.15E+02	4.74E+00
9/16/2002	1.16E+02	4.75E+00
10/16/2002	1.17E+02	4.76E+00
1/13/2003	1.22E+02	4.80E+00
4/8/2003	1.06E+02	4.66E+00
7/16/2003	1.17E+02	4.76E+00
10/14/2003	1.32E+02	4.88E+00
1/14/2004	2.96E+01	3.39E+00

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	9.48E+01	NO	4.55E+00	N/A
MW390	Downgradien	t Yes	9.43E+01	NO	4.55E+00	N/A
MW393	Downgradien	t Yes	9.07E+01	NO	4.51E+00	N/A
MW396	Upgradient	Yes	1.02E+02	2 NO	4.62E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-22

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.463 S = 8.876

K factor=** 3.188

TL(1)= 5.08E+01 **LL(1)=**N/A

Statistics-Transformed Background X= 3.054 Data

S = 0.351

CV(2) = 0.115

CV(1)=0.395

K factor**= 3.188

TL(2) = 4.17E + 00 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	4.19E+01	3.74E+00
9/16/2002	2.63E+01	3.27E+00
10/16/2002	2.06E+01	3.03E+00
1/13/2003	1.66E+01	2.81E+00
4/8/2003	2.39E+01	3.17E+00
7/16/2003	1.88E+01	2.93E+00
10/14/2003	1.29E+01	2.56E+00
1/14/2004	1.87E+01	2.93E+00

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	4.09E+01	l NO	3.71E+00	N/A
MW390	Downgradien	t Yes	3.52E+01	l NO	3.56E+00	N/A
MW393	Downgradien	t Yes	2.32E+01	l NO	3.14E+00	N/A
MW396	Upgradient	Yes	2.90E+01	l NO	3.37E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-23

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Technetium-99 UNITS: pCi/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 6.558X = 7.624

CV(1)=0.860

K factor=** 3.188

TL(1)= 2.85E+01 LL(1)=N/A

Statistics-Transformed Background X=1.498 Data

S = 1.321

CV(2) = 0.882

Downgradient

K factor=** 3.188

TL(2)=5.71E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:		MW396	
	Date Collected	Result	LN(Result)
	8/13/2002	1.67E+01	2.82E+00
	9/16/2002	6.39E+00	1.85E+00
	10/16/2002	4.55E+00	1.52E+00
	1/13/2003	1.65E+01	2.80E+00
	4/8/2003	3.04E+00	1.11E+00
	7/16/2003	3.54E-01	-1.04E+00
	10/14/2003	1.19E+01	2.48E+00
	1/14/2004	1.56E+00	4.45E-01

Dry/Partially Dry Wells

Well No. Gradient

MW389

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

							_
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2))
MW386	Sidegradient	No	5.25E+00) N/A	1.66E+00	N/A	_
MW390	Downgradien	t Yes	6.52E+01	YES	4.18E+00	N/A	
MW393	Downgradien	t No	2.89E+00	N/A	1.06E+00	N/A	
MW396	Upgradient	No	9.19E+00) N/A	2.22E+00	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-24

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Total Organic Carbon (TOC) **UNITS:** mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 4.696X = 9.988

CV(1) = 0.470

K factor=** 3.188

TL(1)= 2.50E+01 LL(1)=N/A

Statistics-Transformed Background X=2.210

S = 0.454

CV(2) = 0.205

K factor=** 3.188

TL(2)=3.66E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 1.90E+01 2.94E+00 9/16/2002 1.46E+01 2.68E+00 10/16/2002 1.04E+01 2.34E+00 1/13/2003 4.40E+00 1.48E+00 4/8/2003 7.00E+00 1.95E+00 7/16/2003 7.30E+00 1.99E+00 10/14/2003 9.10E+00 2.21E+00 1/14/2004 8.10E+00 2.09E+00

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(
MW386	Sidegradient	Yes	4.19E+00) NO	1.43E+00	N/A
MW390	Downgradien	t Yes	1.97E+00) NO	6.78E-01	N/A
MW393	Downgradien	t Yes	2.47E+00) NO	9.04E-01	N/A
MW396	Upgradient	Yes	3.92E+00) NO	1.37E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-25

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 142.650 **S**= 53.533 **CV(1)**=0.375

K factor**= 3.188 TL

TL(1)= 3.13E+02 **LL(1)=**N/A

Statistics-Transformed Background X=4.896 Data

 $S = 0.390 \quad CV(2) = 0.080$

K factor=** 3.188

TL(2)= 6.14E+00 **LL(2)**=N/A

L(2)

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.93E+02	5.26E+00
9/16/2002	1.90E+02	5.25E+00
10/16/2002	2.21E+02	5.40E+00
1/13/2003	1.06E+02	4.66E+00
4/8/2003	7.78E+01	4.35E+00
7/16/2003	1.22E+02	4.80E+00
10/14/2003	8.64E+01	4.46E+00
1/14/2004	1.45E+02	4.98E+00

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL
MW386	Sidegradient	Yes	1.34E+02	2 NO	4.90E+00	N/A
MW390	Downgradien	t Yes	1.05E+01	l NO	2.35E+00	N/A
MW393	Downgradien	t Yes	2.02E+01	l NO	3.01E+00	N/A
MW396	Upgradient	Yes	4.81E+01	l NO	3.87E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-26

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Vanadium **UNITS:** mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.002X = 0.021

CV(1)=0.109

K factor=** 3.188

TL(1)= 2.86E-02 LL(1)=N/A

Statistics-Transformed Background X=-3.856 S= 0.103

CV(2) = -0.027

K factor=** 3.188

TL(2) = -3.53E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2.50E-02	-3.69E+00
9/16/2002	2.50E-02	-3.69E+00
10/16/2002	2.00E-02	-3.91E+00
1/13/2003	2.00E-02	-3.91E+00
4/8/2003	2.00E-02	-3.91E+00
7/16/2003	2.00E-02	-3.91E+00
10/14/2003	2.00E-02	-3.91E+00
1/14/2004	2.00E-02	-3.91E+00

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) > TL(2)
MW386	Sidegradient	Yes	4.62E-03	NO	-5.38E+00	N/A
MW390	Downgradien	t Yes	4.39E-03	NO	-5.43E+00	N/A
MW393	Downgradien	t No	9.69E-03	N/A	-4.64E+00	N/A
MW396	Upgradient	No	5.36E-03	N/A	-5.23E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-27

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Zinc **UNITS:** mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

CV(1) = 0.786

K factor=** 3.188

TL(1)=1.56E-01 LL(1)=N/A

Data

Statistics-Transformed Background x=-3.342 S= 0.682

S = 0.035

CV(2) = -0.204

K factor=** 3.188

TL(2) = -1.17E + 00 LL(2) = N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	1.00E-01	-2.30E+00		
9/16/2002	1.00E-01	-2.30E+00		
10/16/2002	2.50E-02	-3.69E+00		
1/13/2003	3.50E-02	-3.35E+00		
4/8/2003	3.50E-02	-3.35E+00		
7/16/2003	2.00E-02	-3.91E+00		
10/14/2003	2.00E-02	-3.91E+00		
1/14/2004	2.00E-02	-3.91E+00		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1))? LN(Result)	LN(Result) > TL(2)
MW386	Sidegradient	No	2.00E-02	N/A	-3.91E+00	N/A
MW390	Downgradien	t Yes	3.49E-03	NO	-5.66E+00	N/A
MW393	Downgradien	t No	2.00E-02	N/A	-3.91E+00	N/A
MW396	Upgradient	No	2.00E-02	N/A	-3.91E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison UNITS:** ug/L URGA Acetone

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 10.250 S = 1.000

CV(1)=0.098

K factor=** 2.523

TL(1)= 1.28E+01 **LL(1)**=N/A

Statistics-Transformed Background X=2.324

S = 0.084

CV(2)=0.036

K factor=** 2.523

TL(2)= 2.54E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.00E+01 2.30E+00 1/15/2003 1.00E+01 2.30E+00 4/10/2003 1.00E+01 2.30E+00 7/14/2003 1.00E+01 2.30E+00 10/13/2003 1.00E+01 2.30E+00 4/13/2004 1.00E+01 2.30E+00 7/21/2004 1.00E+01 2.30E+00 10/11/2004 1.00E+01 2.30E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.00E+01 2.30E+00 9/30/2002 1.00E+01 2.30E+00 10/16/2002 1.00E+01 2.30E+00 1/13/2003 1.00E+01 2.30E+00 4/10/2003 1.00E+01 2.30E+00 7/16/2003 1.00E+01 2.30E+00 10/14/2003 1.40E+01 2.64E+00 4/12/2004 1.00E+01 2.30E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	5.00E+00) N/A	1.61E+00	N/A
MW221	Sidegradient	No	5.00E+00) N/A	1.61E+00	N/A
MW222	Sidegradient	No	5.00E+00) N/A	1.61E+00	N/A
MW223	Sidegradient	No	5.00E+00) N/A	1.61E+00	N/A
MW224	Sidegradient	No	5.00E+00) N/A	1.61E+00	N/A
MW369	Downgradien	t No	5.00E+00) N/A	1.61E+00	N/A
MW372	Downgradien	t No	5.00E+00) N/A	1.61E+00	N/A
MW384	Sidegradient	No	5.00E+00) N/A	1.61E+00	N/A
MW387	Downgradien	t No	5.00E+00) N/A	1.61E+00	N/A
MW391	Downgradien	t No	5.00E+00) N/A	1.61E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

6.58E-01

N/A

1.93E+00

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
 - LL Lower Tolerance Limit, LL = X (K * S)

Yes

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-29

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Aluminum **UNITS:** mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.061X = 0.221

CV(1) = 0.277

K factor=** 2.523

TL(1)= 3.76E-01

Statistics-Transformed Background X=-1.534 S= 0.212

CV(2) = -0.138

K factor=** 2.523

TL(2)=-9.99E-01 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 2.00E-01 -1.61E+00 1/15/2003 2.00E-01 -1.61E+00 4/10/2003 2.00E-01 -1.61E+00 7/14/2003 2.00E-01 -1.61E+00 10/13/2003 4.27E-01 -8.51E-01 1/13/2004 3.09E-01 -1.17E+00 4/13/2004 2.00E-01 -1.61E+00 7/21/2004 2.02E-01 -1.60E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2.00E-01 -1.61E+00 9/16/2002 2.00E-01 -1.61E+00 10/16/2002 2.00E-01 -1.61E+00 1/13/2003 2.00E-01 -1.61E+00 4/10/2003 2.00E-01 -1.61E+00 7/16/2003 2.00E-01 -1.61E+00 10/14/2003 2.00E-01 -1.61E+00 1/13/2004 2.00E-01 -1.61E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	4.17E-02	NO	-3.18E+00	N/A
MW221	Sidegradient	No	5.00E-02	N/A	-3.00E+00	N/A
MW222	Sidegradient	No	5.00E-02	N/A	-3.00E+00	N/A
MW223	Sidegradient	No	5.00E-02	N/A	-3.00E+00	N/A
MW224	Sidegradient	No	5.00E-02	N/A	-3.00E+00	N/A
MW369	Downgradien	t Yes	3.46E-02	NO	-3.36E+00	N/A
MW372	Downgradien	t No	5.00E-02	N/A	-3.00E+00	N/A
MW384	Sidegradient	No	5.00E-02	N/A	-3.00E+00	N/A
MW387	Downgradien	t Yes	3.30E-02	NO	-3.41E+00	N/A
MW391	Downgradien	t Yes	2.65E-02	NO	-3.63E+00	N/A
MW394	Upgradient	No	5.00E-02	N/A	-3.00E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison UNITS:** mg/L URGA Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.615X = 0.425

CV(1)=1.447

K factor=** 2.523

TL(1)= 1.98E+00 **LL(1)=**N/A

Statistics-Transformed Background X=-1.322 S= 0.786

CV(2) = -0.595

K factor=** 2.523

TL(2) = 6.63E-01 LL(2) = N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	2.00E-01	-1.61E+00
1/15/2003	2.00E-01	-1.61E+00
4/10/2003	2.00E-01	-1.61E+00
7/14/2003	2.00E-01	-1.61E+00
10/13/2003	2.00E-01	-1.61E+00
1/13/2004	2.00E-01	-1.61E+00
4/13/2004	2.00E-01	-1.61E+00
7/21/2004	2.00E-01	-1.61E+00
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 6.93E-01
Date Collected	Result	
Date Collected 8/13/2002	Result 2.00E+00	6.93E-01
Date Collected 8/13/2002 9/16/2002	Result 2.00E+00 2.00E+00	6.93E-01 6.93E-01
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2.00E+00 2.00E+00 2.00E-01	6.93E-01 6.93E-01 -1.61E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2.00E+00 2.00E+00 2.00E-01 2.00E-01	6.93E-01 6.93E-01 -1.61E+00 -1.61E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2.00E+00 2.00E+00 2.00E-01 2.00E-01 2.00E-01	6.93E-01 6.93E-01 -1.61E+00 -1.61E+00

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	8.63E-03	N/A	-4.75E+00	NO
MW221	Sidegradient	Yes	3.02E-02	N/A	-3.50E+00	NO
MW222	Sidegradient	Yes	1.06E-02	N/A	-4.55E+00	NO
MW223	Sidegradient	Yes	1.06E-02	N/A	-4.55E+00	NO
MW224	Sidegradient	Yes	3.00E-02	N/A	-3.51E+00	NO
MW369	Downgradien	t Yes	1.39E-02	N/A	-4.28E+00	NO
MW372	Downgradien	t Yes	1.66E+00) N/A	5.07E-01	NO
MW384	Sidegradient	Yes	4.80E-02	N/A	-3.04E+00	NO
MW387	Downgradien	t Yes	3.86E-02	N/A	-3.25E+00	NO
MW391	Downgradien	t Yes	2.42E-02	N/A	-3.72E+00	NO
MW394	Upgradient	Yes	1.93E-02	N/A	-3.95E+00	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

D1-31

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Bromide** URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.000X = 1.000

CV(1)=0.000

K factor=** 2.523

TL(1)= 1.00E+00 **LL(1)**=N/A

Statistics-Transformed Background X=0.000

S = 0.000

CV(2)=#Num!

K factor=** 2.523

TL(2)= 0.00E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.00E+00 0.00E+001.00E+00 1/15/2003 0.00E+004/10/2003 1.00E+00 0.00E+007/14/2003 1.00E+00 0.00E+0010/13/2003 1.00E+00 0.00E+001/13/2004 1.00E+00 0.00E+004/13/2004 1.00E+00 0.00E+007/21/2004 1.00E+00 0.00E+00Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.00E+00 0.00E+009/16/2002 1.00E+00 0.00E+0010/16/2002 1.00E+00 0.00E+001/13/2003 1.00E+00 0.00E+004/10/2003 1.00E+00 0.00E+007/16/2003 1.00E+00 0.00E+0010/14/2003 1.00E+00 0.00E+001/13/2004 1.00E+00 0.00E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL	L(1)? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.83E-01	NO	-1.70E+00	N/A
MW221	Sidegradient	Yes	4.53E-01	NO	-7.92E-01	N/A
MW222	Sidegradient	Yes	4.19E-01	NO	-8.70E-01	N/A
MW223	Sidegradient	Yes	4.29E-01	NO	-8.46E-01	N/A
MW224	Sidegradient	Yes	3.06E-01	NO	-1.18E+00	N/A
MW369	Downgradien	t Yes	3.25E-01	NO	-1.12E+00	N/A
MW372	Downgradien	t Yes	4.83E-01	NO	-7.28E-01	N/A
MW384	Sidegradient	Yes	2.65E-01	NO	-1.33E+00	N/A
MW387	Downgradien	t Yes	5.05E-01	NO	-6.83E-01	N/A
MW391	Downgradien	t Yes	5.07E-01	NO	-6.79E-01	N/A
MW394	Upgradient	Yes	5.51E-01	NO	-5.96E-01	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-32

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Calcium **UNITS:** mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 27.638 S = 4.743

CV(1)=0.172

K factor=** 2.523

TL(1)=3.96E+01 LL(1)=N/A

Statistics-Transformed Background X=3.304

S = 0.183

CV(2) = 0.055

K factor=** 2.523

TL(2)=3.76E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	2.36E+01	3.16E+00
1/15/2003	2.59E+01	3.25E+00
4/10/2003	3.04E+01	3.41E+00
7/14/2003	3.39E+01	3.52E+00
10/13/2003	2.13E+01	3.06E+00
1/13/2004	2.03E+01	3.01E+00
4/13/2004	2.38E+01	3.17E+00
7/21/2004	1.90E+01	$2.94E \pm 00$
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.38E+00
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 2.95E+01	3.38E+00
Date Collected 8/13/2002 9/16/2002	Result 2.95E+01 2.99E+01	3.38E+00 3.40E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2.95E+01 2.99E+01 3.12E+01	3.38E+00 3.40E+00 3.44E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2.95E+01 2.99E+01 3.12E+01 3.07E+01	3.38E+00 3.40E+00 3.44E+00 3.42E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2.95E+01 2.99E+01 3.12E+01 3.07E+01 3.44E+01	3.38E+00 3.40E+00 3.44E+00 3.42E+00 3.54E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	2.82E+01	l NO	3.34E+00	N/A
MW221	Sidegradient	Yes	2.66E+01	l NO	3.28E+00	N/A
MW222	Sidegradient	Yes	1.98E+01	l NO	2.99E+00	N/A
MW223	Sidegradient	Yes	2.24E+01	l NO	3.11E+00	N/A
MW224	Sidegradient	Yes	2.32E+01	l NO	3.14E+00	N/A
MW369	Downgradien	t Yes	1.60E+01	l NO	2.77E+00	N/A
MW372	Downgradien	t Yes	6.20E+01	YES	4.13E+00	N/A
MW384	Sidegradient	Yes	2.06E+01	l NO	3.03E+00	N/A
MW387	Downgradien	t Yes	3.70E+01	l NO	3.61E+00	N/A
MW391	Downgradien	t Yes	2.42E+01	l NO	3.19E+00	N/A
MW394	Upgradient	Yes	2.69E+01	l NO	3.29E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-33

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD) UNITS:** mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.000 S = 0.000

CV(1)=0.000

K factor=** 2.523

TL(1)=3.50E+01 LL(1)=N/A

Data

Statistics-Transformed Background X=3.555

S = 0.000

CV(2) = 0.000

K factor=** 2.523

TL(2)=3.56E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	3.50E+01	3.56E+00
1/15/2003	3.50E+01	3.56E+00
4/10/2003	3.50E+01	3.56E+00
7/14/2003	3.50E+01	3.56E+00
10/13/2003	3.50E+01	3.56E+00
1/13/2004	3.50E+01	3.56E+00
4/13/2004	3.50E+01	3.56E+00
7/21/2004	3.50E+01	3.56E+00
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.56E+00
Date Collected	Result	
Date Collected 8/13/2002	Result 3.50E+01	3.56E+00
Date Collected 8/13/2002 9/16/2002	Result 3.50E+01 3.50E+01	3.56E+00 3.56E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 3.50E+01 3.50E+01 3.50E+01	3.56E+00 3.56E+00 3.56E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 3.50E+01 3.50E+01 3.50E+01 3.50E+01	3.56E+00 3.56E+00 3.56E+00 3.56E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 3.50E+01 3.50E+01 3.50E+01 3.50E+01 3.50E+01	3.56E+00 3.56E+00 3.56E+00 3.56E+00 3.56E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	2.00E+01	N/A	3.00E+00	N/A
MW221	Sidegradient	Yes	1.31E+01	NO	2.57E+00	N/A
MW222	Sidegradient	No	2.00E+01	N/A	3.00E+00	N/A
MW223	Sidegradient	No	2.00E+01	N/A	3.00E+00	N/A
MW224	Sidegradient	No	2.00E+01	N/A	3.00E+00	N/A
MW369	Downgradien	t No	2.00E+01	N/A	3.00E+00	N/A
MW372	Downgradien	t No	2.00E+01	N/A	3.00E+00	N/A
MW384	Sidegradient	No	2.00E+01	N/A	3.00E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

YES

N/A

N/A

3.85E+01

2.00E+01

2.00E+01

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A N/A

N/A

MW387

3.65E+00

3.00E+00

3.00E+00

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW387 Downgradient Yes

MW394 Upgradient

Downgradient No

No

MW391

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-34

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Chloride UNITS:** mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 49.044 S = 11.278CV(1) = 0.230 **K factor**=** 2.523

TL(1)= 7.75E+01 **LL(1)=**N/A

Statistics-Transformed Background X=3.866

S = 0.244

CV(2) = 0.063

K factor=** 2.523

TL(2)= 4.48E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 4.46E+01 3.80E+00 1/15/2003 4.32E+01 3.77E+004/10/2003 3.15E+01 3.45E+00 7/14/2003 3.08E+01 3.43E+00 10/13/2003 4.09E+01 3.71E+00 1/13/2004 4.08E+01 3.71E+00 4/13/2004 3.75E+01 3.62E + 007/21/2004 4.08E+01 3.71E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 6.04E+01 4.10E+00 9/16/2002 6.03E+01 4.10E+00 10/16/2002 5.80E+01 4.06E+00 1/13/2003 6.07E+014.11E+00 4/10/2003 6.29E+01 4.14E+00 7/16/2003 5.81E+01 4.06E+00 10/14/2003 5.82E+01 4.06E+00 1/13/2004 5.60E+01 4.03E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >T	L(1)? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.57E+01	NO	2.75E+00	N/A
MW221	Sidegradient	Yes	3.65E+01	NO	3.60E+00	N/A
MW222	Sidegradient	Yes	3.16E+01	NO	3.45E+00	N/A
MW223	Sidegradient	Yes	3.74E+01	NO	3.62E+00	N/A
MW224	Sidegradient	Yes	2.31E+01	NO	3.14E+00	N/A
MW369	Downgradien	t Yes	2.87E+01	NO	3.36E+00	N/A
MW372	Downgradien	t Yes	3.61E+01	NO	3.59E+00	N/A
MW384	Sidegradient	Yes	2.14E+01	NO	3.06E+00	N/A
MW387	Downgradien	t Yes	3.76E+01	NO	3.63E+00	N/A
MW391	Downgradien	t Yes	4.01E+01	NO	3.69E+00	N/A
MW394	Upgradient	Yes	4.76E+01	NO	3.86E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-35

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Cobalt **UNITS:** mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.040X = 0.016

CV(1)=2.440

K factor=** 2.523

TL(1)= 1.16E-01 **LL(1)=**N/A

Data

Statistics-Transformed Background X=-5.582 S= 1.573

CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.61E+00 LL(2) = N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 4.10E-03 -5.50E+00 1/15/2003 4.96E-03 -5.31E+00 4/10/2003 2.89E-03 -5.85E+00 7/14/2003 1.61E-01 -1.83E+00 10/13/2003 2.26E-02 -3.79E+00 1/13/2004 4.64E-03 -5.37E+00 4/13/2004 1.00E-03 -6.91E+00 7/21/2004 2.64E-03 -5.94E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2.50E-02 -3.69E+00 9/16/2002 2.50E-02 -3.69E+00 10/16/2002 1.00E-03 -6.91E+00 1/13/2003 1.00E-03 -6.91E+00 4/10/2003 1.00E-03 -6.91E+00 7/16/2003 1.00E-03 -6.91E+00 10/14/2003 1.00E-03 -6.91E+00 1/13/2004 1.00E-03 -6.91E+00

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1.00E-03	N/A	-6.91E+00	N/A
MW221	Sidegradient	Yes	1.27E-03	N/A	-6.67E+00	NO
MW222	Sidegradient	Yes	4.75E-04	N/A	-7.65E+00	NO
MW223	Sidegradient	Yes	8.19E-04	N/A	-7.11E+00	NO
MW224	Sidegradient	No	1.00E-03	N/A	-6.91E+00	N/A
MW369	Downgradien	t Yes	3.70E-03	N/A	-5.60E+00	NO
MW372	Downgradien	t Yes	3.46E-04	N/A	-7.97E+00	NO
MW384	Sidegradient	No	1.00E-03	N/A	-6.91E+00	N/A
MW387	Downgradien	t No	1.00E-03	N/A	-6.91E+00	N/A
MW391	Downgradien	t No	1.00E-03	N/A	-6.91E+00	N/A
MW394	Upgradient	No	1.00E-03	N/A	-6.91E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-36

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor**= 2.523

TL(1)= 6.52E+02 **LL(1)**=N/A

Statistics-Transformed Background X=5.716 S= 1.164 CV(2)=0.204 Data

K factor**= 2.523

TL(2)= 8.65E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.68E+02 5.91E+00 1/15/2003 6.07E+00 4.33E+02 4/10/2003 4.89E+02 6.19E + 007/14/2003 4.30E+02 6.06E+00 10/13/2003 3.46E+02 5.85E+00 1/13/2004 3.65E+02 5.90E+00 4/13/2004 4.16E+02 6.03E+007/21/2004 3.53E+02 5.87E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 4.06E+02 6.01E+00 9/16/2002 4.18E+02 6.04E+00 10/16/2002 4.11E+02 6.02E+00 1/13/2003 4.22E+02 6.05E+00 4/10/2003 4.20E+02 6.04E+00 7/16/2003 4.38E+02 6.08E+00 10/14/2003 3.91E+00 1.36E+00 1/13/2004 3.95E+02 5.98E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	
Well No. Gradient	Detecte

Well No.	Gradient	Detected?	Result	Result >TL(1)?	2 LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	4.20E+02	2 NO	6.04E+00	N/A
MW221	Sidegradient	Yes	4.06E+02	2 NO	6.01E+00	N/A
MW222	Sidegradient	Yes	3.75E+02	2 NO	5.93E+00	N/A
MW223	Sidegradient	Yes	3.95E+02	2 NO	5.98E+00	N/A
MW224	Sidegradient	Yes	4.37E+02	2 NO	6.08E+00	N/A
MW369	Downgradien	t Yes	3.75E+02	2 NO	5.93E+00	N/A
MW372	Downgradien	t Yes	7.33E+02	2 YES	6.60E+00	N/A
MW384	Sidegradient	Yes	3.90E+02	2 NO	5.97E+00	N/A
MW387	Downgradien	t Yes	5.52E+02	2 NO	6.31E+00	N/A
MW391	Downgradien	t Yes	3.88E+02	2 NO	5.96E+00	N/A
MW394	Upgradient	Yes	4.09E+02	2 NO	6.01E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-37

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison UNITS:** mg/L URGA Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.010X = 0.024

CV(1)=0.429

K factor=** 2.523

TL(1) = 4.96E-02 LL(1)=N/A

Statistics-Transformed Background X=-3.794 S= 0.312

CV(2) = -0.082

K factor=** 2.523

TL(2) = -3.01E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 2.11E-02 -3.86E+00 1/15/2003 2.00E-02 -3.91E+00 4/10/2003 2.00E-02 -3.91E+00 7/14/2003 2.00E-02 -3.91E+00 10/13/2003 2.00E-02 -3.91E+00 1/13/2004 2.00E-02 -3.91E+00 4/13/2004 2.00E-02 -3.91E+00 7/21/2004 2.00E-02 -3.91E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5.00E-02 -3.00E+00 9/16/2002 5.00E-02 -3.00E+00 10/16/2002 2.00E-02 -3.91E+00 1/13/2003 2.00E-02 -3.91E+00 4/10/2003 2.00E-02 -3.91E+00 7/16/2003 2.00E-02 -3.91E+00 10/14/2003 2.00E-02 -3.91E+00 1/13/2004 2.00E-02 -3.91E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.16E-03	NO	-6.76E+00	N/A
MW221	Sidegradient	Yes	2.78E-03	NO	-5.89E+00	N/A
MW222	Sidegradient	Yes	1.00E-03	NO	-6.91E+00	N/A
MW223	Sidegradient	Yes	1.74E-03	NO	-6.35E+00	N/A
MW224	Sidegradient	Yes	8.96E-04	NO	-7.02E+00	N/A
MW369	Downgradien	t No	1.03E-03	N/A	-6.88E+00	N/A
MW372	Downgradien	t Yes	9.68E-04	NO	-6.94E+00	N/A
MW384	Sidegradient	Yes	8.75E-04	NO	-7.04E+00	N/A
MW387	Downgradien	t Yes	6.31E-04	NO	-7.37E+00	N/A
MW391	Downgradien	t Yes	6.26E-04	NO	-7.38E+00	N/A
MW394	Upgradient	Yes	1.83E-03	NO	-6.30E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
- LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.784 S = 1.887

CV(1)=0.499

K factor=** 2.523

TL(1)= 8.54E+00 **LL(1)=**N/A

Statistics-Transformed Background x=1.182 Data

S = 0.612

CV(2) = 0.518

K factor**= 2.523

TL(2)=2.73E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 6.79E+001.92E+00 1/15/2003 1.98E+00 7.25E+00 4/10/2003 3.60E+001.28E+00 7/14/2003 9.40E-01 -6.19E-02 10/13/2003 1.65E+00 5.01E-01 1/13/2004 3.48E+00 1.25E+00 4/13/2004 1.05E+00 4.88E-02 7/21/2004 4.46E+00 1.50E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 6.09E+00 1.81E+00 9/16/2002 3.85E+00 1.35E+00 10/16/2002 5.11E+00 1.63E+00 1/13/2003 3.83E+00 1.34E+00 4/10/2003 4.15E+00 1.42E+00 7/16/2003 1.83E+00 6.04E-01 10/14/2003 3.33E+00 1.20E+00 1/13/2004 3.14E+00 1.14E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	5.02E+00) NO	1.61E+00	N/A
MW221	Sidegradient	Yes	5.83E+00) NO	1.76E+00	N/A
MW222	Sidegradient	Yes	4.62E+00) NO	1.53E+00	N/A
MW223	Sidegradient	Yes	4.48E+00) NO	1.50E+00	N/A
MW224	Sidegradient	Yes	3.66E+00) NO	1.30E+00	N/A
MW369	Downgradien	t Yes	2.06E+00) NO	7.23E-01	N/A
MW372	Downgradien	t Yes	1.81E+00) NO	5.93E-01	N/A
MW384	Sidegradient	Yes	5.37E+00) NO	1.68E+00	N/A
MW387	Downgradien	t Yes	4.85E+00) NO	1.58E+00	N/A
MW391	Downgradien	t Yes	4.61E+00) NO	1.53E+00	N/A
MW394	Upgradient	Yes	5.30E+00) NO	1.67E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-39

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 232.688 **S**= 27.490 **CV(1)**=0.118

K factor=** 2.523

TL(1)= 3.02E+02 **LL(1)=**N/A

Statistics-Transformed Background X=5.443 S= 0.118 Data

 $= 0.118 \quad \text{CV(2)} = 0.022$

K factor**= 2.523

TL(2)=5.74E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 2.08E+02 5.34E+00 1/15/2003 2.57E+02 5.55E+00 4/10/2003 2.88E+02 5.66E+00 7/14/2003 2.62E+02 5.57E+00 10/13/2003 1.97E+02 5.28E+00 1/13/2004 1.98E+02 5.29E+00 4/13/2004 2.45E+02 5.50E+00 7/21/2004 2.04E+025.32E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2.47E+02 5.51E+00 9/16/2002 2.59E+02 5.56E+00 10/16/2002 2.01E+02 5.30E+00 1/13/2003 2.28E+02 5.43E+00 4/10/2003 2.49E+02 5.52E+00 7/16/2003 2.40E+02 5.48E+00 10/14/2003 2.30E+02 5.44E+00 1/13/2004 2.10E+02 5.35E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2))
MW220	Upgradient	Yes	2.02E+02	2 NO	5.31E+00	N/A	
MW221	Sidegradient	Yes	1.97E+02	NO NO	5.28E+00	N/A	
MW222	Sidegradient	Yes	1.98E+02	NO NO	5.29E+00	N/A	
MW223	Sidegradient	Yes	1.79E+02	NO NO	5.19E+00	N/A	
MW224	Sidegradient	Yes	2.15E+02	NO NO	5.37E+00	N/A	
MW369	Downgradien	t Yes	1.93E+02	NO NO	5.26E+00	N/A	
MW372	Downgradien	t Yes	4.28E+02	YES	6.06E+00	N/A	
MW384	Sidegradient	Yes	1.89E+02	NO NO	5.24E+00	N/A	
MW387	Downgradien	t Yes	3.02E+02	NO NO	5.71E+00	N/A	
MW391	Downgradien	t Yes	1.90E+02	NO NO	5.25E+00	N/A	
MW394	Upgradient	Yes	1.96E+02	2 NO	5.28E+00	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-40

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison UNITS:** mg/L URGA Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 1.050X = 0.897

CV(1)=1.170

K factor=** 2.523

TL(1)=3.55E+00 LL(1)=N/A

Statistics-Transformed Background X=-0.565 S= 0.951

Data

CV(2) = -1.683

K factor=** 2.523

TL(2)=1.83E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 2.00E-01 -1.61E+00 1/15/2003 2.00E-01 -1.61E+00 4/10/2003 4.29E-01 -8.46E-01 7/14/2003 4.33E+00 1.47E+00 10/13/2003 1.81E+00 5.93E-01 1/13/2004 7.93E-01 -2.32E-01 4/13/2004 1.30E-01 -2.04E+00 7/21/2004 3.82E-01 -9.62E-01 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.34E+00 2.93E-01 9/16/2002 3.28E-01 -1.11E+00 10/16/2002 1.38E+00 3.22E-01 1/13/2003 1.30E+00 2.62E-01 4/10/2003 4.94E-01 -7.05E-01 7/16/2003 6.20E-01 -4.78E-01 10/14/2003 3.70E-01 -9.94E-01 1/13/2004 2.51E-01 -1.38E+00

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.08E-01	N/A	-2.23E+00	NO
MW221	Sidegradient	No	1.00E-01	N/A	-2.30E+00	N/A
MW222	Sidegradient	Yes	4.91E-02	N/A	-3.01E+00	NO
MW223	Sidegradient	No	1.00E-01	N/A	-2.30E+00	N/A
MW224	Sidegradient	Yes	1.08E-01	N/A	-2.23E+00	NO
MW369	Downgradien	t Yes	6.32E-02	N/A	-2.76E+00	NO
MW372	Downgradien	t Yes	4.35E-02	N/A	-3.13E+00	NO
MW384	Sidegradient	Yes	8.36E-02	N/A	-2.48E+00	NO
MW387	Downgradien	t Yes	1.12E-01	N/A	-2.19E+00	NO
MW391	Downgradien	t Yes	1.37E-01	N/A	-1.99E+00	NO
MW394	Upgradient	Yes	6.75E-02	N/A	-2.70E+00	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$
- TLUpper Tolerance Limit, TL = X + (K * S),
 - LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Magnesium URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 10.796 S = 1.703

CV(1)=0.158

K factor=** 2.523

TL(1)= 1.51E+01 **LL(1)**=N/A

Statistics-Transformed Background X=2.368

S = 0.158

CV(2) = 0.067

K factor=** 2.523

TL(2)=2.77E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 9.16E+00 2.21E+00 1/15/2003 1.00E+01 2.30E+00 4/10/2003 1.08E+01 2.38E+00 7/14/2003 1.47E+01 2.69E+00 10/13/2003 9.03E+00 2.20E+00 1/13/2004 8.49E+00 2.14E+00 4/13/2004 9.70E+00 2.27E+00 7/21/2004 8.06E+00 2.09E+00Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.18E+01 2.47E+00 9/16/2002 1.21E+01 2.49E+00 10/16/2002 1.13E+01 2.42E+00 1/13/2003 1.03E+01 2.33E+00 4/10/2003 1.17E+01 2.46E+00 7/16/2003 1.20E+01 2.48E+00 10/14/2003 1.22E+01 2.50E+00 1/13/2004 1.14E+01 2.43E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL((2)
MW220	Upgradient	Yes	1.19E+01	NO	2.48E+00	N/A	
MW221	Sidegradient	Yes	1.13E+01	NO	2.42E+00	N/A	
MW222	Sidegradient	Yes	8.63E+00	NO	2.16E+00	N/A	
MW223	Sidegradient	Yes	9.59E+00	NO	2.26E+00	N/A	
MW224	Sidegradient	Yes	1.02E+01	NO	2.32E+00	N/A	
MW369	Downgradien	t Yes	6.87E+00	NO	1.93E+00	N/A	
MW372	Downgradien	t Yes	2.35E+01	YES	3.16E+00	N/A	
MW384	Sidegradient	Yes	9.39E+00	NO	2.24E+00	N/A	
MW387	Downgradien	t Yes	1.75E+01	YES	2.86E+00	N/A	
MW391	Downgradien	t Yes	1.01E+01	NO	2.31E+00	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

1.13E+01

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

MW372 MW387

2.42E+00

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

Yes

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Manganese **UNITS:** mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.619X = 0.287

CV(1)=2.156

K factor=** 2.523

TL(1)= 1.85E+00 **LL(1)**=N/A

Statistics-Transformed Background X=-2.455 S= 1.619 Data

CV(2) = -0.659

K factor=** 2.523

TL(2)= 1.63E+00 **LL(2)**=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.06E-02 -3.49E+00 1/15/2003 2.91E-02 -3.54E+00 4/10/2003 -4.29E+00 1.37E-02 7/14/2003 2.54E+00 9.32E-01 10/13/2003 3.78E-01 -9.73E-01 1/13/2004 1.59E-01 -1.84E+00 4/13/2004 7.07E-03 -4.95E+00 7/21/2004 8.41E-02 -2.48E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5.42E-01 -6.12E-01 9/16/2002 1.55E-01 -1.86E+00 10/16/2002 1.03E-01 -2.27E+00 1/13/2003 1.28E-01 -2.06E+00 4/10/2003 5.00E-03 -5.30E+00 7/16/2003 2.72E-01 -1.30E+00 10/14/2003 7.95E-02 -2.53E+00

6.58E-02

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.96E-03	N/A	-6.23E+00	NO
MW221	Sidegradient	Yes	7.08E-03	N/A	-4.95E+00	NO
MW222	Sidegradient	Yes	8.79E-03	N/A	-4.73E+00	NO
MW223	Sidegradient	Yes	1.23E-02	N/A	-4.40E+00	NO
MW224	Sidegradient	Yes	6.39E-03	N/A	-5.05E+00	NO
MW369	Downgradien	t Yes	9.23E-03	N/A	-4.69E+00	NO
MW372	Downgradien	t Yes	2.14E-03	N/A	-6.15E+00	NO
MW384	Sidegradient	Yes	1.88E-03	N/A	-6.28E+00	NO
MW387	Downgradien	t Yes	4.35E-03	N/A	-5.44E+00	NO
MW391	Downgradien	t Yes	2.98E-03	N/A	-5.82E+00	NO
MW394	Upgradient	Yes	1.69E-03	N/A	-6.38E+00	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.72E+00

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
- LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Molybdenum URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

CV(1)=1.261

K factor=** 2.523

TL(1)= 2.64E-02 LL(1)=N/A

Data

1/13/2004

S = 0.008

Statistics-Transformed Background x=-5.747 S= 1.205 CV(2) = -0.210

K factor=** 2.523

TL(2) = -2.71E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 5.58E-03 -5.19E+00 1/15/2003 -4.62E+00 9.83E-03 4/10/2003 1.09E-02 -4.52E+00 7/14/2003 2.45E-03 -6.01E+00 10/13/2003 5.66E-03 -5.17E+00 1/13/2004 5.72E-03 -5.16E+00 4/13/2004 1.00E-03 -6.91E+00 7/21/2004 3.92E-03 -5.54E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2.50E-02 -3.69E+00 9/16/2002 2.50E-02 -3.69E+00 10/16/2002 1.00E-03 -6.91E+00 1/13/2003 1.00E-03 -6.91E+00 4/10/2003 1.00E-03 -6.91E+00 7/16/2003 1.00E-03 -6.91E+00 10/14/2003 1.00E-03 -6.91E+00

1.00E-03

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Quarter Data					
Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	1.03E-03	N/A	-6.88E+00	NO
Sidegradient	Yes	7.79E-03	N/A	-4.85E+00	NO
Sidegradient	Yes	2.93E-03	N/A	-5.83E+00	NO
Sidegradient	Yes	4.67E-03	N/A	-5.37E+00	NO
Sidegradient	Yes	7.23E-04	N/A	-7.23E+00	NO
Downgradien	t No	1.00E-03	N/A	-6.91E+00	N/A
Downgradien	t Yes	2.05E-04	N/A	-8.49E+00	NO
Sidegradient	No	1.00E-03	N/A	-6.91E+00	N/A
Downgradien	t No	1.00E-03	N/A	-6.91E+00	N/A
Downgradien	t No	1.00E-03	N/A	-6.91E+00	N/A
Upgradient	No	1.00E-03	N/A	-6.91E+00	N/A
	Upgradient Sidegradient Sidegradient Sidegradient Sidegradient Downgradien Downgradien Downgradient Downgradient Downgradient	Gradient Detected? Upgradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Downgradient No Downgradient Yes Sidegradient No Downgradient No Downgradient No	Gradient Detected? Result Upgradient Yes 1.03E-03 Sidegradient Yes 7.79E-03 Sidegradient Yes 2.93E-03 Sidegradient Yes 4.67E-03 Sidegradient Yes 7.23E-04 Downgradient No 1.00E-03	Gradient Detected? Result Result >TL Upgradient Yes 1.03E-03 N/A Sidegradient Yes 7.79E-03 N/A Sidegradient Yes 2.93E-03 N/A Sidegradient Yes 4.67E-03 N/A Sidegradient Yes 7.23E-04 N/A Downgradient No 1.00E-03 N/A Sidegradient Yes 2.05E-04 N/A Sidegradient No 1.00E-03 N/A Downgradient No 1.00E-03 N/A Downgradient No 1.00E-03 N/A Downgradient No 1.00E-03 N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 1.03E-03 N/A -6.88E+00 Sidegradient Yes 7.79E-03 N/A -4.85E+00 Sidegradient Yes 2.93E-03 N/A -5.83E+00 Sidegradient Yes 4.67E-03 N/A -5.37E+00 Sidegradient Yes 7.23E-04 N/A -7.23E+00 Downgradient No 1.00E-03 N/A -6.91E+00 Downgradient No 1.00E-03 N/A -6.91E+00 Downgradient No 1.00E-03 N/A -6.91E+00 Downgradient No 1.00E-03 N/A -6.91E+00

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-6.91E+00

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$
- TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Nickel** URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.228X = 0.127

CV(1)=1.790

K factor=** 2.523

TL(1)= 7.01E-01

Statistics-Transformed Background X=-3.617 S= 1.837

CV(2) = -0.508

K factor=** 2.523

TL(2)= 1.02E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 4.18E-01 -8.72E-01 1/15/2003 -3.04E-01 7.38E-01 4/10/2003 -6.09E-01 5.44E-01 7/14/2003 1.06E-01 -2.24E+00 10/13/2003 5.29E-02 -2.94E+00 1/13/2004 2.09E-02 -3.87E+00 4/13/2004 5.00E-03 -5.30E+00 7/21/2004 1.92E-02 -3.95E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5.00E-02 -3.00E+00 9/16/2002 5.00E-02 -3.00E+00 10/16/2002 5.00E-03 -5.30E+00 1/13/2003 5.00E-03 -5.30E+00 4/10/2003 5.00E-03 -5.30E+00 7/16/2003 5.00E-03 -5.30E+00 10/14/2003 5.00E-03 -5.30E+00 1/13/2004 5.00E-03 -5.30E+00

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	9.99E-03	N/A	-4.61E+00	NO
MW221	Sidegradient	Yes	1.09E-01	N/A	-2.22E+00	NO
MW222	Sidegradient	Yes	2.59E-02	N/A	-3.65E+00	NO
MW223	Sidegradient	Yes	2.51E-01	N/A	-1.38E+00	NO
MW224	Sidegradient	Yes	1.20E-02	N/A	-4.42E+00	NO
MW369	Downgradien	t Yes	3.49E-03	N/A	-5.66E+00	NO
MW372	Downgradien	t Yes	8.89E-04	N/A	-7.03E+00	NO
MW384	Sidegradient	Yes	6.71E-04	N/A	-7.31E+00	NO
MW387	Downgradien	t No	2.00E-03	N/A	-6.21E+00	N/A
MW391	Downgradien	t No	2.00E-03	N/A	-6.21E+00	N/A
MW394	Upgradient	Yes	3.96E-03	N/A	-5.53E+00	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
 - LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-45

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor=** 2.523

TL(1)=3.98E+02 LL(1)=N/A

Statistics-Transformed Background X=4.861 Data

S = 1.252

CV(2)=0.258

K factor=** 2.523

TL(2)= 8.02E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 2.05E+02 5.32E+00 1/15/2003 1.95E+00 6.68E-01 4/10/2003 2.03E+025.31E+00 7/14/2003 3.00E+01 3.40E+00 10/13/2003 1.07E+02 4.67E+00 1/13/2004 2.95E+02 5.69E+00 4/13/2004 1.90E+02 5.25E+00 7/21/2004 3.19E+02 5.77E+00 Well Number: MW394 Date Collected Result LN(Result)

8/13/2002 9.00E+01 4.50E+00 9/16/2002 2.40E+02 5.48E+00 10/16/2002 1.85E+02 5.22E+00 1/13/2003 2.20E+02 5.39E+00 4/10/2003 1.96E+02 5.28E+00 7/16/2003 1.72E+02 5.15E+00 10/14/2003 1.75E+02 5.16E+00 1/13/2004 2.49E+02 5.52E+00 Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	4.77E+02	2 YES	6.17E+00	N/A
MW221	Sidegradient	Yes	4.69E+02	2 YES	6.15E+00	N/A
MW222	Sidegradient	Yes	4.43E+02	2 YES	6.09E+00	N/A
MW223	Sidegradient	Yes	4.72E+02	2 YES	6.16E+00	N/A
MW224	Sidegradient	Yes	5.05E+02	2 YES	6.22E+00	N/A
MW369	Downgradien	t Yes	4.39E+02	YES YES	6.08E+00	N/A
MW372	Downgradien	t Yes	4.70E+02	YES YES	6.15E+00	N/A
MW384	Sidegradient	Yes	4.19E+02	YES YES	6.04E+00	N/A
MW387	Downgradien	t Yes	4.21E+02	YES YES	6.04E+00	N/A
MW391	Downgradien	t Yes	3.46E+02	NO NO	5.85E+00	N/A
MW394	Upgradient	Yes	4.51E+02	YES	6.11E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-46

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220

MW221

MW222

MW223

MW224

MW369

MW372

MW384

MW387

MW394

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-47

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison pН **UNITS: Std Unit** URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S= 0.282 X = 6.138

CV(1)=0.046

K factor**= 2.904

TL(1)=6.96E+00 LL(1)=5.32E+00

Statistics-Transformed Background X=1.813

Data

S = 0.047

CV(2)=0.026 **K factor****= 2.904

TL(2)=1.95E+00 LL(2)=1.68E+00

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 6.04E+001.80E+00 1/15/2003 6.31E+00 1.84E+00 4/10/2003 6.50E+00 1.87E+00 7/14/2003 6.30E+00 1.84E+00 10/13/2003 6.34E+00 1.85E+00 1/13/2004 6.33E+00 1.85E+00 4/13/2004 6.30E+00 1.84E+007/21/2004 5.90E+00 1.77E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5.80E+00 1.76E+00 9/30/2002 5.93E+00 1.78E+00 10/16/2002 5.42E+00 1.69E+00 1/13/2003 6.00E+001.79E+00 4/10/2003 6.04E+00 1.80E+00 7/16/2003 6.20E+00 1.82E+00 10/14/2003 6.40E+00 1.86E+00 1/13/2004 6.39E+00 1.85E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	V umi tei	Dutte

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th></th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>		LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.16E+00	NO	1.82E+00	N/A
MW221	Sidegradient	Yes	6.14E+00	NO	1.81E+00	N/A
MW222	Sidegradient	Yes	6.16E+00	NO	1.82E+00	N/A
MW223	Sidegradient	Yes	6.12E+00	NO	1.81E+00	N/A
MW224	Sidegradient	Yes	6.14E+00	NO	1.81E+00	N/A
MW369	Downgradien	t Yes	6.18E+00	NO	1.82E+00	N/A
MW372	Downgradien	t Yes	6.03E+00	NO	1.80E+00	N/A
MW384	Sidegradient	Yes	5.91E+00	NO	1.78E+00	N/A
MW387	Downgradien	t Yes	6.06E+00	NO	1.80E+00	N/A
MW391	Downgradien	t Yes	6.10E+00	NO	1.81E+00	N/A
MW394	Upgradient	Yes	5.84E+00	NO	1.76E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Potassium UNITS:** mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

1/13/2004

S = 9.310X = 6.654

CV(1)=1.399

K factor=** 2.523

TL(1)= 3.01E+01 **LL(1)=**N/A

Statistics-Transformed Background X=1.130

S= 1.208 CV(2) = 1.069

K factor=** 2.523

TL(2)= 4.18E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 6.70E+00 1.90E+00 1/15/2003 2.97E+01 3.39E+00 4/10/2003 2.49E+01 3.21E+00 7/14/2003 1.13E+00 1.22E-01 10/13/2003 3.43E+00 1.23E+00 1/13/2004 6.71E+00 1.90E+00 4/13/2004 1.93E+01 2.96E+00 7/21/2004 3.97E+00 1.38E+00 Well Number: MW394 Date Collected Result LN(Result)

8/13/2002 2.00E+00 6.93E-01 9/16/2002 2.00E+00 6.93E-01 10/16/2002 1.03E+00 2.96E-02 1/13/2003 1.10E+00 9.53E-02 4/10/2003 1.24E+00 2.15E-01 7/16/2003 1.14E+00 1.31E-01 10/14/2003 1.05E+00 4.88E-02

1.07E+00

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data
Well No.	

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	2.30E+00) N/A	8.33E-01	NO
MW221	Sidegradient	Yes	2.93E+00) N/A	1.08E+00	NO
MW222	Sidegradient	Yes	5.76E-01	N/A	-5.52E-01	NO
MW223	Sidegradient	Yes	1.18E+00) N/A	1.66E-01	NO
MW224	Sidegradient	Yes	9.70E-01	N/A	-3.05E-02	NO
MW369	Downgradien	t Yes	5.08E-01	N/A	-6.77E-01	NO
MW372	Downgradien	t Yes	2.46E+00) N/A	9.00E-01	NO
MW384	Sidegradient	Yes	1.27E+00) N/A	2.39E-01	NO
MW387	Downgradien	t Yes	1.71E+00) N/A	5.36E-01	NO
MW391	Downgradien	t Yes	1.55E+00) N/A	4.38E-01	NO
MW394	Upgradient	Yes	1.46E+00) N/A	3.78E-01	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

6.77E-02

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
- LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Sodium UNITS:** mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

MW387 Downgradient Yes

MW394 Upgradient

Downgradient Yes

Yes

MW391

Statistics-Background Data

X = 36.363 S = 8.666

CV(1)=0.238

K factor=** 2.523

TL(1)=5.82E+01 LL(1)=N/A

Statistics-Transformed Background X=3.570Data

S = 0.222

CV(2)=0.062

K factor=** 2.523

TL(2)= 4.13E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.54E+01 3.57E+00 1/15/2003 4.06E+01 3.70E+00 4/10/2003 5.10E+01 3.93E+00 7/14/2003 5.82E+01 4.06E+00 10/13/2003 3.81E+01 3.64E+00 1/13/2004 3.70E+01 3.61E+00 4/13/2004 4.32E+01 3.77E+007/21/2004 3.38E+01 3.52E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 3.29E+01 3.49E+00 9/16/2002 2.99E+01 3.40E+00 10/16/2002 2.90E+01 3.37E+00 1/13/2003 2.71E+01 3.30E+00 4/10/2003 2.48E+01 3.21E+00 7/16/2003 3.56E+01 3.57E+00 10/14/2003 3.39E+01 3.52E+00 1/13/2004 3.13E+01 3.44E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	5.30E+01	NO	3.97E+00	N/A
MW221	Sidegradient	Yes	5.82E+01	NO	4.06E+00	N/A
MW222	Sidegradient	Yes	4.73E+01	NO	3.86E+00	N/A
MW223	Sidegradient	Yes	4.67E+01	NO	3.84E+00	N/A
MW224	Sidegradient	Yes	6.11E+01	YES	4.11E+00	N/A
MW369	Downgradien	t Yes	5.56E+01	NO	4.02E+00	N/A
MW372	Downgradien	t Yes	5.84E+01	YES	4.07E+00	N/A
MW384	Sidegradient	Yes	4.16E±01	NO	3.73E±00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

NO

NO

4.97E+01

3.42E+01

3.32E+01

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

N/A

N/A

MW224 MW372

3.91E+00

3.53E+00

3.50E+00

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-50

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Sulfate UNITS:** mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.481 S = 2.648

K factor=** 2.523

TL(1)=1.72E+01 LL(1)=N/A

Statistics-Transformed Background X=2.322Data

S = 0.239

CV(2) = 0.103

CV(1) = 0.253

K factor=** 2.523

TL(2)= 2.92E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1.04E+01	2.34E+00
1/15/2003	9.80E+00	2.28E+00
4/10/2003	1.54E+01	2.73E+00
7/14/2003	1.49E+01	2.70E+00
10/13/2003	1.35E+01	2.60E+00
1/13/2004	1.03E+01	2.33E+00
4/13/2004	1.43E+01	2.66E+00
7/21/2004	1.05E+01	2.35E+00
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.42E+00
Date Collected	Result	
Date Collected 8/13/2002	Result 1.12E+01	2.42E+00
Date Collected 8/13/2002 9/16/2002	Result 1.12E+01 8.30E+00	2.42E+00 2.12E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.12E+01 8.30E+00 8.00E+00	2.42E+00 2.12E+00 2.08E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.12E+01 8.30E+00 8.00E+00 8.50E+00	2.42E+00 2.12E+00 2.08E+00 2.14E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.12E+01 8.30E+00 8.00E+00 8.50E+00 7.90E+00	2.42E+00 2.12E+00 2.08E+00 2.14E+00 2.07E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	2.00E+01	YES	3.00E+00	N/A
MW221	Sidegradient	Yes	1.69E+01	NO	2.83E+00	N/A
MW222	Sidegradient	Yes	1.26E+01	NO	2.53E+00	N/A
MW223	Sidegradient	Yes	1.56E+01	NO	2.75E+00	N/A
MW224	Sidegradient	Yes	1.71E+01	NO	2.84E+00	N/A
MW369	Downgradien	t Yes	7.00E+00) NO	1.95E+00	N/A
MW372	Downgradien	t Yes	1.51E+02	YES	5.02E+00	N/A
MW384	Sidegradient	Yes	1.74E+01	YES	2.86E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

YES

NO

NO

2.87E+01

1.42E+01

1.17E+01

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A N/A

N/A

MW220 MW372

3.36E+00

2.65E+00

2.46E+00

MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW387 Downgradient Yes

MW394 Upgradient

Downgradient Yes

Yes

MW391

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-51

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.354

CV(1)=0.992

K factor=** 2.523

TL(1)= 3.28E+01 **LL(1)=**N/A

Statistics-Transformed Background X=2.270Data

S = 0.849

S = 9.280

CV(2) = 0.374

K factor=** 2.523

TL(2)=3.26E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1.97E+01	2.98E+00
1/15/2003	2.61E+01	3.26E+00
4/10/2003	3.56E+00	1.27E+00
7/14/2003	0.00E+00	#Func!
10/13/2003	2.10E+01	3.04E+00
1/13/2004	6.32E+00	1.84E+00
4/13/2004	3.00E+00	1.10E+00
7/21/2004	1.46E+01	2.68E+00
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.64E+00
Date Collected	Result	
Date Collected 8/13/2002	Result 1.40E+01	2.64E+00
Date Collected 8/13/2002 9/16/2002	Result 1.40E+01 5.45E+00	2.64E+00 1.70E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.40E+01 5.45E+00 2.49E+00	2.64E+00 1.70E+00 9.12E-01
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.40E+01 5.45E+00 2.49E+00 1.83E+01	2.64E+00 1.70E+00 9.12E-01 2.91E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.40E+01 5.45E+00 2.49E+00 1.83E+01 -1.45E+00	2.64E+00 1.70E+00 9.12E-01 2.91E+00 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
Upgradient	No	1.13E+01	N/A	2.42E+00	N/A
Sidegradient	No	3.14E+00	N/A	1.14E+00	N/A
Sidegradient	No	4.59E+00	N/A	1.52E+00	N/A
Sidegradient	No	1.55E+01	N/A	2.74E+00	N/A
Sidegradient	No	3.29E+00	N/A	1.19E+00	N/A
Downgradien	t Yes	3.91E+01	YES	3.67E+00	N/A
Downgradient	t Yes	3.63E+01	YES	3.59E+00	N/A
Sidegradient	Yes	4.52E+01	YES	3.81E+00	N/A
Downgradien	t Yes	4.71E+01	YES	3.85E+00	N/A
Downgradien	t No	5.54E+00	N/A	1.71E+00	N/A
Upgradient	No	6.79E+00	N/A	1.92E+00	N/A
	Upgradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient Downgradient Downgradient Downgradient	Upgradient No Sidegradient No Sidegradient No Sidegradient No Sidegradient No Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Downgradient No Upgradient No	Upgradient No 1.13E+01 Sidegradient No 3.14E+00 Sidegradient No 4.59E+00 Sidegradient No 1.55E+01 Sidegradient No 3.29E+00 Downgradient Yes 3.91E+01 Downgradient Yes 3.63E+01 Sidegradient Yes 4.52E+01 Downgradient Yes 4.71E+01 Downgradient No 5.54E+00 Upgradient No 6.79E+00	Upgradient No 1.13E+01 N/A Sidegradient No 3.14E+00 N/A Sidegradient No 4.59E+00 N/A Sidegradient No 1.55E+01 N/A Sidegradient No 3.29E+00 N/A Downgradient Yes 3.91E+01 YES Downgradient Yes 3.63E+01 YES Sidegradient Yes 4.52E+01 YES Downgradient Yes 4.71E+01 YES Downgradient No 5.54E+00 N/A Upgradient No 6.79E+00 N/A	Upgradient No 1.13E+01 N/A 2.42E+00 Sidegradient No 3.14E+00 N/A 1.14E+00 Sidegradient No 4.59E+00 N/A 1.52E+00 Sidegradient No 1.55E+01 N/A 2.74E+00 Sidegradient No 3.29E+00 N/A 1.19E+00 Downgradient Yes 3.91E+01 YES 3.67E+00 Downgradient Yes 3.63E+01 YES 3.59E+00 Sidegradient Yes 4.52E+01 YES 3.81E+00 Downgradient Yes 4.71E+01 YES 3.85E+00 Downgradient No 5.54E+00 N/A 1.71E+00

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369

MW372

MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.494 S = 0.737

CV(1)=0.493

K factor=** 2.523

TL(1)= 3.35E+00 **LL(1)=**N/A

Statistics-Transformed Background X=0.315 Data

S = 0.402

CV(2) = 1.279

K factor**= 2.523

TL(2)=1.33E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1.00E+00	0.00E+00
1/15/2003	1.10E+00	9.53E-02
4/10/2003	1.00E+00	0.00E+00
7/14/2003	3.30E+00	1.19E+00
10/13/2003	1.80E+00	5.88E-01
1/13/2004	1.00E+00	0.00E+00
4/13/2004	2.00E+00	6.93E-01
7/21/2004	3.10E+00	1.13E+00
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.62E-01
Date Collected	Result	
Date Collected 8/13/2002	Result 1.30E+00	2.62E-01
Date Collected 8/13/2002 9/16/2002	Result 1.30E+00 1.00E+00	2.62E-01 0.00E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.30E+00 1.00E+00 1.00E+00	2.62E-01 0.00E+00 0.00E+00
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.30E+00 1.00E+00 1.00E+00 1.60E+00	2.62E-01 0.00E+00 0.00E+00 4.70E-01
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.30E+00 1.00E+00 1.00E+00 1.60E+00 1.00E+00	2.62E-01 0.00E+00 0.00E+00 4.70E-01 0.00E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	8.73E-01	NO	-1.36E-01	N/A
MW221	Sidegradient	Yes	8.45E-01	NO	-1.68E-01	N/A
MW222	Sidegradient	Yes	6.36E-01	NO	-4.53E-01	N/A
MW223	Sidegradient	Yes	6.25E-01	NO	-4.70E-01	N/A
MW224	Sidegradient	Yes	8.78E-01	NO	-1.30E-01	N/A
MW369	Downgradien	t Yes	1.10E+00) NO	9.53E-02	N/A
MW372	Downgradien	t Yes	7.88E-01	NO	-2.38E-01	N/A
MW384	Sidegradient	Yes	9.37E-01	NO	-6.51E-02	N/A
MW387	Downgradien	t Yes	9.68E-01	NO	-3.25E-02	N/A
MW391	Downgradien	t Yes	5.69E-01	NO	-5.64E-01	N/A
MW394	Upgradient	Yes	7.18E-01	NO	-3.31E-01	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-53

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 63.475 **S**= 163.135 **CV(1)**=2.570

K factor=** 2.523

TL(1)= 4.75E+02 **LL(1)**=N/A

Statistics-Transformed Background X= 3.103 Data

S= 1.145 **CV(2)**=0.369

K factor=** 2.523

TL(2)= 5.99E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 5.00E+01 3.91E+00 1/15/2003 2.30E+00 1.00E+01 4/10/2003 1.00E+01 2.30E+00 7/14/2003 1.00E+01 2.30E+00 10/13/2003 1.00E+01 2.30E+00 1/13/2004 1.00E+01 2.30E+00 4/13/2004 1.00E+01 2.30E+00 7/21/2004 1.00E+01 2.30E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5.00E+01 3.91E+00 9/16/2002 6.72E+02 6.51E+00 10/16/2002 5.00E+01 3.91E+00 1/13/2003 3.61E+01 3.59E+00 4/10/2003 1.00E+01 2.30E+00 7/16/2003 4.27E+01 3.75E+00 10/14/2003 2.20E+01 3.09E+00 1/13/2004 1.28E+01 2.55E+00

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current	Quarter Data					
7	Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
	MW220	Upgradient	Yes	1.02E+01	N/A	2.32E+00	NO
	MW221	Sidegradient	Yes	1.05E+01	N/A	2.35E+00	NO
	MW222	Sidegradient	No	1.00E+01	N/A	2.30E+00	N/A
	MW223	Sidegradient	No	1.00E+01	N/A	2.30E+00	N/A
	MW224	Sidegradient	Yes	7.70E+00) N/A	2.04E+00	NO
	MW369	Downgradien	t Yes	1.48E+01	N/A	2.69E+00	NO
	MW372	Downgradien	t Yes	4.50E+01	N/A	3.81E+00	NO
	MW384	Sidegradient	Yes	5.18E+00) N/A	1.64E+00	NO
	MW387	Downgradien	t Yes	9.30E+00) N/A	2.23E+00	NO
	MW391	Downgradien	t Yes	9.92E+00) N/A	2.29E+00	NO
	MW394	Upgradient	Yes	9.94E+00) N/A	2.30E+00	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-54

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 8.376X = 8.813

CV(1)=0.951

K factor=** 2.523

TL(1)= 2.99E+01 LL(1)=N/A

Statistics-Transformed Background X=1.395

S = 1.449

CV(2) = 1.039

K factor=** 2.523

TL(2)=5.05E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.00E+00 0.00E+001/15/2003 1.00E+00 0.00E+004/10/2003 1.00E+00 0.00E+007/14/2003 1.00E+00 0.00E+0010/13/2003 1.00E+00 0.00E+001/13/2004 1.00E+00 0.00E+004/13/2004 1.00E+00 0.00E+007/21/2004 1.00E+00 0.00E+00Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.60E+01 2.77E+00 9/30/2002 2.00E+01 3.00E+00 10/16/2002 1.70E+01 2.83E+00 1/13/2003 1.50E+01 2.71E+00 4/10/2003 1.00E+01 2.30E+00 7/16/2003 1.90E+01 2.94E+00 10/14/2003 2.00E+01 3.00E+001/13/2004 1.60E+01 2.77E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1.00E+00	N/A	0.00E+00	N/A
MW221	Sidegradient	Yes	8.90E-01	N/A	-1.17E-01	N/A
MW222	Sidegradient	Yes	3.50E-01	N/A	-1.05E+00	N/A
MW223	Sidegradient	No	1.00E+00	N/A	0.00E+00	N/A
MW224	Sidegradient	No	1.00E+00	N/A	0.00E+00	N/A
MW369	Downgradien	t Yes	7.30E-01	N/A	-3.15E-01	N/A
MW372	Downgradien	t Yes	6.01E+00	NO	1.79E+00	N/A
MW384	Sidegradient	Yes	7.00E-01	N/A	-3.57E-01	N/A
MW387	Downgradien	t Yes	7.90E-01	N/A	-2.36E-01	N/A
MW391	Downgradien	t Yes	1.79E+00	N/A	5.82E-01	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

1.36E+00

3.88E+00

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

Yes

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Vanadium **UNITS:** mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.002X = 0.021

CV(1)=0.083

K factor=** 2.523

TL(1)= 2.49E-02 LL(1)=N/A

Data

Statistics-Transformed Background X=-3.884 S= 0.076

CV(2) = -0.020

K factor=** 2.523

TL(2) = -3.69E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 2.00E-02 -3.91E+00 1/15/2003 2.00E-02 -3.91E+00 4/10/2003 2.00E-02 -3.91E+00 7/14/2003 2.00E-02 -3.91E+00 10/13/2003 2.00E-02 -3.91E+00 1/13/2004 2.00E-02 -3.91E+00 4/13/2004 2.00E-02 -3.91E+00 7/21/2004 2.00E-02 -3.91E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2.50E-02 -3.69E+00 9/16/2002 2.50E-02 -3.69E+00 10/16/2002 2.00E-02 -3.91E+00 1/13/2003 2.00E-02 -3.91E+00 4/10/2003 2.00E-02 -3.91E+00 7/16/2003 2.00E-02 -3.91E+00 10/14/2003 2.00E-02 -3.91E+00 1/13/2004 2.00E-02 -3.91E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	2.00E-02	N/A	-3.91E+00	N/A
MW221	Sidegradient	No	2.00E-02	N/A	-3.91E+00	N/A
MW222	Sidegradient	No	2.00E-02	N/A	-3.91E+00	N/A
MW223	Sidegradient	No	2.00E-02	N/A	-3.91E+00	N/A
MW224	Sidegradient	No	2.00E-02	N/A	-3.91E+00	N/A
MW369	Downgradien	t No	2.00E-02	N/A	-3.91E+00	N/A
MW372	Downgradien	t No	4.58E-03	N/A	-5.39E+00	N/A
MW384	Sidegradient	No	2.00E-02	N/A	-3.91E+00	N/A
MW387	Downgradien	t Yes	3.68E-03	NO	-5.60E+00	N/A
MW391	Downgradien	t No	6.78E-03	N/A	-4.99E+00	N/A
MW394	Upgradient	No	6.18E-03	N/A	-5.09E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
- LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-56

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Zinc **UNITS:** mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.026X = 0.036

CV(1)=0.722

K factor=** 2.523

TL(1)= 1.01E-01

Statistics-Transformed Background X=-3.485 S= 0.525

CV(2) = -0.151

K factor=** 2.523

TL(2)= -2.16E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 2.50E-02 -3.69E+00 1/15/2003 3.50E-02 -3.35E+00 4/10/2003 3.50E-02 -3.35E+00 7/14/2003 3.89E-02 -3.25E+00 10/13/2003 2.60E-02 -3.65E+00 1/13/2004 2.00E-02 -3.91E+00 4/13/2004 2.00E-02 -3.91E+00 7/21/2004 2.00E-02 -3.91E+00 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.00E-01 -2.30E+00 9/16/2002 1.00E-01 -2.30E+00 10/16/2002 2.50E-02 -3.69E+00 1/13/2003 3.50E-02 -3.35E+00 4/10/2003 3.50E-02 -3.35E+00 7/16/2003 2.00E-02 -3.91E+00 10/14/2003 2.00E-02 -3.91E+00 1/13/2004 2.00E-02 -3.91E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	2.00E-02	N/A	-3.91E+00	N/A
MW221	Sidegradient	Yes	5.30E-03	NO	-5.24E+00	N/A
MW222	Sidegradient	No	2.00E-02	N/A	-3.91E+00	N/A
MW223	Sidegradient	Yes	3.89E-03	NO	-5.55E+00	N/A
MW224	Sidegradient	No	2.00E-02	N/A	-3.91E+00	N/A
MW369	Downgradien	t Yes	6.59E-03	NO	-5.02E+00	N/A
MW372	Downgradien	t No	2.00E-02	N/A	-3.91E+00	N/A
MW384	Sidegradient	No	2.00E-02	N/A	-3.91E+00	N/A
MW387	Downgradien	t No	2.00E-02	N/A	-3.91E+00	N/A
MW391	Downgradien	t No	2.00E-02	N/A	-3.91E+00	N/A
MW394	Upgradient	No	2.00E-02	N/A	-3.91E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-57

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **LRGA** Acetone

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.063 S = 0.250

K factor=** 2.523

TL(1)=1.07E+01 LL(1)=N/A

Statistics-Transformed Background X=2.309 Data

S = 0.024

CV(2) = 0.010

CV(1)=0.025

K factor=** 2.523

TL(2)=2.37E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.10E+01 2.40E+00 9/30/2002 1.00E+01 2.30E+00 10/16/2002 1.00E+01 2.30E+00 1/13/2003 1.00E+01 2.30E+00 4/10/2003 1.00E+01 2.30E+00 7/16/2003 1.00E+01 2.30E+00 10/14/2003 1.00E+01 2.30E+00 4/12/2004 1.00E+01 2.30E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1.00E+01 2.30E+00 9/30/2002 1.00E+01 2.30E+00 10/17/2002 1.00E+01 2.30E+00 1/13/2003 1.00E+01 2.30E+00 4/8/2003 1.00E+01 2.30E+00 7/16/2003 1.00E+01 2.30E+00 10/14/2003 1.00E+01 2.30E+00 4/12/2004 1.00E+01 2.30E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarte	r Data
		,

Well No.	Gradient	Detected?	Result	Result >TL(1)	2 LN(Result)	LN(Result) > TL(2)
MW370	Downgradient	t No	5.00E+00) N/A	1.61E+00	N/A
MW373	Downgradient	t No	5.00E+00) N/A	1.61E+00	N/A
MW385	Sidegradient	No	5.00E+00) N/A	1.61E+00	N/A
MW388	Downgradient	t No	5.00E+00) N/A	1.61E+00	N/A
MW392	Downgradient	t No	5.00E+00) N/A	1.61E+00	N/A
MW395	Upgradient	Yes	4.70E+00) NO	1.55E+00	N/A
MW397	Upgradient	No	5.00E+00) N/A	1.61E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison UNITS:** mg/L **LRGA** Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650S = 0.805 CV(1)=1.238

K factor=** 2.523

TL(1)= 2.68E+00 LL(1)=N/A

Data

Statistics-Transformed Background X=-1.034 S= 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2)=1.56E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 2.00E+00 6.93E-01 9/16/2002 2.00E+00 6.93E-01 10/16/2002 2.00E-01 -1.61E+00 1/13/2003 2.00E-01 -1.61E+00 4/10/2003 2.00E-01 -1.61E+00 7/16/2003 2.00E-01 -1.61E+00 10/14/2003 2.00E-01 -1.61E+00 1/13/2004 2.00E-01 -1.61E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2.00E+00 6.93E-01 9/16/2002 2.00E+00 6.93E-01 10/17/2002 2.00E-01 -1.61E+00 1/13/2003 2.00E-01 -1.61E+00 4/8/2003 2.00E-01 -1.61E+00 7/16/2003 2.00E-01 -1.61E+00 10/14/2003 2.00E-01 -1.61E+00 1/13/2004 2.00E-01 -1.61E+00

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	2.15E-01	N/A	-1.54E+00	NO
MW373	Downgradien	t Yes	1.74E+00) N/A	5.54E-01	NO
MW385	Sidegradient	Yes	5.61E-02	N/A	-2.88E+00	NO
MW388	Downgradient	Yes	3.06E-02	N/A	-3.49E+00	NO
MW392	Downgradient	Yes	2.20E-02	N/A	-3.82E+00	NO
MW395	Upgradient	Yes	1.95E-02	N/A	-3.94E+00	NO
MW397	Upgradient	Yes	9.76E-03	N/A	-4.63E+00	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-59

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Bromide UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW397 Upgradient

Statistics-Background Data

Data

1/13/2004

S = 0.000X = 1.000

CV(1)=0.000

K factor=** 2.523

TL(1)= 1.00E+00 **LL(1)=**N/A

Statistics-Transformed Background X=0.000

S = 0.000

CV(2)=#Num!

K factor=** 2.523

TL(2)= 0.00E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.00E+00 0.00E+009/16/2002 0.00E+001.00E+00 10/16/2002 1.00E+00 0.00E+001/13/2003 1.00E+00 0.00E+004/10/2003 1.00E+00 0.00E+007/16/2003 1.00E+00 0.00E+0010/14/2003 1.00E+00 0.00E+001/13/2004 1.00E+00 0.00E+00Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1.00E+00 0.00E+009/16/2002 1.00E+00 0.00E+0010/17/2002 1.00E+00 0.00E+001/13/2003 1.00E+00 0.00E+004/8/2003 1.00E+00 0.00E+007/16/2003 1.00E+00 0.00E+0010/14/2003 1.00E+00 0.00E+00

1.00E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

-9.36E-01

N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	5.68E-01	NO	-5.66E-01	N/A
MW373	Downgradient	Yes	4.84E-01	NO	-7.26E-01	N/A
MW385	Sidegradient	Yes	2.20E-01	NO	-1.51E+00	N/A
MW388	Downgradient	Yes	4.76E-01	NO	-7.42E-01	N/A
MW392	Downgradient	Yes	5.56E-01	NO	-5.87E-01	N/A
MW395	Upgradient	Yes	5.80E-01	NO	-5.45E-01	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

3.92E-01

Yes

Conclusion of Statistical Analysis on Historical Data

0.00E+00

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Calcium **UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW395 Upgradient

MW397 Upgradient

Statistics-Background Data

X = 23.103 S = 11.538 CV(1) = 0.499

K factor=** 2.523

TL(1)=5.22E+01 LL(1)=N/A

Statistics-Transformed Background X=2.357Data

S = 2.411

CV(2) = 1.023

K factor=** 2.523

TL(2) = 8.44E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	3.22E+01	3.47E+00
9/16/2002	3.30E+01	3.50E+00
10/16/2002	2.95E-02	-3.52E+00
1/13/2003	3.21E+01	3.47E+00
4/10/2003	4.02E+01	3.69E+00
7/16/2003	3.24E+01	3.48E+00
10/14/2003	3.39E+01	3.52E+00
1/13/2004	3.12E+01	3.44E+00
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.97E+00
Date Collected	Result	
Date Collected 8/13/2002	Result 1.94E+01	2.97E+00
Date Collected 8/13/2002 9/16/2002	Result 1.94E+01 1.90E+01	2.97E+00 2.94E+00
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.94E+01 1.90E+01 1.79E-02	2.97E+00 2.94E+00 -4.02E+00
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.94E+01 1.90E+01 1.79E-02 1.78E+01	2.97E+00 2.94E+00 -4.02E+00 2.88E+00
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.94E+01 1.90E+01 1.79E-02 1.78E+01 2.03E+01	2.97E+00 2.94E+00 -4.02E+00 2.88E+00 3.01E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)
	MW370	Downgradien	t Yes	3.09E+01	NO	3.43E+00	N/A
	MW373	Downgradien	t Yes	7.11E+01	YES	4.26E+00	N/A
	MW385	Sidegradient	Yes	2.36E+01	l NO	3.16E+00	N/A
	MW388	Downgradien	t Yes	2.78E+01	l NO	3.33E+00	N/A
	MW392	Downgradien	t Yes	2.39E+01	l NO	3.17E+00	N/A

2.71E+01

1.87E+01

Yes

Yes

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

NO

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

N/A

MW373

3.30E+00

2.93E+00

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S),

LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-61

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD) UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.035

Statistics-Background Data

X= 35.313 **S**= 1.250

K factor=** 2.523

TL(1)=3.85E+01 LL(1)=N/A

Statistics-Transformed Background X=3.564Data

S = 0.033CV(2) = 0.009 **K factor**=** 2.523

TL(2)= 3.65E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 3.50E+01 3.56E+00 9/16/2002 3.50E+01 3.56E+00 10/16/2002 3.50E+01 3.56E+001/13/2003 3.50E+01 3.56E+00 4/10/2003 3.50E+01 3.56E+00 7/16/2003 3.50E+01 3.56E+00 10/14/2003 3.50E+01 3.56E+001/13/2004 3.50E+01 3.56E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 4.00E+01 3.69E+00 9/16/2002 3.50E+01 3.56E+00 10/17/2002 3.50E+01 3.56E+00 1/13/2003 3.50E+01 3.56E+00 4/8/2003 3.50E+01 3.56E+00 7/16/2003 3.50E+01 3.56E+00 10/14/2003 3.50E+01 3.56E+00 1/13/2004 3.50E+01 3.56E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >Tl	L(1)? LN(Result)	LN(Result) >TL(2)		
MW370	Downgradien	t Yes	2.36E+01	l NO	3.16E+00	N/A		
MW373	Downgradien	t No	2.00E+01	1 N/A	3.00E+00	N/A		

+00 N/A +00N/A MW385 Sidegradient No 2.00E+01 N/A 3.00E+00 N/A 2.00E+01 N/A 3.00E+00 N/A MW388 Downgradient No MW392 Downgradient No 2.00E+01 N/A 3.00E+00 N/A MW395 Upgradient No 2.00E+01N/A 3.00E+00N/A MW397 Upgradient No 2.00E+01N/A 3.00E+00 N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S),

LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-62

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Chloride **UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

S = 0.229

K factor=** 2.523

TL(1)= 8.12E+01 **LL(1)=**N/A

Data

CV(2)=0.058

K factor=** 2.523

TL(2)=4.50E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Statistics-Transformed Background X=3.924

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 6.22E+01 4.13E+00 9/16/2002 6.47E+014.17E+00 10/16/2002 6.22E+01 4.13E+00 1/13/2003 6.35E+01 4.15E+00 4/10/2003 6.41E+01 4.16E+00 7/16/2003 6.40E+01 4.16E+00 10/14/2003 6.32E+01 4.15E+00 1/13/2004 6.06E+01 4.10E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 3.89E+01 3.66E+00 9/16/2002 3.98E+01 3.68E+00 10/17/2002 3.93E+01 3.67E+00 1/13/2003 4.05E+01 3.70E+00 4/8/2003 4.21E+01 3.74E+00 7/16/2003 4.20E+01 3.74E+00 10/14/2003 4.08E+01 3.71E+00 1/13/2004 4.16E+01 3.73E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

C	urrent	Qua	arte	r D	ata
** 7	11.3.7		4.		

Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	4.19E+01	NO	3.74E+00	N/A
MW373	Downgradien	t Yes	3.48E+01	NO	3.55E+00	N/A
MW385	Sidegradient	Yes	2.12E+01	NO	3.05E+00	N/A
MW388	Downgradien	t Yes	3.62E+01	NO	3.59E+00	N/A
MW392	Downgradien	t Yes	4.32E+01	NO	3.77E+00	N/A
MW395	Upgradient	Yes	4.72E+01	NO	3.85E+00	N/A
MW397	Upgradient	Yes	3.46E+01	NO	3.54E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
 - LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-63

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** cis-1,2-Dichloroethene UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.000X = 5.000

CV(1)=0.000

K factor=** 2.523

TL(1)= 5.00E+00 **LL(1)=**N/A

L(2)

Statistics-Transformed Background X=1.609

S = 0.000

CV(2) = 0.000

K factor=** 2.523

TL(2)= 1.61E+00 **LL(2)=**N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.00E+00 1.61E+00 9/30/2002 1.61E+00 5.00E+00 10/16/2002 5.00E+00 1.61E+00 1/13/2003 5.00E+00 1.61E+00 4/10/2003 5.00E+00 1.61E+00 7/16/2003 5.00E+00 1.61E+00 10/14/2003 5.00E+00 1.61E+00 1/13/2004 5.00E+00 1.61E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5.00E+00 1.61E+00 9/30/2002 5.00E+00 1.61E+00 10/17/2002 5.00E+00 1.61E+00 1/13/2003 5.00E+00 1.61E+00 4/8/2003 5.00E+00 1.61E+00 7/16/2003 5.00E+00 1.61E+00 10/14/2003 5.00E+00 1.61E+00 1/13/2004 5.00E+00 1.61E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

C	u	rr	ent	Qu	artei	r Data

Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL
MW370	Downgradient	No	1.00E+00) N/A	0.00E+00	N/A
MW373	Downgradient	No	1.00E+00) N/A	0.00E+00	N/A
MW385	Sidegradient	No	1.00E+00) N/A	0.00E+00	N/A
MW388	Downgradient	No	1.00E+00) N/A	0.00E+00	N/A
MW392	Downgradient	Yes	3.60E-01	NO	-1.02E+00	N/A
MW395	Upgradient	No	1.00E+00) N/A	0.00E+00	N/A
MW397	Upgradient	No	1.00E+00) N/A	0.00E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Cobalt **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

10/14/2003

1/13/2004

X = 0.007

CV(1)=1.515

K factor=** 2.523

TL(1)= 3.41E-02 LL(1)=N/A

Statistics-Transformed Background X=-6.053 S= 1.416

S = 0.011

CV(2) = -0.234

K factor=** 2.523

TL(2) = -2.48E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 2.50E-02 -3.69E+00 9/16/2002 2.50E-02 -3.69E+00 10/16/2002 1.00E-03 -6.91E+00 1/13/2003 1.48E-03 -6.52E+00 4/10/2003 1.51E-03 -6.50E+00 7/16/2003 1.00E-03 -6.91E+00 10/14/2003 1.00E-03 -6.91E+00 1/13/2004 1.00E-03 -6.91E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2.50E-02 -3.69E+00 9/16/2002 2.50E-02 -3.69E+00 10/17/2002 1.00E-03 -6.91E+00 1/13/2003 1.00E-03 -6.91E+00 4/8/2003 1.00E-03 -6.91E+00 7/16/2003 1.00E-03 -6.91E+00

1.00E-03

1.00E-03

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data						
Vell No.	Gradient	Detected?	Result	Result >TL(1	l)? LN(Result)	LN(Result) >TL(2	2)
MW370	Downgradient	t No	1.00E-03	N/A	-6.91E+00	N/A	
MW373	Downgradient	t No	1.00E-03	N/A	-6.91E+00	N/A	
MW385	Sidegradient	No	1.00E-03	N/A	-6.91E+00	N/A	
MW388	Downgradient	t No	1.00E-03	N/A	-6.91E+00	N/A	
MW392	Downgradient	t No	1.00E-03	N/A	-6.91E+00	N/A	
MW395	Upgradient	Yes	1.16E-03	N/A	-6.76E+00	NO	
MW397	Upgradient	No	1.00E-03	N/A	-6.91E+00	N/A	
֡	Well No. MW370 MW373 MW385 MW388 MW392 MW395	MW370 Downgradient MW373 Downgradient MW385 Sidegradient MW388 Downgradient MW392 Downgradient MW395 Upgradient	Well No. Gradient Detected? MW370 Downgradient No MW373 Downgradient No MW385 Sidegradient No MW388 Downgradient No MW392 Downgradient No MW395 Upgradient Yes	Well No. Gradient Detected? Result MW370 Downgradient No 1.00E-03 MW373 Downgradient No 1.00E-03 MW385 Sidegradient No 1.00E-03 MW388 Downgradient No 1.00E-03 MW392 Downgradient No 1.00E-03 MW395 Upgradient Yes 1.16E-03	Well No. Gradient Detected? Result Result >TL(1) MW370 Downgradient No 1.00E-03 N/A MW373 Downgradient No 1.00E-03 N/A MW385 Sidegradient No 1.00E-03 N/A MW388 Downgradient No 1.00E-03 N/A MW392 Downgradient No 1.00E-03 N/A MW395 Upgradient Yes 1.16E-03 N/A	Well No. Gradient Detected? Result Result >TL(1)? LN(Result) MW370 Downgradient No 1.00E-03 N/A -6.91E+00 MW373 Downgradient No 1.00E-03 N/A -6.91E+00 MW385 Sidegradient No 1.00E-03 N/A -6.91E+00 MW388 Downgradient No 1.00E-03 N/A -6.91E+00 MW392 Downgradient No 1.00E-03 N/A -6.91E+00 MW395 Upgradient Yes 1.16E-03 N/A -6.76E+00	Vell No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2) MW370 Downgradient No 1.00E-03 N/A -6.91E+00 N/A MW373 Downgradient No 1.00E-03 N/A -6.91E+00 N/A MW385 Sidegradient No 1.00E-03 N/A -6.91E+00 N/A MW388 Downgradient No 1.00E-03 N/A -6.91E+00 N/A MW392 Downgradient No 1.00E-03 N/A -6.91E+00 N/A MW395 Upgradient Yes 1.16E-03 N/A -6.76E+00 NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-6.91E+00

-6.91E+00

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
 - LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-65

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor=** 2.523

TL(1)= 5.09E+02 **LL(1)=**N/A

Statistics-Transformed Background X=5.926 S= 0.136 Data

S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2)= 6.27E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 4.05E+02 6.00E+00 9/16/2002 4.01E+02 5.99E+00 10/16/2002 3.92E+02 5.97E+00 1/13/2003 4.04E+02 6.00E+00 4/10/2003 4.88E+02 6.19E+00 7/16/2003 4.50E+02 6.11E+00 10/14/2003 4.10E+02 6.02E+001/13/2004 4.13E+02 6.02E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 3.22E+02 5.77E+00 9/16/2002 3.15E+02 5.75E+00 10/17/2002 3.17E+02 5.76E+00 1/13/2003 3.20E+02 5.77E+00 4/8/2003 3.90E+02 5.97E+00 7/16/2003 3.54E+02 5.87E+00 10/14/2003 3.31E+02 5.80E+00 1/13/2004 3.34E+02 5.81E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient 1	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) > TL(2)
MW370	Downgradient	Yes	4.70E+02	NO	6.15E+00	N/A
MW373	Downgradient	Yes	8.31E+02	YES	6.72E+00	N/A
MW385	Sidegradient	Yes	3.90E+02	NO	5.97E+00	N/A
MW388	Downgradient	Yes	4.55E+02	NO	6.12E+00	N/A
MW392	Downgradient	Yes	3.44E+02	NO	5.84E+00	N/A
MW395	Upgradient	Yes	4.05E+02	NO	6.00E+00	N/A
MW397	Upgradient	Yes	3.20E+02	NO	5.77E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-66

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.013X = 0.028

CV(1)=0.474

K factor=** 2.523

TL(1)= 6.15E-02 **LL(1)**=N/A

Statistics-Transformed Background X=-3.662 S= 0.406

CV(2) = -0.111

K factor=** 2.523

TL(2) = -2.64E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.00E-02 -3.00E+00 9/16/2002 5.00E-02 -3.00E+00 10/16/2002 2.81E-02 -3.57E+00 1/13/2003 2.00E-02 -3.91E+00 4/10/2003 2.00E-02 -3.91E+00 7/16/2003 2.00E-02 -3.91E+00 10/14/2003 2.00E-02 -3.91E+00 1/13/2004 2.00E-02 -3.91E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5.00E-02 -3.00E+00 9/16/2002 5.00E-02 -3.00E+00 10/17/2002 2.00E-02 -3.91E+00 1/13/2003 2.00E-02 -3.91E+00 4/8/2003 2.00E-02 -3.91E+00 7/16/2003 2.00E-02 -3.91E+00 10/14/2003 2.00E-02 -3.91E+00 1/13/2004 2.00E-02 -3.91E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

C	uı	rr	ent	Ų۱	ıaı	te	r I	Jai	a
			,						

Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) > TL(2)
MW370	Downgradien	t Yes	4.62E-04	NO	-7.68E+00	N/A
MW373	Downgradien	t Yes	5.50E-04	NO	-7.51E+00	N/A
MW385	Sidegradient	Yes	6.92E-04	NO	-7.28E+00	N/A
MW388	Downgradien	t Yes	7.31E-04	NO	-7.22E+00	N/A
MW392	Downgradien	t Yes	5.76E-04	NO	-7.46E+00	N/A
MW395	Upgradient	Yes	5.99E-04	NO	-7.42E+00	N/A
MW397	Upgradient	Yes	5.41E-04	NO	-7.52E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
 - LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Dissolved Oxygen UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 4.678S = 2.431 CV(1)=0.520

K factor=** 2.523

TL(1)=1.08E+01 LL(1)=N/A

Statistics-Transformed Background X=1.414

S = 0.550

CV(2) = 0.389

K factor=** 2.523

TL(2)=2.80E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 7.29E+00 1.99E+00 9/30/2002 4.03E+00 1.39E+00 10/16/2002 3.85E+00 1.35E+00 1/13/2003 2.36E+00 8.59E-01 4/10/2003 1.14E+00 1.31E-01 7/16/2003 1.76E+00 5.65E-01 10/14/2003 4.05E+00 1.40E+00 1/13/2004 4.26E+00 1.45E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1.16E+01 2.45E+00 9/16/2002 5.86E+00 1.77E+00 10/17/2002 5.94E+00 1.78E+00 1/13/2003 4.66E+00 1.54E+00 4/8/2003 3.77E+00 1.33E+00 7/16/2003 3.47E+00 1.24E+00 10/14/2003 5.34E+00 1.68E+00 1/13/2004 5.51E+00 1.71E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	4.26E+00) NO	1.45E+00	N/A
MW373	Downgradien	t Yes	2.00E+00	NO NO	6.93E-01	N/A
MW385	Sidegradient	Yes	2.84E+00	NO NO	1.04E+00	N/A
MW388	Downgradien	t Yes	5.14E+00	NO NO	1.64E+00	N/A
MW392	Downgradien	t Yes	1.92E+00) NO	6.52E-01	N/A
MW395	Upgradient	Yes	1.67E+00) NO	5.13E-01	N/A
MW397	Upgradient	Yes	6.65E+00) NO	1.89E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
- LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-68

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Dissolved Solids UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor=** 2.523

TL(1)=3.05E+02 LL(1)=N/A

Statistics-Transformed Background X=5.379 S= 0.152 Data

CV(2)=0.028

K factor=** 2.523

TL(2)=5.76E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 2.49E+02 5.52E+00 2.72E+02 9/16/2002 5.61E+00 10/16/2002 2.55E+02 5.54E+00 1/13/2003 2.11E+02 5.35E+00 4/10/2003 2.89E+02 5.67E+00 7/16/2003 2.36E+02 5.46E+00 10/14/2003 2.24E+02 5.41E+00 1/13/2004 2.35E+02 5.46E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1.87E+02 5.23E+00 9/16/2002 1.97E+02 5.28E+00 10/17/2002 1.83E+02 5.21E+00 1/13/2003 1.82E+02 5.20E+00 4/8/2003 2.17E+02 5.38E+00 7/16/2003 1.96E+02 5.28E+00 10/14/2003 1.98E+02 5.29E+00 1/13/2004 1.77E+025.18E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter 1	Data	
Well No.	Gradient		Ι

Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	2.35E+02	. NO	5.46E+00	N/A
MW373	Downgradien	t Yes	4.72E+02	YES	6.16E+00	N/A
MW385	Sidegradient	Yes	1.96E+02	. NO	5.28E+00	N/A
MW388	Downgradien	t Yes	2.17E+02	NO NO	5.38E+00	N/A
MW392	Downgradien	t Yes	1.56E+02	. NO	5.05E+00	N/A
MW395	Upgradient	Yes	1.94E+02	. NO	5.27E+00	N/A
MW397	Upgradient	Yes	1.28E+02	. NO	4.85E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-69

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison UNITS:** mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.514X = 0.400

CV(1)=1.286

K factor=** 2.523

TL(1)= 1.70E+00 **LL(1)=**N/A

Data

CV(2) = -1.199

K factor=** 2.523

TL(2) = 4.45E + 00 LL(2) = N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Statistics-Transformed Background X=-2.197 S= 2.634

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 2.94E-01 -1.22E+00 9/16/2002 2.00E-01 -1.61E+00 10/16/2002 2.00E-04 -8.52E+00 1/13/2003 1.33E+00 2.85E-01 4/10/2003 1.31E+00 2.70E-01 7/16/2003 2.00E-01 -1.61E+00 10/14/2003 1.00E-01 -2.30E+00 1/13/2004 1.00E-01 -2.30E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1.58E+00 4.57E-01 9/16/2002 2.32E-01 -1.46E+00 10/17/2002 2.00E-04 -8.52E+00 1/13/2003 4.53E-01 -7.92E-01 4/8/2003 2.00E-01 -1.61E+00 7/16/2003 2.00E-01 -1.61E+00 10/14/2003 1.00E-01 -2.30E+00 1/13/2004 1.00E-01 -2.30E+00

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	1.00E-01	N/A	-2.30E+00	N/A
MW373	Downgradien	t Yes	3.94E-02	N/A	-3.23E+00	NO
MW385	Sidegradient	Yes	3.38E-02	N/A	-3.39E+00	NO
MW388	Downgradien	t Yes	4.16E-02	N/A	-3.18E+00	NO
MW392	Downgradien	t Yes	1.00E-01	N/A	-2.30E+00	NO
MW395	Upgradient	Yes	2.54E+00) N/A	9.32E-01	NO
MW397	Upgradient	No	1.00E-01	N/A	-2.30E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
 - LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Magnesium **UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.102S = 4.685 CV(1) = 0.515

K factor=** 2.523

TL(1)= 2.09E+01 **LL(1)=**N/A

Statistics-Transformed Background X=1.423Data

S = 2.408

CV(2)=1.692

K factor=** 2.523

TL(2)= 7.50E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1.25E+01	2.53E+00
9/16/2002	1.30E+01	2.56E+00
10/16/2002	1.27E-02	-4.37E+00
1/13/2003	1.12E+01	2.42E+00
4/10/2003	1.75E+01	2.86E+00
7/16/2003	1.29E+01	2.56E+00
10/14/2003	1.34E+01	2.60E+00
1/13/2004	1.24E+01	2.52E+00
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.06E+00
Date Collected	Result	
Date Collected 8/13/2002	Result 7.83E+00	2.06E+00
Date Collected 8/13/2002 9/16/2002	Result 7.83E+00 7.64E+00	2.06E+00 2.03E+00
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 7.83E+00 7.64E+00 6.58E-03	2.06E+00 2.03E+00 -5.02E+00
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 7.83E+00 7.64E+00 6.58E-03 6.69E+00	2.06E+00 2.03E+00 -5.02E+00 1.90E+00
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 7.83E+00 7.64E+00 6.58E-03 6.69E+00 7.28E+00	2.06E+00 2.03E+00 -5.02E+00 1.90E+00 1.99E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

C	uı	rre	nt	Qu	arte	r I	Jata	1
***	-11	3. T		~	4.			

Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) > TL(2)
MW370	Downgradient	Yes	1.32E+01	l NO	2.58E+00	N/A
MW373	Downgradient	Yes	2.76E+01	YES	3.32E+00	N/A
MW385	Sidegradient	Yes	9.98E+00) NO	2.30E+00	N/A
MW388	Downgradient	Yes	1.31E+01	l NO	2.57E+00	N/A
MW392	Downgradient	Yes	1.02E+01	l NO	2.32E+00	N/A
MW395	Upgradient	Yes	1.14E+01	l NO	2.43E+00	N/A
MW397	Upgradient	Yes	7.95E+00) NO	2.07E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-71

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Manganese **UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.195X = 0.131

CV(1)=1.487

K factor=** 2.523

TL(1)= 6.24E-01

Statistics-Transformed Background X=-3.104 S= 1.529

CV(2) = -0.493

MW397 Upgradient

Yes

K factor=** 2.523

TL(2)= 7.55E-01 **LL(2)=**N/A

NO

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 3.61E-01 -1.02E+00 9/16/2002 2.80E-02 -3.58E+00 10/16/2002 2.60E-02 -3.65E+00 1/13/2003 7.13E-02 -2.64E+00 4/10/2003 6.29E-01 -4.64E-01 7/16/2003 2.97E-01 -1.21E+00 10/14/2003 1.98E-02 -3.92E+00 1/13/2004 1.26E-02 -4.37E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 4.66E-01 -7.64E-01 9/16/2002 7.70E-02 -2.56E+00 10/17/2002 2.80E-02 -3.58E+00 1/13/2003 1.64E-02 -4.11E+00 4/8/2003 4.07E-02 -3.20E+00 7/16/2003 1.67E-02 -4.09E+00 10/14/2003 5.55E-03 -5.19E+00 1/13/2004 5.00E-03 -5.30E+00

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

-6.86E+00

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW370	Downgradient	Yes	1.25E-03	N/A	-6.68E+00	NO
MW373	Downgradient	Yes	7.75E-03	N/A	-4.86E+00	NO
MW385	Sidegradient	Yes	1.77E-03	N/A	-6.34E+00	NO
MW388	Downgradient	No	5.00E-03	N/A	-5.30E+00	N/A
MW392	Downgradient	Yes	7.30E-02	N/A	-2.62E+00	NO
MW395	Upgradient	Yes	2.06E-01	N/A	-1.58E+00	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

1.05E-03

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-72

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Molybdenum **UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

CV(1)=1.451

K factor=** 2.523

TL(1)= 3.41E-02 LL(1)=N/A

Data

S = 0.011

CV(2) = -0.241

K factor=** 2.523

TL(2) = -2.35E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Statistics-Transformed Background x=-5.990 S= 1.443

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 2.50E-02 -3.69E+00 9/16/2002 2.50E-02 -3.69E+00 10/16/2002 1.00E-03 -6.91E+00 1/13/2003 6.09E-03 -5.10E+00 4/10/2003 1.00E-03 -6.91E+00 7/16/2003 1.00E-03 -6.91E+00 10/14/2003 1.00E-03 -6.91E+00 1/13/2004 1.00E-03 -6.91E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2.50E-02 -3.69E+00 9/16/2002 2.50E-02 -3.69E+00 10/17/2002 1.00E-03 -6.91E+00 1/13/2003 1.00E-03 -6.91E+00 4/8/2003 1.00E-03 -6.91E+00 7/16/2003 1.00E-03 -6.91E+00 10/14/2003 1.00E-03 -6.91E+00 1/13/2004 1.00E-03 -6.91E+00

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data	ı
Well No.	Gradient	Ι

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	1.00E-03	N/A	-6.91E+00	N/A
MW373	Downgradien	t No	1.00E-03	N/A	-6.91E+00	N/A
MW385	Sidegradient	Yes	2.06E-04	N/A	-8.49E+00	NO
MW388	Downgradien	t No	1.00E-03	N/A	-6.91E+00	N/A
MW392	Downgradien	t No	1.00E-03	N/A	-6.91E+00	N/A
MW395	Upgradient	Yes	6.55E-04	N/A	-7.33E+00	NO
MW397	Upgradient	No	1.00E-03	N/A	-6.91E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-73

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Nickel UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW397 Upgradient

Statistics-Background Data

S = 0.020X = 0.018

CV(1)=1.089

K factor=** 2.523

TL(1) = 6.83E-02 LL(1)=N/A

Data

Statistics-Transformed Background x=-4.540 S= 1.020

CV(2) = -0.225

K factor=** 2.523

TL(2)=-1.97E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.00E-02 -3.00E+00 9/16/2002 5.00E-02 -3.00E+00 10/16/2002 7.02E-03 -4.96E+00 1/13/2003 2.90E-02 -3.54E+00 4/10/2003 9.10E-03 -4.70E+00 7/16/2003 6.27E-03 -5.07E+00 10/14/2003 5.00E-03 -5.30E+00 1/13/2004 5.00E-03 -5.30E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5.00E-02 -3.00E+00 9/16/2002 5.00E-02 -3.00E+00 10/17/2002 5.00E-03 -5.30E+00 1/13/2003 5.02E-03 -5.29E+00 4/8/2003 5.00E-03 -5.30E+00 7/16/2003 5.00E-03 -5.30E+00 10/14/2003 5.00E-03 -5.30E+00 1/13/2004 5.00E-03 -5.30E+00

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

-7.28E+00

NO

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL		
MW370	Downgradien	t No	2.00E-03	N/A	-6.21E+00	N/A		
MW373	Downgradien	t Yes	8.29E-04	N/A	-7.10E+00	NO		
MW385	Sidegradient	Yes	7.73E-04	N/A	-7.17E+00	NO		
MW388	Downgradien	t Yes	6.73E-04	N/A	-7.30E+00	NO		
MW392	Downgradien	t Yes	1.33E-03	N/A	-6.62E+00	NO		
MW395	Upgradient	Yes	1.78E-03	N/A	-6.33E+00	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

6.88E-04

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
 - LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 157.250 **S**= 52.376 **CV(1)**=0.333

K factor=** 2.523

TL(1)= 2.89E+02 **LL(1)=**N/A

Statistics-Transformed Background X= 5.003

Data

S = 0.348 CV(2) = 0.069

K factor=** 2.523

TL(2)= 5.88E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 8.00E+01 4.38E+00 9/16/2002 1.45E+02 4.98E+00 10/16/2002 1.25E+02 4.83E+00 1/13/2003 8.50E+01 4.44E+00 4/10/2003 1.59E+02 5.07E+00 7/16/2003 9.80E+01 4.58E+00 10/14/2003 1.38E+02 4.93E+00 1/13/2004 2.33E+02 5.45E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1.15E+02 4.74E+00 9/30/2002 1.40E+02 4.94E+00 10/17/2002 1.85E+02 5.22E+00 1/13/2003 2.30E+02 5.44E+00 4/8/2003 1.55E+02 5.04E+00 7/16/2003 1.88E+02 5.24E+00 10/14/2003 1.87E+02 5.23E+00 1/13/2004 2.53E+02 5.53E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) > TL(2)
MW370	Downgradient	Yes	4.60E+02	2 YES	6.13E+00	N/A
MW373	Downgradient	Yes	4.57E+02	YES	6.12E+00	N/A
MW385	Sidegradient	Yes	4.10E+02	YES YES	6.02E+00	N/A
MW388	Downgradient	Yes	4.08E+02	YES	6.01E+00	N/A
MW392	Downgradient	Yes	3.77E+02	YES	5.93E+00	N/A
MW395	Upgradient	Yes	1.90E+02	NO NO	5.25E+00	N/A
MW397	Upgradient	Yes	4.76E+02	YES	6.17E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385

MW388 MW392

MXX207

MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison pН **UNITS: Std Unit LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.248X = 6.048

CV(1)=0.041 K factor**= 2.904

TL(1)= 6.77E+00 **LL(1)**=5.33E+00

Statistics-Transformed Background X=1.799 Data

S = 0.042

CV(2)=0.023 K factor**= 2.904

TL(2)= 1.92E+00 LL(2)=1.68E+00

Historical Background Data from

Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	5.80E+00	1.76E+00
9/16/2002	6.00E+00	1.79E+00
10/16/2002	5.47E+00	1.70E+00
1/13/2003	6.00E+00	1.79E+00
4/10/2003	6.18E+00	1.82E+00
7/16/2003	6.00E+00	1.79E+00
10/14/2003	6.31E+00	1.84E+00
1/13/2004	6.24E+00	1.83E+00
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.76E+00
Date Collected	Result	,
Date Collected 8/13/2002	Result 5.84E+00	1.76E+00
Date Collected 8/13/2002 9/30/2002	Result 5.84E+00 6.00E+00	1.76E+00 1.79E+00
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5.84E+00 6.00E+00 5.75E+00	1.76E+00 1.79E+00 1.75E+00
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5.84E+00 6.00E+00 5.75E+00 6.00E+00	1.76E+00 1.79E+00 1.75E+00 1.79E+00
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5.84E+00 6.00E+00 5.75E+00 6.00E+00 6.30E+00	1.76E+00 1.79E+00 1.75E+00 1.79E+00 1.84E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	Current	Quarter	Data
----------------------	---------	----------------	------

Well No.	Gradient	Detected'	? Result	()	. ,	LN(Result) >TL(2)?
				Result <ll(1)?< td=""><td></td><td>LN(Result) < LL(2)?</td></ll(1)?<>		LN(Result) < LL(2)?
MW370	Downgradient	Yes	6.12E+00	NO	1.81E+00	N/A
MW373	Downgradient	Yes	6.12E+00	NO	1.81E+00	N/A
MW385	Sidegradient	Yes	6.05E+00	NO	1.80E+00	N/A
MW388	Downgradient	Yes	5.94E+00	NO	1.78E+00	N/A
MW392	Downgradient	Yes	6.07E+00	NO	1.80E+00	N/A
MW395	Upgradient	Yes	6.01E+00	NO	1.79E+00	N/A
MW397	Upgradient	Yes	6.04E+00	NO	1.80E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Potassium UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 1.590S = 0.642 CV(1)=0.404

K factor=** 2.523

TL(1)= 3.21E+00 **LL(1)=**N/A

Statistics-Transformed Background X=-0.306 S= 2.457

CV(2) = -8.028

K factor=** 2.523

TL(2)= 5.89E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 2.00E+00 6.93E-01 9/16/2002 2.00E+00 6.93E-01 10/16/2002 1.29E-03 -6.65E+00 1/13/2003 1.51E+00 4.12E-01 4/10/2003 1.67E+00 5.13E-01 7/16/2003 1.73E+00 5.48E-01 10/14/2003 1.70E+00 5.31E-01 1/13/2004 1.58E+00 4.57E-01 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2.03E+00 7.08E-01 9/16/2002 2.00E+00 6.93E-01 10/17/2002 1.45E-03 -6.54E+00 1/13/2003 1.69E+00 5.25E-01 4/8/2003 1.73E+00 5.48E-01 7/16/2003 2.00E+00 6.93E-01 10/14/2003 1.92E+00 6.52E-01 1/13/2004 1.87E+00 6.26E-01

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter I	Data	a			
	Gradient			Detec	ted?	Result
1433270	D	11	- ,	3.7		. 50E+0

Well No.	Gradient	Detected?	Result	Result >TL	(1)? LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	2.52E+00) NO	9.24E-01	N/A
MW373	Downgradien	t Yes	2.76E+00) NO	1.02E+00	N/A
MW385	Sidegradient	Yes	1.55E+00) NO	4.38E-01	N/A
MW388	Downgradien	t Yes	1.74E+00) NO	5.54E-01	N/A
MW392	Downgradien	t Yes	2.24E+00) NO	8.06E-01	N/A
MW395	Upgradient	Yes	2.01E+00) NO	6.98E-01	N/A
MW397	Upgradient	Yes	1.82E+00) NO	5.99E-01	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

MW397 Upgradient

Yes

Statistics-Background Data

X= 29.560 **S**= 13.894 **CV(1)**= 0.470

K factor=** 2.523

TL(1)= 6.46E+01 **LL(1)**=N/A

Statistics-Transformed Background X= 2.615

15 **S**= 2.411

CV(2)=0.922

K factor=** 2.523

TL(2)= 8.70E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 2.70E+01 3.30E+00 9/16/2002 2.72E+01 3.30E+00 10/16/2002 2.53E-02 -3.68E+00 1/13/2003 2.26E+01 3.12E+00 4/10/2003 5.39E+01 3.99E+00 7/16/2003 3.00E+01 3.40E+00 10/14/2003 2.91E+01 3.37E+001/13/2004 2.64E+013.27E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 3.52E+01 3.56E+00 9/16/2002 3.43E+01 3.54E+00 10/17/2002 3.36E-02 -3.39E+00 1/13/2003 3.13E+01 3.44E+00 4/8/2003 4.61E+01 3.83E+00 7/16/2003 3.84E+01 3.65E+00 10/14/2003 3.71E+01 3.61E+00 1/13/2004 3.43E+01 3.54E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

3.58E+00

N/A

Current	Quarter Butu					
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(
MW370	Downgradient	Yes	4.83E+01	NO	3.88E+00	N/A
MW373	Downgradient	Yes	6.11E+01	NO	4.11E+00	N/A
MW385	Sidegradient	Yes	4.17E+01	NO	3.73E+00	N/A
MW388	Downgradient	Yes	4.74E+01	NO	3.86E+00	N/A
MW392	Downgradient	Yes	2.52E+01	NO	3.23E+00	N/A
MW395	Upgradient	Yes	3.10E+01	NO	3.43E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

3.57E+01

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-78

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison Sulfate UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1) = 0.200

K factor=** 2.523

TL(1)=1.62E+01 LL(1)=N/A

Statistics-Transformed Background X=2.356

Data

S = 0.203

CV(2) = 0.086

K factor=** 2.523

TL(2) = 2.87E + 00 LL(2) = N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1.03E+01	2.33E+00
9/16/2002	9.10E+00	2.21E+00
10/16/2002	8.80E+00	2.17E+00
1/13/2003	9.00E+00	2.20E+00
4/10/2003	8.30E+00	2.12E+00
7/16/2003	8.20E+00	2.10E+00
10/14/2003	8.30E+00	2.12E+00
1/13/2004	8.20E+00	2.10E+00
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.64E+00
Date Collected	Result	,
Date Collected 8/13/2002	Result 1.40E+01	2.64E+00
Date Collected 8/13/2002 9/16/2002	Result 1.40E+01 1.28E+01	2.64E+00 2.55E+00
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.40E+01 1.28E+01 1.23E+01	2.64E+00 2.55E+00 2.51E+00
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.40E+01 1.28E+01 1.23E+01 1.27E+01	2.64E+00 2.55E+00 2.51E+00 2.54E+00
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.40E+01 1.28E+01 1.23E+01 1.27E+01 1.28E+01	2.64E+00 2.55E+00 2.51E+00 2.54E+00 2.55E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(l)? LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	2.02E+01	YES	3.01E+00	N/A
MW373	Downgradient	Yes	1.70E+02	YES	5.14E+00	N/A
MW385	Sidegradient	Yes	1.88E+01	YES	2.93E+00	N/A
MW388	Downgradient	Yes	2.10E+01	YES	3.04E+00	N/A
MW392	Downgradient	Yes	8.22E+00	NO	2.11E+00	N/A
MW395	Upgradient	Yes	1.10E+01	NO	2.40E+00	N/A
MW397	Upgradient	Yes	1.21E+01	NO	2.49E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Technetium-99 UNITS: pCi/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.359 **S**= 9.138

CV(1)=0.805

K factor=** 2.523

TL(1)= 3.44E+01 **LL(1)=**N/A

Statistics-Transformed Background X=2.398Data

S = 0.859

CV(2) = 0.358

K factor**= 2.523

TL(2)=3.25E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2.08E+01	3.03E+00
9/16/2002	1.62E+01	2.79E+00
10/16/2002	8.28E+00	2.11E+00
1/13/2003	1.30E+01	2.56E+00
4/10/2003	-9.37E+00	#Func!
7/16/2003	8.26E-01	-1.91E-01
10/14/2003	1.41E+01	2.65E+00
1/13/2004	0.00E+00	#Func!
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.80E+00
Date Collected	Result	,
Date Collected 8/13/2002	Result 6.06E+00	1.80E+00
Date Collected 8/13/2002 9/16/2002	Result 6.06E+00 1.73E+01	1.80E+00 2.85E+00
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06E+00 1.73E+01 2.57E+01	1.80E+00 2.85E+00 3.25E+00
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06E+00 1.73E+01 2.57E+01 2.09E+01	1.80E+00 2.85E+00 3.25E+00 3.04E+00
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06E+00 1.73E+01 2.57E+01 2.09E+01 2.01E+01	1.80E+00 2.85E+00 3.25E+00 3.04E+00 3.00E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2
MW370	Downgradient	t Yes	2.83E+01	NO	3.34E+00	N/A
MW373	Downgradient	t No	1.40E+01	N/A	2.64E+00	N/A
MW385	Sidegradient	Yes	4.25E+01	YES	3.75E+00	N/A
MW388	Downgradient	t Yes	2.63E+01	l NO	3.27E+00	N/A
MW392	Downgradient	t No	7.26E+00) N/A	1.98E+00	N/A
MW395	Upgradient	No	2.51E+00) N/A	9.20E-01	N/A
MW397	Upgradient	No	1.41E+01	N/A	2.65E+00	N/A
M/A Dagge	lta idantified on N	Tam Datasta	domina a lala		a data malidatia	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW385

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ((background result-X)^2)/(count of background results -1))]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-80

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Total Organic Carbon (TOC) **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

S = 0.856X = 1.544

CV(1)=0.554

K factor=** 2.523

TL(1)= 3.70E+00 **LL(1)=**N/A

Statistics-Transformed Background X=0.325

S = 0.452

CV(2)=1.393

K factor=** 2.523

TL(2)= 1.46E+00 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.60E+00 4.70E-01 9/16/2002 1.10E+00 9.53E-02 10/16/2002 1.00E+00 0.00E+001/13/2003 2.00E+00 6.93E-01 4/10/2003 3.40E+00 1.22E+00 7/16/2003 2.00E+00 6.93E-01 10/14/2003 1.00E+00 0.00E+001/13/2004 1.00E+00 0.00E+00Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1.00E+00 0.00E+009/16/2002 1.00E+00 0.00E+0010/17/2002 1.00E+00 0.00E+001/13/2003 3.60E+00 1.28E+00 4/8/2003 1.90E+00 6.42E-01 7/16/2003 1.10E+00 9.53E-02 10/14/2003 1.00E+00 0.00E+001/13/2004 1.00E+00 0.00E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data
Well No.	Gradient

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	1.00E+00) NO	0.00E+00	N/A
MW373	Downgradien	t Yes	1.22E+00) NO	1.99E-01	N/A
MW385	Sidegradient	Yes	7.87E-01	NO	-2.40E-01	N/A
MW388	Downgradien	t Yes	7.35E-01	NO	-3.08E-01	N/A
MW392	Downgradien	t Yes	5.64E-01	NO	-5.73E-01	N/A
MW395	Upgradient	Yes	1.70E+00) NO	5.31E-01	N/A
MW397	Upgradient	Yes	4.75E-01	NO	-7.44E-01	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S),
 - LL Lower Tolerance Limit, LL = X (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-81

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=31.513 S= 18.609 CV(1)=0.591

K factor=** 2.523

TL(1)= 7.85E+01 **LL(1)=**N/A

Statistics-Transformed Background X=3.240 Data

S= 0.707 **CV(2)**=0.218

K factor**= 2.523

TL(2)= 5.02E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.00E+01 3.91E+00 9/16/2002 5.00E+01 3.91E+00 10/16/2002 5.00E+01 3.91E+00 1/13/2003 1.83E+01 2.91E+00 4/10/2003 5.12E+01 3.94E+00 7/16/2003 4.26E+01 3.75E+00 10/14/2003 1.23E+01 2.51E+00 1/13/2004 1.00E+01 2.30E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5.00E+01 3.91E+00 9/16/2002 5.00E+01 3.91E+00 10/17/2002 5.00E+01 3.91E+00 1/13/2003 1.20E+01 2.48E+00 4/8/2003 1.99E+01 2.99E+00 7/16/2003 1.79E+01 2.88E+00 10/14/2003 1.00E+01 2.30E+00 1/13/2004 1.00E+01 2.30E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	5.14E+00	NO	1.64E+00	N/A
MW373	Downgradient	Yes	1.70E+01	NO	2.83E+00	N/A
MW385	Sidegradient	Yes	7.62E+00	NO	2.03E+00	N/A
MW388	Downgradient	Yes	7.34E+00	NO	1.99E+00	N/A
MW392	Downgradient	Yes	1.55E+01	NO	2.74E+00	N/A
MW395	Upgradient	Yes	8.88E+00	NO	2.18E+00	N/A
MW397	Upgradient	Yes	6.88E+00	NO	1.93E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-82

C-746-S/T Second Quarter 2023 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313 S = 5.701

CV(1)=0.780

K factor=** 2.523

TL(1)= 2.17E+01 **LL(1)=**N/A

LL(1)=N/.

Statistics-Transformed Background X= 1.467 Data

S = 1.213

CV(2) = 0.827

K factor**= 2.523

TL(2)= 4.53E+00 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.10E+01 2.40E+00 9/30/2002 1.40E+01 2.64E+00 10/16/2002 1.20E+01 2.48E+00 1/13/2003 1.40E+01 2.64E+00 4/10/2003 1.40E+01 2.64E+00 7/16/2003 1.30E+01 2.56E+00 10/14/2003 1.20E+01 2.48E+00 1/13/2004 1.10E+01 2.40E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5.00E+00 1.61E+00 9/30/2002 5.00E+00 1.61E+00 10/17/2002 1.00E+00 0.00E+001/13/2003 1.00E+000.00E+004/8/2003 1.00E+00 0.00E+007/16/2003 1.00E+00 0.00E+0010/14/2003 1.00E+00 0.00E+001/13/2004 1.00E+00 0.00E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL	L(1)? LN(Result)	LN(Result) >7	ΓL(2
MW370	Downgradient	Yes	2.06E+00) N/A	7.23E-01	N/A	
MW373	Downgradient	Yes	4.99E+00	N/A	1.61E+00	N/A	
MW385	Sidegradient	Yes	5.10E-01	N/A	-6.73E-01	N/A	
MW388	Downgradient	Yes	5.60E-01	N/A	-5.80E-01	N/A	
MW392	Downgradient	Yes	1.71E+00	N/A	5.36E-01	N/A	
MW395	Upgradient	Yes	5.78E+00) NO	1.75E+00	N/A	
MW397	Upgradient	No	1.00E+00	N/A	0.00E+00	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-83

C-746-S/T Second Quarter 2023 Statistical Analysis **Historical Background Comparison** Vanadium **UNITS:** mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 0.021S = 0.002 **CV(1)=**0.105

K factor=** 2.523

TL(1) = 2.69E-02 LL(1)=N/A

Statistics-Transformed Background X=-3.856 S= 0.100

CV(2) = -0.026

K factor=** 2.523

TL(2) = -3.60E + 00 LL(2) = N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 2.50E-02 -3.69E+00 9/16/2002 2.50E-02 -3.69E+00 10/16/2002 2.00E-02 -3.91E+00 1/13/2003 2.00E-02 -3.91E+00 7/16/2003 2.00E-02 -3.91E+00 10/14/2003 2.00E-02 -3.91E+00 1/13/2004 2.00E-02 -3.91E+00 4/12/2004 2.00E-02 -3.91E+00 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2.50E-02 -3.69E+00 9/16/2002 2.50E-02 -3.69E+00 10/17/2002 2.00E-02 -3.91E+00 1/13/2003 2.00E-02 -3.91E+00 4/8/2003 2.00E-02 -3.91E+00 7/16/2003 2.00E-02 -3.91E+00 10/14/2003 2.00E-02 -3.91E+00 1/13/2004 2.00E-02 -3.91E+00

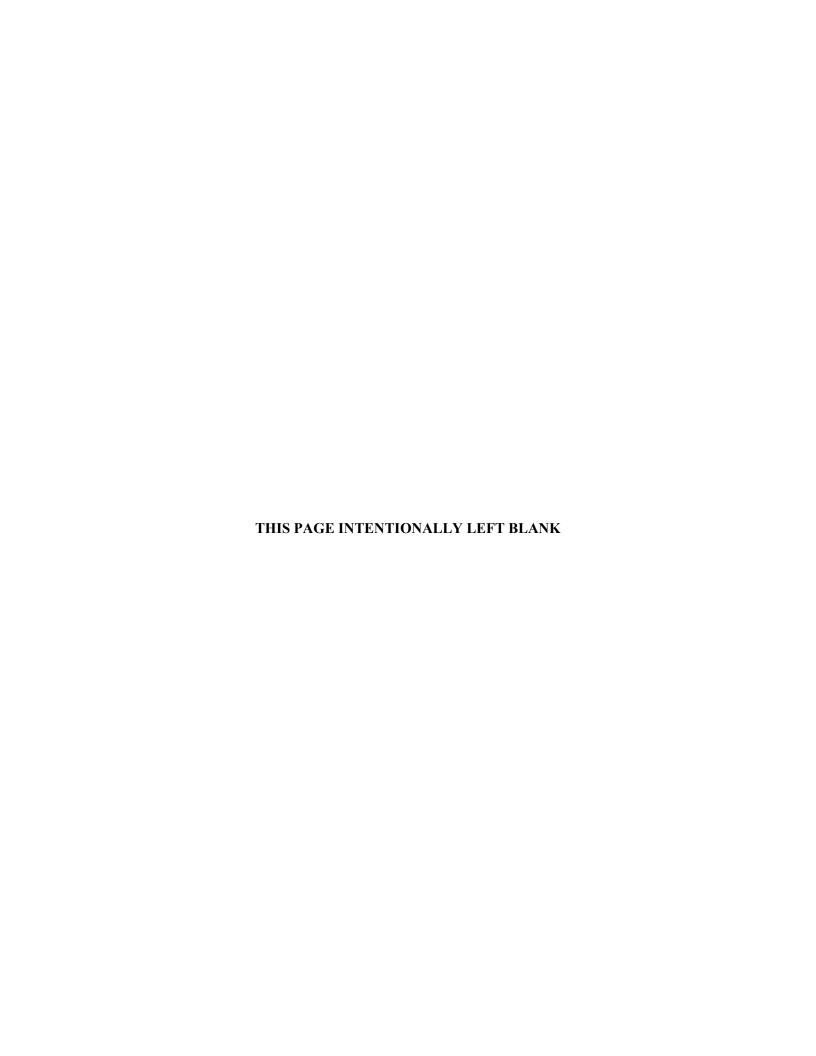
Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Da	ta
Well No.	Gradient	Detected?

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	2.00E-02	N/A	-3.91E+00	N/A
MW373	Downgradient	No	5.18E-03	N/A	-5.26E+00	N/A
MW385	Sidegradient	Yes	3.85E-03	NO	-5.56E+00	N/A
MW388	Downgradient	Yes	3.92E-03	NO	-5.54E+00	N/A
MW392	Downgradient	No	6.86E-03	N/A	-4.98E+00	N/A
MW395	Upgradient	No	5.76E-03	N/A	-5.16E+00	N/A
MW397	Upgradient	No	2.00E-02	N/A	-3.91E+00	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data


None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-84

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Second Quarter 2023 Statistical Analysis Current Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.200 **S**= 9.978

CV(1)=0.449

K factor**= 3.188

TL(1)= 5.40E+01 **LL(1)=**N/A

Statistics-Transformed Background X= 3.013

.013 **S**= 0.442

CV(2) = 0.147

K factor**= 3.188

TL(2)=4.42E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 4/14/2021 1.61E+01 2.78E+00 7/21/2021 1.34E+01 2.60E+00 10/18/2021 3.32E+01 3.50E+00 1/13/2022 3.46E+01 3.54E+00 4/19/2022 1.60E+01 2.77E+00 7/20/2022 1.22E+01 2.50E+00 10/17/2022 3.44E+01 3.54E+00 1/25/2023 1.77E+01 2.87E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW396	Unoradient	Yes 4	4 01E+01	NO	3 69E±00	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2023 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 285.000 **S**= 87.782 **CV(1)**=0.308

K factor**= 3.188

TL(1)= 5.65E+02 LL(1)=N/A

Statistics-Transformed Background X= 5.609 Data

= 5.609 **S**= 0.318

8 CV(2) = 0.057

K factor**= 3.188

TL(2) = 6.62E + 00 LL(2) = N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 4/14/2021 3.32E+02 5.81E+00 7/21/2021 4.00E+02 5.99E+00 10/18/2021 1.81E+02 5.20E+00 1.91E+02 1/13/2022 5.25E+00 4/19/2022 3.36E+02 5.82E+00 7/20/2022 3.83E+02 5.95E+00 10/17/2022 2.17E+025.38E+00 1/25/2023 2.40E+02 5.48E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	3.43E+02	NO	5.84E+00	N/A
MW390	Downgradient	Yes	4.36E+02	NO	6.08E+00	N/A
MW393	Downgradient	t Yes	3.63E+02	NO	5.89E+00	N/A
MW396	Upgradient	Yes	2.50E+02	NO	5.52E+00	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2023 Statistical Analysis **Current Background Comparison** Technetium-99 **UCRS** UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = -0.086 S = 6.711

CV(1) = -78.151

K factor=** 3.188

TL(1)= 2.13E+01 LL(1)=N/A

Statistics-Transformed Background X=2.210Data

S= 0.365

CV(2) = 0.165

K factor**= 3.188

TL(2)= 2.47E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
4/14/2021	-2.97E-01	#Func!
7/21/2021	-2.66E+00	#Func!
10/18/2021	-3.65E+00	#Func!
1/13/2022	-1.23E+00	#Func!
4/19/2022	1.18E+01	2.47E+00
7/20/2022	-1.59E+00	#Func!
10/17/2022	7.04E+00	1.95E+00
1/25/2023	-1.01E+01	#Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Current	Ouarter	Data
Current	Vual tti	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradient	Yes	6.52E+01	YES	4.18E+00	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-5

C-746-S/T Second Quarter 2023 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 24.550 S = 3.033

CV(1)=0.124

K factor**= 2.523

TL(1)= 3.22E+01 **LL(1)=**N/A

Statistics-Transformed Background X=3.193Data

S = 0.126

CV(2) = 0.039

K factor**= 2.523

TL(2)=3.51E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/15/2021	2.77E+01	3.32E+00
7/19/2021	2.22E+01	3.10E+00
10/27/2021	2.13E+01	3.06E+00
1/19/2022	2.20E+01	3.09E+00
4/13/2022	2.91E+01	3.37E+00
7/18/2022	2.04E+01	3.02E+00
10/18/2022	2.05E+01	3.02E+00
1/23/2023	2.01E+01	3.00E+00
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/14/2021	2.68E+01	3.29E+00
7/21/2021	2.49E+01	3.21E+00

2.46E+01

2.54E+01

2.82E+01

2.61E+01

2.66E+01

2.69E+01

10/18/2021

1/13/2022

4/19/2022

7/20/2022

10/17/2022

1/25/2023

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW372	Downgradien	t Yes	6.20E+01	YES	4.13E+00	N/A

Conclusion of Statistical Analysis on Current Data

3.20E+00

3.23E+00

3.34E+00

3.26E+00

3.28E+00

3.29E+00

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-6

C-746-S/T Second Quarter 2023 Statistical Analysis **Current Background Comparison Chemical Oxygen Demand (COD) URGA** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.500 S = 7.290

CV(1)=0.310

K factor**= 2.523

TL(1)= 4.19E+01 **LL(1)=**N/A

Statistics-Transformed Background X=3.118Data

S = 0.281

CV(2) = 0.090

K factor**= 2.523

TL(2)=3.83E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/15/2021	3.71E+01	3.61E+00
7/19/2021	2.00E+01	3.00E+00
10/27/2021	2.00E+01	3.00E+00
1/19/2022	4.17E+01	3.73E+00
4/13/2022	2.00E+01	3.00E+00
7/18/2022	2.00E+01	3.00E+00
10/18/2022	1.30E+01	2.56E+00
1/23/2023	2.00E+01	3.00E+00
Well Number:	MW394	
Date Collected	D 14	
	Result	LN(Result)
4/14/2021	2.00E+01	LN(Result) 3.00E+00
4/14/2021 7/21/2021	1100011	,
	2.00E+01	3.00E+00
7/21/2021	2.00E+01 2.00E+01	3.00E+00 3.00E+00
7/21/2021 10/18/2021	2.00E+01 2.00E+01 2.55E+01	3.00E+00 3.00E+00 3.24E+00
7/21/2021 10/18/2021 1/13/2022	2.00E+01 2.00E+01 2.55E+01 3.10E+01	3.00E+00 3.00E+00 3.24E+00 3.43E+00

2.00E+01

1/25/2023

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)
MW387	Downgradien	t Ves	3 85E+01	NO	3.65F+00	N/A

Conclusion of Statistical Analysis on Current Data

3.00E+00

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-7

C-746-S/T Second Quarter 2023 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 385.875 **S**= 34.166 **CV(1)**=0.089

K factor=** 2.523

TL(1)= 4.72E+02 LL(1)=N/A

Statistics-Transformed Background X=5.952 Data

5.952 **S**= 0.090

CV(2)=0.015

K factor**= 2.523

TL(2)=6.18E+00 LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/15/2021	4.38E+02	6.08E+00
7/19/2021	3.59E+02	5.88E+00
10/27/2021	3.41E+02	5.83E+00
1/19/2022	3.76E+02	5.93E+00
4/13/2022	4.36E+02	6.08E+00
7/18/2022	3.50E+02	5.86E+00
10/18/2022	3.32E+02	5.81E+00
1/23/2023	3.34E+02	5.81E+00
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/14/2021	3.92E+02	5.97E+00
7/21/2021	4.00E+02	5.99E+00
10/18/2021	3.94E+02	5.98E+00
1/13/2022	4.01E+02	5.99E+00
4/19/2022	4.13E+02	6.02E+00
7/20/2022	3.87E+02	5.96E+00
10/17/2022	4.17E+02	6.03E+00

4.04E+02

1/25/2023

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	7.33E±02	YES	6.60E±00	N/A

Conclusion of Statistical Analysis on Current Data

6.00E+00

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2023 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 208.375 **S**= 33.917 **CV(1)**=0.163

K factor=** 2.523

TL(1)= 2.94E+02 **LL(1)=**N/A

Statistics-Transformed Background X= 5.328 Data

5.328 **S**= 0.156

56 **CV(2)=**0.029

K factor**= 2.523

TL(2)=5.72E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/15/2021 2.50E+02 5.52E+00 7/19/2021 1.96E+02 5.28E+00 1.94E+02 10/27/2021 5.27E+00 1.79E+02 1/19/2022 5.19E+00 4/13/2022 2.36E+02 5.46E+00 7/18/2022 1.64E+02 5.10E+00 10/18/2022 1.79E+02 5.19E+00 1/23/2023 1.72E+02 5.15E+00 MW394 Well Number: Date Collected Result LN(Result)

2.07E+02

2.90E+02

2.19E+02

2.30E+02

2.43E+02

1.93E+02

1.98E+02

1.84E+02

4/14/2021

7/21/2021

10/18/2021

1/13/2022

4/19/2022

7/20/2022

10/17/2022

1/25/2023

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Ves	4 28E+02	VES	6.06E+00	N/Δ

Conclusion of Statistical Analysis on Current Data

5.33E+00

5.67E+00

5.39E+00

5.44E+00

5.49E+00

5.26E+00

5.29E+00

5.21E+00

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2023 Statistical Analysis **Current Background Comparison URGA** Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.282 S = 1.386

CV(1)=0.135

K factor**= 2.523

TL(1)= 1.38E+01 **LL(1)=**N/A

Statistics-Transformed Background X=2.322Data

S = 0.139

CV(2) = 0.060

K factor**= 2.523

TL(2)= 2.67E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/15/2021	1.17E+01	2.46E+00
7/19/2021	9.29E+00	2.23E+00
10/27/2021	8.31E+00	2.12E+00
1/19/2022	9.20E+00	2.22E+00
4/13/2022	1.21E+01	2.49E+00
7/18/2022	8.67E+00	2.16E+00
10/18/2022	8.36E+00	2.12E+00
1/23/2023	8.28E+00	2.11E+00
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.40E+00
Date Collected	Result	
Date Collected 4/14/2021	Result 1.10E+01	2.40E+00
Date Collected 4/14/2021 7/21/2021	Result 1.10E+01 1.07E+01	2.40E+00 2.37E+00
Date Collected 4/14/2021 7/21/2021 10/18/2021	Result 1.10E+01 1.07E+01 1.03E+01	2.40E+00 2.37E+00 2.33E+00
Date Collected 4/14/2021 7/21/2021 10/18/2021 1/13/2022	Result 1.10E+01 1.07E+01 1.03E+01 1.05E+01	2.40E+00 2.37E+00 2.33E+00 2.35E+00
Date Collected 4/14/2021 7/21/2021 10/18/2021 1/13/2022 4/19/2022	Result 1.10E+01 1.07E+01 1.03E+01 1.05E+01 1.18E+01	2.40E+00 2.37E+00 2.33E+00 2.35E+00 2.47E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	2.35E+01	YES	3.16E+00	N/A
MW387	Downgradien	t Yes	1.75E+01	YES	2.86E+00	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2023 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 409.375 **S**= 35.937 **CV(1)**=0.088

K factor=** 2.523

TL(1)= 5.00E+02 LL(1)=N/A

Statistics-Transformed Background X= 6.011

S= 0.087

CV(2) = 0.014

K factor**= 2.523

TL(2) = 6.23E + 00 LL(2) = N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/15/2021	4.10E+02	6.02E+00
7/19/2021	4.06E+02	6.01E+00
10/27/2021	4.43E+02	6.09E+00
1/19/2022	4.06E+02	6.01E+00
4/13/2022	4.12E+02	6.02E+00
7/18/2022	4.11E+02	6.02E+00
10/18/2022	3.98E+02	5.99E+00
1/23/2023	3.66E+02	5.90E+00
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.97E+00
Date Collected	Result	
Date Collected 4/14/2021	Result 3.93E+02	5.97E+00
Date Collected 4/14/2021 7/21/2021	Result 3.93E+02 4.08E+02	5.97E+00 6.01E+00
Date Collected 4/14/2021 7/21/2021 10/18/2021	Result 3.93E+02 4.08E+02 3.70E+02	5.97E+00 6.01E+00 5.91E+00
Date Collected 4/14/2021 7/21/2021 10/18/2021 1/13/2022	Result 3.93E+02 4.08E+02 3.70E+02 3.93E+02	5.97E+00 6.01E+00 5.91E+00 5.97E+00
Date Collected 4/14/2021 7/21/2021 10/18/2021 1/13/2022 4/19/2022	Result 3.93E+02 4.08E+02 3.70E+02 3.93E+02 4.32E+02	5.97E+00 6.01E+00 5.91E+00 5.97E+00 6.07E+00

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	4.77E+02	NO	6.17E+00	N/A
MW221	Sidegradient	Yes	4.69E+02	NO	6.15E+00	N/A
MW222	Sidegradient	Yes	4.43E+02	NO	6.09E+00	N/A
MW223	Sidegradient	Yes	4.72E+02	NO	6.16E+00	N/A
MW224	Sidegradient	Yes	5.05E+02	YES	6.22E+00	N/A
MW369	Downgradien	t Yes	4.39E+02	NO	6.08E+00	N/A
MW372	Downgradien	t Yes	4.70E+02	NO	6.15E+00	N/A
MW384	Sidegradient	Yes	4.19E+02	NO	6.04E+00	N/A
MW387	Downgradien	t Yes	4.21E+02	NO	6.04E+00	N/A
MW394	Upgradient	Yes	4.51E+02	NO	6.11E+00	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW224

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2023 Statistical Analysis Sodium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 37.019 **S**= 4.706

CV(1)=0.127

K factor**= 2.523

TL(1)= 4.89E+01 **LL(1)=**N/A

Statistics-Transformed Background X=3.604Data

S = 0.123

CV(2) = 0.034

K factor**= 2.523

TL(2)=3.91E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/15/2021	4.65E+01	3.84E+00
7/19/2021	3.97E+01	3.68E+00
10/27/2021	3.92E+01	3.67E+00
1/19/2022	4.16E+01	3.73E+00
4/13/2022	4.62E+01	3.83E+00
7/18/2022	3.81E+01	3.64E+00
10/18/2022	3.72E+01	3.62E+00
1/23/2023	3.77E+01	3.63E+00
1/23/2023	3.77E+01	3.03E+00
Well Number:	MW394	3.03E+00
		LN(Result)
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
Well Number: Date Collected 4/14/2021	MW394 Result 3.29E+01	LN(Result) 3.49E+00
Well Number: Date Collected 4/14/2021 7/21/2021	MW394 Result 3.29E+01 3.21E+01	LN(Result) 3.49E+00 3.47E+00
Well Number: Date Collected 4/14/2021 7/21/2021 10/18/2021	MW394 Result 3.29E+01 3.21E+01 3.24E+01	LN(Result) 3.49E+00 3.47E+00 3.48E+00
Well Number: Date Collected 4/14/2021 7/21/2021 10/18/2021 1/13/2022	MW394 Result 3.29E+01 3.21E+01 3.24E+01 3.16E+01	LN(Result) 3.49E+00 3.47E+00 3.48E+00 3.45E+00
Well Number: Date Collected 4/14/2021 7/21/2021 10/18/2021 1/13/2022 4/19/2022	MW394 Result 3.29E+01 3.21E+01 3.24E+01 3.16E+01 3.53E+01	LN(Result) 3.49E+00 3.47E+00 3.48E+00 3.45E+00 3.56E+00

3.40E+01

1/25/2023

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW224	Sidegradient	Yes	6.11E+01	YES	4.11E+00	N/A
MW372	Downgradien	t Yes	5.84E+01	YES	4.07E+00	N/A

Conclusion of Statistical Analysis on Current Data

3.53E+00

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW224 MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2023 Statistical Analysis **Current Background Comparison** Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 15.563 **S**= 4.426

CV(1)=0.284

K factor**= 2.523

TL(1)= 2.67E+01 **LL(1)=**N/A

URGA

Statistics-Transformed Background X=2.711Data

S = 0.263

CV(2) = 0.097

K factor**= 2.523

TL(2)=3.38E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/15/2021 2.44E+01 3.19E+00 7/19/2021 1.70E+01 2.83E+00 1.69E+01 10/27/2021 2.83E+00 1/19/2022 1.92E+01 2.95E+00 4/13/2022 2.49E+01 3.21E+00 7/18/2022 1.85E+01 2.92E+00 10/18/2022 1.57E+01 2.75E+00 1/23/2023 1.64E+01 2.80E+00 MW394 Well Number: Date Collected Result LN(Result) 4/14/2021 1.25E+01 2.53E+00 7/21/2021 1.18E+01 2.47E+00 10/18/2021 1.19E+01 2.48E+00 1/13/2022 1.17E+01 2.46E+004/19/2022 1.17E+01 2.46E+007/20/2022 1.22E+01 2.50E+00 10/17/2022 1.21E+01 2.49E+00

1.21E+01

1/25/2023

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	2.00E+01	NO	3.00E+00	N/A
MW372	Downgradien	t Yes	1.51E+02	YES	5.02E+00	N/A
MW384	Sidegradient	Yes	1.74E+01	NO	2.86E+00	N/A
MW387	Downgradien	t Yes	2.87E+01	YES	3.36E+00	N/A

Conclusion of Statistical Analysis on Current Data

2.49E+00

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2023 Statistical Analysis **Current Background Comparison** Technetium-99 **URGA** UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.477 S = 6.574

K factor**= 2.523

TL(1)= 2.71E+01 **LL(1)=**N/A

Statistics-Transformed Background X=1.782Data

S= 1.662

CV(2) = 0.933

CV(1)=0.627

K factor**= 2.523

TL(2)=5.98E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
well Number:	M W 220	
Date Collected	Result	LN(Result)
4/15/2021	1.21E+01	2.49E+00
7/19/2021	1.33E+01	2.59E+00
10/27/2021	1.27E+01	2.54E+00
1/19/2022	1.74E+01	2.86E+00
4/13/2022	1.60E+01	2.77E+00
7/18/2022	1.92E+01	2.95E+00
10/18/2022	2.13E+01	3.06E+00
1/23/2023	1.42E+01	2.65E+00
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.18E+00
Date Collected	Result	
Date Collected 4/14/2021	Result 4.14E-02	-3.18E+00
Date Collected 4/14/2021 7/21/2021	Result 4.14E-02 9.97E+00	-3.18E+00 2.30E+00
Date Collected 4/14/2021 7/21/2021 10/18/2021	Result 4.14E-02 9.97E+00 6.06E+00	-3.18E+00 2.30E+00 1.80E+00
Date Collected 4/14/2021 7/21/2021 10/18/2021 1/13/2022	Result 4.14E-02 9.97E+00 6.06E+00 5.46E+00	-3.18E+00 2.30E+00 1.80E+00 1.70E+00
Date Collected 4/14/2021 7/21/2021 10/18/2021 1/13/2022 4/19/2022	Result 4.14E-02 9.97E+00 6.06E+00 5.46E+00 4.38E-01	-3.18E+00 2.30E+00 1.80E+00 1.70E+00 -8.26E-01

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW369	Downgradien	t Yes	3.91E+01	YES	3.67E+00	N/A
MW372	Downgradien	t Yes	3.63E+01	YES	3.59E+00	N/A
MW384	Sidegradient	Yes	4.52E+01	YES	3.81E+00	N/A
MW387	Downgradien	t Yes	4.71E+01	YES	3.85E+00	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2023 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 21.944 S = 3.785

CV(1)=0.173

K factor**= 2.523

TL(1)=3.15E+01 LL(1)=N/A

Statistics-Transformed Background X=3.074Data

S = 0.173

CV(2) = 0.056

K factor**= 2.523

TL(2)=3.51E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/14/2021	2.44E+01	3.19E+00
7/21/2021	2.50E+01	3.22E+00
10/18/2021	2.43E+01	3.19E+00
1/13/2022	2.55E+01	3.24E+00
4/19/2022	2.64E+01	3.27E+00
7/20/2022	2.49E+01	3.21E+00
10/17/2022	2.69E+01	3.29E+00
1/25/2023	2.69E+01	3.29E+00
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/14/2021	1.84E+01	2.91E+00
7/19/2021	1.83E+01	2.91E+00

1.81E+01

1.82E+01

1.85E+01

1.85E+01

1.87E+01

1.81E+01

10/14/2021

1/13/2022

4/19/2022

7/18/2022

10/18/2022

1/23/2023

Because $CV(1)$ is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)	2 LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Vec	7 11E+01	VES	4.26E+00	N/A

Conclusion of Statistical Analysis on Current Data

2.90E+00

2.90E+00

2.92E+00

2.92E+00

2.93E+00

2.90E+00

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-15

C-746-S/T Second Quarter 2023 Statistical Analysis **Current Background Comparison LRGA Conductivity** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 350.000 S = 31.891 CV(1) = 0.091

K factor**= 2.523

TL(1)= 4.30E+02 LL(1)=N/A

Statistics-Transformed Background X=5.854Data

S= 0.092

CV(2) = 0.016

K factor**= 2.523

TL(2)=6.09E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/14/2021	3.66E+02	5.90E+00
7/21/2021	3.72E+02	5.92E+00
10/18/2021	3.75E+02	5.93E+00
1/13/2022	3.76E+02	5.93E+00
4/19/2022	3.83E+02	5.95E+00
7/20/2022	3.80E+02	5.94E+00
10/17/2022	3.88E+02	5.96E+00
1/25/2023	3.93E+02	5.97E+00
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/14/2021	3.14E+02	5.75E+00
7/19/2021	3.26E+02	5.79E+00
10/14/2021	2.95E+02	5.69E+00
1/13/2022	3.40E+02	5.83E+00
4/19/2022	3.26E+02	5.79E+00

3.20E+02

3.24E+02

3.22E+02

7/18/2022

10/18/2022

1/23/2023

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW373	Downgradien	t Yes	8.31E+02	YES	6.72E+00	N/A

Conclusion of Statistical Analysis on Current Data

5.77E+00

5.78E+00

5.77E+00

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-16

C-746-S/T Second Quarter 2023 Statistical Analysis **Current Background Comparison Dissolved Solids** LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 177.875 S = 21.814 CV(1) = 0.123

K factor**= 2.523

TL(1)= 2.33E+02 LL(1)=N/A

Statistics-Transformed Background X=5.174 S=0.125Data

CV(2) = 0.024

K factor**= 2.523

TL(2)=5.49E+00 LL(2)=N/A

Because CV(1) is less than or equal to **Current Background Data from Upgradient** 1, assume normal distribution and Wells with Transformed Result continue with statistical analysis utilizing TL(1).

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/14/2021	1.84E+02	5.21E+00
7/21/2021	2.04E+02	5.32E+00
10/18/2021	1.94E+02	5.27E+00
1/13/2022	2.01E+02	5.30E+00
4/19/2022	2.10E+02	5.35E+00
7/20/2022	1.99E+02	5.29E+00
10/17/2022	1.96E+02	5.28E+00
1/25/2023	1.80E+02	5.19E+00
1/23/2023	1.00L . 02	3.17L .00
Well Number:	MW397	3.172.00
		LN(Result)
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Well Number: Date Collected 4/14/2021	MW397 Result 1.57E+02	LN(Result) 5.06E+00
Well Number: Date Collected 4/14/2021 7/19/2021	MW397 Result 1.57E+02 1.73E+02	LN(Result) 5.06E+00 5.15E+00
Well Number: Date Collected 4/14/2021 7/19/2021 10/14/2021	MW397 Result 1.57E+02 1.73E+02 1.66E+02	LN(Result) 5.06E+00 5.15E+00 5.11E+00
Well Number: Date Collected 4/14/2021 7/19/2021 10/14/2021 1/13/2022	MW397 Result 1.57E+02 1.73E+02 1.66E+02 1.41E+02	LN(Result) 5.06E+00 5.15E+00 5.11E+00 4.95E+00
Well Number: Date Collected 4/14/2021 7/19/2021 10/14/2021 1/13/2022 4/19/2022	MW397 Result 1.57E+02 1.73E+02 1.66E+02 1.41E+02 1.80E+02	LN(Result) 5.06E+00 5.15E+00 5.11E+00 4.95E+00 5.19E+00

1.58E+02

1/23/2023

Current Quarter Data

Well No. Gradient Detected? Result >TL(1)? LN(Result) LN(Result) >TL(2) Downgradient Yes MW373 4.72E+02 YES 6.16E+00 N/A

Conclusion of Statistical Analysis on Current Data

5.06E+00

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2023 Statistical Analysis **Current Background Comparison LRGA** Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.250

S= 1.659 CV(1)=0.179 K factor**= 2.523

TL(1)= 1.34E+01 **LL(1)=**N/A

Statistics-Transformed Background X= 2.209 Data

S = 0.180

CV(2) = 0.081

K factor**= 2.523

TL(2)= 2.66E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/14/2021 1.02E+01 2.32E+00 7/21/2021 1.06E+01 2.36E+00 10/18/2021 1.03E+01 2.33E+00 1/13/2022 1.06E+01 2.36E+00 4/19/2022 1.10E+01 2.40E+00 7/20/2022 1.12E+01 2.42E+00 10/17/2022 1.13E+01 2.42E+00 1/25/2023 1.14E+01 2.43E+00 MW397 Well Number: Date Collected Result LN(Result) 4/14/2021 7.68E+00 2.04E+00

7.62E+00

7.57E+00

7.53E+00

7.79E+00

7.71E+00

7.84E+00

7.66E+00

7/19/2021

10/14/2021

1/13/2022

4/19/2022

7/18/2022

10/18/2022

1/23/2023

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected ⁶	? Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	t Yes	2.76E+01	YES	3.32E+00	N/A

Conclusion of Statistical Analysis on Current Data

2.03E+00

2.02E+00

2.02E+00

2.05E+00

2.04E+00

2.06E+00

2.04E+00

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-18

C-746-S/T Second Quarter 2023 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 390.188 **S**= 36.244 **CV(1)**=0.093

K factor=** 2.523

TL(1)= 4.82E+02 LL(1)=N/A

Statistics-Transformed Background X= 5.962 Data

S= 0.097

CV(2)=0.016

K factor**= 2.523

TL(2)=6.21E+00 LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/14/2021	3.72E+02	5.92E+00
7/21/2021	4.14E+02	6.03E+00
10/18/2021	3.91E+02	5.97E+00
1/13/2022	3.95E+02	5.98E+00
4/19/2022	4.12E+02	6.02E+00
7/20/2022	4.25E+02	6.05E+00
10/17/2022	3.26E+02	5.79E+00
1/25/2023	4.25E+02	6.05E+00
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
· · · · · · · · · · · · · · · · · · ·		LN(Result) 5.97E+00
Date Collected	Result	,
Date Collected 4/14/2021	Result 3.91E+02	5.97E+00
Date Collected 4/14/2021 7/19/2021	Result 3.91E+02 4.22E+02	5.97E+00 6.05E+00
Date Collected 4/14/2021 7/19/2021 10/14/2021	Result 3.91E+02 4.22E+02 3.15E+02	5.97E+00 6.05E+00 5.75E+00
Date Collected 4/14/2021 7/19/2021 10/14/2021 1/13/2022	Result 3.91E+02 4.22E+02 3.15E+02 3.52E+02	5.97E+00 6.05E+00 5.75E+00 5.86E+00
Date Collected 4/14/2021 7/19/2021 10/14/2021 1/13/2022 4/19/2022	Result 3.91E+02 4.22E+02 3.15E+02 3.52E+02 4.40E+02	5.97E+00 6.05E+00 5.75E+00 5.86E+00 6.09E+00

Current	Quarter	Data
Cullent	Quarter	Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	4.60E+02	NO	6.13E+00	N/A
MW373	Downgradient	t Yes	4.57E+02	NO	6.12E+00	N/A
MW385	Sidegradient	Yes	4.10E+02	NO	6.02E+00	N/A
MW388	Downgradient	t Yes	4.08E+02	NO	6.01E+00	N/A
MW392	Downgradient	Yes :	3.77E+02	NO	5.93E+00	N/A
MW397	Upgradient	Yes	4.76E+02	NO	6.17E+00	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2023 Statistical Analysis **Current Background Comparison** LRGA Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 11.750 S = 0.283

CV(1)=0.024

K factor**= 2.523

TL(1)= 1.25E+01 **LL(1)=**N/A

Statistics-Transformed Background X= 2.464 Data

S = 0.024

CV(2) = 0.010

K factor**= 2.523

TL(2)= 2.52E+00 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/14/2021	1.24E+01	2.52E+00
7/21/2021	1.18E+01	2.47E+00
10/18/2021	1.19E+01	2.48E+00
1/13/2022	1.16E+01	2.45E+00
4/19/2022	1.16E+01	2.45E+00
7/20/2022	1.19E+01	2.48E+00
10/17/2022	1.17E+01	2.46E+00
1/25/2023	1.17E+01	2.46E+00
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.42E+00
Date Collected	Result	1
Date Collected 4/14/2021	Result 1.13E+01	2.42E+00
Date Collected 4/14/2021 7/19/2021	Result 1.13E+01 1.13E+01	2.42E+00 2.42E+00
Date Collected 4/14/2021 7/19/2021 10/14/2021	Result 1.13E+01 1.13E+01 1.20E+01	2.42E+00 2.42E+00 2.48E+00
Date Collected 4/14/2021 7/19/2021 10/14/2021 1/13/2022	Result 1.13E+01 1.13E+01 1.20E+01 1.17E+01	2.42E+00 2.42E+00 2.48E+00 2.46E+00
Date Collected 4/14/2021 7/19/2021 10/14/2021 1/13/2022 4/19/2022	Result 1.13E+01 1.13E+01 1.20E+01 1.17E+01 1.18E+01	2.42E+00 2.42E+00 2.48E+00 2.46E+00 2.47E+00

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	2.02E+01	YES	3.01E+00	N/A
MW373	Downgradient	Yes	1.70E+02	YES	5.14E+00	N/A
MW385	Sidegradient	Yes	1.88E+01	YES	2.93E+00	N/A
MW388	Downgradient	Yes	2.10E+01	YES	3.04E+00	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2023 Statistical Analysis **Current Background Comparison** Technetium-99 **LRGA** UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.560 **S**= 4.969

CV(1)=0.430

K factor**= 2.523

TL(1)= 2.41E+01 **LL(1)=**N/A

Statistics-Transformed Background X=2.355Data

S = 0.461

CV(2) = 0.196

K factor**= 2.523

TL(2)=3.52E+00 LL(2)=N/A

Because CV(1) is less than or equal to

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/14/2021 3.78E+00 1.33E+00 7/21/2021 9.45E+00 2.25E+00 10/18/2021 8.55E+00 2.15E+00 1/13/2022 5.03E+00 1.62E+00 4/19/2022 1.74E+01 2.86E+00 7/20/2022 1.11E+01 2.41E+00 10/17/2022 8.43E+00 2.13E+00 1/25/2023 1.25E+01 2.53E+00 MW397 Well Number:

Date Collected Result LN(Result) 4/14/2021 1.40E+01 2.64E+00 7/19/2021 1.38E+01 2.62E+00 10/14/2021 1.28E+01 2.55E+00 1.81E+01 2.90E+00 1/13/2022 4/19/2022 8.11E+00 2.09E+007/18/2022 1.04E+01 2.34E+00 10/18/2022 2.30E+01 3.14E+00

8.51E+00

1/23/2023

1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)	2 LN(Result)	LN(Result) >TL(2)
MW385	Sideoradient	Ves	4 25E+01	YES	3.75E+00	N/A

Conclusion of Statistical Analysis on Current Data

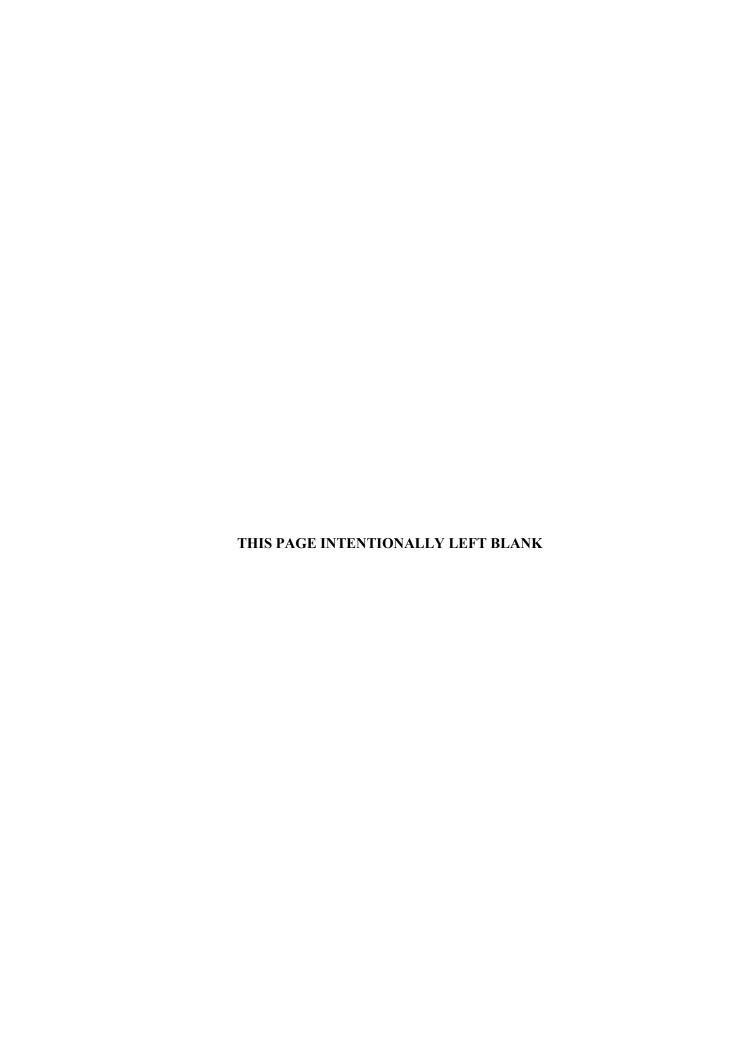
2.14E+00

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW385

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.


CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-21

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

July 17, 2023

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the second quarter 2023 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Bryan Smith

D3-3

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

LAB ID: None

GROUNDWATER FLOW RATE AND DIRECTION

Finds/Unit: KY8-890-008-982/1

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2023 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on April 24-25, 2023. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for a water level measurement.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. During April, RGA groundwater flow was directed inward and then north towards the Ohio River. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 1.98 × 10⁻⁴ ft/ft. Additional water level measurements in April (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 2.49 × 10⁻⁴ ft/ft, northward. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for April 2023, RGA groundwater flow from the landfill area was directed to the north.

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

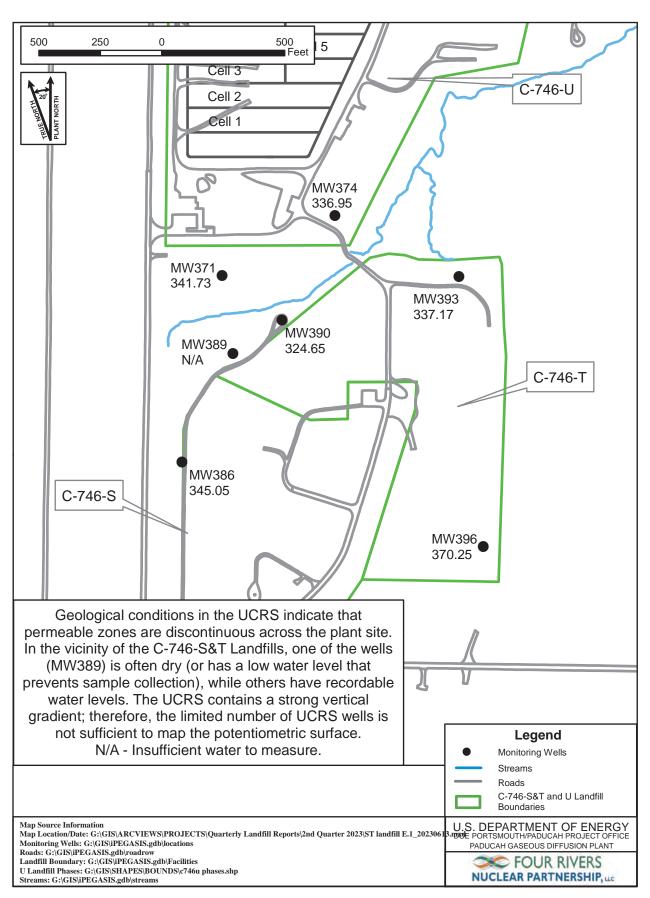


Figure E.1. Potentiometric Measurements of the Upper Continental Recharge System at the C-746-S&T Landfills, April 24-25, 2023

Table E.1. C-746-S&T Landfills Second Quarter 2023 (April) Water Levels

			C-746-S&	T Landfills	(April 2023	B) Water Leve	ls			
							Ra	w Data	*Corr Da	
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/24/2023	14:26	MW220	URGA	382.01	30.20	0.00	57.35	324.66	57.35	324.66
4/24/2023	14:14	MW221	URGA	391.38	30.20	0.00	66.79	324.59	66.79	324.59
4/24/2023	14:17	MW222	URGA	395.27	30.20	0.00	70.72	324.55	70.72	324.55
4/24/2023	14:08	MW223	URGA	394.38	30.20	0.00	69.80	324.58	69.80	324.58
4/24/2023	14:22	MW224	URGA	395.69	30.20	0.00	71.12	324.57	71.12	324.57
4/24/2023	14:29	MW225	URGA	385.73	30.20	0.00	61.21	324.52	61.21	324.52
4/24/2023	12:54	MW353	LRGA	375.05	30.22	-0.02	50.40	324.65	50.38	324.67
4/25/2023	15:09	MW369	URGA	364.23	30.19	0.01	39.47	324.76	39.48	324.75
4/25/2023	15:07	MW370	LRGA	365.12	30.19	0.01	40.34	324.78	40.35	324.77
4/25/2023	15:08	MW371	UCRS	364.64	30.19	0.01	22.90	341.74	22.91	341.73
4/25/2023	15:14	MW372	URGA	359.42	30.19	0.01	34.65	324.77	34.66	324.76
4/25/2023	15:12	MW373	LRGA	359.73	30.19	0.01	34.97	324.76	34.98	324.75
4/25/2023	15:13	MW374	UCRS	359.44	30.19	0.01	22.48	336.96	22.49	336.95
4/24/2023	14:50	MW384	URGA	365.29	30.20	0.00	40.57	324.72	40.57	324.72
4/24/2023	14:52	MW385	LRGA	365.74	30.20	0.00	40.98	324.76	40.98	324.76
4/24/2023	14:51	MW386	UCRS	365.32	30.20	0.00	20.27	345.05	20.27	345.05
4/24/2023	14:47	MW387	URGA	363.48	30.20	0.00	38.78	324.70	38.78	324.70
4/24/2023	14:48	MW388	LRGA	363.45	30.20	0.00	38.78	324.67	38.78	324.67
4/24/2023	14:45	MW389	UCRS	364.11			NA			
4/24/2023	14:43	MW390	UCRS	360.39	30.20	0.00	35.74	324.65	35.74	324.65
4/24/2023	15:03	MW391	URGA	366.67	30.19	0.01	42.05	324.62	42.06	324.61
4/24/2023	15:05	MW392	LRGA	365.85	30.19	0.01	41.24	324.61	41.25	324.60
4/24/2023	15:04	MW393	UCRS	366.62	30.19	0.01	29.44	337.18	29.45	337.17
4/24/2023	14:36	MW394	URGA	378.46	30.20	0.00	53.89	324.57	53.89	324.57
4/24/2023	14:34	MW395	LRGA	379.12	30.20	0.00	54.58	324.54	54.58	324.54
4/24/2023	14:35	MW396	UCRS	378.75	30.20	0.00	8.50	370.25	8.50	370.25
4/24/2023	14:31	MW397	LRGA	387.00	30.20	0.00	62.48	324.52	62.48	324.52
4/24/2023	14:56	MW418	URGA	367.21	30.19	0.01	42.52	324.69	42.53	324.68
4/24/2023	14:57	MW419	LRGA	367.05	30.19	0.01	42.38	324.67	42.39	324.66
erence Barometr	ic Pressure				30.16					

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum
URGA = Upper Regional Gravel Aquifer
LRGA = Lower Regional Gravel Aquifer
UCRS = Upper Continental Recharge System
*Assumes a barometric efficiency of 1.0

E-5

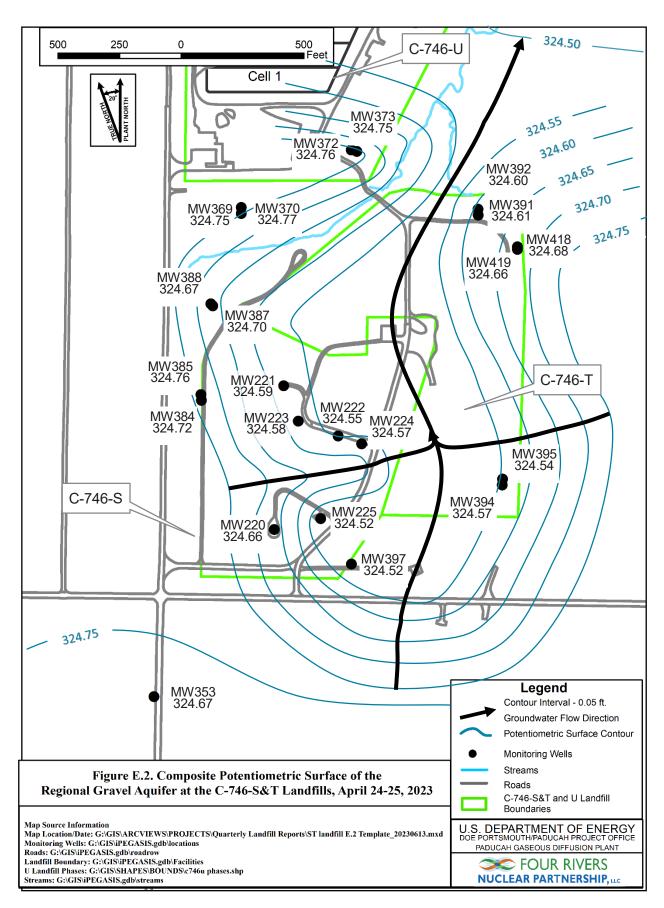


Figure E.2. Composite Potentiometric Surface of the Regional Gravel Aquifer at the C-746-S&T Landfills, April 24–25, 2023

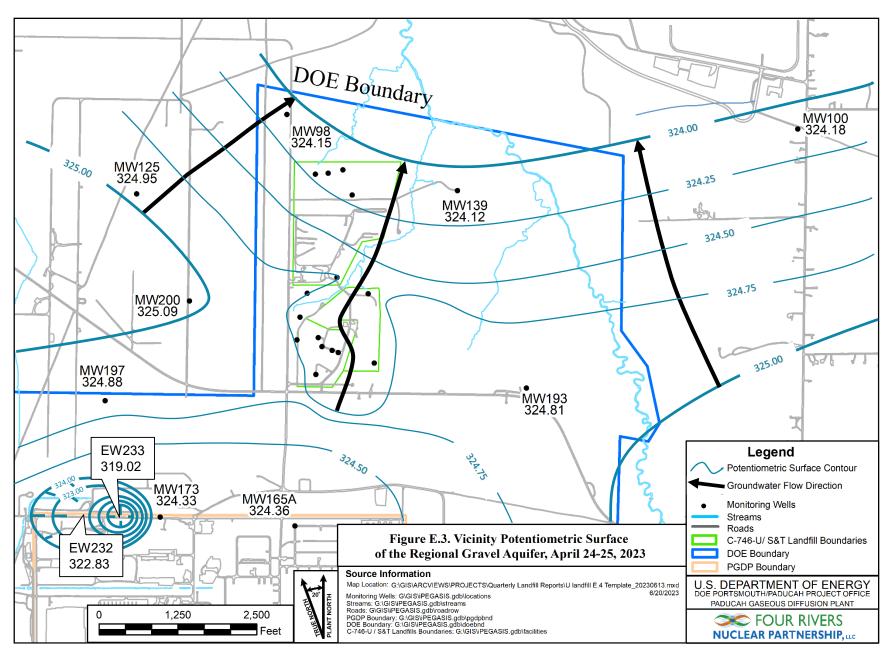


Figure E.3. Vicinity Potentiometric Surface of the Regional Gravel Aquifer, April 24–25, 2023

Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	-1.98×10^{-4}
Vicinity	-2.49 ×10 ⁻⁴

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific 1	Discharge (q)	Average	e Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.144	5.08E-05	0.575	2.03E-04
425	0.150	0.084	2.98E-05	0.337	1.19E-04
<u>Vicinity</u>					
725	0.256	0.180	6.37E-05	0.722	2.55E-04
425	0.150	0.106	3.73E-05	0.423	1.49E-04

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the second quarter 2023 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW224, MW372 MW369, MW372, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW385

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

5/23/2023

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS

SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4808	MW372	Trichloroethene	8260D	6.01	ug/L	5
8004-4801	MW395	Trichloroethene	8260D	5.78	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

Groundwater Flow System			UCR	S						1	URG	A								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
Quarter 4, 2019																*							
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*									
Quarter 4, 2004	1		*																				
Quarter 1, 2005	1		*																				
Quarter 2, 2005	T		*				*											\vdash					\vdash
Quarter 3, 2005	+		*			\vdash	*			*							\vdash				*		\vdash
Quarter 4, 2005	1	\vdash	*			\vdash	*	 		Ë	*	\vdash	\vdash	<u> </u>	\vdash	 	\vdash	<u> </u>	\vdash	\vdash	<u> </u>		\vdash
Quarter 1, 2006	1		-				*						*										
,	-		*				*						-										
Quarter 2, 2006	-		*				*																-
Quarter 3, 2006																							
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												\vdash
Quarter 2, 2011	+		*			\vdash	Ė				*						\vdash						\vdash
Quarter 2, 2011 Quarter 2, 2012	+	1	*			 	-				Ë	-	1	-	1		 	-		-			\vdash
Quarter 3, 2012	+	1	Ë			\vdash	*					-	1	-	1		\vdash	-		-			\vdash
Quarter 1, 2013	+	1				\vdash	*				*	-	1	-	1		\vdash	-		-			\vdash
Quarter 1, 2013 Quarter 3, 2013	+	 	*			-	_				- T	-	 	<u> </u>	 		-	 	-	-			₩
,	╄	-	不				JE.					<u> </u>	-		-					<u> </u>			⊢
Quarter 1, 2014	╄	-					*				*		-		-								₩
Quarter 2, 2014	1	<u> </u>	طو				<u> </u>	<u> </u>			木		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	-		<u> </u>		⊢
Quarter 4, 2014	1	<u> </u>	*				طر	<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	-		<u> </u>		⊢
Quarter 1, 2016	1	<u> </u>	<u> </u>				*	<u> </u>			<u> </u>		<u> </u>	طو	<u> </u>	<u> </u>		<u> </u>	-		<u> </u>		<u> </u>
Quarter 2, 2016	_						,14							*									<u> </u>
Quarter 1, 2017	1						*					<u> </u>							<u> </u>	<u> </u>			
Quarter 4, 2017	1	<u> </u>					L.						<u> </u>	<u> </u>	<u> </u>			<u> </u>					*
Quarter 1, 2018	1	<u> </u>					*						L.,	<u> </u>	<u> </u>			<u> </u>					<u> </u>
Quarter 1, 2020	1												*										_
BARIUM																							
Quarter 3, 2003	1						_																
Quarter 4, 2003							•	•						_									
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003																							

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		1	UCR:	S						1	JRG/	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370		388	392	395	397
BETA ACTIVITY																							
Quarter 2, 2003																	•						
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007		l							l						l								
Quarter 2, 2007			•							•													
Quarter 3, 2007		l -							l -						l -								
Quarter 4, 2007		l -							l -	ī					l -								
Quarter 1, 2008			Ŧ							i		Ŧ	=				Ħ		Ē	Ħ			
Quarter 2, 2008			i							i		-	i				H			i			
Quarter 3, 2008			_							i	_		i				Ħ			Ħ			<u> </u>
		-				_			-	÷				—	-		H			ι <u>-</u>			—
Quarter 4, 2008										i			=				H						—
Quarter 1, 2009			-							-							H						-
Quarter 2, 2009													-				H						<u> </u>
Quarter 3, 2009																				-			<u> </u>
Quarter 4, 2009										•		_	_										<u> </u>
Quarter 1, 2010			_									•	_										<u> </u>
Quarter 2, 2010			•							•			_										
Quarter 3, 2010										-													
Quarter 4, 2010																	•						
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																	•						
Quarter 1, 2012			•																				
Quarter 2, 2012																							
Quarter 3, 2012										•							•						
Quarter 4, 2012										•							•						
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015										•													
Quarter 3, 2015										-													
Quarter 4, 2015										Ī			ī										
Quarter 1, 2016		l -							l -						l -								
Quarter 2, 2016		-							-						-								
Quarter 3, 2016		-							-	ī					-								
Quarter 4, 2016	-	<u> </u>			<u> </u>	\vdash	<u> </u>	 	<u> </u>	Ī	-	<u> </u>		 	<u> </u>		Ħ	H	\vdash		<u> </u>		_
Quarter 1, 2017										i	Ē						H			i			
Quarter 1, 2017 Quarter 2, 2017		-				\vdash			-	-				-	-		H		-				—
Quarter 2, 2017 Quarter 3, 2017		-				_			-	-				<u> </u>	-		H	=					
•			_			_				=				-			H		-				—
Quarter 4, 2017			_									-		<u> </u>					-				<u> </u>
Quarter 1, 2018			-							-				<u> </u>				-	-				<u> </u>
Quarter 2, 2018		ļ	_		ļ	<u> </u>	ļ		ļ	_	•	ļ	•	—	ļ			-	1		ļ		<u> </u>
Quarter 3, 2018	Щ.					_				_			▝				╚	_		_			_

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\&T\ Land fills\ (Continued)$

Gradient S. D. D. D. U. S. S. S. S. D. D. D. D. U. U. S. D. D. D. D. D. U. U. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. U. U. W. S. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D. D. D. D. D. D. U. U. W. S. D. D. D. D. D. U. U. W. S. D.	Groundwater Flow System	L		UCR:	S		L				1	URGA	4					L			LRGA	1		
BETA ACTIVITY Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 8, 2020 Quarter 9, 2020 Quarter 9, 2020 Quarter	·	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
BETA ACTIVITY	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quanter 2, 2019 Quanter 3, 2019 Quanter 3, 2019 Quanter 4, 2019 Quanter 4, 2020 Quanter 3, 2020 Quanter 3, 2020 Quanter 3, 2021 Quanter 3, 2021 Quanter 3, 2021 Quanter 3, 2021 Quanter 4, 2021 Quanter 4, 2022 Quanter 5, 2022 Quanter 6, 2022 Quanter 6, 2022 Quanter 7, 2022 Quanter 7, 2022 Quanter 8, 2022 Quanter 9, 2024 Quanter 9, 202	BETA ACTIVITY																							
Quanter 3, 2019 Quanter 4, 2019 Quanter 6, 2019 Quanter 6, 2019 Quanter 6, 2019 Quanter 6, 2020 Quanter 7, 2020 Quanter 6, 2021 Quanter 7, 2022 Quanter 7, 2024 Quanter 7, 202	Quarter 4, 2018																							
Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2021 Quarter 1, 2022 Quarter 3, 2022 Quarter 4, 2023 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2,	Quarter 1, 2019	t																						
Quarter 2009	Quarter 2, 2019	t																						
Quarter 1, 1920 Quarter 2, 2020 Quarter 3, 2023 Quarter 3, 2024 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4,	Quarter 3, 2019																							
Counter 2, 2020 Counter 3, 2020 Counter 4, 2020 Counter 4, 2021 Counter 2, 2021 Counter 2, 2021 Counter 2, 2021 Counter 3, 2021 Counter 4, 2022 Counter 2, 2023 Counter 2, 2024 Counter 2, 202	Quarter 4, 2019	t																						
Ounter 1, 2020 Ounter 3, 2020 Ounter 4, 2020 Ounter 5, 2020 Ounter 5, 2021 Ounter 5, 2021 Ounter 6, 2021 Ounter 6, 2021 Ounter 6, 2021 Ounter 7, 2021 Ounter 7, 2021 Ounter 7, 2021 Ounter 8, 2022 Ounter 8, 2022 Ounter 8, 2022 Ounter 8, 2022 Ounter 9, 2023 Ounter 9, 2024 Ounter 1, 2023 Ounter 9, 2024 Ounter		t																						
Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 4, 2022 Quarter 4, 2023 Quarter 4, 2023 Quarter 4, 2023 Quarter 4, 2023 Quarter 4, 2024 Quarter 4,		1																						
Ounter 1, 2020 Ounter 2, 2021 Ounter 2, 2021 Ounter 3, 2021 Ounter 4, 2031 Ounter 4, 2032 Ounter 3, 2022 Ounter 4, 2032 Ounter 4, 2033 Ounter 1, 2003 Ounter 1, 2004 Ounter 2, 2004 Ounter 2, 2004 Ounter 3, 2004 Ounter 4, 2003 Ounter 4, 2003 Ounter 4, 2004 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2007 Ounter 4, 2006 Ounter 4, 2007 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2007 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2007 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2007 Ounter 4, 2006 Ounter 4, 2007 Ounter 4, 2006 Ounter 4, 2007 Ounter 4, 2008 Ounter 4, 2008 Ounter 4, 2009 Ounter 4, 2001 Ounter 6, 2001 Ounter 6, 2001 Ounter 7, 2001 Ounter																								
Ounter 1, 2021 Ounter 3, 2021 Ounter 3, 2022 Ounter 4, 2023 Ounter 4, 2023 Ounter 5, 2022 Ounter 5, 2022 Ounter 6, 2023 Ounter 6, 2022 Ounter 7, 2023 Ounter 7, 2023 Ounter 7, 2023 Ounter 7, 2023 Ounter 8, 2022 Ounter 9, 2023 Ounter 9, 2023 Ounter 9, 2023 Ounter 9, 2023 Ounter 9, 2024 Ounter																								
Ounter 1, 2021 Ounter 4, 2021 Ounter 4, 2021 Ounter 1, 2003 Ounter 1, 2003 Ounter 1, 2003 Ounter 2, 2000 Ounter 2, 2000 Ounter 3, 2004 Ounter 1, 2005 Ounter 4, 2003 Ounter 2, 2006 Ounter 4, 2005 Ounter 4, 2005 Ounter 2, 2006 Ounter 3, 2006 Ounter 4, 2006 Ounter 4, 2006 Ounter 2, 2006 Ounter 2, 2006 Ounter 3, 2006 Ounter 4, 2006 Ounter 5, 2011 Ounter 6, 2011 Ounter 6, 2011 Ounter 6, 2012		H																						
Quarter 1, 2021 Quarter 2, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4,		H																						
Quarter 4, 2021 Quarter 2, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2004 Quarter 1, 2005 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 200		\vdash																						
Ounter 1, 2022		\vdash																						
Quarter 2, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 3, 2006 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 200		1																						
Quarter 2, 2002				_																	_			
Quarter 2003		-		-																	-			
Quarter 1, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2006 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 5, 2004 Quarter 5, 2004 Quarter 6, 2005 Quarter 6, 2005 Quarter 6, 2005 Quarter 7, 2006 Quarter 9, 2006 Quarter 9, 2007 Quarter 1, 2006 Quarter 9, 2007 Quarter 9, 2007 Quarter 9, 2009 Quarter 9, 2001 Quarter 9, 2002 Quarter 9, 2001 Quarter 9, 2001 Quarter 9, 2001 Quarter 9, 200														_										
Quatter 4, 2003 Quatter 1, 2004 Quatter 2, 2005 Quatter 1, 2005 Quatter 1, 2005 Quatter 2, 2003 Quatter 3, 2003 Quatter 3, 2003 Quatter 3, 2003 Quatter 3, 2003 Quatter 4, 2005 Quatter 4, 2006 Quatter 4, 2006 Quatter 4, 2006 Quatter 4, 2006 Quatter 2, 2006 Quatter 2, 2006 Quatter 3, 2006 Quatter 4, 2007 Quatter 4, 2007 Quatter 3, 2006 Quatter 4, 2007 Quatter 4, 2008 Quatter 4, 2009 Quatter 4, 2009 Quatter 4, 2008 Quatter 4, 2009 Quatter 5, 2009 Quatter 4, 2009 Quatter 5, 2009 Quatter 6, 2001 Quatter 6, 200				,1,																				
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2006 Quarter 3, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 5, 2012		↓	<u> </u>				_						<u> </u>	<u> </u>						<u> </u>	<u> </u>			
Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012		<u> </u>	<u> </u>										<u> </u>	<u> </u>							<u> </u>			
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2006 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2009 Quarter 1, 2008 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter																								
Quarter 3, 2004 Quarter 1, 2005 Quarter 3, 2006 (**) Quarter 1, 2005 (**) Quarter 2, 2003 (**) Quarter 3, 2003 (**) Quarter 3, 2004 (**) Quarter 1, 2004 (**) Quarter 1, 2004 (**) Quarter 1, 2004 (**) Quarter 2, 2005 (**) Quarter 3, 2006 (**) Quarter 3, 2007 (**) Quarter 3, 2007 (**) Quarter 3, 2007 (**) Quarter 3, 2008 (**) Quarter 3, 2008 (**) Quarter 3, 2009 (**) Quarter 4, 2009 (**) Quarter 4, 2009 (**) Quarter 4, 2009 (**) Quarter 3, 2009 (**) Quarter 4, 2010 (**) Quarter 4, 2010 (**) Quarter 4, 2011 (**) Quarter 4, 2011 (**) Quarter 4, 2012 (**) Quarter 4, 2012 (**) Quarter 4, 2011 (**) Quarter 4, 2012 (**) Quarter 4, 2011 (**) Quarter 4, 2012 (**) Quarter 4, 2012 (**) Quarter 4, 2012 (**) Quarter 4, 2012 (**) Quarter 4, 2011 (**) Quarter 4, 2012 (*	Quarter 2, 2004		<u>L_</u>											<u>L_</u>						L	<u>L_</u>			
Quarter 1, 2005 Quarter 3, 2006	Quarter 3, 2004			*																				
Quarter 3, 2006	Quarter 4, 2004			*																				
Quarter 3, 2006 CALCIUM Quarter 1, 2003 ** Quarter 2, 2003 Quarter 3, 2006 Quarter 4, 2003 ** Quarter 4, 2003 ** Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2001 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 5, 2012	Quarter 1, 2005			*																				
CALCIUM		t		*																				
Quarter 1, 2003																								
Quarter 2, 2003				*																				
Quarter 3, 2003		\vdash											*											
Quarter 1, 2003		1											-4-											
Quarter 1, 2004		 											*							*				
Quarter 3, 2004															*									
Quarter 4, 2004	_	-													不									
Quarter 4, 2004																								
Quarter 1, 2005																								
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 5, 2012 Quarter 5, 2012 Quarter 6, 2012 ** ** ** ** ** ** ** ** **				*																				
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 5, 2012 W* Quarter 4, 2011 Quarter 6, 2011 W* Quarter 6, 2011 W* Quarter 7, 2012 W* Quarter 9, 2012 W*	Quarter 1, 2005																							
Quarter 4, 2005	Quarter 2, 2005												*							*				
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012	Quarter 3, 2005												*							*				
Quarter 2, 2006	Quarter 4, 2005												*							*				
Quarter 2, 2006 * * * * Quarter 3, 2006 * * * * Quarter 4, 2006 * * * Quarter 1, 2007 * * * Quarter 1, 2007 * * * Quarter 2, 2007 * * * Quarter 3, 2007 * * * Quarter 3, 2007 * * Quarter 4, 2007 * * Quarter 4, 2008 * * Quarter 1, 2008 * * Quarter 2, 2008 * * Quarter 3, 2008 * * Quarter 3, 2008 * * Quarter 3, 2008 * * Quarter 4, 2008 * * Quarter 3, 2008 * * Quarter 4, 2008 * * Quarter 3, 2009 * * * Quarter 3, 2010 * * Quarter 3, 2011 * * * Quarter	Ouarter 1, 2006												*							*				
Quarter 3, 2006													*							*				
Quarter 4, 2006	-	\vdash																						
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2012 ** ** ** ** ** ** ** ** **		 																						
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2012 ** ** ** Quarter 4, 2011 ** ** Quarter 4, 2011 ** ** Quarter 4, 2012 ** ** Quarter 2, 2012		-																						
Quarter 3, 2007 * * * * Quarter 4, 2007 * * * * * * Quarter 1, 2008 *		!			ļ		_																	
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2011 Quarter 3, 2012 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012		<u> </u>																						
Quarter 1, 2008 *																								
Quarter 2, 2008		L	Ш	L	_						L			Ш					L		Ш	L		$ldsymbol{ldsymbol{ldsymbol{eta}}}$
Quarter 3, 2008	Quarter 1, 2008	L	L	L	L	L		L	L		L	L	*	L	L	L			L	*	L	L	L	L
Quarter 4, 2008	Quarter 2, 2008												*							*				
Quarter 4, 2008	Quarter 3, 2008												*							*				
Quarter 1, 2009 * * * * * Quarter 2, 2009 * <t< td=""><td></td><td>t</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td></t<>		t											*							*				
Quarter 2, 2009 *	,	t	t											t							t			
Quarter 3, 2009		t																						
Quarter 4, 2009		 	 				—		—			—		 		—					 		—	-
Quarter 1, 2010 *		├	-		-	-	<u> </u>	-	-			-		-	-	-					-		-	_
Quarter 2, 2010 * * * * Quarter 3, 2010 *	-	1	-	<u> </u>	<u> </u>		<u> </u>							-							-			
Quarter 3, 2010	•	<u> </u>																						
Quarter 4, 2010 * * * * Quarter 1, 2011 * * * * Quarter 2, 2011 * * * * Quarter 3, 2011 * * * * Quarter 4, 2011 * * * * Quarter 1, 2012 * * * * Quarter 2, 2012 * * * *																								
Quarter 1, 2011 *	Quarter 3, 2010	L	L	L	L	L		L	L		L	L		L	L	L			L		L	L	L	L
Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * *	Quarter 4, 2010												*							*				
Quarter 2, 2011 * * * * * Quarter 3, 2011 * * * * * Quarter 4, 2011 * * * * * Quarter 1, 2012 * * * * * Quarter 2, 2012 * * * * * *	Quarter 1, 2011	Ī											*							*				
Quarter 3, 2011 * * * Quarter 4, 2011 * * * Quarter 1, 2012 * * * Quarter 2, 2012 * * *		t	t											*						*	t			
Quarter 4, 2011 * * * Quarter 1, 2012 * * * Quarter 2, 2012 * * *		\vdash	 		<u> </u>	<u> </u>	—	<u> </u>	 			 		 	<u> </u>	 		-			 		 	\vdash
Quarter 1, 2012 * * Quarter 2, 2012 * *		 	 				—		—			—		 		—					 		—	-
Quarter 2, 2012 * *		₩	<u> </u>											<u> </u>							<u> </u>			
		<u> </u>	<u> </u>	<u> </u>			<u> </u>			Ш				<u> </u>							<u> </u>			<u> </u>
Quarter 3, 2012		<u> </u>	<u> </u>	<u> </u>										<u> </u>							<u> </u>			
	Quarter 3, 2012	1	1	Ī									*	1						*	1			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient S D D D V S S S S S D D D V U S S S S S S D D D V U S S D D D D D D D D D D D D D D D D D	Groundwater Flow System			UCR	S						1	URGA	A]	LRGA	A		
Quarter 2, 1013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 201	Gradient	S	_			U	S	S	S	S				D	D	U	U	S	D	_		_	U	U
Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 201	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 19013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 7, 2017 Quarter 8, 2017 Quarter 9, 2017 Quarter 9, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 8, 2017 Quarter 8, 2017 Quarter 8, 2017 Quarter 9, 20	CALCIUM																							
Owner 2, 2013 Owner 3, 2013 Owner 4, 2013 Owner 4, 2014 Owner 5, 2014 Owner 5, 2014 Owner 6, 2014 Owner 6, 2014 Owner 6, 2014 Owner 7, 2014 Owner 7, 2014 Owner 7, 2014 Owner 8, 2015 Owner 8, 2015 Owner 8, 2015 Owner 8, 2015 Owner 9, 2017 Ow	Quarter 4, 2012																							
Quarter 3, 2013 Quarter 4, 2014 Quarter 5, 2014 Quarter 5, 2014 Quarter 6, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 2, 2018 Quarter 1, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 8, 2019 Quarter 9, 2019 Quarter 8, 2019 Quarter 9, 2019 Quarter 9, 2019 Quarter 9, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2000 Quarter 1, 2000 Quarter 2, 200																								
Quarter 4, 2015 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2020 Quarter 4,																								
Durner 1, 19914 Durner 2, 2014 Durner 3, 2014 Durner 4, 2015 Durner 4, 2015 Durner 5, 2016 Durner 5, 2016 Durner 6, 2016 Durner 6, 2016 Durner 7, 2016 Durner 7, 2016 Durner 8, 2016 Durner 8, 2016 Durner 8, 2016 Durner 8, 2016 Durner 9, 2016 Durner 9, 2016 Durner 9, 2016 Durner 9, 2017 Durner 9, 2007 Durner 9, 200	,																							
Duenter 2, 2014 Duenter 4, 2014 Duenter 4, 2014 Duenter 6, 2014 Duenter 6, 2015 Duenter 2, 2015 Duenter 3, 2016 Duenter 2, 2017 Duenter 2, 2018 Duenter 2, 2018 Duenter 2, 2019 Duenter 2, 2010 Duenter 3, 2020 Duenter 3, 2030 Duenter 3, 2030 Duenter 4, 2020 Duenter 5, 2020 Duenter 6, 2													不						*					
Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2010 Quarter 4, 201													*						· T					
Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 5, 2007 Quarter 4, 200																			*					
Deuter 1, 2015																			-					
Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2022 Quarter 1, 2022 Quarter 1, 2023 Quarter 2, 2033 Quarter 3, 2030 Quarter 1, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 1, 2030 Quarter 2, 2030 Quarter 3, 203														*										
Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2021 Quarter 4, 2021 Quarter 1, 2021 Quarter 1, 2022 Quarter 1, 2022 Quarter 1, 2022 Quarter 1, 2023 Quarter 1, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 202													*							*				
Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 8, 2020 Quarter 8, 2020 Quarter 9, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2022 Quarter 1, 2023 Quarter 1, 2022 Quarter 1, 2023 Quarter 1, 2035 Quarter 1, 2036 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 200	Quarter 3, 2015												*							*				
Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 1, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2020 Quarter 2, 2000 Quarter 3, 200	Quarter 4, 2015												*							*				
Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2010 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 8, 2020 Quarter 8, 2020 Quarter 9, 2020 Quarter 1, 2021 Quarter 1, 2022 Quarter 1, 2022 Quarter 1, 2023 Quarter 1, 2023 Quarter 1, 2023 Quarter 1, 2023 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 8, 2020 Quarter 9, 2020 Quarter 9, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 8, 200	Quarter 1, 2016												*							*				
Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 4, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2010 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2023 Quarter 4, 2023 Quarter 4, 2020 Quarter 4, 2030 Quarter 2, 2003 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 7, 2007 Quarter 8, 2007 Quarter 8, 2007 Quarter 8, 2007 Quarter 9, 200	Quarter 2, 2016												*		*					*				
Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2023 Quarter 4, 2020 Quarter 4, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 3, 203	Quarter 3, 2016												*							*				
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2009 Quarter 3, 2000 Quarter 3, 2022 Quarter 4, 2021 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 6, 2022 Quarter 6, 2022 Quarter 7, 2022 Quarter 7, 2022 Quarter 8, 2022 Quarter 9, 2022 Quarter 9, 2022 Quarter 1, 2023 Quarter 1, 2033 Quarter 1, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 1, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 4, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 203	Quarter 4, 2016												*							*				
Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2021 Quarter 1, 2022 Quarter 1, 2022 Quarter 1, 2022 Quarter 2, 2023 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 1, 2022 Quarter 1, 2022 Quarter 1, 2023 Quarter 2, 2023 Quarter 2, 2033 Quarter 2, 2033 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2022 Quarter 4, 2000 Quarter 2, 2003 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 7, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 7, 200	Quarter 1, 2017												*							*				
Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2021 Quarter 5, 2022 Quarter 6, 2022 Quarter 7, 2022 Quarter 7, 2022 Quarter 6, 2022 Quarter 7, 2022 Quarter 7, 2022 Quarter 6, 2022 Quarter 7, 2023 Quarter 7, 2022 Quarter 7, 2023 Quarter 7, 2023 Quarter 7, 2024 Quarter 7, 2025 Quarter 7, 2025 Quarter 7, 2025 Quarter 7, 2026 Quarter 7, 2027 Quarter 7, 2028 Quarter 7, 2029 Quarter 7, 2020 Quarter 7, 2000 Quarter 7, 200	Quarter 2, 2017																							
Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 1, 2022 Quarter 1, 2022 Quarter 1, 2022 Quarter 1, 2022 Quarter 2, 2023 Quarter 1, 2022 Quarter 2, 2023 Quarter 2, 2023 Quarter 3, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2023 Quarter 4, 2023 Quarter 5, 2022 Quarter 6, 2022 Quarter 6, 2022 Quarter 7, 2023 Quarter 7, 2023 Quarter 1, 2022 Quarter 1, 2023 Quarter 1, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 3, 2022 Quarter 4, 2023 Quarter 4, 2023 Quarter 4, 2023 Quarter 1, 2023 Quarter 2, 2033 Quarter 2, 2033 Quarter 2, 2035 Quarter 2, 2036 Quarter 2, 2036 Quarter 2, 2036 Quarter 3, 2036 Quarter 3, 2036 Quarter 4, 2036 Quarter 4, 2036 Quarter 3, 2037 Quarter 3, 2036 Quarter 4, 2036 Quarter 4, 2036 Quarter 4, 2036 Quarter 4, 2036 Quarter 3, 2037 Quarter 3, 2037 Quarter 4, 2037 Quarter 4, 2036 Quarter 4, 2037 Quarter 5, 2037 Quarter 6, 2037 Quarter 7, 2036 Quarter 7, 2036 Quarter 7, 2037 Quarter 8, 2037 Quarter 8, 2037 Quarter 9, 2036 Quarter 1, 2036 Quarter 1, 2037 Quarter 2, 2036 Quarter 2, 2037 Quarter 2, 2037 Quarter 3, 2037 Quarter 2, 2037 Quarter 2, 2037 Quarter 2, 2037 Quarter 3, 2037 Quarter 2, 2037 Quarter 2, 2037 Quarter 2, 2037 Quarter 3, 2037 Quarter 4, 2037 Quarter 2, 2037 Quarter 2, 2037 Quarter 3, 2037 Quarter 4, 2037 Quarter 4, 2037 Quarter 4, 2037 Quarter 4, 2037 Quarter 5, 2037 Quarter 6, 2037 Quarter 6, 2037 Quarter 6, 2037 Quarter 7, 2037 Quarter 7, 2038 Quarter 8, 2037 Quarter 8, 2037 Quarter 9, 203	Quarter 3, 2017																							
Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2021 Quarter 4, 2022 Quarter 3, 2022 Quarter 4, 2020 Quarter 5, 2022 Quarter 6, 2022 Quarter 7, 2022 Quarter 7, 2023 Quarter 9, 2033 Quarter 9, 2034 Quarter 9, 2035 Quarter 9, 2036 Quarter 9, 2037 Quarter 9, 203	Quarter 4, 2017																							
Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2023 Quarter 4, 2020 Quarter 4, 2033 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2035 Quarter 4, 2017 Quarter 2, 2030 Quarter 4, 2010 Quarter 2, 2030 Quarter 4, 2000 Quarter 4, 2010 Quarter 2, 2030 Quarter 3, 2030 Quarter 4, 2000 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2030 Quarter 6, 2017 Quarter 6, 2003 Quarter 7, 2003 Quarter 7, 2005 Quarter 8, 2005 Quarter 8, 2005 Quarter 9, 2005 Quarter 9, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 5, 2007 Quarter 6, 200	Quarter 1, 2018																							
Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2021 Quarter 4, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2021 Quarter 4, 2020 Quarter 4, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 8, 2000 Quarter 8, 2000 Quarter 9, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 200	Quarter 2, 2018																							
Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2021 Quarter 3, 2021 Quarter 4, 2022 Quarter 4, 2023 Quarter 2, 2023 Quarter 3, 2024 Quarter 3, 2025 Quarter 4, 2024 Quarter 4, 2025 Quarter 5, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008	Quarter 4, 2018																							
Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2023 Quarter 4, 2023 Quarter 4, 2023 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2023 Quarter 4, 2020 Quarter 2, 2023 Quarter 4, 2020 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 3, 2024 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 1, 2006 Quarter 2, 2007 Quarter 1, 2006 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007																								
Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 2, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 3, 2021 Quarter 4, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 5, 2023 Quarter 6, 2023 Quarter 7, 2023 Quarter 7, 2023 Quarter 1, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2017 CHEMICAL OXYGEN DEMAND Quarter 1, 2003 Quarter 2, 2037 Quarter 2, 2037 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008																								
Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 2, 2022 Quarter 3, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 5, 2022 Quarter 5, 2022 Quarter 6, 2022 Quarter 7, 2022 Quarter 1, 2023 Quarter 1, 2023 Quarter 1, 2023 Quarter 1, 2023 Quarter 1, 2021 Quarter 2, 2020 Quarter 1, 2021 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 202																								
Quarter 2, 2020 Quarter 3, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 3, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2023 Quarter 4, 2023 Quarter 4, 2020 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2001 Quarter 1, 2001 Quarter 4, 2010 Quarter 3, 2002 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *																								
Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2022 Quarter 1, 2022 Quarter 2, 2022 Quarter 2, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 1, 2033 Quarter 4, 2022 Quarter 3, 2031 Quarter 4, 2010 Quarter 3, 2031 Quarter 4, 2010 Quarter 2, 2033 CARBON DISULFIDE Quarter 4, 2010 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 2, 2003 Quarter 2, 2005 Quarter 3, 2003 Quarter 2, 2005 Quarter 3, 2003 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 200														*										
Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 1, 2023 Quarter 2, 2023 Quarter 1, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2017 Quarter 1, 2003 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007																								
Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 1, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 2, 2023 Quarter 3, 2029 Quarter 4, 2020 Quarter 2, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 4, 2030 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007																								
Quarter 2, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 1, 2022 Quarter 2, 2022 Quarter 2, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 1, 2023 Quarter 1, 2021 Quarter 1, 2023 Quarter 1, 2021 Quarter 1, 2025 Quarter 2, 2023 Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 1, 2003 Quarter 3, 2003 ** Quarter 4, 2004 ** Quarter 4, 2004 ** Quarter 1, 2004 ** Quarter 1, 2005 ** Quarter 3, 2005 ** Quarter 3, 2005 ** Quarter 3, 2005 ** Quarter 3, 2006 ** Quarter 2, 2006 ** Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 ** Quarter 2, 2007 ** Quarter 2, 2007 ** Quarter 3, 2007 ** Quarter 1, 2007 ** Quarter 2, 2007 ** Quarter 3, 2007 ** Quarter 2, 2007 ** Quarter 2, 2007 ** Quarter 2, 2007																								
Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 1, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2021 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 5, 2007 Quarter 6,														*										
Quarter 1, 2021 Quarter 1, 2022 Quarter 2, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 1, 2023 Quarter 1, 2023 Quarter 2, 2023 CARBON DISULFIDE Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 1, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007														*										
Quarter 1, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 1, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007																								
Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 2, 2013 Quarter 2, 2010 Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 1, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007																								
Quarter 3, 2022 Quarter 4, 2022 Quarter 1, 2023 Quarter 2, 2023 CARBON DISULFIDE Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2017 CHEMICAL OXYGEN DEMAND Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 ** ** ** ** ** ** ** ** **																								
Quarter 4, 2022 Quarter 1, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007																								
Quarter 1, 2023 Quarter 2, 2023 CARBON DISULFIDE Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 1, 2003 Quarter 2, 2003 ** Quarter 2, 2003 ** Quarter 4, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 1, 2008 ** Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007																								
Quarter 2, 2023																								
CARBON DISULFIDE Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007																								
Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007	,																							
Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Puarter 4, 2007 Quarter 1, 2008 ** Quarter 1, 2008	Quarter 4, 2010											*												
Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008	Quarter 1, 2011												*									*		
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 **	Quarter 2, 2017												*	*						*				
Quarter 2, 2003		D																						
Quarter 3, 2003	Quarter 1, 2003																							
Quarter 4, 2003	Quarter 2, 2003																							
Quarter 1, 2004	Quarter 3, 2003							*			*													
Quarter 4, 2004	Quarter 4, 2003								<u> </u>	<u> </u>						<u> </u>								
Quarter 1, 2005			<u> </u>	<u> </u>	*		<u> </u>	<u> </u>	<u> </u>	<u> </u>			-	-	-	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
Quarter 2, 2005																								
Quarter 3, 2005			<u> </u>	<u> </u>	_	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	_	-	-	-	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	
Quarter 4, 2005			<u> </u>	<u> </u>	_	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	*	_	<u> **</u>	-	-	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	,¥Ł	_	
Quarter 1, 2006			<u> </u>	<u> </u>			-	<u> </u>	<u> </u>	<u> </u>			ጥ	-	-	<u> </u>		-	<u> </u>	<u> </u>	<u> </u>	*		<u> </u>
Quarter 2, 2006			_	_				_	_	_	π'					_			_		_	_		
Quarter 3, 2006			 	 			-	 	-	-						-		-	 	 	 	 		
Quarter 4, 2006			_	_		_	<u> </u>	_	_	_	_	_	-	-	-	_		<u> </u>	_	_	_	_		_
Quarter 1, 2007		Ë	 	 	-	-	-	 	 	 	-	-	-	-	-	 		*	 	 	 	 	-	-
Quarter 2, 2007		*									*							_						
Quarter 3, 2007			 	 			-	 	-	-	-					-		-	 	 	 	 		-
Quarter 4, 2007 * Quarter 1, 2008 *			-	-			-	-	-	-						-		-	-	-	-	-		
Quarter 1, 2008 *			 	 			-	 	-	-						-		-	 	 	 	 		-
	Q	Ė					_											_						_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR:	_						_	URG	_							_	LRGA			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHEMICAL OXYGEN DEMAN																							
Quarter 3, 2008	*																						₩
Quarter 4, 2008	*																						<u> </u>
Quarter 1, 2009	*																			- 14			<u> </u>
Quarter 2, 2009	*																			*			<u> </u>
Quarter 3, 2009	*																						<u> </u>
Quarter 4, 2009	*																						<u> </u>
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014							*																
Quarter 2, 2015																*							
Quarter 3, 2015															*								
Quarter 3, 2016			*								*												
Quarter 4, 2016																	*						
Quarter 2, 2017	1					l	*																
Quarter 3, 2017	*					l									*								
Quarter 4, 2017						*																	
Quarter 2, 2018														*								*	T
Quarter 3, 2018	1											*											
Quarter 4, 2018																							*
Quarter 2, 2019					*							*		*					*				
Quarter 3, 2019												*	*						*			*	*
Quarter 4, 2019	*			*				*			*	*				*							\vdash
Quarter 1, 2020					*				*												*		
Quarter 2, 2020															*								
Quarter 4, 2020															-	*							
Quarter 1, 2021												*				-							-
Quarter 2, 2021						*						-			*								-
Quarter 4, 2021	*					_									-								
Quarter 1, 2022	-					*		*	*					*	*					*	*		
Quarter 2, 2022	1					*		<u> </u>	-					*									<u> </u>
Quarter 4, 2022	*					_								-									
Quarter 1, 2023	-																*						-
Quarter 2, 2023	-				*								*										├
CHLORIDE	_				т.								~										
			*																				
Quarter 1, 2003 Quarter 4, 2003	┢	-	*	_	_	 	-	-		_	_	_	_	_	_	_			_		_	_	⊢
Quarter 3, 2003	1		*	-	-			-		-	-	-	-	-	-	-					-	-	\vdash
Quarter 4, 2003	1		*	-	-			-		-	-	-	-	-	-	-					-	-	\vdash
Quarter 1, 2004	1	\vdash	*	 	<u> </u>	\vdash	\vdash	\vdash		<u> </u>	 	 	 	<u> </u>	 	 					<u> </u>	 	\vdash
Quarter 2, 2004	1		*	 	<u> </u>	\vdash				<u> </u>	 	 	 	<u> </u>	 	 					<u> </u>	 	\vdash
Quarter 3, 2004	1	-	*	\vdash	\vdash	\vdash		1		\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash					\vdash	\vdash	\vdash
Quarter 4, 2004	1		*	 	<u> </u>	\vdash				<u> </u>	 	 	 	<u> </u>	 	 					<u> </u>	 	\vdash
Quarter 1, 2005	1		*	\vdash	\vdash	\vdash		1		\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash					\vdash	\vdash	\vdash
Quarter 2, 2005	1		*	\vdash	\vdash	\vdash	-	1		\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash					\vdash	\vdash	\vdash
Quarter 3, 2005	+	1	*	 	 	1	1	1		\vdash	 	 	 	\vdash	 	 					\vdash	 	\vdash
Quarter 4, 2005	1	\vdash	*	\vdash	\vdash	\vdash	\vdash	\vdash	 	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash			<u> </u>		\vdash	\vdash	\vdash
Quarter 1, 2006	\vdash		H															*					\vdash
Quarter 2, 2006	1		*	-	-			_		-	-	-	-	-	-	-		•			-	-	\vdash
Quarter 3, 2006	┢	-	*	_	_	 	-	-		_	_	_	_	_	_	_			_		_	_	⊢
Quarter 4, 2006	┢	-	*	_	_	 	-	-		_	_	_	_	_	_	_			_		_	_	⊢
	1		*																				<u> </u>
Quarter 1, 2007	╀																						<u> </u>
Quarter 2, 2007	1		*	<u> </u>	<u> </u>	_		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>
Quarter 3, 2007	₩		*																				<u> </u>
Quarter 4, 2007	1		*	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>
Quarter 1, 2008	1		*																				<u> </u>
Quarter 2, 2008			*																				<u> </u>
Quarter 3, 2008			*																				
			*	1	1		1	1	l	1	1	1	1		1	1						1	1
Quarter 4, 2008	L	L	∟‴		L		L	L	Ш.	_				L					_	L	L		L

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR:	S						τ	URGA	A								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	_	395	397
CHLORIDE																							
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				
Quarter 4, 2010			*																				
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				
Quarter 3, 2013			*																				
Quarter 4, 2013			*																				
Quarter 4, 2014			*																				
Quarter 2, 2019																					*		
CHROMIUM																							
Quarter 4, 2002																						<u> </u>	
Quarter 1, 2003							L																
Quarter 2, 2003						L_																	
Quarter 3, 2009	_			<u> </u>	<u> </u>		<u> </u>													<u> </u>		<u> </u>	<u> </u>
Quarter 1, 2019						•																	
COBALT							110																
Quarter 3, 2003				<u> </u>	<u> </u>		*													<u> </u>		<u> </u>	
CONDUCTIVITY										114									- 14				
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*					4		*									*				
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							不									*				
Quarter 1, 2004 Quarter 2, 2004										*									*				
Quarter 3, 2004 Quarter 3, 2004										*									*				
Quarter 4, 2004			*							*									*				
Quarter 1, 2005			<u> </u>							*		*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												-							*				
Quarter 4, 2005										*		*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010	<u> </u>					*							*	<u> </u>		<u> </u>	<u> </u>						
Quarter 4, 2010	_			<u> </u>	<u> </u>	_	<u> </u>			<u></u>		*							*	<u> </u>		<u> </u>	<u> </u>
		Ì								*		*							*				
Quarter 1, 2011				I	l		<u> </u>					*							*	<u> </u>		<u> </u>	<u> </u>
Quarter 1, 2011 Quarter 2, 2011										1		*	i										1
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011											_								* •				
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011											4.	*							*				
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012											*	*							*				
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012											*	*							* *				
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012											*	*							*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR	S						τ	JRGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016																			*				
Quarter 3, 2016												*							*				
Quarter 4, 2016																			*				
Quarter 1, 2017		<u> </u>	<u> </u>		<u> </u>		<u> </u>												*	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 2, 2017		<u> </u>	<u> </u>		<u> </u>		<u> </u>												*	<u> </u>	<u> </u>		_
Quarter 3, 2017																			*		<u> </u>	<u> </u>	
Quarter 4, 2017																			*				
Quarter 1, 2018		<u> </u>	<u> </u>		<u> </u>		<u> </u>												*	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 2, 2018		<u> </u>	<u> </u>		<u> </u>		<u> </u>												*	<u> </u>	<u> </u>		_
Quarter 3, 2018		<u> </u>	<u> </u>		<u> </u>		<u> </u>												*	<u> </u>	<u> </u>		<u> </u>
Quarter 4, 2018																			*				
Quarter 1, 2019																			*				
Quarter 2, 2019																			*				
Quarter 3, 2019												- 14							*				
Quarter 4, 2019												*							*				
Quarter 1, 2020												*							*				
Quarter 2, 2020												*							*	*			
Quarter 3, 2020												*							*				
Quarter 4, 2020												*							*				
Quarter 1, 2021												*							*				
Quarter 2, 2021												*							*				
Quarter 3, 2021												*							*				
Quarter 4, 2021																			*				
Quarter 1, 2022												*							*				
Quarter 2, 2022												*					*		*				
Quarter 3, 2022												*						.					
Quarter 4, 2022												*					*	*	*				
Quarter 1, 2023												*							*			-	
Quarter 2, 2023 DISSOLVED OXYGEN												不							不				
			*					*															
Quarter 3, 2006 DISSOLVED SOLIDS			~					Α															
Quarter 4, 2002										*									*				
Quarter 4, 2002 Quarter 1, 2003	<u> </u>	_	*		_	<u> </u>	_			*		_		_					*	_	_	-	-
Quarter 1, 2003 Quarter 2, 2003		-	*		-		-			*									*	-	-	_	
Quarter 3, 2003		-	*		-		*	*		*		*							*	-	-	-	
Quarter 4, 2003	 	 	*		 	 	*		*	*		*							*	 	 	1	-
Quarter 1, 2004		-	*		-				_			*							*	-	-	-	
Quarter 2, 2004 Quarter 2, 2004		-	- "		-		-			*		*							*	-	-	_	
Quarter 3, 2004		-	-		-		-			*		*							*	-	-	_	
Quarter 4, 2004		-	-		-		-			*		*							*	-	-	_	
Quarter 1, 2005	\vdash			-		\vdash		-		-		*	-						*		-	1	
Quarter 2, 2005	_			-		_		-				-	-						*			 	
		_	_		_		_										*	*	*	*	*		
Quarter 3, 2005	_					_											*	*	*	*	*	-	-
Quarter 4, 2005		<u> </u>	<u> </u>		<u> </u>		<u> </u>															<u> </u>	-
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 1, 2007										*		*							*				
Quarter 2, 2007					ш			_															
										*		*							*				
Quarter 2, 2007										*		*							*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR	S						1	URGA	A]	LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*	*						*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										* •		*	*						*				
Quarter 3, 2010	<u> </u>	<u> </u>	<u> </u>		_		<u> </u>	<u> </u>		*	<u> </u>	*	_	<u> </u>	<u> </u>		<u> </u>		*	<u> </u>	<u> </u>		
Quarter 4, 2010	<u> </u>	<u> </u>	<u> </u>		_		<u> </u>	<u> </u>		*	<u> </u>	*	_	<u> </u>	<u> </u>		<u> </u>		*	<u> </u>	<u> </u>		
Quarter 1, 2011						-		<u> </u>		*		*	44	<u> </u>	<u> </u>				*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011	<u> </u>	<u> </u>	<u> </u>	_	-	<u> </u>	<u> </u>	<u> </u>	_	_	<u> </u>	*	-	<u> </u>	<u> </u>	_	<u> </u>	-	*	<u> </u>	<u> </u>	_	
Quarter 4, 2011	┞—					_				_	*	*	*	<u> </u>			<u> </u>	-	*				
Quarter 1, 2012	┞—					_				_	*	*	不	<u> </u>			<u> </u>	-	*				
Quarter 2, 2012	1	-	-	_	-	-	-	 		*	-	*	*	-	 	_	-	-	*	-	-	_	-
Quarter 3, 2012 Quarter 4, 2012	 	_	_	_	-	_	_	_		*	_	*	*	<u> </u>	_	_	<u> </u>	-	*	_	_	_	
Quarter 1, 2013	 	_	_	_	-	<u> </u>	_			*	_	*	T	 		_	!	-	*	_	_	_	
Quarter 2, 2013		-	-				-			*	-	*		1				_	*	-	-		
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014		\vdash	\vdash			 	\vdash				\vdash	*	*	1				1	*	\vdash	\vdash		-
Quarter 2, 2014												*	Ė						*				
Quarter 3, 2014									*			*	*						*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015	t					H						*		t					*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015									*			*						*	*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*	*	*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017												*		\Box	L				*				
Quarter 3, 2017												*		*	*				*				
Quarter 4, 2017												*							*				
Quarter 1, 2018	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>			<u> </u>	*		<u> </u>	<u> </u>		_		*	<u> </u>	<u> </u>		
Quarter 2, 2018	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>			<u> </u>	*		ļ.,.	<u> </u>		<u> </u>		*	<u> </u>	<u> </u>		<u> </u>
Quarter 3, 2018	<u> </u>	<u> </u>	<u> </u>				<u> </u>				<u> </u>	*		*			_		*	<u> </u>	<u> </u>		<u> </u>
Quarter 4, 2018												*		<u> </u>					*				
Quarter 1, 2019	<u> </u>	<u> </u>	<u> </u>		_		<u> </u>	<u> </u>			<u> </u>	*	_	<u> </u>	<u> </u>		<u> </u>		*	<u> </u>	<u> </u>		
Quarter 2, 2019						-		<u> </u>				*	44	<u> </u>	<u> </u>				*				
Quarter 3, 2019						-		<u> </u>				*	*	<u> </u>	<u> </u>				*				
Quarter 4, 2019	1	├	├			-	├	 			├	*	*	-	 		-		*	├	├		<u> </u>
Quarter 1, 2020	1	-	-	_	-	-	-	 		-	-	*	*	-	 	_	-	-	*	-	-	_	-
Quarter 2, 2020 Quarter 3, 2020		<u> </u>	<u> </u>	_	-	_	<u> </u>	_	_	*	<u> </u>	*	*	<u> </u>	_	_	*	-	*	<u> </u>	<u> </u>	_	
Quarter 3, 2020 Quarter 4, 2020	 	 	 	-	-	-	 	 	-		 	*	*	-	 	-	ٽ		*	 	 	-	-
Quarter 1, 2021		-	-				-				-	*	-	1				_	*	-	-		-
Quarter 2, 2021												*	*						*				
Quarter 3, 2021	\vdash	 	 		\vdash	\vdash	 				 	*	*	 			 	\vdash	*	 	 		<u> </u>
Quarter 4, 2021												*	*						*				
Quarter 2, 2022												*	*						*				
Quarter 2, 2022	H	 	 			\vdash	 				 	*	*	\vdash			1		*	 	 		<u> </u>
Quarter 3, 2022		\vdash	\vdash				\vdash				\vdash	*		t -					*	\vdash	\vdash		
Quarter 4, 2022		\vdash	\vdash				\vdash				\vdash	*		1					*	\vdash	\vdash		
Quarter 1, 2023												*		t					*				
Quarter 2, 2023												*							*				
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S		l				1	URGA	A							,	LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004 Quarter 1, 2005										*		*											
Quarter 2, 2005											*	*											
Quarter 1, 2006	-						*					-											
Quarter 2, 2006							_					*											
Quarter 3, 2006											*												
Quarter 1, 2007	1										*	*											
Quarter 2, 2007	1										*												
Quarter 2, 2008												*											
Quarter 3, 2008	t											*											
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*		Ļ					*				
Quarter 1, 2004	<u> </u>		*	<u> </u>	<u> </u>						<u> </u>	*		*					*		<u> </u>		
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005 Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006	-											*							*				
Quarter 2, 2006	 											*							*				
Quarter 3, 2006	1											*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009	<u> </u>		<u> </u>	<u> </u>	<u> </u>						<u> </u>	*		<u> </u>					*		<u> </u>		
Quarter 1, 2010	<u> </u>		<u> </u>	<u> </u>	<u> </u>						<u> </u>	*	,	<u> </u>					*		<u> </u>		
Quarter 2, 2010	┞	<u> </u>	<u> </u>		<u> </u>							*	*	<u> </u>					*		<u> </u>		<u> </u>
Quarter 3, 2010	<u> </u>					-					<u> </u>	*							*				<u> </u>
Quarter 4, 2010	<u> </u>		<u> </u>	<u> </u>	<u> </u>	-				_	<u> </u>	*		<u> </u>					*		<u> </u>		-
Quarter 1, 2011	├	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	_	_	_	<u> </u>	*	*	<u> </u>	_		Н	_	*	_	<u> </u>	_	<u> </u>
Quarter 2, 2011 Quarter 3, 2011	1		├	<u> </u>	├	-					<u> </u>	*	*	├					*		├		-
Quarter 4, 2011	┢											*					\vdash		*				<u> </u>
Quarter 1, 2012	1		-	-	-						-	*		-					*		-		1
Quarter 2, 2012	 											*							*				
Quarter 3, 2012	\vdash		<u> </u>	_	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	*	*	<u> </u>	<u> </u>		Н	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>	\vdash
Quarter 4, 2012												*	*						*				
Quarter 1, 2013	\vdash	\vdash	 	<u> </u>	 	 	<u> </u>	<u> </u>	<u> </u>	\vdash	<u> </u>	*	É	 	<u> </u>		Н	<u> </u>	*	<u> </u>	 	<u> </u>	\vdash
Quarter 2, 2013												*							*				
Quarter 3, 2013	t											*							*				
Quarter 4, 2013	t											*							*				
		1	1		1		1			1			1								1	1	
Quarter 1, 2014																		*	*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Secondary Seco	Groundwater Flow System			UCRS	S		Ī				1	URG/	4								LRGA	A		
Monitoria Well MAKINSTRUM JAMES AS JON 300 S80 300 S81 S80 S91	Gradient	S		_		U	S	S	S	S				D	D	U	U	S	D	_		_	U	U
MANNENINA Journet 2, 2014 Journet 2, 2014 Journet 2, 2015 Journet 2, 2016 Journet 2, 2017 Journet 2, 2018 Journet 2, 2018 Journet 2, 2018 Journet 2, 2018 Journet 2, 2019 Journet 2, 2009 Jour	Monitoring Well			_		_					_	_		_	_					_	_	_	_	397
Desiret 2, 3014 Desiret 2, 1016 Desiret 2, 1017 Desiret 2, 1018 Desiret 2, 1019 Desiret 2, 1001 Desiret 3, 1006 Desiret 4, 1007 Desiret 3, 1006 Desiret 3, 1006 Desiret 3, 1006 Desiret 4, 1007 Desiret 4, 1000 Desiret 4, 100	MAGNESIUM																							
Danter 4, 2014 Danter 2, 1015 Danter 2, 2015 Danter 2, 2015 Danter 2, 2015 Danter 2, 2016 Danter 2, 2017 Danter	Quarter 2, 2014												*	*						*				
Damer 1, 2015 Damer 2, 2015 Damer 3, 2015 Damer 4, 2015 Damer 4, 2016 Damer 4, 2017 Damer 2, 2017 Damer 2, 2017 Damer 2, 2017 Damer 2, 2017 Damer 3, 2017 Damer 3, 2017 Damer 4, 2017 Damer 5, 2018 Damer 4, 2019 Damer 5, 2019 Damer 6, 2019 Damer 6, 2019 Damer 7, 2019 Damer 7, 2019 Damer 8, 2019 Damer 9, 2019 Damer	Quarter 3, 2014												*							*				
Journet 1,0015	Quarter 4, 2014												*	*						*				
Diameter 2, 2015																				*				
Jamers 4, 2015 Jamers 4, 2015 Jamers 4, 2016 Jamers 4, 2017 Jamers 4, 2017													*							*				
Date 1, 2015 Date 1, 2016 Date 2, 2017 Date 2, 2018 Date 2, 2019 Date 2, 2004 Date 2, 2004 Date 2, 2005 Date 2, 2005 Date 2, 2006 Date 2, 2006 Date 2, 2006 Date 2, 2007 Date 2, 2006 Date 2, 2007 Date 2, 2008 Date																								
Deserter 1,016																								
Danter 2, 2016																								
Damer 3, 2016 Damer 4, 2016 Damer 5, 2017 Damer 5, 2017 Damer 6, 2018 Damer 6, 2019 Damer 6, 2020 Damer 6, 2021 Damer 6, 2021 Damer 6, 2022 Damer 6, 2023 Damer 6, 2022 Damer 6, 2023 Damer 7, 2023 Damer 7, 2023 Damer 7, 2024 Da															*									
Danter () 2016 Danter () 2017 Danter () 2018 Danter () 2018 Danter () 2018 Danter () 2018 Danter () 2019 Danter () 2020 Danter () 2021 Danter () 2021 Danter () 2021 Danter () 2022 Danter () 2023 Danter () 2022 Danter () 2023 Danter () 2024 Danter () 2034 Danter () 2035 Danter () 203																								
Daurier 1, 2017 Daurier 2, 2017 Daurier 3, 2017 Daurier 3, 2017 Daurier 4, 2018 Daurier 3, 2019 Daurier 4, 2018 Daurier 3, 2019 Daurier 4, 2019 Daurier 4, 2019 Daurier 4, 2010 Daurier 4, 2010 Daurier 4, 2020 Daurier 4, 2021 Daurier 4, 2022 Daurier 4, 2023 Daurier 5, 2033 Daurier 6, 2022 Daurier 6, 2022 Daurier 6, 2022 Daurier 6, 2022 Daurier 6, 2023 Daurier 6, 2022 Daurier 6, 2023 Daurier 6, 2023 Daurier 6, 2022 Daurier 6, 2023 Daurier 6, 2022 Daurier 6, 2023 Daurier 6, 2025 Daurier 7, 2025 Daurier 7, 2026 Daurier 6, 2026 Daurier 6, 2027 Daurier 7, 2026 Daurier 7, 2027 Daurier 7, 2027 Daurier 7, 2026 Daurier 7, 2027 Daurier 8, 2027 Daurie															*									
Datater 2, 2017 Datater 3, 2017 Datater 4, 2017 Datater 4, 2017 Datater 4, 2017 Datater 4, 2018 Datater 1, 2018 Datater 1, 2018 Datater 1, 2019 Datater 1, 2020 Datater 2, 2020 Datater 2, 2021 Datater 2, 2021 Datater 2, 2021 Datater 3, 2021 Datater 3, 2021 Datater 4, 2022 Datater 4, 2023 Datater 4, 2024 Datater 4, 2025 Datater 4, 2026 Datater 4, 202																								
Danter 4, 2017 Danter 1, 2018 Danter 2, 2018 Danter 3, 2018 Danter 4, 2018 Danter 4, 2018 Danter 4, 2018 Danter 4, 2019 Danter 1, 2019 Danter 1, 2019 Danter 2, 2019 Danter 2, 2019 Danter 2, 2019 Danter 3, 2019 Danter 3, 2019 Danter 4, 2020 Danter 4, 2020 Danter 4, 2021 Danter 4, 2022 Danter 5, 2022 Danter 6, 2032 Danter 6, 2033 Danter 7, 2033 Danter 8, 2032 Danter 8, 2032 Danter 9, 2032 Danter 1, 2033 Danter 1, 2033 Danter 2, 2032 Danter 3, 2032 Danter 4, 2032 Danter 4, 2032 Danter 4, 2032 Danter 6, 2032 Danter 6, 2033 Danter 7, 2033 Danter 8, 2032 Danter 8, 2032 Danter 9, 2033 Danter 9, 2033 Danter 9, 2034 Danter 9, 2035 Danter 9, 2036 Danter 1, 2037 Danter 1, 2036 Danter 2, 2036 Danter 1, 2037 Danter 2, 2036 Danter 3, 2036 Danter 4, 2036 Danter 2, 2036 Danter 3, 2036 Danter 4, 2036 Danter 4, 2036 Danter 4, 2036 Danter 4, 2036 Danter 9, 2036 Danter	_														т.					т.				
Danter 4, 2017 Danter 1, 2018 Danter 2, 2018 Danter 3, 2018 Danter 4, 2018 Danter 4, 2019 Danter 5, 2019 Danter 6, 2019 Danter 6, 2019 Danter 6, 2019 Danter 6, 2019 Danter 7, 2019 Danter 7, 2019 Danter 8, 2019 Danter 8, 2019 Danter 9, 2020 Danter 1, 2021 Danter 8, 2021 Danter 8, 2021 Danter 8, 2021 Danter 8, 2022 Danter 8, 2023 Danter 9, 2020 Danter 9, 2020 Danter 1, 2020 Danter 2, 2000 Danter 2, 2000 Danter 2, 2000 Danter 3, 2006 Danter 1, 2007 Danter 2, 2006 Danter 1, 2007 Danter 2, 2007 Danter 2, 2007 Danter 3, 2006 Danter 1, 2007 Danter 3, 2007 Danter 4, 2007 Danter 4, 2007 Danter 5, 2007 Danter 6, 2007 Danter 8, 2007 Danter 9, 2008 Danter 9, 2008															<u> </u>									
Damer 1, 2018 Damer 2, 2018 Damer 3, 2018 Damer 4, 2018 Damer 4, 2019 Damer 5, 2019 Damer 6, 2019		_					_								不									
Danter 2, 2018 Danter 3, 2018 Danter 4, 2018 Danter 4, 2018 Danter 5, 2019 Danter 1, 2019 Danter 1, 2020 Danter 1, 2020 Danter 1, 2020 Danter 2, 2020 Danter 2, 2020 Danter 3, 2020 Danter 4, 2021 Danter 4, 2021 Danter 4, 2021 Danter 4, 2021 Danter 5, 2020 Danter 6, 2020 Danter 6, 2020 Danter 7, 2020 Danter 7, 2020 Danter 8, 2020 Danter 9, 2020 Danter																								
Description														*						*				
Dauter 4, 2018 Dauter 1, 2019 Dauter 2, 2019 Dauter 2, 2019 Dauter 3, 2019 Dauter 1, 2020 Dauter 4, 2020 Dauter 4, 2021 Dauter 4, 2021 Dauter 4, 2021 Dauter 4, 2022 Dauter 5, 2023 Dauter 6, 2023 Dauter 6, 2023 Dauter 7, 2024 Dauter 8, 2022 Dauter 9, 2023 Dauter 9, 2024 Dauter 9, 2024 Dauter 9, 2024 Dauter 9, 2025 Dauter 9, 2026 Dauter																								
Dauter 1, 2019 Dauter 2, 2019 Dauter 3, 2019 Dauter 4, 2019 Dauter 4, 2020 Dauter 4, 2020 Dauter 4, 2020 Dauter 4, 2020 Dauter 4, 2021 Dauter 4, 2022 Dauter 4, 2020 Dauter 5, 2020 Dauter 6, 2020 Dauter 6, 2020 Dauter 6, 2020 Dauter 8, 2020 Dauter 8, 2020 Dauter 8, 2020 Dauter 9, 2020 Dauter														<u> </u>	<u> </u>					Ļ				<u> </u>
Datater 2, 2019 Datater 3, 2019 Datater 4, 2020 Datater 4, 2021 Datater 4, 2022 Datater 4, 2022 Datater 4, 2022 Datater 4, 2022 Datater 4, 2020 Datater 5, 2020 Datater 6, 2020 Datater 6, 2020 Datater 7, 2020 Datater 7, 2020 Datater 8, 2020 Datater 9, 2022 Datater 1, 2023 Datater 1, 2023 Datater 1, 2023 Datater 1, 2023 Datater 1, 2020 Datater 2, 2020 Datater 2, 2020 Datater 2, 2020 Datater 2, 2020 Datater 3, 2020 Datater 3, 2020 Datater 3, 2020 Datater 4, 2020 Datater 4, 2020 Datater 3, 2020 Datater 4, 2020 Datater 6, 2020 Datater 6, 2020 Datater 7, 2020 Datater 7, 2020 Datater 1, 2020 Datater 1, 2020 Datater 1, 2020 Datater 2, 2020 Datate	Quarter 4, 2018													*										
Danter 3, 2019 Danter 4, 2019 Danter 2, 2020 Danter 2, 2021 Danter 3, 2021 Danter 3, 2021 Danter 3, 2020 Danter 4, 2020 Danter 4, 2022 Danter 1, 2022 Danter 4, 2023 Danter 4, 2020 Danter 4, 2030 Danter 5, 2030 Danter 6, 2030 Danter 7, 2030 Danter 7, 2030 Danter 8, 2030 Danter 9, 2030 Danter	Quarter 1, 2019														*									
Danter 4, 2019 Danter 1, 2020 Danter 2, 2020 Danter 3, 2020 Danter 4, 2021 Danter 4, 2021 Danter 4, 2021 Danter 3, 2021 Danter 3, 2021 Danter 4, 2022 Danter 4, 2023 Danter 4, 2020 Danter 4, 2000 Danter 4, 2000	Quarter 2, 2019	L	L			L	L	L			L					L			L					L
Danter 1, 2020 Danter 2, 2020 Danter 3, 2020 Danter 4, 2020 Danter 4, 2021 Danter 4, 2021 Danter 4, 2021 Danter 5, 2022 Danter 6, 2022 Danter 7, 2022 Danter 7, 2022 Danter 8, 2022 Danter 9, 2022 Danter	Quarter 3, 2019													*										
Dauter 2, 2020	Quarter 4, 2019												*	*						*				
Dauter 3, 2020 Dauter 4, 2020 Dauter 6, 2021 Dauter 7, 2021 Dauter 7, 2021 Dauter 8, 2021 Dauter 9, 2021 Dauter 9, 2021 Dauter 9, 2022 Dauter 9, 2023 Dauter 9, 2033 Dauter 9, 2033 Dauter 9, 2034 Dauter 9, 2034 Dauter 9, 2034 Dauter 9, 2035 Dauter 9, 2035	Quarter 1, 2020												*	*						*				
Date Color	Quarter 2, 2020												*	*						*				
Danter 1, 2021	Quarter 3, 2020												*	*						*				
Daurier 2, 2021 Daurier 3, 2021 Daurier 4, 2021 Daurier 4, 2021 Daurier 4, 2022 Daurier 5, 2023 Daurier 6, 2023 Daurier 6, 2023 Daurier 7, 2023 Daurier 7, 2023 Daurier 7, 2023 Daurier 8, 2004 Daurier 9, 2004 Daurier 9, 2004 Daurier 1, 2005 Daurier 1, 2005 Daurier 1, 2022 NEW York State Sta	Quarter 4, 2020												*	*						*				
Dauter 3, 2021 Dauter 4, 2021 Dauter 4, 2021 Dauter 5, 2022 Dauter 7, 2022 Dauter 7, 2022 Dauter 7, 2022 Dauter 1, 2022 Dauter 1, 2023 Dauter 4, 2022 Dauter 1, 2023 Dauter 4, 2023 Dauter 1, 2024 Dauter 2, 2024 Dauter 1, 2024 Dauter 2, 2025 Dauter 3, 2025 Dauter 4, 2025 Dauter 5, 2028 Dauter 5, 2028 Dauter 6, 2028 Dauter 6, 2028 Dauter 7, 2028 Dauter 7, 2028 Dauter 7, 2028 Dauter 8, 2028 Dauter 8, 2028 Dauter 8, 2028 Dauter 8, 2028 Dauter 9, 2028 Dauter	Quarter 1, 2021												*	*						*				
Daurier 3, 2021 Daurier 4, 2021 Daurier 2, 2022 Daurier 3, 2022 Daurier 3, 2022 Daurier 4, 2022 Daurier 4, 2022 Daurier 4, 2022 Daurier 3, 2022 Daurier 4, 2023 MANGANESE Daurier 4, 2003 Daurier 4, 2003 Daurier 4, 2004 Daurier 4, 2004 Daurier 4, 2004 Daurier 4, 2005 Daurier 3, 2005 Daurier 3, 2006 Daurier 4, 2004 Daurier 4, 2003 Daurier 4, 2004 Daurier 4, 2005 Daurier 3, 2006 Daurier 3, 2006 Daurier 4, 2005 Daurier 3, 2006 Daurier 3, 2006 Daurier 4, 2005 Daurier 3, 2006 Daurier 3, 2006 Daurier 4, 2005 Daurier 3, 2006 Daurier 4, 2005 Daurier 3, 2006 Daurier 4, 2005 Daurier 4, 2006 Daurier 4, 2006 Daurier 4, 2007 Daurier 4, 2006 Daurier 4, 2007 Daurier 4, 2007 Daurier 4, 2007 Daurier 4, 2007 Daurier 4, 2008 Daurier 5, 2008 Daurier 6, 2008 Daurier 6, 2008 Daurier 7, 2008 Daurier 8, 2008 Daurier 8, 2008 Daurier 9, 2008 Daurier 9, 2	` .																			*				
Quarter 4, 2021	` .												*	*						*				
Quarter 1, 2022																								
Quarter 2, 2022																								
Quarter 2,022																								
Quarter 1, 2022 Quarter 1, 2023 Quarter 2, 2023 MANGANESE Quarter 4, 2002 Quarter 2, 2003 MANGANESE Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 2, 2004 Quarter 2, 2006 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 3, 2008 * * * * * * * * * * * * * * * * * * *																								
Quarter 1, 2023 Quarter 2, 2023 Quarter 2, 2023 Quarter 3, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 5, 2008 Quarter 6, 2008 Quarter 6, 2008 Quart																								
Quarter 2, 2023																								
MANGANESE Quarter 4, 2002 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 X X X X X X X X X X X X X																								
Quarter 4, 2002 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2009 X Quarter 3, 2009 X Quarter 3, 2009 X Quarter 1, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2009 X Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 X Quarter 4, 2004 X Quarter 2, 2004 X Quarter 3, 2009 X Quarter 3, 2009 X Quarter 3, 2009 X Quarter 4, 2005 X Quarter 2, 2006 X X X X X X X X X X X X X X X X X X													不	不						不				
Quarter 3, 2003																						-		
																						*		
Quarter 1, 2004																								
Quarter 2, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2009 Quarter 1, 2002 * * * * * * * * * * * * *									*															
Water 4, 2004	Quarter 1, 2004																							
Quarter 1, 2005	Quarter 2, 2004							*																
Quarter 3, 2005 Quarter 3, 2009	Quarter 4, 2004							*	*															
Quarter 1, 2009	Quarter 1, 2005							*																
Darter 1, 2022 *	Quarter 3, 2005																					*		
Quarter 1, 2022	Quarter 3, 2009	*																						
DATE	Quarter 1, 2022	*					1									l			l					
Quarter 4, 2003 Quarter 2, 2004			TAL																					
Quarter 3, 2004				*																				
Quarter 4, 2004	_	 	 				 									l -			l -					
Quarter 1, 2004		1	H				1									-			*	 				
Quarter 1, 2005		1	 				*						1			-			<u> </u>					
Quarter 3, 2005	-	1	 				Ë						1			-			*					
Quarter 4, 2005	,	*	 	l			 						<u> </u>			-			<u> </u>					
Quarter 4, 2005			 				 						-			-			-	<u> </u>				<u> </u>
Quarter 3, 2006		*	 				 						<u> </u>							<u> </u>				<u> </u>
Quarter 3, 2006	-				-				-	-		-	!				<u> </u>	-		<u> </u>			-	<u> </u>
Quarter 1, 2006													—							<u> </u>				<u> </u>
Quarter 1, 2007	-	<u> </u>		l			<u> </u>						<u> </u>			ļ			木					
Quarter 2, 2007 * * <td< td=""><td></td><td><u> </u></td><td><u> </u></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td><u> </u></td></td<>		<u> </u>	<u> </u>				<u> </u>													<u> </u>				<u> </u>
Quarter 3, 2007 * * Quarter 4, 2007 * Quarter 1, 2008 * * Quarter 2, 2008 * * * * * Quarter 3, 2008 * *								Ļ					L							<u> </u>				<u> </u>
Quarter 4, 2007 * Quarter 1, 2008 * Quarter 2, 2008 * * * Quarter 3, 2008 * * *	Quarter 2, 2007																							
Quarter 1, 2008 * * * Quarter 2, 2008 * * * Quarter 3, 2008 * * *	Quarter 3, 2007							*																
Quarter 2, 2008 *	Quarter 4, 2007	L	L	l			L																	L
Quarter 3, 2008 * * * * * * * * * * * * * * * * * *	Quarter 1, 2008									*														
(Quarter 2, 2008	*		*	*		*							*				*		*	*			
	Quarter 3, 2008			*	*		*							*				*		*	*			
	Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
		_					_									_			_					

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	_		UCRS			_	-	-	~		URGA	_	Γ.	-		**	-	-	_	LRGA	_		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION PO	FENT	TAL																					
Quarter 1, 2009			*				*	*	*				*	*				*		*		<u> </u>	<u> </u>
Quarter 3, 2009			*	*		*											*	*	*	*		<u> </u>	<u></u>
Quarter 4, 2009			*			*			*									*		*		<u> </u>	<u></u>
Quarter 1, 2010	*		*																	*		<u> </u>	<u>l</u>
Quarter 2, 2010	*		*	*					*				*				*	*		*		<u> </u>	<u>l</u>
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*	*		*			*		*		*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		T
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		T
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		1
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		\vdash
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			\vdash
Quarter 4, 2013	Ė	1	*	*		*	*	*	*	*	*	*	*	*	l -		*	*	*	*	*	 	\vdash
Quarter 1, 2014	*	 	*	*		*	*	<u> </u>	*	Ë	*	*	*	*			*	*	*	*	*	 	\vdash
Quarter 1, 2014 Ouarter 2, 2014	*	1	*	*		*	*	-	*		*	·	*	<u> </u>	-		*	*	*	*	*	╁	┢
· · · · · · ·	*	├	*	*		*	-	-	<u> </u>		<u> </u>		-		-		*	*	*	*	*	├	\vdash
Quarter 3, 2014	_	<u> </u>	*	*		*					*		*				*	*			*	├	<u> </u>
Quarter 4, 2014	*	 	*	*	*	*	*	*	*		*	*	*	**	*	±-	*	*	*	*	*	*	JE.
Quarter 1, 2015		 				*	*	*	*	_		*	*	*		*						*	*
Quarter 2, 2015	*	<u> </u>	*	*	*	*	*			4	*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
Quarter 2, 2017	*		*	*	*												*			*	*		
Quarter 3, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 1, 2018	*		*	*	*	*												*	*	*	*	 	*
Quarter 2, 2018	*		*	*	*												*	*	*	*	*	*	*
Quarter 3, 2018	*		*	*	*	*	*	*	*								*	*	*	*	*	*	*
Quarter 4, 2018	*		*	*	*	*				*			*		*		*	*	*	*	*	H	*
Quarter 1, 2019	*		*	*	*	*	*	*		-	*		-		-		*	*	*	*	*	*	*
Quarter 2, 2019	*		*	*	*	*	*	*	*	*	-	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2019	*	<u> </u>	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
	*		*	*	*	*	*	т.	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2019	*		*	*	*	*	*	*	*	*			*		т.	*	*	*	*	*	*	*	-
Quarter 1, 2020	1									4				-		-							_
Quarter 2, 2020	*		*	*	*	*	*	*	*	*			*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2020	*	<u> </u>	*	*	*	*		112									*	*	*	*	*	*	*
Quarter 4, 2020	*	<u> </u>	*	*	*	*	<u> </u>	*	Ļ.,	Ļ			L_	*	L.		*	*	*	*	*	*	Ļ
Quarter 1, 2021	*	<u> </u>	*	*	<u> </u>	*	*	*	*	*	L_	<u> </u>	*	Ļ	*		*	*	*	*	Ļ	*	*
Quarter 2, 2021	*	<u> </u>	*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*
Quarter 3, 2021	*		*	*	*	*	*	*	*				*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2021	*		*	*	*	*	*	*	*						*		*	*	*	*	*	*	*
Quarter 1, 2022	*		*	*	*	*				*			*	*	*		*	*	*	*	*	*	*
Quarter 2, 2022	*		*	*	*		*		*	*		*	*		*	*	*	*	*	*	*	*	*
Quarter 3, 2022	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2022	*		*	*	*	*	*	*			*	*					*	*	*		*	*	*
Quarter 1, 2023	*			*	*	*					*	*	*			*	*	*	*	*	*	*	*
Quarter 2, 2023	*	1	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*		*
PCB-1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004		 					Ė	Ė	Ė		*							Ė				t	┢
Quarter 3, 2005	1	 					*				*											 	\vdash
Quarter 1, 2006	1	├				_		-			*			<u> </u>	-				<u> </u>		<u> </u>	+	\vdash
Quarter 1, 2006 Quarter 2, 2006	1	1									*								-			 	⊢
	1	 	-		-	<u> </u>	-	-	-			-	-		-					-		├	₩
Quarter 4, 2006	1	<u> </u>				<u> </u>		<u> </u>			*	11.		<u> </u>	<u> </u>				<u> </u>		<u> </u>	₩	<u> </u>
U. Invertor 1 2007	<u> </u>	<u> </u>				<u> </u>					*	*		<u> </u>					<u> </u>		<u> </u>	Ь—	L
Quarter 1, 2007		ı	ı		l						<u>L_</u>	*		<u> </u>								<u> </u>	<u> </u>
Quarter 2, 2007		_																					1
Quarter 2, 2007 Quarter 3, 2007											*												₩
Quarter 2, 2007											*	*											
Quarter 2, 2007 Quarter 3, 2007												*											
Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008											*	*											

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		1	UCRS	S						1	URGA	A								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392		397
PCB-1016																							
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009											*											 	
Quarter 4, 2009											*											 	
Quarter 1, 2010											*											-	-
Quarter 2, 2010											*											 	-
											*											-	
Quarter 3, 2010																							
Quarter 4, 2010											*												_
PCB-1232											ų.												_
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											<u> </u>
PCB-1260																							
Quarter 2, 2006																		*					<u> </u>
pH																							
Quarter 4, 2002																	*						Ш
Quarter 2, 2003																	*						Щ
Quarter 3, 2003																	*						Ш
Quarter 4, 2003							*										*						
Quarter 1, 2004							*										*						L
Quarter 2, 2004																	*						
Quarter 3, 2004																	*						
Quarter 4, 2004																	*						
Quarter 3, 2005										*							*				*		
Quarter 4, 2005										*							*						
Quarter 1, 2006																	*						
Quarter 2, 2006																	*						
Quarter 3, 2006																	*						
Quarter 3, 2007																	*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						1
Quarter 1, 2009																	*						1
Quarter 1, 2011																	*						t
Quarter 2, 2011											*												1
Quarter 3, 2011											*												1
Quarter 1, 2012														*									<u> </u>
Quarter 1, 2013										*			*				*						<u> </u>
Quarter 4, 2014																					*		
Quarter 2, 2016																		*	*				<u> </u>
POTASSIUM																							
Quarter 4, 2002																		*	*				_
Quarter 3, 2004				l															*				\vdash
Quarter 2, 2005				l -															*			\vdash	\vdash
Quarter 3, 2005				l -															*			\vdash	\vdash
Quarter 4, 2005						Н											Н		*	 		\vdash	\vdash
Quarter 2, 2006																			*	 		₩	\vdash
Quarter 3, 2006				l -															*			\vdash	\vdash
Quarter 4, 2006																			*			┢	┢
Quarter 4, 2008																			*			┢	┢
Quarter 3, 2012																			*			┢	┢
Quarter 1, 2013			<u> </u>	 	<u> </u>	\vdash	<u> </u>					H		<u> </u>		H	\vdash		*	\vdash	<u> </u>	 	\vdash
Quarter 2, 2013																			*			┢	┢
Quarter 3, 2013																			*			\vdash	\vdash
RADIUM-226																			Ë				
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004			Ë											Ë					*		Ë	\vdash	\vdash
Quarter 2, 2005									*										-			\vdash	\vdash
Quarter 2, 2005 Quarter 1, 2009				-					**		*											-	<u> </u>
Quarter 1, 2009 Quarter 3, 2014				-					*		*	*							<u> </u>			₩	₩
			*	-					*		*	*						*				-	<u> </u>
Quarter 4, 2014				-			*			*	*	*						*	 			₩	₩
Ouertor 1 2015		i	*	ı			*			*		*						¥					<u> </u>
Quarter 1, 2015			*				ķ			*		*						ķ					
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015			*				*			*		*						*					

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System Gradient SMonitoring Well RADIUM-226 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2020 Quarter 2, 2020 RADIUM-228 Quarter 2, 2020 RADIUM-28 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 1, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007	D 389	** * * * * * * * * * * * * * * * * * *	D 393	** * * * * * * * * * * * * * * * * * *	* *	S 2222	S 223	* *	**	** **	**	** **	**	** ** **	**	\$ 385 * *	** ** **	D 373	** ** **	**	**	U 397
Monitoring Well RADIUM-226 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2020 Quarter 2, 2020 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2000 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2007	389	*	393	*	*		223	*	*	*	*	*		*		*	* * *	373	* *	*	*	3977
RADIUM-226 Quarter 4, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2002 Quarter 7, 2003 Quarter 8, 2003 Quarter 9, 2003 Quarter 9, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007		*		*				*	*	*	*	*		*	*	*	* * *		* *		*	
Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2020 Quarter 2, 2020 RADIUM-228 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2006 SELENIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2003 Quarter 1, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007		*		*				*		*		*	*	*	*	*	* *		*			
Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2020 Quarter 2, 2020 RADIUM-228 Quarter 2, 2020 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 SELENIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2007		*			*			*		*		*	*	*	*	*	* *		*	*	*	
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2020 RADIUM-228 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 SELENIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007		*			*			*		*	*					*	* *		*	*	*	
Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2020 Quarter 2, 2020 RADIUM-228 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2007		*			*			*		*	*					*	*		*	*	*	
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2020 Quarter 2, 2020 RADIUM-228 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 SELENIUM Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007										*	*	*		*		*	*		*	*		
Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 1, 2028 Quarter 1, 2020 Quarter 2, 2020 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 SELENIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007		•							*		*	*		*		*	*		*	*		
Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2020 Quarter 2, 2020 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 SELENIUM Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 4, 2003 SODIUM Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007		•							*		*	*		*					*			
Quarter 1, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2020 RADIUM-228 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 SELENIUM Quarter 4, 2002 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2007		•		=				•			*	*		*								
Quarter 4, 2018 Quarter 1, 2020 Quarter 2, 2020 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 SELENIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2007		•		=				•			*	*		*			*		*			
Quarter 1, 2020 Quarter 2, 2020 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 SELENIUM Quarter 1, 2000 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007		•		=				•				*		*								
Quarter 2, 2020 RADIUM-228 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 SELENIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007		•		=				•						*		*						
RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 SELENIUM Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2003 SODIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007		•		=				•						*								
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 SELENIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2003 SODIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007		•		=				•														1
Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 SELENIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 SODIUM Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007		•		=				•		•												
Quarter 4, 2005 Quarter 1, 2006 SELENIUM Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 SODIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007		•		=		-		•														
Quarter 1, 2006 SELENIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 SODIUM Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007		-		=				•														
SELENIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 SODIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007		-		=																		
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 SODIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007		-		•																		
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 SODIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007		-		•																		
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 SODIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007		•																				
Quarter 3, 2003 Quarter 4, 2003 SODUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007		•		-																		
Quarter 4, 2003 SODIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007					1																	
SODIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007																					\neg	
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007																						
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007																						
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007																		*		*	-	
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007			*					*	*	*												
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007			*		t				*	*		*										
Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007						*	*		*													
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007	I					*		*	*													
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007								*	*				*									
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007									*													
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007									*													
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007								*	*													
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007									*									*				
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007					t				*									*				
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007					t			*	*									*				
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007					t			*	*												-	
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007		1			1			*	*													
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007					t			*													-	
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007					<u> </u>			*	*		*							*				
Quarter 1, 2007 Quarter 2, 2007	\vdash	1			\vdash	\vdash		*	*					H		*		Ė			-	\vdash
Quarter 2, 2007		1	1	1	1			*	Ė		*			\vdash		<u> </u>					-	
	-	_	_	_	\vdash	-		*	*		-			$\vdash\vdash$!		_			-	
		1	1	1	1	-	-	*						\vdash							-	-
Quarter 3, 2007 Quarter 4, 2007	-	_	_	_	\vdash	-		*						$\vdash\vdash$!		_			-	
` '		1			1			*														
Quarter 1, 2008	-	_	_	_	├			*			*			\vdash		 		_			_	<u> </u>
Quarter 3, 2008	-	_	_	_	├			*	*		不			\vdash		 		_			_	<u> </u>
Quarter 4, 2008	-	1	1	1	 	—			*		٠,			\vdash				ىلو				-
Quarter 1, 2009		1			<u> </u>			*			*							*				
Quarter 3, 2009		1			<u> </u>			16			*											<u> </u>
Quarter 4, 2009		<u> </u>	<u> </u>	<u> </u>	<u> </u>	L		*			*									Ш		
Quarter 1, 2010		<u> </u>			<u> </u>				L.		*			Ш								L
Quarter 2, 2010									*		*											
Quarter 3, 2010									*													
Quarter 4, 2010					_			*	*													
Quarter 1, 2011		L	L	L	L^{T}	L	L	L	*					LT			L	L			T	L
Quarter 2, 2011								*														
Quarter 4, 2011																		*				
Quarter 1, 2012										*											\neg	
Quarter 3, 2012		1			T						*							*			\neg	
Quarter 4, 2012			1	1	t		l				*										-	
- '			1	_	_		_	_	_													

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	Ī	-	UCRS	S						1	URGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014									-			*							*				
Quarter 4, 2014									*	*		*	*						-4-				
									*	*		*	*										
Quarter 1, 2015												*	•										
Quarter 2, 2015										4		*											
Quarter 3, 2015										*		*											
Quarter 4, 2015									*	*	14	*											
Quarter 2, 2016											*												- 14
Quarter 3, 2016											*												*
Quarter 1, 2017										*	*		*					*					
Quarter 2, 2017									*	*	*												
Quarter 2, 2018													*										
Quarter 3, 2018														*									
Quarter 1, 2019													*										
Quarter 2, 2019	سَـــــــــــــــــــــــــــــــــــــ					سَـــــــــــــــــــــــــــــــــــــ							*										
Quarter 4, 2019												*											
Quarter 1, 2020										L	*	*							*				L
Quarter 2, 2020											*		*						*				
Quarter 3, 2020											*	*											
Quarter 4, 2020												*											
Quarter 1, 2021												*	*										
Quarter 2, 2021												*											
Quarter 3, 2021												*											
Quarter 4, 2021												*											
Quarter 1, 2022												*	*										
Quarter 2, 2022													*										
Quarter 3, 2022												*	*										
Quarter 4, 2022												*											
Quarter 2, 2023									*			*											
STRONTIUM-90									_			-											
Quarter 2, 2003										_													
Quarter 1, 2004										Ē													
SULFATE										_													
Quarter 4, 2002																			*				
												*	*				*		*				
Quarter 1, 2003										*		*	*				*	*	*				
Quarter 2, 2003										*								不					
Quarter 3, 2003	_					_						*	*						*				
Quarter 4, 2003										*		*	*					14	*				
Quarter 1, 2004	<u> </u>					<u> </u>				*		*	*				L.	*	*	٠,,.			
Quarter 2, 2004	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			L.	*		*	*	<u> </u>		<u> </u>	*	*	*	*	<u> </u>		<u> </u>
Quarter 3, 2004									*	*		*	*					*	*				<u> </u>
Quarter 4, 2004	<u>L</u>	<u> </u>	<u> </u>		<u> </u>	<u>L</u>				*		*	*	<u> </u>		<u> </u>		*	*	<u> </u>	<u> </u>		<u> </u>
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005	L					L				*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005										*		*	*					*	*	*			
Quarter 1, 2006	1					1				*		*	*				*	*	*	*			
Quarter 2, 2006	1					1			*	*	l	*	*		l		*	*	*	*			
Quarter 3, 2006	1					1			*	*	-	*	*		-		*	-	*	*			
Quarter 4, 2006	1					1			*	*		*	*				*		*	Ë			
Quarter 4, 2006 Quarter 1, 2007	 			-		 	-		*	*	-	*	*		-		*	-	*	*		-	<u> </u>
	 					 																	
Quarter 2, 2007	<u> </u>					<u> </u>			*	*	<u> </u>	*	*		<u> </u>		*	<u> </u>	*	*			<u> </u>
Quarter 3, 2007									*	*		*	*				*	L.	*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008	┗_					┗_	L			*	_	*	*		_		*	*	*	*		L	
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009	1					1			*	*		*	*				*	*	*	*			
Quarter 3, 2009	 					 			*	*		*	*				*	*	*	*			
	*					 		\vdash	<u> </u>	*	-	*	*		-		*	*	*	<u> </u>			
Quarter 4, 2009						 			*	*	-	*			-			-T	*				
Quarter 1, 2010	*						_		*	*	Щ.	*	*		Щ.		*	Щ.	*			_	_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient S D D D U S S S S D D D U U S D D D U U S D<	Groundwater Flow System			UCRS	S						1	URGA	A								LRGA	A		
Moniford Well	· · · · · · · · · · · · · · · · · · ·	S		_		U	S	S	S	S	_	_		D	D	U	U	S	D		_	_	U	U
SILEATE: Outnote 2, 2010 Outnote 2, 2011						_	_		_		_		_	_	_				_	_	_	_	_	397
Sourier 4, 2010 Sourier 1, 2011 Sourier 2, 2011 Sourier 3, 2012 Sourier 3, 2013 Sourier 3, 2014 Sourier 3, 2015 Sourier 3, 2016 Sourier 3, 2017 Sourier 3, 2018 Sourier 3, 2018 Sourier 3, 2018 Sourier 4, 2018 Sourier 4, 2018 Sourier 4, 2019 Sourier 4, 2003 Sourier 4, 2003 Sourier 4, 2003 Sourier 4, 2003 Sourier 4, 2004 Sourier 6, 2004 Sourie																								
Outer 4, 2010 Outer 4, 2011 Outer 2, 2011 Outer 2, 2011 Outer 2, 2012 Outer 2, 2012 Outer 2, 2013 Outer 2, 2014 Outer 2, 2014 Outer 2, 2015 Outer 2, 2015 Outer 2, 2015 Outer 2, 2015 Outer 2, 2016 Outer 2, 2016 Outer 2, 2017 Ou	Quarter 2, 2010									*	*		*	*				*	*	*	*			
Owner 1, 2011	Quarter 3, 2010										*		*	*				*	*	*	*			
Outror 2, 2011	Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011																								
Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2003 Quarter 2,																								
Quarter 1, 2012															*									
Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 3, 2017 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2010 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 200	,																							
Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 200																								
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2017 Quarter 4, 2016 Quarter 2, 2017 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 202																								
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2020 Quarter 2, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2030 Quarter 2, 203	,	不																						
Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2019 Quarter 2, 2020 Quarter 3, 2021 Quarter 3, 2022 Quarter 3, 2023 Quarter 4, 2003 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005																								
Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 6, 2003 Quarter 7, 2008 Quarter 8, 2009 Quarter 8, 2009 Quarter 9, 2000 Quarter 9, 200															*									
Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2016 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2023 Quarter 4, 2022 Quarter 4, 2023 Quarter 6, 2023 Quarter 7, 2030 Quarter 7, 2030 Quarter 1, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 4, 203																								
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2015 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2018 Quarter 3, 2019 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2010 Quarter 1, 2020 Quarter 4, 2020 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 200															~									
Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 5, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 5, 2017 Quarter 5, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 7, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 7, 2017 Quarter 6, 2017 Quarter 7, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2023 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2022 Quarter 4, 2022 Quarter 2, 2023 Quarter 3, 2004 Quarter 2, 2003 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 6, 2005 Quart		_	-	_		_	<u> </u>	_	*			_			_	_						_		_
Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2018 Quarter 3, 2017 Quarter 4, 2018 Quarter 3, 2019 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2020 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 1, 2021 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2000 Quarter 3, 200				_			<u> </u>		Ë			-			*	-						<u> </u>		_
Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 5, 2018 Quarter 5, 2018 Quarter 6, 2018 Quarter 6, 2018 Quarter 6, 2018 Quarter 7, 2019 Quarter 3, 2010 Quarter 1, 2010 Quarter 2, 2019 Quarter 3, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2030 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2030 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2030 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2030 Quarter 2, 2030 Quarter 3, 2001 Quarter 3, 2004 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 5, 2005 Quarter 6, 2005 Quarter 6, 2005 Quarter 6, 200				 			-					-				-						 		
Quarter 1.2015 Quarter 2.2015 Quarter 2.2015 Quarter 3.2015 Quarter 3.2015 Quarter 4.2015 Quarter 4.2016 Quarter 4.2017 Quarter 4.2017 Quarter 4.2017 Quarter 1.2017 Quarter 1.2017 Quarter 3.2017 Quarter 4.2017 Quarter 3.2017 Quarter 3.2017 Quarter 4.2016 Quarter 4.2019 Quarter 3.2019 Quarter 3.2019 Quarter 4.2019 Quarter 3.2019 Quarter 3.2010 Quarter 3.2000				 			-					-			+	-						 		
Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2030 Quarter 2, 2031 Quarter 2, 2031 Quarter 3, 2022 Quarter 4, 2030 Quarter 2, 2031 Quarter 2, 2031 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2030 Quarter 2, 2031 Quarter 2, 2033 Quarter 2, 2033 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 203																								
Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 4, 2010 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2010 Quarter 3, 2019 Quarter 4, 2010 Quarter 2, 2021 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2031 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2020 Quarter 3, 202												*			*	*								
Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 1, 2019 Quarter 3, 2019 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2021 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2021 Quarter 1, 2021 Quarter 1, 2021 Quarter 3, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 1, 2030 Quarter 4, 2021 Quarter 1, 2030 Quarter 4, 2021 Quarter 1, 2030 Quarter 2, 2021 Quarter 3, 2022 Quarter 1, 2030 Quarter 4, 2030 Quarter 4, 2030 Quarter 2, 2030 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 200									*			Ë												
Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 1, 2017 Quarter 2, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2030 Quarter 3, 2040 Quarter 4, 2030 Quarter 4, 2030 Quarter 2, 2030 Quarter 3, 2040 Quarter 3, 2040 Quarter 3, 2040 Quarter 3, 2050 Quarter 4, 2050 Quarter 5, 2050 Quarter 6, 2050 Quarter									<u> </u>										<u> </u>					
Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 1, 2023 Quarter 2, 2003 ** ** ** ** ** ** ** ** ** ** ** ** **									*									_	*					
Quarter 1, 2016 Quarter 1, 2017 Quarter 2, 2017 *									*		*		*	*	*	*		*	*	*	*			
Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 ** ** ** ** ** ** ** ** ** ** ** ** **	,								*		*		*	*	*	*		*	*	*	*			
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2020 Quarter 5, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 6, 2021 Quarter 6, 2022 Quarter 6, 2022 Quarter 7, 2022 Quarter 1, 2023 Quarter 1, 2023 Quarter 1, 2023 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2022 Quarter 4, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2022 Quarter 4, 2020 Quarter 1, 2023 Quarter 4, 2020 Quarter 2, 2023 Quarter 4, 2020 Quarter 2, 2023 Quarter 4, 2020 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2005											*		*	*	*	*		*	*	*	*			
Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 3, 2000 ** ** ** ** ** ** ** ** ** ** ** **	Quarter 1, 2017										*		*	*	*	*		*	*	*	*			
Quarter 1, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 1, 2019 ** ** ** ** ** ** ** ** ** ** ** ** **	Quarter 2, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 2, 2018	Quarter 3, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 5, 2022 Quarter 6, 2022 Quarter 7, 2023 Quarter 7, 2024 Quarter 8, 2024 Quarter 9, 2025 Quarter 9, 202	Quarter 4, 2017													*	*	*								
Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 ** * * * * * * * * * * * * * * * * *	Quarter 1, 2018																							
Quarter 1, 2018	Quarter 2, 2018											*		*	*			*	*	*				
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 ** * * * * * * * * * * * * * * * * *									*							*								
Quarter 3, 2019									L															
Quarter 3, 2019																								
Quarter 4, 2019																								
Quarter 1, 2020									*							*		_						
Quarter 2, 2020				木					*							*								
Quarter 3, 2020																								
Quarter 4, 2020				*					~						*	~								
Quarter 1, 2021																								
Quarter 2, 2021																		_						
Quarter 3, 2021									*							*						*		
Quarter 4, 2021 * * * * * * * * * * * * * * * * * * *																								
Quarter 1, 2022											*		*					*		*	*			
Quarter 3, 2022	-										*		*	*		*		*	*	*	*			
Quarter 4, 2022			L							*	*		*	*		*		*	*	*	*			
Quarter 1, 2023	Quarter 3, 2022			*							*		*	*		*		*	*	*	*			
Quarter 2, 2023 * * * * * * * * * * * * * * * * * * *	_																							
TECHNETIUM-99 Quarter 4, 2002 Quarter 1, 2003	` '															L								
Quarter 4, 2002											*		*	*		*		*	*	*	*			
Quarter 1, 2003 * * * * * * * Quarter 2, 2003 * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																								
Quarter 2, 2003				<u> </u>			_				<u> </u>	<u> </u>		4	<u> </u>	<u> </u>		L.			<u> </u>	<u> </u>		
Quarter 3, 2003 * Quarter 4, 2003 * Quarter 1, 2004 * Quarter 2, 2004 * Quarter 3, 2004 * Quarter 4, 2005 * Quarter 3, 2005 *		, J.		182							110									*				
Quarter 4, 2003		*	<u> </u>				<u> </u>				*	<u> </u>			<u> </u>	<u> </u>					<u> </u>	<u> </u>		
Quarter 1, 2004 * Quarter 2, 2004 * Quarter 3, 2004 * Quarter 4, 2004 * Quarter 1, 2005 * Quarter 2, 2005 * Quarter 3, 2005 *							-				*	<u> </u>	*		<u> </u>	<u> </u>				*		<u> </u>		
Quarter 2, 2004 * <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td>_</td> <td><u> </u></td> <td>_</td> <td></td> <td></td> <td>*</td> <td>_</td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>_</td> <td></td> <td>_</td>		_	-			_	<u> </u>	_			*	_			_	_					*	_		_
Quarter 3, 2004 * <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>-</td> <td></td> <td></td>			-								-				-						*	-		
Quarter 4, 2004 * * * * * * * Quarter 1, 2005 * * * * * * * Quarter 2, 2005 *		-				-	-	-	-		 	 		 	 	 			-		<u> </u>	 	-	-
Quarter 1, 2005 * * * * * Quarter 2, 2005 * * * * * * Quarter 3, 2005 * * * * * * * * *	` '										*			*					*					
Quarter 2, 2005 * * * * * * * Quarter 3, 2005 *																				_	*			
Quarter 3, 2005 * * * * * * * *													Ė						*	*				
Q																		_						
Value 17, 2007		_	-			_	!	_					*		_				<u> </u>			_		_
	Vamin 1, 2000						_					_			_	_						_		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
TECHNETIUM-99																							
Quarter 1, 2006										*		*	*						*	*			Т
Quarter 2, 2006			*							*			*				*	*	*	*			H
Quarter 3, 2006	1		*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*				**		*	*			
	<u> </u>		*									т.					- JL						
Quarter 1, 2007			*							*			*				*		*	*			
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Ouarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			H
Quarter 4, 2008			*							*		*	*				*	*	*	*			\vdash
Quarter 1, 2009	1		*							*		*	*				*	-		<u> </u>			
	1		*							*		*	*				*	*		*			-
Quarter 2, 2009	_																	*					
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						<u> </u>
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010	1		*			l				*			*				*	*		*			1
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011	1									*			*				*						T
Quarter 2, 2011	1	H	*			 		H	H	*			*		-		*		 	*	 	 	H
	1	1	*			\vdash	-	1	1	*			*	-	-		*		-	*	<u> </u>	<u> </u>	┢
Quarter 3, 2011	1—	 	*			-	-	 	 	*	*	*	*	-	-		*		<u> </u>	~	 	 	┢
Quarter 4, 2011											木	*											
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013	1									*		*	*				*		*	*			
Quarter 3, 2013	1		*							*		*	*				*		*	*			
	1		*							*		*							*	*			-
Quarter 4, 2013												木	*				*						
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			
Quarter 1, 2015			*							*	*	*	*				*			*			
Quarter 2, 2015			*							*	*		*				*			*			
Quarter 3, 2015	1		*							*	*	*	*				*	*	*	*			
	1		*							*	*	*	*				*	*	т.	*			
Quarter 4, 2015												不						不					
Quarter 1, 2016	1		*			L.	L			*	*		*	L			*	Ļ	*	*	<u> </u>	<u> </u>	<u> </u>
Quarter 2, 2016			*			*				*			*				*	*	<u> </u>	*			<u> </u>
Quarter 3, 2016	1		*			l				*		*	*				*	*		*			1
Quarter 4, 2016			*							*	*		*				*			*			
Quarter 1, 2017	1		*							*			*				*	*		*			
Quarter 2, 2017	1		*							*			*				*	*		*			
Quarter 3, 2017	1		*			1				*	*	†	*		1	†	*	*		*			H
Quarter 4, 2017	1	 	*			1	1	 	 	*	<u> </u>	*	*	1	-		*	*	-	*			┢
	1	_	*			_	-	_	_	*	34c	٠.		-				*	-	*			Ͱ
Quarter 1, 2018	1	-					<u> </u>	-	-		*	11.	*	<u> </u>	<u> </u>		*		<u> </u>		<u> </u>	<u> </u>	<u> </u>
Quarter 2, 2018	<u> </u>		*				L			*	*	*	*	L			*	*	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>
Quarter 3, 2018	L	L_	*	L		L	L	L_	L_	*	L	*	*	L	L	L	*	*	L	*			
Quarter 4, 2018			*							*	*	*	*				*	*		*			
Quarter 1, 2019			*							*	*	*	*				*	*		*			
Quarter 2, 2019			*							*	*	*	*				*	*		*			
Quarter 3, 2019	1		*							*	*	*	*				*	*		*			H
Quarter 4, 2019	1	1	*			 		1	1	*		*	*				*	*	*	*			
	1	_	*			_	-	_	_	*		*	*	-			*	*	_	*			Ͱ
Quarter 1, 2020	1	—				<u> </u>	—	—	—		ļ			—	ļ	ļ							!
Quarter 2, 2020			*							*		*	*				*	*		*			_
Quarter 3, 2020			*			Щ.				*		*	*				*	*		*			
Quarter 4, 2020	1		*			l	1			*		*	*	1			*	*					
Quarter 1, 2021			*							*	*	*	*				*	*					
Quarter 2, 2021	1		*								*	*	*					*					
Quarter 3, 2021	1		*							*	*	*	*				*	*					H
Quarter 4, 2021	1	 	*			1	1	 	 	*	*	*	*	1	-		Ė	*	-	 			┢
Vam. 101 4, 2021	_									_~	_ ~				_		_				_	_	_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	I	-	UCRS	S		Г				1	URG	4					Г			LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 1, 2022			*							*	*	*	*				*						
Quarter 2, 2022			*							*	*	*	*				*			*			
Quarter 3, 2022			*								*	*	*										
Quarter 4, 2022			*							*	*	*					*			*			
Quarter 1, 2023											*	*	*										
Quarter 2, 2023			*							*	*	*	*				*						
THORIUM-230																							
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*		*																				
Quarter 3, 2015	*								*	*			*		*								
Quarter 1, 2017			*				<u> </u>			*							*					<u> </u>	
THORIUM-234																							
Quarter 2, 2003						*	<u> </u>		*					*									
Quarter 4, 2007									*														
TOLUENE							<u> </u>				14		ale.									<u> </u>	
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																					J		
Quarter 4, 2002	 	-		*			₩	₩		*	34c							*	*		*	-	\vdash
Quarter 1, 2003	<u> </u>	-		*			₩	₩		*	*		*					*	*		*	-	\vdash
Quarter 2, 2003 Quarter 3, 2003						_	*	*	*	*	*	*	*				Н				*		\vdash
Quarter 3, 2003 Quarter 4, 2003	_	-	<u> </u>	_	<u> </u>	₩	*	~	*	*	*	*	_	<u> </u>	_		₩	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	\vdash
Quarter 4, 2003 Quarter 1, 2004	 	-	_		_	\vdash	+	⊢	-	*	-	_		_			┢	_	_	_	_	_	₩
Quarter 1, 2004 Quarter 2, 2004			 	\vdash	\vdash	*	*	 	 	 	 		₩	 	 	 	 	\vdash	₩				
Quarter 2, 2004 Quarter 3, 2004			 	-	 	├	 	\vdash	H	*	т	 	-	 	-		₩	 	 	 	 	\vdash	₩.
Quarter 4, 2004							-	-		*													-
Quarter 1, 2005							-	-		*													-
Quarter 2, 2005						-	-	-		*											*	-	-
Quarter 3, 2005						-	-	-		*		*									*	-	-
Quarter 4, 2005						-	-	-		*											*	-	-
Quarter 1, 2006						-	₩	-		*							-					-	-
Quarter 2, 2006						-	 	-		*		*					-					-	-
						-	 	-		~		т.					*					-	-
Quarter 4, 2006 Quarter 1, 2007	*							-		*							_						
	*					*	*	*	*	*			*	*			*					-	-
Quarter 3, 2007 Quarter 2, 2011		-				~	~	т.	_	т.	*		т.	т.			~					-	.
Quarter 3, 2012	*	-				-	₩	Н.	-		т-						-					-	.
Quarter 3, 2012 Quarter 3, 2016	Ψ.							-											*				
TOTAL ORGANIC HALIDES																			~				
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*		-	-	-										*	-		*	-	-
Quarter 3, 2003				*		-	 	-									-				*		-
Quarter 2, 2004	 	\vdash	 	-	 	\vdash	\vdash	H	H	<u> </u>	\vdash	 		 			H	 	<u> </u>	 	*	\vdash	₩
Quarter 3, 2004	*					 	 	H									 				Ë	 	┢
Quarter 1, 2005	*	1	\vdash		\vdash	\vdash	\vdash	₩		\vdash	1	\vdash		\vdash			1	\vdash	\vdash	\vdash	\vdash	 	₩
Quarter 2, 2005	*		 		 	\vdash	\vdash	\vdash		<u> </u>		 		 				 	<u> </u>	 	<u> </u>	\vdash	\vdash
Quarter 3, 2005	*		\vdash		\vdash	 	\vdash	H		\vdash		\vdash		\vdash			—	\vdash	\vdash	\vdash	\vdash	\vdash	┢
Quarter 4, 2005	*						t																\vdash
Quarter 1, 2006	*						T																
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						
Quarter 4, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*					ட	ـــــــــــــــــــــــــــــــــــــــ										Ш				*	سَـــــــــــــــــــــــــــــــــــــ	
Quarter 3, 2009	*					匚	oxdot										Ш					oxdot	Ш
Quarter 4, 2009	*						<u> </u>															Ш	
Quarter 1, 2010	*					_	<u> </u>															Щ.	
			ı	ı	l	ı	ı	1	1 1	l	1	l	1	I	1			I	l	I	l	Ì	1
Quarter 2, 2010	*					_	_	\vdash	-		1		_		_		-						_
Quarter 2, 2010 Quarter 3, 2010	*																						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System Gradient S Monitoring Well 386 TOTAL ORGANIC HALIDES Quarter 4, 2010 ** Quarter 1, 2011 ** Quarter 3, 2013 TRICHLOROETHENE Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 4, 2009 Quarter 1, 2010	D 389	D 390	D 393	U 396	S 221	S 222	S 223	S 224	S 384	D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373	D 388	D 392	U 395	U 397
TOTAL ORGANIC HALIDES Quarter 4, 2010 ** Quarter 1, 2011 ** Quarter 3, 2013 TRICHLOROETHENE Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2010																						
Quarter 1, 2011 Quarter 3, 2013 TRICHLOROETHENE Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009																						
Quarter 3, 2013 TRICHLOROETHENE Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009																			l			
TRICHLOROETHENE Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009																						
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009																				*		
Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009																						
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009																						
Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009							1															
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009																						
Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009																						
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009																						
Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009																						
Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009																						
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009																						
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009		l																				
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009																						
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009											-								1			\vdash
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009											-		Ŧ		Ī		Ī	Ŧ		i	=	\vdash
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009											-		i		-		=	i		i	-	\vdash
Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009											Ŧ		Ŧ		i		=	Ŧ		Ŧ	=	
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009											-		i		i		=	i	-	i	=	
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009											-		i		=		_	÷		=	-	
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009											=		i		=			=		i		
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009											-		_		=			=		_		
Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009													-		_			_		-	-	
Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009											_		_		_			_		_		Ь.
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009											_		•		_			•		•		Щ.
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009											•		•		_			_		•		Щ.
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009											-		-		•			_		-		Ш.
Quarter 3, 2009 Quarter 4, 2009											-											<u> </u>
Quarter 4, 2009											-		•					•		•		Ш.
													•					•		•		
Ouarter 1, 2010													•		-							
Ç													-					-		-		
Quarter 2, 2010																						
Quarter 3, 2010																						
Quarter 4, 2010											•											
Quarter 1, 2011											-		•					•		•		
Quarter 2, 2011																						
Quarter 3, 2011																						
Quarter 4, 2011																						
Quarter 1, 2012																						
Quarter 2, 2012																						
Quarter 3, 2012																						
Quarter 4, 2012											-											
Quarter 1, 2013																			l		l	
Quarter 2, 2013																			l		l	
Quarter 3, 2013													-					-		-		\vdash
Quarter 4, 2013													1					1		1		\vdash
Ouarter 1, 2014											-											\vdash
Quarter 2, 2014											Ŧ		i		-			Ε-		i		-
Quarter 3, 2014 Quarter 3, 2014											-		i					-		i		
Quarter 4, 2014											-		i		-			i	-	i	-	
Quarter 1, 2015											=		i		=			i	-	i	-	
Quarter 1, 2015 Quarter 2, 2015											-		÷		-			÷		÷		\vdash
											-		-					÷	-	÷	-	₩
Quarter 3, 2015														_								—
Quarter 4, 2015											-		_		_			_		-		ldash
Quarter 1, 2016											_		_		•			_		_		ldash
Quarter 2, 2016											_		•					•		•		Щ.
Quarter 3, 2016		1			ı			Ì	1				•							•		Ш
Quarter 4, 2016			-		_	\vdash	\vdash					_					_					Ì

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR:	S						ı	JRG/	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 1, 2017												-				-			-				
Quarter 2, 2017																							
Quarter 3, 2017																							
Quarter 4, 2017																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019																							
Quarter 3, 2019																							
Quarter 4, 2019																							1
Quarter 1, 2020																							1
Quarter 2, 2020	1																						
Quarter 3, 2020																							1
Ouarter 4, 2020																							1
Quarter 1, 2021																							†
Quarter 2, 2021																							†
Quarter 3, 2021																							†
Ouarter 4, 2021																							†
Quarter 1, 2022																							†
Quarter 2, 2022																							†
Quarter 3, 2022																							†
Ouarter 4, 2022																							1
Quarter 1, 2023																							†
Quarter 2, 2023																							1
TURBIDITY																							
Ouarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				1
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003	1						*		*			*											\Box
Quarter 4, 2004	1						*															1	T
Quarter 4, 2007	1						*	*	*														

* Statistical test results indicate an elevated concentration (i.e., a statistically significant increase).

MCL Exceedance

Previously reported as an MCL exceedance; however, result was equal to MCL.

UCRS = Upper Continental Recharge System

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer
S = Sidegradient; D = Downgradient; U = Upgradient

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	June 1	2, 20)23				Tin	ne:		09	00				n	/loni	or:	N	/lic	ha	el Hideg
Weather Co	nditions	s: Mo	ostly	/ Sur	ıny,	slig	ht w	ind,	, h	um	idity	/: 69 ¹	%					•			
Monitoring	Equipm	ent:	Mul	ti RA	\E -	Seri	ial #	118	82												
					IV	loni	torir	ng L	.oc	ati	on										Reading (% LEL)
Ogden Landi Road Entrand		Che	ecked	l at g	round	lleve	əl														0
North Landfil		Che	eckec	d at g	round	leve	əl														0
West Side of Landfill: North 37° West 88°	07.652'	Che	ecked	d at g	rounc	l leve	əl														0
East Side of Landfill: North 37° West 88°	07.628'	Che		d at g	round	l leve	əl			-											0
Cell 1 Gas Ve	ent (17)	1 0	2 0	3	4 0	5 0	6 0	7 0		8 0	9 .0	10 0	11 0	12 0			15 0	16 0		17 0	0
Cell 2 Gas V	ent (3)	1 0	2 0	3 0																	0
Cell 3 Gas V	ent (7)	1 0	2 0	3 0	4 0	5 0	6 0	7													0
Landfil		Che	eckec	d at fl	oor le	vel															0
Suspect or P	roblem Areas	Nor	ne no	ted																	N/A
Remarks:																					
All gas vent	ts checl	ked	1" fr	om (open	ing.	•														
				ZIA																	
Performed I	by:	7	11	lu	. h	re:	1	4	/ ~	Ų	20,										6/17 /2023 Date
					Si	gna	tùre			7											Date

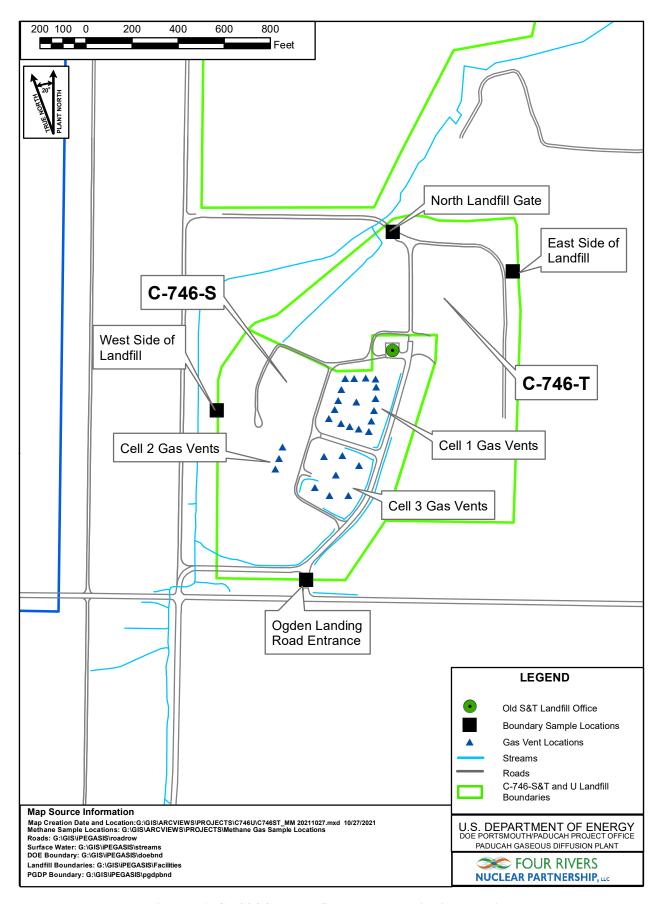


Figure H.1. C-746-S&T Landfill Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Frankfort, KY 40601 (502) 564-6716

Permit Number: SW07300014, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "Do	OWNSTREAM")	L135 UPSTRE	AM	L154 INSTRE	AM	L136 INSTR	EAM		
Sample Sequer	ıce	#				1		1		1			
If sample is a	ank, specify Type: (F)ield, (NA		NA		NA							
Sample Date a	ind	Time (Month/Day/Year hour: m	inu	tes)		5/8/2023 08:	28	5/8/2023 08:	14	5/8/2023 09	9:50		
Duplicate ("Y	?" c	r "N") ¹				N		N		N			
Split ('Y' or	: "N	"") ²				N		N		N			7
Facility Samp	ole	ID Number (if applicable)				L135SS3-2	3	L154US3-2	23	L136SS3-	23		
Laboratory Sa	mpl	e ID Number (if applicable)				621204001		621205002	2	62120400)2	\ /	
Date of Analy	sis	(Month/Day/Year)				6/1/2023		5/31/2023		5/31/202	3		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	т	MGD	Field		*		*		*		(
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	2.56		2.04		0.785			
14808-79-8	0	Sulfate	Т	MG/L	300.0	2.73		2.11		4.86			1
7439-89-6	0	Iron	Т	MG/L	200.8	2.25		2.66		0.931			
7440-23-5	0	Sodium	Т	MG/L	200.8	2.76		2.69		0.927			
s0268	0	Organic Carbon ⁶	Т	MG/L	9060	15.4		16.6		21.3			
s0097	0	BOD ⁶	Т	MG/L	not applicable		*		*		*		\Box
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	18.3	J	30.3		52.3		/	

¹Respond "Y" if the sample was a duplicate of another sample in this report

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	: (KPDES Discharge Number, o	r "(JPSTREAM" or	"DOWNSTREAM")	L135 UPSTR	EAM	L154 INSTRE	EAM	L136 INSTR	EAM		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	A G S ⁷
S0145	1	Specific Conductance	Т	µнмs/см	Field	102		96		141			Γ
s0270	0	Total Suspended Solids	т	MG/L	160.2	45.9		32.3		24.6			
S0266	0	Total Dissolved Solids	Т	MG/L	160.1	94	*	103	*	96	*	\ /	
S0269	0	Total Solids	Т	MG/L	SM-2540 B 17	151		143		137			
S0296	0	рН	Т	Units	Field	7.06		7.12		7.53		\ /	
7440-61-1		Uranium	Т	MG/L	200.8	0.00262		0.00214		0.000413		\ /	
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	3.96	*	3.73	*	1.6	*	\	
12587-47-2		Gross Beta (β)	т	pCi/L	9310	9.77	*	11.7	*	5.62	*	X	
												/\	
												/\	
												/ \	
												/ \	
												/ \	
												/	
													\
													\perp
													\perp
													ot
												/	l

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
L135	L135SS3-23	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.07. Rad error is 6.02.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.05. Rad error is 7.88.
L154	L154US3-23	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.93. Rad error is 4.88.
		Beta activity		TPU is 6.68. Rad error is 6.39.
L136	L136SS3-23	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.15. Rad error is 4.14.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.7. Rad error is 5.62.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 and 2016 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 16th day of June 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2023

APPENDIX K LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260D		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and
		1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 8082A	SW846 3535A	Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020B	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056A		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0 Modified		904.0Mod, Ra228, Liquid
SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid
SW846 9020B		Total Organic Halogens (TOX)

APPENDIX L MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-S&T Landfills

			July Strate Stra	a /	A CHIEF	$\sqrt{2}$			Little Color	a /	Culicitation of the second
			100	20.	1	* / /			, de	27.	
		Cardina Cardina	Siries de la constitución de la	/	JOET -	Mw221	Z etille	₹	deligited Section 1		A of Agency Lutter
		rife /	THE	Trit!	YOU.	£ /		itie /	it'd /	Jill'	YOUN.
	\si			~ /s		\$ /	\si\.		i Ziù	, /24	
	1 COUNT	COTE	130	0,550	Zigo.		Zout.	Cotte	130	Disse	Zuro.
1W220				Ì		MW221					
ate Collected:5/1/2023						Date Collected:5/1/2023					
)44	61.9	421	6.17	5.12	0.00	0737	58.6	405	6.14	5.89	0.00
47	62.2	421	6.17	5.00	0.00	0740	58.7	406	6.13	5.78	0.00
50	62.3	420	6.16	5.02	0.00	0743	58.6	406	6.14	5.83	0.00
W222						MW223					
ate Collected:5/1/2023						Date Collected:5/1/2023					
18	61.7	374	6.19	4.77	0.00	0835	60.7	396	6.17	5.27	0.00
21	61.9	374	6.15	4.57	0.00	0838	60.9	395	6.13	4.47	0.00
24	62.0	375	6.16	4.62	0.00	0841	60.8	395	6.12	4.48	0.00
W224						MW369					
ate Collected:5/1/2023						Date Collected:4/24/2023					
02	61.7	437	6.14	4.11	0.00	1228	62.4	374	6.19	2.22	1.44
05	61.8	437	6.15	3.72	0.00	1231	62.6	375	6.18	2.02	1.27
08	62.0	437	6.14	3.66	0.00	1234	62.6	375	6.18	2.06	1.16
IW370						MW372					
ate Collected:4/24/2023						Date Collected:4/25/2023					
10	61.2	469	6.13	4.20	0.00	0742	58.1	735	6.04	1.99	1.72
13	61.4	471	6.12	4.25	0.00	0745	58.2	734	6.02	1.78	1.66
16	61.5	470	6.12	4.26	0.00	0748	58.2	733	6.03	1.81	1.60
W373						MW384					
nte Collected:4/25/2023						Date Collected:4/26/2023					
40	58.9	825	6.25	3.80	1.58	0937	61.2	393	5.96	5.39	2.45
43	59.1	830	6.18	2.07	1.47	0940	61.4	391	5.93	5.35	2.78
46	59.1	831	6.12	2.00	1.51	0943	61.5	390	5.91	5.37	2.53
W385 te Collected:4/26/2023						MW386 Date Collected:4/26/2023					
09	60.7	391	6.10	3.25	4.16	1043	61.0	558	6.81	3.99	2.06
12	60.7	391	6.09	2.88	4.10	1043	60.8	558	6.79	3.99	2.06
15	60.8	390	6.05	2.84	4.04	1040	60.7	557	6.76	3.93	2.11
W387	00.8	390	6.03	2.84	4.04	MW388	60.7	337	0.76	3.97	2.04
te Collected:4/26/2023						Date Collected:4/26/2023					
10	60.0	553	6.02	5.37	2.89	0859	61.2	455	6.00	5.32	2.00
13	60.1	553	6.08	4.88	2.24	0902	61.4	454	5.96	5.16	1.98
16	60.1	552	6.06	4.85	2.05	0902	61.5	455	5.94	5.14	2.06
W390	00.1	332	0.00	7.03	2.03	MW391	01.5	733	3.74	5.17	2.00
ate Collected:4/26/2023						Date Collected:4/27/2023					
734	58.4	603	6.06	2.33	2.52	0916	59.7	388	6.13	4.88	2.19
37	58.3	602	6.02	2.14	2.01	0919	59.8	387	6.11	4.64	2.13
40	58.2	603	6.02	2.20	2.33	0922	59.9	388	6.10	4.61	2.01
IW392						MW393					
ate Collected:4/27/2023						Date Collected:4/27/2023					
07	60.9	342	6.11	2.45	1.94	1040	61.6	469	6.36	2.92	5.75
10	61.1	343	6.09	1.95	1.99	1043	61.8	471	6.34	2.22	4.82
13	61.2	344	6.07	1.92	2.01	1046	61.8	474	6.32	2.18	4.73
W394						MW395					
te Collected:4/27/2023						Date Collected:4/27/2023					
28	58.7	418	5.76	5.77	1.13	0806	58.9	405	6.00	2.66	1.80
31	58.8	413	5.80	5.35	1.10	0809	59.0	404	6.01	1.72	1.69
34	58.8	409	5.84	5.30	1.06	0812	59.2	405	6.01	1.67	1.77
W396						MW397					
ate Collected:4/27/2023						Date Collected:5/1/2023					
340	59.1	700	6.41	2.10	1.06	1126	62.2	322	6.08	6.78	0.00
343	59.2	706	6.40	1.69	0.78	1129	62.3	321	6.05	6.67	0.00
846	59.1	708	6.39	1.66	0.64	1132	62.5	320	6.04	6.65	0.00
5	59.1	708	6.39	1.66	0.64	1132	62.5	320	6.04	6.65	0.00

