

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

May 30, 2023

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Ms. Jamie Nielsen Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-S&T LANDFILLS FIRST QUARTER CALENDAR YEAR 2023 (JANUARY–MARCH) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0294/V1, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the first quarter calendar year (CY) 2023 has been uploaded to the Kentucky eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). This report includes groundwater analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses of the first quarter CY 2023 monitoring well (MW) data collected from the C-746-S&T Landfills were performed in accordance with Monitoring Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical increase notification for the first quarter CY 2023, in accordance with Monitoring Condition GSTR0003, Standard Requirement 5, of the Permit.

PPPO-02-10024455-23B

If you have any questions or require additional information, please contact Ryan Callihan at (740) 970-0255.

Sincerely,

Digitally signed by APRIL APRIL LADD Date: 2023.05.30 12:47:20 -05'00'

April Ladd Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills First Quarter Calendar Year 2023 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0294/V1

cc w/ enclosure: abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov FRNP christopher.travis@ky.gov, KDEP dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jaime.morrow@pad.pppo.gov, FRNP ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov ryan.callihan@pppo.gov, PPPO stephaniec.brock@ky.gov, KYRHB

cc via KY eForms portal: jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP

FRNP-RPT-0294/V1

C-746-S&T Landfills First Quarter Calendar Year 2023 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by: JACKIE THOMPSON (Affiliate) Digitally signed by JACKIE THOMPSON (Affiliate) Date: 2023.05.24 12:54:15 -05'00'

FRNP Classification Support

Date

FRNP-RPT-0294/V1

C-746-S&T Landfills First Quarter Calendar Year 2023 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—May 2023

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

FI	GURE		v
ΤA	ABLES		v
A	CRONYMS		vii
1.	1.1 BACK 1.2 MON 1.2.1 1.2.2 1.2.3	CTION KGROUND ITORING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring	
2.	DATA EVA 2.1 STAT 2.1.1 2.1.2 2.1.3	RESULTS LUATION/STATISTICAL SYNOPSIS ISTICAL ANALYSIS OF GROUNDWATER DATA Upper Continental Recharge System Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer VERIFICATION AND VALIDATION	
3.	PROFESSIO	ONAL GEOLOGIST AUTHORIZATION	13
4.	REFERENC	EES	15
Ał	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
Ał	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
AI	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
Ał	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AI	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
Ał	PPENDIX F:	NOTIFICATIONS	F-1
AI	PPENDIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
Ał	PPENDIX H:	METHANE MONITORING DATA	H-1
Ał	PPENDIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
Ał	PPENDIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

CONTENTS

APPENDIX K:	LABORATORY ANALYTICAL METHODS	-1
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERS L	-1

FIGURE

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
2.	C-746-S&T Landfills Surface Water Monitoring Locations	5

TABLES

1.	Summary of MCL Exceedances	6
2.	Exceedances of Statistically Derived Historical Background Concentrations	6
3.	Exceedances of Current Background UTL in Downgradient Wells	7
4.	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	8
6.	Monitoring Wells Included in Statistical Analysis	. 10

ACRONYMS

CFR	Code of Federal Regulations
COD	chemical oxygen demand
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
LTL	lower tolerance limit
MCL	maximum contaminant level
MW	monitoring well
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills First Quarter Calendar Year 2023 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit No. SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micro-purging stability parameter results are provided in Appendix L.

1.1 BACKGROUND

The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit No. 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit No. 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. Almost all MWs (except for two) that are listed on the

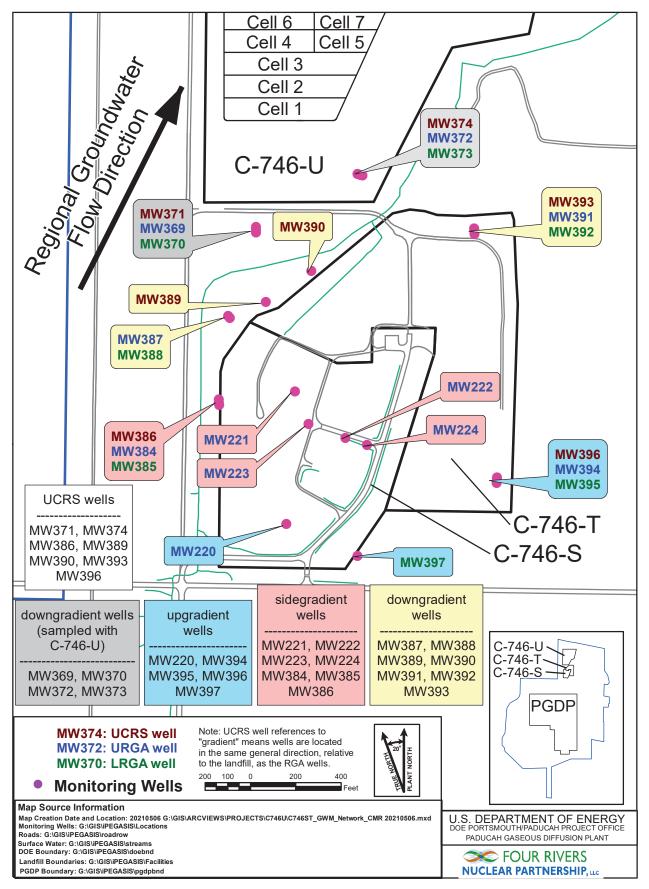


Figure 1. C-746-S&T Landfills Groundwater Monitoring Well Network

Permit were sampled this quarter. The two exceptions were MW389 and MW390 (screened in the UCRS), both of which had an insufficient amount of water to obtain a sample.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139 (Groundwater Monitoring Plan), UCRS wells are included in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL (for background), and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2023 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the first quarter 2023 was conducted on January 19, 2023, and January 23–25, 2023. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 26, 2023, in MWs of the C-746-S&T Landfills (see Appendix E, Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Appendix E, Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During January, RGA groundwater flow was directed inward and then north towards the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in January was 4.17×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was approximately 4.16×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills ranged from 0.707 to 1.21 ft/day (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the Solid Waste Landfill Permit. Industrial Hygiene staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on March 6, 2023. Appendix H provides a map of the monitoring locations (Appendix H, Figure H.1). Monitoring results identified that all locations were compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Monitoring Report provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed on January 3, 2023, at the three locations monitored for the C-746-S&T Landfills: (1) upstream location L135, (2) instream location L154, and (3) instream location L136 (Figure 2). Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059 (FRNP 2021), which is Technical Application Attachment 24 of the Solid Waste Permit. Surface water results are provided in Appendix I.

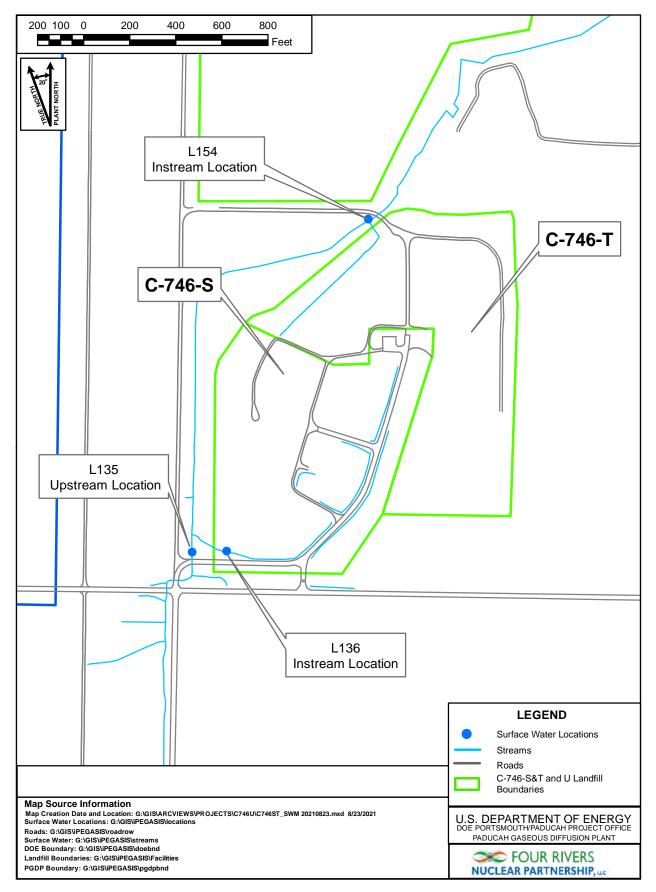


Figure 2. C-746-S&T Landfill Surface Water Monitoring Locations

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters that exceeded their MCL and also exceeded their historical background UTL, as well as other parameters that do not have MCLs but have concentrations that exceeded the statistically derived historical background UTL¹ during the first quarter 2023. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells designated as background wells (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW369: Trichloroethene	MW373: Trichloroethene
	MW372: Trichloroethene	MW395: Trichloroethene
	MW394: Trichloroethene	

UCRS ^a	URGA	LRGA
MW386: Oxidation-reduction	MW221: Oxidation-reduction	MW370: Oxidation-reduction
potential ^b	potential ^b	potential ^b and sulfate
MW393: Oxidation-reduction	MW369: Oxidation-reduction	MW373: Calcium, conductivity,
potential ^b	potential ^b and technetium-99	dissolved solids, magnesium,
		oxidation-reduction potential, ^b
		and sulfate
MW396: Oxidation-reduction	MW372: Calcium, conductivity,	MW385: Chemical oxygen
potential ^b	dissolved solids, magnesium,	demand (COD),
	oxidation-reduction potential, ^b sulfate,	oxidation-reduction potential, ^b
	and technetium-99	and sulfate
	MW384: Sulfate	MW388: Oxidation-reduction
		potential ^b and sulfate
	MW387: Calcium, magnesium,	MW392: Oxidation-reduction
	oxidation-reduction potential, ^b sulfate,	potential ^b
	and technetium-99	
	MW394: Oxidation-reduction	MW395: Oxidation-reduction
	potential ^b	potential ^b
		MW397: Oxidation-reduction
		potential ^b

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

^a Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

^b Oxidation-reduction potential calibrated as Eh.

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, and MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, and MW393 Background wells: MW220, MW394, MW395, MW396, and MW397

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL.

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate
MW372: Calcium, conductivity, dissolved solids,	MW373: Calcium, conductivity, dissolved
magnesium, sulfate, and technetium-99	solids, magnesium, and sulfate
MW387: Calcium, magnesium, sulfate, and	MW388: Sulfate
technetium-99	

Table 3. Exceedances of Current Background UTL in Downgradient Wells

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), the MCL exceedances for TCE in MW369, MW372, and MW373 (downgradient wells) did not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit No. SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL to identify if the current downgradient well concentrations are consistent with current background values. The current background UTL was developed using the most recent eight quarters of data from wells identified as background wells. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-S&T Landfills source; therefore, they are Type 1 exceedances—not attributable to the C-746-S&T Landfills.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL and do not have an identified source are considered preliminarily to be Type 2 exceedances, per the approved Groundwater Monitoring Plan (LATA Kentucky 2014). To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. None of the 18 preliminary Type 2 exceedances in downgradient wells have increasing trends and they are considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

Location	Well ID	Parameter	Sample Size	Alpha ^a	p-Value ^b	Sc	Decision ^d
	MW369	Technetium-99	8	0.05	0.119	-8	No Trend
C-746- S&T	MW370	Sulfate	8	0.05	0.002	-23	Decreasing
Landfills	MW372	Calcium	8	0.05	0.089	-12	No Trend
	IVI W 372	Conductivity	8	0.05	0.452	-2	No Trend

 Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary

 Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ^a	p-Value ^b	Sc	Decision ^d
		Dissolved Solids	8	0.05	0.016	-19	Decreasing
	MW372	Magnesium	8	0.05	0.007	-21	Decreasing
	IVI VV 372	Sulfate	8	0.05	0.002	-22	Decreasing
		Technetium-99	8	0.05	0.054	14	No Trend
		Calcium	8	0.05	0.119	-9	No Trend
		Conductivity	8	0.05	0.548	1	No Trend
C-746- S&T	MW373	Dissolved Solids	8	0.05	0.274	-7	No Trend
Landfills		Magnesium	8	0.05	0.548	0	No Trend
		Sulfate	8	0.05	0.138	-10	No Trend
		Calcium	8	0.05	0.548	0	No Trend
	M31297	Magnesium	8	0.05	0.089	13	No Trend
	MW387	Sulfate	8	0.05	0.36	-5	No Trend
		Technetium-99	8	0.05	0.031	-16	Decreasing
	MW388	Sulfate	8	0.05	0.274	7	No Trend

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters (Continued)

^a An alpha of 0.05 represents a 95% confidence interval.

^b The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

° The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

^d The Mann-Kendall decision operates on two hypotheses; the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

Note: Statistics generated using ProUCL.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 KAR 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 KAR 39:090.

The statistical evaluation of UCRS concentrations against the current UCRS background UTL did not identify any UCRS wells exceeding both the historical and current backgrounds (Table 5).

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS	
None	
*In the same direction (relative to the landfill) as RGA wells	

In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2023 groundwater data collected from the C-746-S&T Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). With the exception of acrolein, in the current quarter, the statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as downgradient wells) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient well concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance—could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

To calculate the UTL, the data were divided into censored (non-detects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW386	MW220 (background)	MW370
MW389 ^b	MW221	MW373
MW390 ^b	MW222	MW385
MW393	MW223	MW388
MW396°	MW224	MW392
	MW369	MW395 (background)
	MW372	MW397 (background)
	MW384	
	MW387	
	MW391	
	MW394 (background)	

Table 6. Monitoring	Wells Included in Statistica	l Analysis ^a
---------------------	------------------------------	-------------------------

^a Map showing the MW locations is shown on Figure 1.

^b Well had insufficient water to permit a water sample for laboratory analysis.

° In the same direction (relative to the landfill) as RGA wells considered to be background.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient well concentrations are consistent with current background values. Table 3 summarizes the constituents that have exceeded both the historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, oxidation-reduction potential displayed concentrations that exceeded the respective historical UTL and are listed in Table 2. There were no UCRS wells that exceeded the current background UTL as shown in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Calcium, conductivity, dissolved solids, magnesium, and sulfate exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan, (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills First Quarter Calendar Year 2023 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0294/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Petrophilip Colored and a standard and a standard and a standard a stand ath R 400 PG113927 KDavis Ø5-23-2023 PG113927

Kenneth R. Davis

4. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2021. Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059, Solid Waste Landfill Permit No. SW07300014, SW07300015, SW07300045, Technical Application, Attachment 24, Four Rivers Nuclear Partnership, LLC, Paducah, KY, March.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit No. SW07300014, SW07300015, SW07300045, Technical Application, Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE–Paducah Gaseous Diffusion Plant (As officially shown on DWM Permit Face)		Activity:	C-746-S&T Landfills
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	1st Qtr. CY 2023
Please check the	following as applicable	:		
Character	rization <u>X</u> Qua	arterly Semiannual	Annual	Assessment
Please check app	licable submittal(s): _	X Groundwater	<u> </u>	urface Water
	_	Leachate	X N	Iethane Monitoring

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 *KAR* 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

JASON CASPER (Affiliate) Digitally signed by JASON CASPER (Affiliate) Date: 2023.05.30 09:52:53 -05'00'

Myrna E. Redfield, Program Manager Four Rivers Nuclear Partnership, LLC

APRIL LADD

April Ladd, Paducah Site Lead U.S. Department of Energy Date

Digitally signed by APRIL LADD Date: 2023.05.30 14:33:52 -05'00'

Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMATION	SHEET
----------------------	-------

Samulina Data	Groundwater: January 2023 Methane: March 2023	Country McCoordina	Dama it Naa	SW07300014, SW07300015,
Sampling Date:	Surface Water: January 2023	County: <u>McCracken</u>	Permit Nos.	SW07300045
Facility Name:	U.S. DOE—Paducah Gaseous D	1ffusion Plant nown on DWM Permit Face)		
		,		
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053
	Street	City/State		Zip
Phone No:	(270) 441-6800 Latitud	le: <u>N 37° 07' 37.70"</u>	Longitude:	W 88° 47' 55.41"
		OWNER INFORMATION		
Facility Owner:	U.S. DOE, Joel Bradburne, Man	ager, Portsmouth/Paducah Project Office	Phone No:	(859) 219-4000
Contact Person:	Bruce Ford		Phone No:	(270) 441-5357
Contact Person Ti	tle: _Director, Environmental S	Services, Four Rivers Nuclear Partnership, I	LLC	
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053
C	Street	City/State		Zip
Company:	GEO Consultants Corporation	THAN LANDFILL OR LABORATORY)		(220) 01 (2412
Contact Person:	Jason Boulton		Phone No:	(270) 816-3415
Mailing Address:	199 Kentucky Avenue Street	Kevil, Kentucky City/State		42053 Zip
				Zip
		ABORATORY RECORD #1		
Laboratory:	GEL Laboratories, LLC	Lab ID No:		
Contact Person:	Valerie Davis		Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charleston, South Carolina		29407
	Street	City/State		Zip
	L	ABORATORY RECORD #2		
Laboratory:	N/A	Lab ID No:	N/A	
Contact Person:	N/A		Phone No:	N/A
Mailing Address:	N/A			•
manning / taaress.	Street	City/State		Zip
	L	ABORATORY RECORD #3		
Laboratory:	N/A	Lab ID No:	N/A	
Contact Person:	N/A		Phone No:	N/A
Mailing Address:	N/A		—	
-	Street	City/State		Zip

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

Permit Number: SW07300014, SW07300015, SW07300045 FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	43
Facility's Lo	cal Well or Spring Number (e.g., M	w−1	., MW-2, etc	.)	220		221		222		223	
Sample Sequend	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/23/2023 10	D:17	1/23/2023	07:28	1/23/2023	08:50	1/23/2023 (8:08
Duplicate ("Y	" or "N") ²				Ν		N		N		Ν	
Split ("Y" or	"N") ³				Ν		N		N		Ν	
Facility Samp	le ID Number (if applicable)				MW220SG2	2-23	MW221S0	G2-23	MW222S0	G2-23	MW223SG	2-23
Laboratory Sa	mple ID Number (if applicable)		60816300	1	608163	003	608163	005	6081630	07		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					3	1/25/20	23	1/25/20	23	1/25/202	:3
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOWN)	UP		SIDE		SIDE	-	SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.211		0.466		0.38		0.387	
16887-00-6	Chloride(s)	т	mg/L	9056	18.2	*J	35.7	*J	27.7	*J	28	*J
16984-48-8	Fluoride	т	mg/L	9056	0.212	J	0.25	J	0.299	J	0.331	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.925	J	1.02	J	1.41	J	1.18	J
14808-79-8	Sulfate	т	mg/L	9056	16.4		14.7		10.9		11	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.26		30.17		30.2		30.2	
S0145	Specific Conductance	т	µMH0/cm	Field	334		396		290		366	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Lo	ocal Well or Spring Number (e.g., MW	1 -1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	321.72		321.64		321.8		321.81	
N238	Dissolved Oxygen	т	mg/L	Field	5.9		5.23		2.63		3.42	
S0266	Total Dissolved Solids	т	mg/L	160.1	172	*	191	*	164		194	
S0296	рн	т	Units	Field	6.12		6.08		6.12		6.16	
NS215	Eh	т	mV	Field	366		421		356		374	
S0907	Temperature	т	°C	Field	16.33		14.78		15.06		15.67	
7429-90-5	Aluminum	т	mg/L	6020	0.0505		<0.05		0.197		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.182		0.191		0.192		0.215	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0105	J	0.0191		0.00798	J	0.00592	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	20.1		20.7		12.1		19.5	
7440-47-3	Chromium	т	mg/L	6020	0.00589	J	<0.01		0.0031	J	0.00982	J
7440-48-4	Cobalt	т	mg/L	6020	0.000524	J	<0.001		0.00314		0.000438	J
7440-50-8	Copper	т	mg/L	6020	0.00153	J	0.00116	J	0.000739	J	0.00105	J
7439-89-6	Iron	т	mg/L	6020	0.161		<0.1		0.326		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	8.28		9.11		5.47		7.79	
7439-96-5	Manganese	т	mg/L	6020	0.00753		<0.005		0.023		0.00101	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-520	01	8000-52	02	8000-524	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.00071	J	0.00229		0.00092	J	0.00529	
7440-02-0	Nickel	т	mg/L	6020	0.00991		0.0105		0.0224		0.0427	
7440-09-7	Potassium	т	mg/L	6020	3.6		2.39		0.428		2.02	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		0.005	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	37.7		48.5		40		45.3	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	0.00334	J	<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	0.00562		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number			8000-520	1	8000-520)2	8000-52	242	8000-52	243	
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00126		0.00269		0.0009	J	0.00242	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1,	, Facility Well/Spring Number				8000-5201		8000-5202	2	8000-524	42	8000-52	43
Facility's Lo	cal Well or Spring Number (e.g.,)	MW-1	L, MW-2, et)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00054	J	0.00055	J	0.00053	J	0.00054	J
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000188		<0.0000188		<0.0000187		<0.0000186	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	13
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	4.76	*	-0.775	*	0.914	*	-2.64	*
12587-47-2	Gross Beta	т	pCi/L	9310	38.2	*	4.46	*	-5.28	*	0.219	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.24	*	0.369	*	0.0461	*	0.14	*
10098-97-2	Strontium-90	т	pCi/L	905.0	4.16	*	0.0212	*	1.96	*	-1.88	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	14.2	*	6.8	*	-4.66	*	-2.04	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.11	*	1.07	*	0.697	*	1.44	*
10028-17-8	Tritium	т	pCi/L	906.0	29.1	*	46.2	*	-14.6	*	31	*
S0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		11.3	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.712	J	0.52	J	0.44	J	0.578	J
S0586	Total Organic Halides	Т	mg/L	9020	0.0123		0.00952	J	0.00422	J	0.00744	J

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

> FINDS/UNIT: <u>KY8-890-008-982</u>/1 LAB ID: <u>None</u>

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	:.)	224		369		370		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)q	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		1/23/2023 09	9:33	1/19/2023	07:39	1/19/2023	08:21	1/19/2023 1	0:03
Duplicate ("Y	" or "N") ²				Ν		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW224SG2	2-23	MW369U0	G2-23	MW370U0	G2-23	MW372UG	2-23
Laboratory Sam	nple ID Number (if applicable)		60816300	9	607822	001	607822	003	6078220	07		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					3	1/23/20	23	1/23/20	23	1/23/202	3
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	SIDE		DOW	N	DOW	N	DOWN	I
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.203		0.345		0.561		0.525	
16887-00-6	Chloride(s)	т	mg/L	9056	11.5	*J	28.7	J	41.6	J	41.1	J
16984-48-8	Fluoride	т	mg/L	9056	0.365	J	0.234	J	0.187	J	0.19	J
s0595	Nitrate & Nitrite	т	mg/L	9056	1.57	J	0.999	J	1.03	J	1.2	J
14808-79-8	Sulfate	т	mg/L	9056	6.74		7.93		19.9		135	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.23		29.66		29.66		29.67	
S0145	Specific Conductance	т	µMH0/cm	Field	321		359		466		754	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	}	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	321.82		322.53		322.51		322.58	
N238	Dissolved Oxygen	т	mg/L	Field	2.92		2.76		4		2.23	
S0266	Total Dissolved Solids	т	mg/L	160.1	202		186		230		428	
S0296	рH	т	Units	Field	6.17		6.09		6.05		6.15	
NS215	Eh	т	mV	Field	366		361		343		147	
S0907	Temperature	т	°c	Field	16.5		15.39		16		16.22	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.112		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.148		0.363		0.227		0.0481	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00712	J	0.017	*	0.243	*	1.13	*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	15.2		16	*	30.5	*	60.6	*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00441		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000449	J	0.00136	J	0.000614	J	<0.002	
7439-89-6	Iron	т	mg/L	6020	0.0685	J	0.191		<0.1		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	6.58		6.56		12.8		21.9	
7439-96-5	Manganese	т	mg/L	6020	0.00241	J	0.0133		<0.005		<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	808
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.000606	J	<0.001		<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.00722		0.00278		0.000791	J	0.00104	J
7440-09-7	Potassium	т	mg/L	6020	0.845		0.577		2.69		2.1	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00225	J	<0.005		0.00201	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	47		50.6	*	46.9	*	54.9	*
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		0.00342	J	<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	, Facility Well/Spring Number				8000-524	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00141		0.00584		0.00422		0.00524	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1,	, Facility Well/Spring Number				8000-5244	1	8004-4820)	8004-481	18	8004-480	80
Facility's Lo	cal Well or Spring Number (e.g., M	MW-1	L, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00054	J	0.00053	J	<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000187		<0.0000188		<0.0000187		<0.0000187	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0998		<0.1		<0.0967	
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0998		<0.1		<0.0967	
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0998		<0.1		<0.0967	
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0998		<0.1		<0.0967	
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0998		<0.1		<0.0967	
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0998		<0.1		<0.0967	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g.,	MW - 1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0998		<0.1		<0.0967	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0998		<0.1		<0.0967	
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0998		<0.1		<0.0967	
12587-46-1	Gross Alpha	т	pCi/L	9310	7.4	*	8.27	*	2.16	*	1.85	*
12587-47-2	Gross Beta	т	pCi/L	9310	3.48	*	38	*	5.42	*	35.2	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.00224	*	0.304	*	-0.0731	*	0.323	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.54	*	0.635	*	-0.3	*	-1.45	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-2.52	*	61.6	*	30.7	*	85.4	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.35	*	0.584	*	0.734	*	0.582	*
10028-17-8	Tritium	т	pCi/L	906.0	-54.4	*	157	*	108	*	33	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.587	J	0.792	J	0.776	J	0.745	J
S0586	Total Organic Halides	т	mg/L	9020	0.0053	J	0.0152		0.00808	J	0.0167	

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Solid Waste Branch

14 Reilly Road

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT:<u>KY8-890-008-982</u>/<u>1</u> LAB ID: None

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-479	2	8004-48	309	8004-48	310	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	.)	373		384		385		386	
Sample Sequen	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/19/2023 10	0:43	1/24/2023	09:32	1/24/2023	10:32	1/24/2023 1	1:22
Duplicate ("Y	" or "N") ²				Ν		N		N		Ν	
Split ("Y" or	"N") ³				Ν		N		N		Ν	
Facility Samp	le ID Number (if applicable)		MW373UG2	2-23	MW384S0	G2-23	MW385S0	G2-23	MW386SG	2-23		
Laboratory Sa	mple ID Number (if applicable)		60782200	9	608296	003	608296	005	6082960	07		
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/23/2023	3	1/27/20	23	1/27/20	23	1/27/202	:3
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.521		0.27		0.197	J	<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	36.5	J	22.8	*J	18.4	*J	9.77	*J
16984-48-8	Fluoride	т	mg/L	9056	0.21	J	0.196	J	0.239	J	0.831	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.841	J	0.81	J	<10		<10	
14808-79-8	Sulfate	т	mg/L	9056	155		18.7	*	19.3	*	40.6	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.67		30.27		30.26		30.26	
s0145	Specific Conductance	т	μ MH0/cm	Field	788		497		480		585	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.56		321.6		321.62		346.24	
N238	Dissolved Oxygen	т	mg/L	Field	2.11		2.76		1.24		1.24	
S0266	Total Dissolved Solids	т	mg/L	160.1	441		195		231		372	
S0296	рН	т	Units	Field	6.09		6.17		6.58		6.74	
NS215	Eh	т	mV	Field	399		361		343		147	
S0907	Temperature	т	°c	Field	16.06		15.39		15.33		16.83	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0308	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00355	J
7440-39-3	Barium	т	mg/L	6020	0.0274		0.204		0.266		0.22	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.71	*	0.0454		0.0192		0.0131	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	64.6	*	24		44.9		20.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000344	J	<0.001		0.000665	J	0.0173	
7440-50-8	Copper	т	mg/L	6020	0.000348	J	0.000451	BJ	0.000496	BJ	0.000646	BJ
7439-89-6	Iron	т	mg/L	6020	<0.1		<0.1		0.0793	J	2.71	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	25.3		10.1		15.4		8.51	
7439-96-5	Manganese	т	mg/L	6020	0.0183		0.00208	J	0.117		1.67	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	304
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		0.000884	J	0.00114	
7440-02-0	Nickel	т	mg/L	6020	0.00145	J	0.000987	J	0.00159	J	0.00367	
7440-09-7	Potassium	т	mg/L	6020	2.61		1.4		1.88		0.282	J
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	52	*	46.4		29.8		107	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00044		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		0.00369	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-48	310	8004-48	304
Facility's Lo	cal Well or Spring Number (e.g., 1	MW -1	L, MW-2, et)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00576		0.00111		0.00074	J	0.00049	J

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809	9	8004-481	10	8004-480	04
Facility's Loc	al Well or Spring Number (e.g., 1	4W-1	., M₩-2, et)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00051	J	0.00089	J	0.00088	J	0.00084	J
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000186		<0.0000187		<0.0000185		<0.0000184	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.1			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.1			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.1			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.1			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.1			*		*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.1			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809)	8004-481	0	8004-480)4
Facility's Lo	ocal Well or Spring Number (e.g.,	MW - 1	1, MW-2, et)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.1			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.1			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.1			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.2	*	-1.72	*	0.155	*	-2.94	*
12587-47-2	Gross Beta	т	pCi/L	9310	3.4	*	35.2	*	3.85	*	3.14	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.328	*	0.362	*	0.378	*	0.254	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.44	*	1.37	*	0.975	*	-1.97	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	12.5	*	32.8	*	20.5	*	3.52	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.36	*	1.01	*	0.542	*	2.73	*
10028-17-8	Tritium	Т	pCi/L	906.0	167	*	-40.2	*	10.3	*	10.1	*
S0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		43.3		9.21	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	0.894	J	0.79	J	0.74	J	8.06	
S0586	Total Organic Halides	т	mg/L	9020	0.0144		0.0067	J	<0.01		0.19	

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

(502)564-6716

FINDS/UNIT: <u>KY8-890-008-982</u>/1 LAB ID: <u>None</u>

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-481	5	8004-48	316	8004-4812	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, etc	:.)	387		388		389		390	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour:minu	tes)		1/24/2023 0	8:16	1/24/2023	08:54	NA		NA	
Duplicate ("Y	" or "N") ²				Ν		Ν		N		Ν	
Split ("Y" or	"N") ³				Ν		N		N		Ν	
Facility Samp	cility Sample ID Number (if applicable)					2-23	MW388S	G2-23	NA		NA	
Laboratory Sa	poratory Sample ID Number (if applicable))9	608296	011	NA		NA	
Date of Analy	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> An				1/27/2023	3	1/27/20	23	NA		NA	
Gradient with	respect to Monitored Unit (UP, DO	OWN ,	, SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWN	1	DOW	N
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.534		0.45			*		*
16887-00-6	Chloride(s)	т	mg/L	9056	38	*J	40.2	*J		*		*
16984-48-8	Fluoride	т	mg/L	9056	1.12	J	0.195	J		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.01	J	1.06	J		*		*
14808-79-8	Sulfate	т	mg/L	9056	27.7	*	19.9	*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.28		30.27			*		*
S0145	Specific Conductance	т	µMH0/cm	Field	550		394			*		*

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	ocal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	321.69		321.61			*		*
N238	Dissolved Oxygen	т	mg/L	Field	5.12		5.8			*		*
S0266	Total Dissolved Solids	т	mg/L	160.1	299		220			*		*
S0296	рн	т	Units	Field	6.29		6.12			*		*
NS215	Eh	т	mV	Field	417.5		407			*		*
S0907	Temperature	т	°c	Field	14.61		15.5			*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05			*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005			*		*
7440-39-3	Barium	т	mg/L	6020	0.102		0.192			*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*		*
7440-42-8	Boron	т	mg/L	6020	0.0301		0.0296			*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*		*
7440-70-2	Calcium	т	mg/L	6020	42		24.3			*		*
7440-47-3	Chromium	т	mg/L	6020	0.00656	J	<0.01			*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*		*
7440-50-8	Copper	т	mg/L	6020	0.000508	BJ	0.000551	BJ		*		*
7439-89-6	Iron	т	mg/L	6020	0.0479	J	0.0554	J		*		*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*		*
7439-95-4	Magnesium	т	mg/L	6020	18.3		10.7			*		*
7439-96-5	Manganese	т	mg/L	6020	0.00326	J	<0.005			*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-48	15	8004-48	16	8004-4812		8004-4811	
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001			*		*
7440-02-0	Nickel	т	mg/L	6020	0.000607	J	0.000651	J		*		*
7440-09-7	Potassium	т	mg/L	6020	1.89		1.76			*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*		*
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*		*
7440-23-5	Sodium	т	mg/L	6020	50.1		45.7			*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005			*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002			*		*
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02			*		*
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02			*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*		*
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*		*
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*		*
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*		*
71-43-2	Benzene	т	mg/L	8260	<0.001	*	<0.001	*		*		*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*		*
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*		*
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*		*
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*		*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-4812		8004-4811	
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et		387		388		389		390	
CAS RN ⁴	CONSTITUENT	Ч D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*		*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*		*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*		*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*		*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*		*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*		*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*		*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*		*
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*		*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*		*
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*		*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*		*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*		*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*		*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*		*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*		*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*		*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*		*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*		*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*		*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*		*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00161		0.00152			*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g., 1	MW -1	L, MW-2, et)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*		*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*		*
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*		*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*		*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*		*
75-09-2	Dichloromethane	т	mg/L	8260	0.0009	J	0.00087	J		*		*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*		*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000187		<0.0000186			*		*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*		*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*		*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*		*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*		*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*		*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*		*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*		*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*		*
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816	;	8004-4812		8004-4811	1
Facility's Lo	cal Well or Spring Number (e.g.	, MW-1	1, MW-2, et)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.0212	*	0.0414	*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	32.6	*	13.3	*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.257	*	0.378	*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	6.15	*	0.833	*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	45.9	*	6.1	*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.88	*	1.69	*		*		*
10028-17-8	Tritium	т	pCi/L	906.0	78	*	27	*		*		*
S0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		17.7	J		*		*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*		*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*		*
S0268	Total Organic Carbon	т	mg/L	9060	0.759	J	0.566	J		*		*
S0586	Total Organic Halides	т	mg/L	9020	0.0335		0.0148			*		*

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

> FINDS/UNIT: <u>KY8-890-008-982</u>/1 LAB ID: <u>None</u>

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER1,	AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						8004-48	306	8004-48	807	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g., M	ſ₩-1	., MW-2, etc	.)	391		392		393		394	
Sample Sequen	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	Sample Date and Time (Month/Day/Year hour: minutes)						1/25/2023 10:08		1/25/2023	10:55	1/25/2023 (07:36
Duplicate ("Y		Ν		N	Ν			Ν				
Split ("Y" or		Ν		N		N		Ν				
Facility Samp	le ID Number (if applicable)				MW391SG2	2-23	MW392S0	G2-23	MW393S0	G2-23	MW394SG	2-23
Laboratory Sa	mple ID Number (if applicable)				60850200	1	608502	003	608502	005	6085020	07
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/31/2023	3	1/31/2023		1/31/2023		1/31/202	:3
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOWN)	DOWN	DOWN		N	DOWN		UP	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.569		0.547		0.179	J	0.561	
16887-00-6	Chloride(s)	т	mg/L	9056	44.4	*J	43.2	*J	12	*J	46.1	*J
16984-48-8	Fluoride	т	mg/L	9056	0.168	J	0.204	J	0.181	J	0.164	J
s0595	Nitrate & Nitrite	т	mg/L	9056	1.08	J	0.488	J	0.068	J	1.03	J
14808-79-8	Sulfate	т	mg/L	9056	12.3		8.4		14.4		12.1	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.66		29.72		29.74		29.55	
s0145	Specific Conductance	т	µMH0/cm	Field	516		345		372		404	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	7	8004-4802	
Facility's Lo	ocal Well or Spring Number (e.g., MW	1-1, I	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	322.25		321.38		338.28		322.6	
N238	Dissolved Oxygen	т	mg/L	Field	4.92		2.64		3.2		5.1	
S0266	Total Dissolved Solids	т	mg/L	160.1	175		160		201		184	
S0296	рН	т	Units	Field	6.18		6.1		6.23		6	
NS215	Eh	т	mV	Field	328		375		357		469	
S0907	Temperature	т	°c	Field	15.06		15.72		16.5		13.94	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0403	J	<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.215		0.282		0.105		0.246	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.029		0.0247		0.0184		0.0209	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	25.6		24		12.5		26.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	<0.002		0.000572	J	<0.002		0.00106	J
7439-89-6	Iron	т	mg/L	6020	0.0476	J	0.129		0.182		0.0422	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.8		10.3		3.45		11.4	
7439-96-5	Manganese	т	mg/L	6020	<0.005		0.238		0.0189		0.00105	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	05	8004-48	06	8004-48	07	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000232	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	<0.002		0.00193	J	<0.002		0.00464	
7440-09-7	Potassium	т	mg/L	6020	1.51		2.15		0.38		1.35	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	32.9		25.2		65.1		34	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	307	8004-48	302
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		0.00039	J	<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00287		0.00307		<0.001		0.00613	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-480	07	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g., M	MW-1	L, MW-2, et	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000185		<0.0000188		<0.0000187		<0.0000188	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805		8004-4806	;	8004-480	7	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g.	, MW-1	L, MW-2, et)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.713	*	-4.61	*	3.39	*	1.65	*
12587-47-2	Gross Beta	т	pCi/L	9310	10.5	*	1.53	*	-1.94	*	-0.331	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.345	*	0.0514	*	0.304	*	0.614	*
10098-97-2	Strontium-90	т	pCi/L	905.0	5.49	*	5.14	*	0.77	*	1.4	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-2.57	*	1.34	*	-5.36	*	1.64	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.37	*	0.614	*	0.428	*	1.13	*
10028-17-8	Tritium	т	pCi/L	906.0	19	*	-5.21	*	-80.1	*	31.8	*
S0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		9.21	J	<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
S0268	Total Organic Carbon	т	mg/L	9060	0.78	J	0.683	J	1.54	J	0.546	J
S0586	Total Organic Halides	т	mg/L	9020	0.0109		0.0357		0.0199		0.0152	
												<u> </u>
												<u> </u>

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch

14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	Facility Well/Spring Number				8004-480	1	8004-48	303	8004-48	317	000-000	0
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	., MW-2, etc	.)	395		396		397		E. BLAN	к
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		E	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/25/2023 0	8:14	1/25/2023 08:51		1/23/2023	10:57	1/24/2023 06	3:35
Duplicate ("Y	Duplicate ("Y" or "N") ²						N		N		Ν	
Split ("Y" or	"N") ³				Ν	Ν		N			Ν	
Facility Samp		MW395SG2	2-23	MW396S0	G2-23	MW397S0	32-23	RI1SG2-2	23			
Laboratory Sar	Laboratory Sample ID Number (if applicable)					9	608502011		608163	011	608296014	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/31/2023	3	1/31/2023		1/25/2023		1/27/2023	3
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.566		0.893		0.404			*
16887-00-6	Chloride(s)	т	mg/L	9056	48.6	*J	57.9	*J	35.3	*J		*
16984-48-8	Fluoride	т	mg/L	9056	0.136	J	0.621	J	0.165	J		*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.22	J	<10		1.13	J		*
14808-79-8	Sulfate	т	mg/L	9056	11.7		26.8		12			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.59		29.59		30.27			*
S0145	Specific Conductance	т	µMH0/cm	Field	393		696		322			*

¹AKGWA # is 0000-0000 for any type of blank.

- 2 Respond "Y" if the sample was a duplicate of another sample in this report.
- ³Respond "Y" if the sample was split and analyzed by separate laboratories.
- ⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.
- ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	7	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.03		367.29		321.89			*
N238	Dissolved Oxygen	т	mg/L	Field	5.1		2.4		6.63			*
S0266	Total Dissolved Solids	т	mg/L	160.1	180		376		158			*
S0296	рĦ	т	Units	Field	6.05		6.45		6.06			*
NS215	Eh	т	mV	Field	425		240		377			*
S0907	Temperature	т	°c	Field	15.11		15.39		16.44			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0241	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.252		0.381		0.132		<0.004	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0236		0.0095	J	0.01	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	26.9		32.3		18.1		<0.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.0033		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00178	J	0.00049	J	0.000342	J	<0.002	
7439-89-6	Iron	т	mg/L	6020	<0.1		1.59		0.0547	J	<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.4		14.3		7.66		<0.03	
7439-96-5	Manganese	т	mg/L	6020	<0.005		0.44		0.00151	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	395		396		397		E. BLAI	١K
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000485	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.000907	J	0.00137	J	0.000906	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.63		0.809		1.81		<0.3	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	32.4		97.3		33.1		<0.25	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-00	000
Facility's Loo	cal Well or Spring Number (e.g.,)	MW- 1	L, MW-2, et)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00711		<0.001		0.00074	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g., 1	MW -1	L, MW-2, et)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		0.00053	J	0.00088	J
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000187		<0.0000186		<0.0000187		<0.0000188	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1,	Facility Well/Spring Number				8004-4801		8004-4803	}	8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW - :	1, MW-2, et)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.363	*	-2.95	*	-1.48	*	-2.95	*
12587-47-2	Gross Beta	т	pCi/L	9310	7.32	*	2.55	*	-1.03	*	2.49	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.349	*	0.409	*	0.188	*	-0.0042	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.481	*	1.22	*	-3.38	*	4.07	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	12.5	*	-10.1	*	8.51	*	-8.28	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.729	*	0.415	*	1.36	*	2.46	*
10028-17-8	Tritium	т	pCi/L	906.0	7.42	*	-117	*	-6.57	*	0.0645	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		17.7	J	9.21	J		*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	0.681	*	<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.474	J	3.86		0.464	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0184		0.0279		0.00644	J		*

Division of Waste Management

RESIDENTIAL/CONTAINED-QUARTERLY

Solid Waste Branch

14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-00	00	0000-000	00	0000-000	0
Facility's Loca	al Well or Spring Number (e.g., M	W-1	., MW-2, etc	.)	F. BLANI	<	T. BLAN	K 1	T. BLANK	٢2	T. BLANK	3
Sample Sequence	e #				1		1		1		1	
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	F		Т		Т		Т	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		1/24/2023 09	9:35	1/23/2023 0	6:30	1/24/2023 0	6:30	1/25/2023 06	5:30
Duplicate ("Y"	or "N") ²				Ν		Ν		Ν		N	
Split ("Y" or '	"N") ³				N		Ν		Ν		N	
Facility Sample	e ID Number (if applicable)				FB1SG2-2	23	TB1SG2	-23	TB2SG2-	23	TB3SG2-2	23
Laboratory Sam	aboratory Sample ID Number (if applicable)						6081630	13	6082960	15	60850201	3
Date of Analys:	ate of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						1/25/202	:3	1/27/202	3	1/31/2023	\$
Gradient with	respect to Monitored Unit (UP, DO	wn,	SIDE, UNKN	OWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056								
16887-00-6	Chloride(s)	т	mg/L	9056								
16984-48-8	Fluoride	т	mg/L	9056								
s0595	S0595 Nitrate & Nitrite T mg/L											
14808-79-8	14808-79-8 Sulfate T mg/L S			9056								
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field								
S0145	Specific Conductance	т	µMH0/cm	Field								

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use ``*," then describe on ``Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	00	0000-0000)	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., M	-1 , 1	MW-2, BLANK-	F, etc.)	F. BLAN	K	T. BLANK	(1	T. BLANK	2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
S0907	Temperature	т	°c	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.004			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	<0.002			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				000-000	00	0000-00	000	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	К 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	<0.02			*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.02			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		0.00246	J
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001	*	<0.001		<0.001	*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-000	00	0000-00	000	0000-00	000
Facility's Lo	cal Well or Spring Number (e.g.,)	MW- 1	L, MW-2, et)	F. BLANK	(T. BLAN	٢1	T. BLAN	IK 2	T. BLAN	NK 3
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000	0	0000-00	00	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g., 1	MW -1	L, MW-2, et)	F. BLANK	(T. BLANK	1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00093	J	0.00055	J	<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000185		<0.0000188		<0.0000186		<0.0000191	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000	D	0000-00	00	0000-00	,00
Facility's Lo	cal Well or Spring Number (e.g.	, MW-1	L, MW-2, et)	F. BLANK		T. BLANK	1	T. BLANK	(2	T. BLANI	. (3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.806	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	6.28	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.282	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.589	*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-6.69	*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	2.79	*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0	-20.3	*		*		*		*
S0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0	<0.5			*		*		*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

RESIDENTIAL/INERT-OUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number: SW07300014,SW07300015,SW07300045

14 Reillv Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4809 384 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) Sample Sequence # 2 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NΔ 1/24/2023 09:32 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Υ Split ("Y" or "N")³ Ν MW384DSG2-23 Facility Sample ID Number (if applicable) 608296001 Laboratory Sample ID Number (if applicable) Date of Analysis (Month/Day/Year) For Volatile Organics Analysis 1/27/2023 SIDE Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) METHOD DETECTED DETECTED DETECZED DETECTED CAS RN⁴ CONSTITUENT т Unit F F F F D OF VALUE L VALUE L VALUE VALUE т. т. 5 MEASURE /or OR А OR OR А А POT.6 POL⁶ G POL⁶ G G/ POL⁶ G S^7 s s s т 24959-67-9 Bromide 9056 0.27 mq/L 16887-00-6 Chloride(s) т mg/L 9056 22.9 *.J т 16984-48-8 0.199 J Fluoride ma/L 9056 s0595- -Nitrate & Nitrite т 9056 0.805 J mq/L * 14808-79-8 Sulfate т mg/L 9056 18.9 т NS1894 Barometric Pressure Reading Inches/Hg Field S0145- т Specific Conductance uMH0/cm Field

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	9	Ν					/
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	W-2, BLANK-	F, etc.)	384							
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*						
N238	Dissolved Oxygen	т	mg/L	Field		*		\backslash				
S0266	Total Dissolved Solids	т	mg/L	160.1	196							
s0296	рН	т	Units	Field		*						
NS215	Eh	т	mV	Field		*						
S0907	Temperature	т	°c	Field		*						
7429-90-5	Aluminum	т	mg/L	6020	<0.05					\mathbf{V}		
7440-36-0	Antimony	т	mg/L	6020	<0.003				$ \rangle /$			
7440-38-2	Arsenic	т	mg/L	6020	<0.005				Χ.			
7440-39-3	Barium	т	mg/L	6020	0.204							
7440-41-7	Beryllium	т	mg/L	6020	<0.0005					\land		
7440-42-8	Boron	т	mg/L	6020	0.0481							
7440-43-9	Cadmium	т	mg/L	6020	<0.001							
7440-70-2	Calcium	т	mg/L	6020	23.7			/	1			
7440-47-3	Chromium	т	mg/L	6020	<0.01							
7440-48-4	Cobalt	т	mg/L	6020	<0.001			/				
7440-50-8	Copper	т	mg/L	6020	0.000372	BJ						
7439-89-6	Iron	т	mg/L	6020	<0.1							
7439-92-1	Lead	т	mg/L	6020	<0.002							
7439-95-4	Magnesium	т	mg/L	6020	10.1							\mathbf{N}
7439-96-5	Manganese	т	mg/L	6020	0.00126	J						
7439-97-6	Mercury	т	mg/L	7470	<0.0002							

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	09	\backslash					/
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	384		\square					
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001							
7440-02-0	Nickel	т	mg/L	6020	0.00102	J		\backslash				
7440-09-7	Potassium	т	mg/L	6020	1.39						/	
7440-16-6	Rhodium	т	mg/L	6020	<0.005				Ν		\vee	
7782-49-2	Selenium	т	mg/L	6020	<0.005				$\left \right\rangle$			
7440-22-4	Silver	т	mg/L	6020	<0.001							
7440-23-5	Sodium	т	mg/L	6020	46.1							
7440-25-7	Tantalum	т	mg/L	6020	<0.005							
7440-28-0	Thallium	т	mg/L	6020	<0.002				X			
7440-61-1	Uranium	т	mg/L	6020	<0.0002							
7440-62-2	Vanadium	т	mg/L	6020	<0.02					\square		
7440-66-6	Zinc	т	mg/L	6020	<0.02							
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005							
67-64-1	Acetone	т	mg/L	8260	<0.005						\backslash	
107-02-8	Acrolein	т	mg/L	8260	<0.005							
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005							
71-43-2	Benzene	т	mg/L	8260	<0.001	*						
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001							
1330-20-7	Xylenes	т	mg/L	8260	<0.003							
100-42-5	Styrene	т	mg/L	8260	<0.001							\square
108-88-3	Toluene	т	mg/L	8260	<0.001							
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4809	9	Ν					
Facility's Loc	al Well or Spring Number (e.g., 1	MW -1	L, MW-2, et)	384		\square					
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	т	mg/L	8260	<0.001			\setminus				
74-83-9	Methyl bromide	т	mg/L	8260	<0.001			\backslash				
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005						/	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005				\backslash		ſ	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005							
75-00-3	Chloroethane	т	mg/L	8260	<0.001					\backslash		
67-66-3	Chloroform	т	mg/L	8260	<0.001				$ \rangle /$			
74-87-3	Methyl chloride	т	mg/L	8260	<0.001				Х			
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001							
74-95-3	Methylene bromide	т	mg/L	8260	<0.001					\backslash		
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001							
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001			/			\backslash	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001							
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		7					
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001							
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001							\backslash
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00143							

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4809	9	Ν					/
Facility's Loc	al Well or Spring Number (e.g., 1	4W-1	.,MW-2, et)	384							
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQI	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	т	mg/L	8260	<0.005							
74-88-4	Iodomethane	т	mg/L	8260	<0.005							
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001						/	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001				Ν			
75-09-2	Dichloromethane	т	mg/L	8260	0.00085	J						
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005					\backslash		
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000186				$ \setminus /$			
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				I X			
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001					\land		
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001					$\left \right\rangle$		
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001				/			
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001						\backslash	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001			/				
1336-36-3	PCB,Total	т	ug/L	8082		*						
12674-11-2	PCB-1016	т	ug/L	8082		*						
11104-28-2	PCB-1221	т	ug/L	8082		*						
11141-16-5	PCB-1232	т	ug/L	8082		*						\backslash
53469-21-9	PCB-1242	т	ug/L	8082		*						$ \rangle$
12672-29-6	PCB-1248	т	ug/L	8082		*						

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ , Facility Well/Spring Number					8004-4809		\backslash					/
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)											
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DERECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	РСВ-1254	т	ug/L	8082		*						
11096-82-5	РСВ-1260	т	ug/L	8082		*		\setminus				
11100-14-4	PCB-1268	т	ug/L	8082		*						
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.07	*					/	
12587-47-2	Gross Beta	т	pCi/L	9310	20.4	*			\backslash			
10043-66-0	Iodine-131	т	pCi/L			*						
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.0198	*				ſ		
10098-97-2	Strontium-90	т	pCi/L	905.0	2.58	*						
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	25.2	*						
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.775	*						
10028-17-8	Tritium	т	pCi/L	906.0	35.3	*				$\left \right\rangle$		
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20				/			
57-12-5	Cyanide	т	mg/L	9012	<0.2						\backslash	
20461-54-5	Iodide	т	mg/L	300.0	<0.5							
s0268	Total Organic Carbon	т	mg/L	9060	0.753	J		/				
s0586	Total Organic Halides	т	mg/L	9020	0.00896	J						
							\checkmark					

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW22	20 MW220SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 7.36. Rad error is 7.32.
		Gross beta		TPU is 11.9. Rad error is 10.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.292. Rad error is 0.292.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.78. Rad error is 2.7.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.3. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.71. Rad error is 1.69.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 133. Rad error is 133.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description						
000-5202 MW221	MW221SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.						
		Total Dissolved Solids	*	Duplicate analysis not within control limits.						
		PCB, Total		Analysis of constituent not required and not performed.						
		PCB-1016		Analysis of constituent not required and not performed.						
		PCB-1221		Analysis of constituent not required and not performed.						
		PCB-1232		Analysis of constituent not required and not performed.						
		PCB-1242		Analysis of constituent not required and not performed.						
		PCB-1248		Analysis of constituent not required and not performed.						
		PCB-1254		Analysis of constituent not required and not performed.						
		PCB-1260		Analysis of constituent not required and not performed.						
		PCB-1268		Analysis of constituent not required and not performed.						
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.61. Rad error is 2.6.						
			Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 7.92. Rad error is 7.88.					
		lodine-131		Analysis of constituent not required and not performed.						
								Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.558. Rad error is 0.557.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.05. Rad error is 2.05.						
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 14.3. Rad error is 14.3.						
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.17. Rad error is 2.16.						
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 135. Rad error is 135.						

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5242 MW2	22 MW222SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.85. Rad error is 3.85.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.65. Rad error is 5.65.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.207. Rad error is 0.207.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.65. Rad error is 1.62.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.84. Rad error is 1.83.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 129. Rad error is 129.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5243 MW2	23 MW223SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.04. Rad error is 1.03.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.86. Rad error is 7.86.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.25. Rad error is 0.25.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.5. Rad error is 1.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.65. Rad error is 9.65.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.88. Rad error is 1.86.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 133. Rad error is 133.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5244 MW224	MW224SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 6.39. Rad error is 6.27.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 5.55. Rad error is 5.51.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.166. Rad error is 0.166.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.01. Rad error is 2.01.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.94. Rad error is 1.92.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 128. Rad error is 128.
004-4820 MW369	MW369UG2-23	Boron	W	Post-digestion spike recovery out of control limits.
		Calcium	W	Post-digestion spike recovery out of control limits.
		Sodium	W	Post-digestion spike recovery out of control limits.
		Chloroethane	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 7.75. Rad error is 7.63.
		Gross beta		TPU is 11.1. Rad error is 9.12.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.284. Rad error is 0.284.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.98. Rad error is 2.98.
		Technetium-99		TPU is 15.5. Rad error is 13.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.2. Rad error is 1.2.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 128. Rad error is 124.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

	acility ample ID	Constituent	Flag	Description
004-4818 MW370 MW	370UG2-23	Boron	W	Post-digestion spike recovery out of control limits.
		Calcium	W	Post-digestion spike recovery out of control limits.
		Sodium	W	Post-digestion spike recovery out of control limits.
		Chloroethane	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. ⁻ is 5.52. Rad error is 5.5.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.8. Rad error is 6.73.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.492. Rad error is 0.492.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.35. Rad error is 2.35.
	Technetium-99		TPU is 12.6. Rad error is 12.1.	
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.919. Rad error is 0.909.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 122. Rad error is 120.
04-4808 MW372 MW	372UG2-23	Boron	W	Post-digestion spike recovery out of control limits.
		Calcium	W	Post-digestion spike recovery out of control limits.
		Sodium	W	Post-digestion spike recovery out of control limits.
		Chloroethane	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.81. Rad error is 4.8.
		Gross beta		TPU is 12.6. Rad error is 11.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.454. Rad error is 0.454.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.62. Rad error is 2.62.
		Technetium-99		TPU is 16.8. Rad error is 13.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.35. Rad error is 1.35.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 114. Rad error is 114.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4792 MW373	MW373UG2-23	Boron	W	Post-digestion spike recovery out of control limits.
		Calcium	W	Post-digestion spike recovery out of control limits.
		Sodium	W	Post-digestion spike recovery out of control limits.
		Chloroethane	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 6.59. Rad error is 6.58.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 5.64. Rad error is 5.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.375. Rad error is 0.375.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 4.31. Rad error is 4.3.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 12.2. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.941. Rad error is 0.937.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 129. Rad error is 125.
004-4809 MW384	MW384SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. This 5.35. Rad error is 5.35.
		Gross beta		TPU is 12.2. Rad error is 10.7.
		lodine-131		Analysis of constituent not required and not performed.
	Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.332. Rad error is 0.331.	
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 3.25. Rad error is 3.24.
		Technetium-99		TPU is 13.2. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. This 1.79. Rad error is 1.78.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 128. Rad error is 128.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4810 MW3	85 MW385SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.76. Rad error is 3.76.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.75. Rad error is 6.72.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.347. Rad error is 0.346.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.98. Rad error is 2.97.
		Technetium-99		TPU is 11.6. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.63. Rad error is 1.62.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 136. Rad error is 136.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4804 MW38	6 MW386SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.14. Rad error is 2.14.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.63. Rad error is 4.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.291. Rad error is 0.29.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.59. Rad error is 3.59.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.76. Rad error is 2.72.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 133. Rad error is 133.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW3	87 MW387SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.2. Rad error is 4.2.
		Gross beta		TPU is 9.81. Rad error is 8.26.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.301. Rad error is 0.301.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.98. Rad error is 4.87.
		Technetium-99		TPU is 12.5. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.1. Rad error is 2.08.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 146. Rad error is 145.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4816 MW38	88 MW388SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.92. Rad error is 3.91.
		Gross beta		TPU is 7.05. Rad error is 6.71.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.354. Rad error is 0.353.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.1. Rad error is 3.09.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.94. Rad error is 1.92.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 137. Rad error is 137.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample was collected.
		Chloride		During sampling, the well was dry; therefore, no sample was collected.
		Fluoride		During sampling, the well was dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample was collected.
		Sulfate		During sampling, the well was dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample was collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample was collected.
		Temperature		During sampling, the well was dry; therefore, no sample was collected.
		Aluminum		During sampling, the well was dry; therefore, no sample was collected.
		Antimony		During sampling, the well was dry; therefore, no sample was collected.
		Arsenic		During sampling, the well was dry; therefore, no sample was collected.
		Barium		During sampling, the well was dry; therefore, no sample was collected.
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.
		Boron		During sampling, the well was dry; therefore, no sample was collected.
		Cadmium		During sampling, the well was dry; therefore, no sample was collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample was collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was
		Manganese		collected. During sampling, the well was dry; therefore, no sample was collected.
		Mercury		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample was collected.
		Nickel		During sampling, the well was dry; therefore, no sample was collected.
		Potassium		During sampling, the well was dry; therefore, no sample was collected.
		Rhodium		During sampling, the well was dry; therefore, no sample was collected.
		Selenium		During sampling, the well was dry; therefore, no sample was collected.
		Silver		During sampling, the well was dry; therefore, no sample was collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample was collected.
		Thallium		During sampling, the well was dry; therefore, no sample was collected.
		Uranium		During sampling, the well was dry; therefore, no sample was collected.
		Vanadium		During sampling, the well was dry; therefore, no sample was collected.
		Zinc		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample wa collected.
		Acetone		During sampling, the well was dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well was dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample wa collected.
		Benzene		During sampling, the well was dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well was dry; therefore, no sample was collected.
		Styrene		During sampling, the well was dry; therefore, no sample was collected.
		Toluene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4811 MW390		Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4811 MW390		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate		Analysis of constituent not required and not performed.
		Acetone		Analysis of constituent not required and not performed.
		Acrolein		Analysis of constituent not required and not performed.
		Acrylonitrile		Analysis of constituent not required and not performed.
		Benzene		Analysis of constituent not required and not performed.
		Chlorobenzene		Analysis of constituent not required and not performed.
		Xylenes		Analysis of constituent not required and not performed.
		Styrene		Analysis of constituent not required and not performed.
		Toluene		Analysis of constituent not required and not performed.
		Chlorobromomethane		Analysis of constituent not required and not performed.
		Bromodichloromethane		Analysis of constituent not required and not performed.
		Tribromomethane		Analysis of constituent not required and not performed.
		Methyl bromide		Analysis of constituent not required and not performed.
		Methyl Ethyl Ketone		Analysis of constituent not required and not performed.
		trans-1,4-Dichloro-2-butene		Analysis of constituent not required and not performed.
		Carbon disulfide		Analysis of constituent not required and not performed.
		Chloroethane		Analysis of constituent not required and not performed.
		Chloroform		Analysis of constituent not required and not performed.
		Methyl chloride		Analysis of constituent not required and not performed.
		cis-1,2-Dichloroethene		Analysis of constituent not required and not performed.
		Methylene bromide		Analysis of constituent not required and not performed.
		1,1-Dichloroethane		Analysis of constituent not required and not performed.
		1,2-Dichloroethane		Analysis of constituent not required and not performed.
		1,1-Dichloroethylene		Analysis of constituent not required and not performed.
		1,2-Dibromoethane		Analysis of constituent not required and not performed.
		1,1,2,2-Tetrachloroethane		Analysis of constituent not required and not performed.
		1,1,1-Trichloroethane		Analysis of constituent not required and not performed.
		1,1,2-Trichloroethane		Analysis of constituent not required and not performed.
		1,1,1,2-Tetrachloroethane		Analysis of constituent not required and not performed.
		Vinyl chloride		Analysis of constituent not required and not performed.
		Tetrachloroethene		Analysis of constituent not required and not performed.
		Trichloroethene		Analysis of constituent not required and not performed.
		Ethylbenzene		Analysis of constituent not required and not performed.
		2-Hexanone		Analysis of constituent not required and not performed.
		lodomethane		Analysis of constituent not required and not performed.
		Dibromochloromethane		Analysis of constituent not required and not performed.
		Carbon tetrachloride		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4811 MW390		Dichloromethane		Analysis of constituent not required and not performed.
		Methyl Isobutyl Ketone		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performed.
		1,2-Dichloropropane		Analysis of constituent not required and not performed.
		trans-1,3-Dichloropropene		Analysis of constituent not required and not performed.
		cis-1,3-Dichloropropene		Analysis of constituent not required and not performed.
		trans-1,2-Dichloroethene		Analysis of constituent not required and not performed.
		Trichlorofluoromethane		Analysis of constituent not required and not performed.
		1,2,3-Trichloropropane		Analysis of constituent not required and not performed.
		1,2-Dichlorobenzene		Analysis of constituent not required and not performed.
		1,4-Dichlorobenzene		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4805 MW391	MW391SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.45. Rad error is 4.44.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.27. Rad error is 8.08.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.317. Rad error is 0.316.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.75. Rad error is 3.65.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.752. Rad error is 0.748.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 134. Rad error is 134.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4806 MW392 MW392SG2-23		Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.16. Rad error is 3.16.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.49. Rad error is 6.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.176. Rad error is 0.175.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.79. Rad error is 3.69.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.2. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.776. Rad error is 0.768.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 132. Rad error is 132.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4807 MW3	93 MW393SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.27. Rad error is 5.24.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.9. Rad error is 4.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.284. Rad error is 0.284.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.14. Rad error is 3.14.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.1. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.773. Rad error is 0.767.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 123. Rad error is 123.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4802 MW3	94 MW394SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.39. Rad error is 4.38.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.68. Rad error is 4.68.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.682. Rad error is 0.681.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.13. Rad error is 3.12.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.04. Rad error is 1.03.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 133. Rad error is 133.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4801 MW3	95 MW395SG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.89. Rad error is 3.88.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.01. Rad error is 6.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.437. Rad error is 0.437.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.25. Rad error is 4.25.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.4. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.848. Rad error is 0.838.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 131. Rad error is 131.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4803 MW396 MW396SG2-23		Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.08. Rad error is 2.08.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.45. Rad error is 4.43.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.409. Rad error is 0.409.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.91. Rad error is 2.91.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.824. Rad error is 0.819.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 120. Rad error is 120.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4817 MW397 MW397SG2-23		Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.65. Rad error is 4.65.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.84. Rad error is 4.84.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.35. Rad error is 0.35.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.62. Rad error is 2.6.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 132. Rad error is 132.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG2-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.75. Rad error is 4.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.92. Rad error is 4.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.396. Rad error is 0.396.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.04. Rad error is 3.99.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.67. Rad error is 2.63.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 135. Rad error is 135.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG2-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.17. Rad error is 2.17.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.77. Rad error is 5.67.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.287. Rad error is 0.287.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.22. Rad error is 3.22.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.59. Rad error is 2.55.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 132. Rad error is 132.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG2-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG2-23	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG2-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG2-23	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG2-23	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG2-23	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4809 MW384	MW384DSG2-23	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.52. Rad error is 4.52.
		Gross beta		TPU is 9.92. Rad error is 9.33.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.225. Rad error is 0.225.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.58. Rad error is 3.55.
		Technetium-99		TPU is 14.1. Rad error is 13.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.22. Rad error is 1.21.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 131. Rad error is 131.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2023 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2023 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The first quarter 2023 data used to conduct the statistical analyses were collected in January 2023. With the exception of acrolein in the current quarter, the statistical analyses for this report first used data from the initial eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one compliance well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters.

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ^a	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ^{a,b}	TW	UCRS
MW390 ^{a,b}	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ^a	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ^a	BG	UCRS
MW397	BG	LRGA

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

^aThe gradients in UCRS wells are downward. The UCRS wells identified as up-, side-, or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

^bWell was dry this quarter and a groundwater sample could not be collected.

BG: upgradient or background wells

TW: compliance or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded (or is below the LTL for pH), the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

 $TL = X + (K \times S)$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL (or is below the LTL for pH), then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the background wells (identified as "BG"), the compliance or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2023. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations. upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Parameters
Acrolein
Aluminum
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
cis-1,2-Dichloroethene
Cobalt
Conductivity
Copper
Dissolved Oxygen
Dissolved Solids
Iodide
Iron
Magnesium
Manganese
Methylene Chloride
Molybdenum
Nickel
Oxidation-Reduction Potential ¹
pH^2
Potassium
Sodium
Sulfate
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Zinc

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

¹Oxidation-Reduction Potential calibrated as Eh. ² For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	3	3	0	No
1,1,2,2-Tetrachloroethane	3	3	0	No
1,1,2-Trichloroethane	3	3	0	No
1,1-Dichloroethane	3	3	0	No
1,2,3-Trichloropropane	3	3	0	No
1,2-Dibromo-3-chloropropane	3	3	0	No
1,2-Dibromoethane	3	3	0	No
1,2-Dichlorobenzene	3	3	0	No
1,2-Dichloropropane	3	3	0	No
2-Butanone	3	3	0	No
2-Hexanone	3	3	0	No
4-Methyl-2-pentanone	3	3	0	No
Acetone	3	3	0	No
Acrolein	3	3	0	No
Acrylonitrile	3	3	0	No
Aluminum	3	3	0	No
Antimony	3	3	0	No
Beryllium	3	3	0	No
Boron	3	0	3	Yes
Bromide	3	1	2	Yes
Bromochloromethane	3	3	0	No
Bromodichloromethane	3	3	0	No
Bromoform	3	3	0	No
Bromomethane	3	3	0	No
Calcium	3	0	3	Yes
Carbon disulfide	3	3	0	No
Chemical Oxygen Demand (COD)	3	1	2	Yes
Chloride	3	0	3	Yes
Chlorobenzene	3	3	0	No
Chloroethane	3	3	0	No
Chloroform	3	3	0	No
Chloromethane	3	3	0	No
cis-1,2-Dichloroethene	3	3	0	No
	3	3	0	No
cis-1,3-Dichloropropene				
Cobalt	3	1	2	Yes
Conductivity	3	0	3	Yes
Copper	3	2	1	Yes
Cyanide Diverse allowers there	3	3 3	0	No
Dibromochloromethane	3		0	No
Dibromomethane	3	3	0	No
Dimethylbenzene, Total	3	3	0	No
Dissolved Oxygen	3	0	3	Yes
Dissolved Solids	3	0	3	Yes
Ethylbenzene	3	3	0	No
Iodide	3	2	1	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Iodomethane	3	3	0	No
Iron	3	0	3	Yes
Magnesium	3	0	3	Yes
Manganese	3	0	3	Yes
Methylene chloride	3	2	1	Yes
Molybdenum	3	1	2	Yes
Nickel	3	1	2	Yes
Oxidation-Reduction Potential	3	0	3	Yes
рН	3	0	3	Yes
Potassium	3	0	3	Yes
Radium-226	3	3	0	No
Rhodium	3	3	0	No
Sodium	3	0	3	Yes
Styrene	3	3	0	No
Sulfate	3	0	3	Yes
Tantalum	3	3	0	No
Technetium-99	3	3	0	No
Tetrachloroethene	3	3	0	No
Thallium	3	3	0	No
Thorium-230	3	3	0	No
Toluene	3	3	0	No
Total Organic Carbon (TOC)	3	0	3	Yes
Total Organic Halides (TOX)	3	0	3	Yes
trans-1,2-Dichloroethene	3	3	0	No
trans-1,3-Dichloropropene	3	3	0	No
trans-1,4-Dichloro-2-Butene	3	3	0	No
Trichlorofluoromethane	3	3	0	No
Vanadium	3	3	0	No
Vinyl Acetate	3	3	0	No
Zinc	3	2	1	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

1,1,1,2-Tetrachloroethane1,1,2,2-Tetrachloroethane1,1,2-Trichloroethane1,1-Dichloroethane1,2,3-Trichloropropane1,2-Dibromo-3-chloropropane1,2-Dibromoethane1,2-Dibromoethane1,2-Dichlorobenzene	11 11 11 11 11 11 11	11 11 11 11	0 0 0	No No
1,1,2-Trichloroethane1,1-Dichloroethane1,2,3-Trichloropropane1,2-Dibromo-3-chloropropane1,2-Dibromoethane	11 11 11	11	-	No
1,1-Dichloroethane1,2,3-Trichloropropane1,2-Dibromo-3-chloropropane1,2-Dibromoethane	11 11		0	
1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	11	11	U	No
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane		11	0	No
1,2-Dibromoethane	11	11	0	No
,	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	10	1	Yes
Acrylonitrile	11	11	0	No
Aluminum	11	8	3	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	10	1	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	11	0	No
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	7	4	Yes
Conductivity	11	0	11	Yes
Copper	11	4	7	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No
Iodide	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	11	11	0	No
Iron	11	4	7	Yes
Magnesium	11	0	11	Yes
Manganese	11	3	8	Yes
Methylene chloride	11	3	8	Yes
Molybdenum	11	6	5	Yes
Nickel	11	1	10	Yes
Oxidation-Reduction Potential	11	0	11	Yes
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	7	4	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	0	11	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	0	11	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	11	0	No
Vinyl Acetate	11	11	0	No
Zinc	11	9	2	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	4	3	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	3	4	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	5	2	Yes
Conductivity	7	0	7	Yes
Copper	7	2	5	Yes
Cyanide	7	7	5 0	No
Dibromochloromethane	7	7	0	No
Dibromochloromethane	7	7	0	No
Diporomomethane Dimethylbenzene, Total	7	7	0	No
Dimethylbenzene, Total Dissolved Oxygen	7	0	0 7	Yes
Dissolved Oxygen Dissolved Solids	7	0	7	Yes
	7	0 7	0	No
Ethylbenzene Iodide	7	7		
			0	No
Iodomethane	7	7	0	No
Iron	7	3	4	Yes
Magnesium	7	0	7	Yes

Exhibit D.5. Summary o	of Censored and	Uncensored Data	-LRGA
------------------------	-----------------	------------------------	-------

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Manganese	7	3	4	Yes
Methylene chloride	7	3	4	Yes
Molybdenum	7	5	2	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	5	2	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	0	7	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc	7	7	0	No

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. For the UCRS, URGA, and LRGA, the test was applied to 25, 28, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes trichloroethene that exceeded its MCL. A summary of exceedances when compared to statistically derived historical background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background upper tolerance limit (UTL) for oxidation-reduction potential.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified exceedances of historical background UTL for calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, and sulfate.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential*	MW221: Oxidation-reduction potential*	MW370: Oxidation-reduction potential* and sulfate
MW393: Oxidation-reduction potential*	MW369: Oxidation-reduction potential* and technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential,* and sulfate
MW396: Oxidation-reduction potential*	MW372: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential,* sulfate, and technetium-99	MW385: COD, oxidation-reduction potential,* and sulfate
	MW384: Sulfate	MW388: Oxidation-reduction potential* and sulfate
	MW387: Calcium, magnesium, oxidation-reduction potential,* sulfate, and technetium-99	MW392: Oxidation-reduction potential*
	MW394: Oxidation-reduction potential*	MW395: Oxidation-reduction potential*
		MW397: Oxidation-reduction potential*

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

*Oxidation-Reduction Potential calibrated as Eh.

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
COD	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Methylene Chloride	Tolerance Interval	0.56	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential ^b	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
ТОС	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
ТОХ	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation ^aIf CV > 1.0, used log-transformed data. ^b Oxidation-Reduction Potential calibrated as Eh.

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Acrolein	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372 and MW387.
COD	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Methylene Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential ^b	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW221, MW369, MW372, MW387, and MW394.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, and MW387.
ТОС	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
ТОХ	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ^c	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation

^aIf CV > 1.0, used log-transformed data. ^bOxidation-Reduction Potential calibrated as Eh.

°Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Testª	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
COD	Tolerance Interval	0.04	Current results exceed statistically derived historical background concentration in MW385.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Methylene Chloride	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential ^b	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
pH	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	No exceedance of statistically derived historical background concentration.
ТОС	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
тох	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ^c	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation ^aIf CV > 1.0, used log-transformed data. ^bOxidation-Reduction Potential calibrated as Eh. ^cTolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. For the UCRS, URGA, and LRGA, the test was applied to 1, 7, and 7 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate
MW372: Calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, and sulfate
MW387: Calcium, magnesium, sulfate, and technetium-99	MW388: Sulfate

<u>UCRS</u>

This quarter's results did not indicate any statistically significant exceedances of current background TL in UCRS wells.

<u>URGA</u>

This quarter's results identified current background exceedances in downgradient wells for calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified current background exceedances in downgradient wells for calcium, conductivity, dissolved solids, magnesium, and sulfate.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential ^b	Tolerance Interval	0.43	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

^aIf CV > 1.0, used log-transformed data. ^bOxidation-Reduction Potential calibrated as Eh.

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.12	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.09	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.16	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.13	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential ^b	Tolerance Interval	0.11	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.29	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.56	MW369, MW372, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation ^aIf CV > 1.0, used log-transformed data. ^bOxidation-Reduction Potential calibrated as Eh.

Parameter	Performed Test	CV Normality Test ^a	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.16	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
COD	Tolerance Interval	0.26	MW385 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.09	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.29	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.17	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential ^b	Tolerance Interval	0.11	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.02	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

^{al}f CV > 1.0, used log-transformed data. ^bOxidation-Reduction Potential calibrated as Eh.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S = 0.833	CV(1)=1.282	K factor**= 3.188	TL(1)= 3.306	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.034	S = 1.066	CV(2) =-1.031	K factor**= 3.188	TL(2)= 2.364	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	2	0.693		
9/16/2002	2	0.693		
10/16/2002	0.2	-1.609		
1/13/2003	0.2	-1.609		
4/8/2003	0.2	-1.609		
7/16/2003	0.2	-1.609		
10/14/2003	0.2	-1.609		

0.2

1/14/2004

Dry/Partially Dry Wells					
Well No. Gradient					
MW389	Downgradient				
MW390 Downgradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0131	N/A	-4.335	NO
MW393	Downgradien	t Yes	0.0184	N/A	-3.995	NO
MW396	Upgradient	Yes	0.0095	N/A	-4.656	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.388	S = 0.327	CV(1)= 0.236	K factor**= 3.188	TL(1)= 2.430	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.301	S= 0.252	CV(2)= 0.838	K factor**= 3.188	TL(2)= 1.105	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	1.5	0.405		
9/16/2002	1.6	0.470		
10/16/2002	1.6	0.470		
1/13/2003	1	0.000		
4/8/2003	1	0.000		
7/16/2003	1	0.000		
10/14/2003	1.7	0.531		

1.7

1/14/2004

Dry/Partially Dry Wells					
Well No. Gradient					
MW389 Downgradient					
MW390 Downgradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.2	N/A	-1.609	N/A
MW393	Downgradien	t Yes	0.179	NO	-1.720	N/A
MW396	Upgradient	Yes	0.893	NO	-0.113	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.531

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 41.825	S = 8.445	CV(1)= 0.202	K factor**= 3.188	TL(1)= 68.748	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.711	S= 0.241	CV(2) =0.065	K factor**= 3.188	TL(2)= 4.479	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	38.4	3.648		
9/16/2002	42.9	3.759		
10/16/2002	40.2	3.694		
1/13/2003	46.7	3.844		
4/8/2003	49.8	3.908		
7/16/2003	43.3	3.768		
10/14/2003	49.7	3.906		
1/14/2004	23.6	3.161		

Dry/Partially Dry Wells					
Well No. Gradient					
MW389	Downgradient				
MW390 Downgradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	20.2	NO	3.006	N/A
MW393	Downgradien	t Yes	12.5	NO	2.526	N/A
MW396	Upgradient	Yes	32.3	NO	3.475	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.375 S = 0.744	CV(1)= 0.021	K factor**= 3.188	TL(1)= 37.747	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.566 S= 0.021	CV(2) =0.006	K factor**= 3.188	TL(2)= 3.632	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	36	3.584			
9/16/2002	35	3.555			
10/16/2002	37	3.611			
1/13/2003	35	3.555			
4/8/2003	35	3.555			
7/16/2003	35	3.555			
10/14/2003	35	3.555			

35

1/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	9.21	NO	2.220	N/A
MW393	Downgradien	t No	20	N/A	2.996	N/A
MW396	Upgradient	Yes	17.7	NO	2.874	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 101.725 S= 5.245
 CV(1)=0.052
 K factor**= 3.188
 TL(1)= 118.447
 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.621
 S= 0.053
 CV(2)=0.011
 K factor**= 3.188
 TL(2)= 4.789
 LL(2)=N/A

 Data
 Data
 Data
 Data
 Data
 Data
 Data
 Data

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					
Date Collected	Result	LN(Result)				
8/13/2002	91.6	4.517				
9/16/2002	98.3	4.588				
10/16/2002	101.4	4.619				
1/13/2003	108.3	4.685				

100.5

102.5

106.8

104.4

4/8/2003

7/16/2003

10/14/2003

1/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390	Downgradient				

Г

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	9.77	NO	2.279	N/A
MW393	Downgradien	t Yes	12	NO	2.485	N/A
MW396	Upgradient	Yes	57.9	NO	4.059	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.610

4.630

4.671

4.648

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.008	S = 0.011	CV(1)= 1.340	K factor**= 3.188	TL(1)= 0.042	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.645	S= 1.339	CV(2) =-0.237	K factor**= 3.188	TL(2)= -1.377	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					
Date Collected	Result	LN(Result)				
8/13/2002	0.025	-3.689				
9/16/2002	0.025	-3.689				
10/16/2002	0.001	-6.908				
1/13/2003	0.00324	-5.732				
4/8/2003	0.00436	-5.435				
7/16/2003	0.00276	-5.893				
10/14/2003	0.001	-6.908				

0.001

1/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390	Downgradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0173	N/A	-4.057	NO
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.0033	N/A	-5.714	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-6.908

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 922.500 S= 107.616 CV(1)=0.117
 K factor**= 3.188
 TL(1)= 1265.579 LL(1)=N/A

Statistics-Transformed Background X=6.822 S= 0.111 CV(2)=0.016 Data

Historical Background Data from Upgradient Wells with Transformed Resu				
Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	784	6.664		
9/30/2002	871	6.770		
10/16/2002	868	6.766		
1/13/2003	912	6.816		
4/8/2003	942	6.848		
7/16/2003	910	6.813		
10/14/2003	935	6.841		

1158

1/14/2004

Dry/Partially Dry Wells						
Well No. Gradient						
MW389	Downgradient					
MW390 Downgradient						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 7.175

LL(2)=N/A

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	585	NO	6.372	N/A		
MW393	Downgradien	t Yes	372	NO	5.919	N/A		
MW396	Upgradient	Yes	696	NO	6.545	N/A		

K factor=** 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

7.054

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.028
 S= 0.014
 CV(1)=0.481
 K factor**= 3.188
 TL(1)= 0.072
 LL(1)=N/A

 Statistics-Transformed Background
 X= -3.650
 S= 0.414
 CV(2)=-0.113
 K factor**= 3.188
 TL(2)= -2.331
 LL(2)=N/A

 Data
 Data
 CV(2)=-0.113
 K factor**= 3.188
 TL(2)= -2.331
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					
Date Collected	Result	LN(Result)				
8/13/2002	0.05	-2.996				
9/16/2002	0.05	-2.996				
10/16/2002	0.026	-3.650				
1/13/2003	0.02	-3.912				
4/8/2003	0.02	-3.912				
7/16/2003	0.02	-3.912				
10/14/2003	0.02	-3.912				

0.02

1/14/2004

Dry/Partially Dry Wells						
Well No. Gradient						
MW389	Downgradient					
MW390 Downgradient						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.00064	6 N/A	-7.345	N/A	
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A	
MW396	Upgradient	Yes	0.00049	NO	-7.621	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.395	S = 1.677	CV(1)= 1.202	K factor**= 3.188	TL(1)= 6.743	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.043	S = 0.814	CV(2) =-18.867	K factor**= 3.188	TL(2)= 2.553	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					
Date Collected	Result	LN(Result)				
8/13/2002	5.45	1.696				
9/16/2002	0.4	-0.916				
10/16/2002	0.54	-0.616				
1/13/2003	0.72	-0.329				
4/8/2003	0.69	-0.371				
7/16/2003	1.1	0.095				
10/14/2003	0.71	-0.342				
1/14/2004	1.55	0.438				

Dry/Partially Dry Wells						
Well No. Gradient						
MW389	Downgradient					
MW390 Downgradient						

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	1.24	N/A	0.215	NO	
MW393	Downgradien	t Yes	3.2	N/A	1.163	NO	
MW396	Upgradient	Yes	2.4	N/A	0.875	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=550.375 S= 104.330 CV(1)=0.190 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 882.980 LL(1)=N/A **K factor**=** 3.188 TL(2)= 6.815 LL(2)=N/A

Statistics-Transformed Background X = 6.298 S = 0.162 CV(2) = 0.026Data

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW396						
Date Collected	Result	LN(Result)					
8/13/2002	502	6.219					
9/16/2002	506	6.227					
10/16/2002	543	6.297					
1/13/2003	521	6.256					
4/8/2003	504	6.223					
7/16/2003	532	6.277					
10/14/2003	490	6.194					

805

1/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390 Downgradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	372	NO	5.919	N/A		
MW393	Downgradien	t Yes	201	NO	5.303	N/A		
MW396	Upgradient	Yes	376	NO	5.930	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

6.691

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.150	S = 0.283	CV(1)= 0.132	K factor**= 3.188	TL(1)= 3.052	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.759	S = 0.123	CV(2)= 0.162	K factor**= 3.188	TL(2)= 1.150	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number: MW396					
Date Collected	Result	LN(Result)			
8/13/2002	2	0.693			
9/16/2002	2	0.693			
10/16/2002	2	0.693			
1/13/2003	2	0.693			

2

2.7

2.5

2

4/8/2003

7/16/2003

10/14/2003

1/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390 Downgradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.681	NO	-0.384	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.693

0.993

0.916

0.693

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.796	S = 3.723	CV(1)= 0.478	K factor**= 3.188	TL(1)= 19.666	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.880	S = 0.723	CV(2)= 0.384	K factor**= 3.188	TL(2)= 4.184	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	1.8	0.588		
9/16/2002	9.53	2.254		
10/16/2002	7.43	2.006		
1/13/2003	9.93	2.296		
4/8/2003	10.2	2.322		

9.16

11.9

2.42

7/16/2003

10/14/2003

1/14/2004

Dry/Partially Dry Wells					
Well No. Gradient					
MW389	Downgradient				
MW390 Downgradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	2.71	NO	0.997	N/A
MW393	Downgradien	t Yes	0.182	NO	-1.704	N/A
MW396	Upgradient	Yes	1.59	NO	0.464	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.215

2.477

0.884

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 16.876	S = 3.313	CV(1)= 0.196	K factor**= 3.188	TL(1)= 27.438	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.804	S= 0.240	CV(2) =0.086	K factor**= 3.188	TL(2)= 3.569	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	15.5	2.741			
9/16/2002	17.3	2.851			
10/16/2002	17.8	2.879			
1/13/2003	19.2	2.955			
4/8/2003	17.8	2.879			
7/16/2003	17.8	2.879			
10/14/2003	20.2	3.006			

9.41

1/14/2004

Dry/Partially Dry Wells					
Well No. Gradient					
MW389	Downgradient				
MW390 Downgradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	8.51	NO	2.141	N/A
MW393	Downgradien	t Yes	3.45	NO	1.238	N/A
MW396	Upgradient	Yes	14.3	NO	2.660	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.242

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

			-Builleane et la ene			
Statistics-Background Data	X= 0.774	S = 0.353	CV(1)= 0.456	K factor**= 3.188	TL(1)= 1.900	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.566	S = 1.192	CV(2) =-2.105	K factor**= 3.188	TL(2)= 3.235	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	0.57	-0.562			
9/16/2002	0.647	-0.435			
10/16/2002	0.88	-0.128			
1/13/2003	1.132	0.124			
4/8/2003	0.965	-0.036			
7/16/2003	0.983	-0.017			
10/14/2003	0.984	-0.016			
1/14/2004	0.0314	-3.461			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.67	NO	0.513	N/A
MW393	Downgradien	t Yes	0.0189	NO	-3.969	N/A
MW396	Upgradient	Yes	0.44	NO	-0.821	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.625	S = 3.159	CV(1)= 0.562	K factor**= 3.188	TL(1)= 15.697	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.614	S = 0.500	CV(2)= 0.310	K factor**= 3.188	TL(2)= 3.209	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	13	2.565			

9/30/2002	2	0.693
10/16/2002	5	1.609
1/13/2003	5	1.609
4/8/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/14/2004	5	1.609

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.84	NO	-0.174	N/A
MW393	Downgradien	t No	5	N/A	1.609	N/A
MW396	Upgradient	No	5	N/A	1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.007	S = 0.011	CV(1)= 1.507	K factor**= 3.188	TL(1)= 0.042	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.928	S = 1.420	CV(2) =-0.240	K factor**= 3.188	TL(2)= -1.400	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	0.025	-3.689			
9/16/2002	0.025	-3.689			
10/16/2002	0.001	-6.908			
1/13/2003	0.00128	-6.661			
4/8/2003	0.00271	-5.911			
7/16/2003	0.00117	-6.751			

0.001

0.001

10/14/2003

1/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390 Downgradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00114	N/A	-6.777	NO
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.00048	5 N/A	-7.631	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-6.908

-6.908

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.016	S = 0.021	CV(1)=1.272	K factor**= 3.188	TL(1)= 0.083	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.706	S= 1.057	CV(2) =-0.225	K factor**= 3.188	TL(2)= -1.338	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					
Date Collected	Result	LN(Result)				
8/13/2002	0.05	-2.996				
9/16/2002	0.05	-2.996				
10/16/2002	0.005	-5.298				
1/13/2003	0.005	-5.298				
4/8/2003	0.00571	-5.166				
7/16/2003	0.005	-5.298				

0.005

0.005

10/14/2003

1/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390	Downgradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00367	N/A	-5.608	NO
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A
MW396	Upgradient	Yes	0.00137	N/A	-6.593	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-5.298

-5.298

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 13.000
 S= 61.952
 CV(1)=4.766
 K factor**= 3.188
 TL(1)= 210.502
 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.364
 S= 0.333
 CV(2)=0.076
 K factor**= 3.188
 TL(2)= 4.736
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	60	4.094			
4/8/2003	71	4.263			
7/16/2003	-56	#Func!			
10/14/2003	-54	#Func!			
1/14/2004	-22	#Func!			
4/12/2004	-6	#Func!			
7/20/2004	-3	#Func!			
10/12/2004	114	4.736			

Data

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient
MW390	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	147	N/A	4.990	YES
MW393	Downgradien	t Yes	357	N/A	5.878	YES
MW396	Upgradient	Yes	240	N/A	5.481	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Г

Wells with Exceedances MW386 MW393 MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.460	S = 0.350	CV(1)= 0.054	K factor**= 3.736	TL(1)= 7.766	LL(1)=5.1541
Statistics-Transformed Background Data	X= 1.864	S = 0.054	CV(2) =0.029	K factor**= 3.736	TL(2)= 2.067	LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	6.17	1.820			
9/16/2002	6.4	1.856			
10/16/2002	5.9	1.775			
1/13/2003	6.4	1.856			
4/8/2003	6.65	1.895			
7/16/2003	6.4	1.856			
10/14/2003	6.71	1.904			
1/14/2004	7.05	1.953			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< td=""><td>LN(Result)</td><td>LN(Result) >TL(2)? LN(Result) <ll(2)?< td=""></ll(2)?<></td></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< td=""></ll(2)?<>	
MW386	Sidegradient	Yes	6.74	NO	1.908	N/A	
MW393	Downgradien	t Yes	6.23	NO	1.829	N/A	
MW396	Upgradient	Yes	6.45	NO	1.864	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 1.411	S = 0.399	CV(1)= 0.282	K factor**= 3.188	TL(1)= 2.682	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.311	S = 0.271	CV(2)= 0.870	K factor**= 3.188	TL(2)= 1.175	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					
Date Collected	Result	LN(Result)				
8/13/2002	2	0.693				
9/16/2002	2	0.693				
10/16/2002	0.978	-0.022				
1/13/2003	1.08	0.077				
4/8/2003	1.12	0.113				
7/16/2003	1.38	0.322				
10/14/2003	1.24	0.215				

1.49

1/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.282	NO	-1.266	N/A	
MW393	Downgradien	t Yes	0.38	NO	-0.968	N/A	
MW396	Upgradient	Yes	0.809	NO	-0.212	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.399

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 106.825 S= 32.041
 CV(1)=0.300
 K factor**= 3.188
 TL(1)= 208.973
 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.595
 S= 0.492
 CV(2)=0.107
 K factor**= 3.188
 TL(2)= 6.163
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					
Date Collected	Result	LN(Result)				
8/13/2002	115	4.745				
9/16/2002	116	4.754				
10/16/2002	117	4.762				
1/13/2003	122	4.804				

106

117

132

29.6

Data

4/8/2003

7/16/2003

10/14/2003

1/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	107	NO	4.673	N/A	
MW393	Downgradien	t Yes	65.1	NO	4.176	N/A	
MW396	Upgradient	Yes	97.3	NO	4.578	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.663

4.762

4.883

3.388

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 22.463	S = 8.876	CV(1)= 0.395	K factor**= 3.188	TL(1)= 50.759	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.054	S= 0.351	CV(2)= 0.115	K factor**= 3.188	TL(2)= 4.173	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					
Date Collected	Result	LN(Result)				
8/13/2002	41.9	3.735				
9/16/2002	26.3	3.270				
10/16/2002	20.6	3.025				
1/13/2003	16.6	2.809				
4/8/2003	23.9	3.174				
7/16/2003	18.8	2.934				
10/14/2003	12.9	2.557				
1/14/2004	18.7	2.929				

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				
MW390	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	40.6	NO	3.704	N/A
MW393	Downgradien	t Yes	14.4	NO	2.667	N/A
MW396	Upgradient	Yes	26.8	NO	3.288	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 9.988	S = 4.696	CV(1)= 0.470	K factor**= 3.188	TL(1)= 24.959	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.210	S= 0.454	CV(2) =0.205	K factor**= 3.188	TL(2)= 3.657	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	19	2.944			
9/16/2002	14.6	2.681			
10/16/2002	10.4	2.342			
1/13/2003	4.4	1.482			

7

7.3

9.1

8.1

4/8/2003

7/16/2003

10/14/2003

1/14/2004

Dry/Partially Dry Wells						
Well No. Gradient						
MW389	Downgradient					
MW390	Downgradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	8.06	NO	2.087	N/A
MW393	Downgradien	t Yes	1.54	NO	0.432	N/A
MW396	Upgradient	Yes	3.86	NO	1.351	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.946

1.988

2.208

2.092

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 142.650 S= 53.533 CV(1)=0.375
 K factor**= 3.188 TL(1)= 313.314 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.896 S= 0.390 CV(2)=0.080
 K factor**= 3.188 TL(2)= 6.138 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	193	5.263			
9/16/2002	190	5.247			
10/16/2002	221	5.398			
1/13/2003	106	4.663			
4/8/2003	77.8	4.354			

122

86.4

145

Data

7/16/2003

10/14/2003

1/14/2004

Dry/Partially Dry Wells						
Well No. Gradient						
MW389	Downgradient					
MW390	Downgradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	190	NO	5.247	N/A
MW393	Downgradien	t Yes	19.9	NO	2.991	N/A
MW396	Upgradient	Yes	27.9	NO	3.329	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.804

4.459

4.977

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.044	S = 0.035	CV(1)= 0.786	K factor**= 3.188	TL(1)= 0.156	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.342	S= 0.682	CV(2) =-0.204	K factor**= 3.188	TL(2)= -1.168	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					
Date Collected	Result	LN(Result)				
8/13/2002	0.1	-2.303				
9/16/2002	0.1	-2.303				
10/16/2002	0.025	-3.689				
1/13/2003	0.035	-3.352				
4/8/2003	0.035	-3.352				
7/16/2003	0.02	-3.912				
10/14/2003	0.02	-3.912				
1/14/2004	0.02	-3.912				

Dry/Partially Dry Wells						
Well No. Gradient						
MW389	Downgradient					
MW390 Downgradient						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00369	NO	-5.602	N/A
MW393	Downgradien	t No	0.02	N/A	-3.912	N/A
MW396	Upgradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Acrolein UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 10.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.303	S= 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 2.303	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
4/25/2005	10	2.303				
1/18/2006	10	2.303				
4/10/2007	10	2.303				
1/24/2008	10	2.303				
1/20/2009	10	2.303				
7/15/2009	10	2.303				
1/12/2010	10	2.303				
7/12/2010	10	2.303				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
4/18/2005	10	2.303				
1/18/2006	10	2.303				
4/10/2007	10	2.303				
1/22/2008	10	2.303				
1/21/2009	10 2.303					
1/13/2010	10	2.303				
7/9/2010	10	2.303				

10

10/5/2010

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	5.62	NO	1.726	N/A
MW221	Sidegradient	No	5	N/A	1.609	N/A
MW222	Sidegradient	No	5	N/A	1.609	N/A
MW223	Sidegradient	No	5	N/A	1.609	N/A
MW224	Sidegradient	No	5	N/A	1.609	N/A
MW369	Downgradient	t No	5	N/A	1.609	N/A
MW372	Downgradient	t No	5	N/A	1.609	N/A
MW384	Sidegradient	No	5	N/A	1.609	N/A
MW387	Downgradient	t No	5	N/A	1.609	N/A
MW391	Downgradient	t No	5	N/A	1.609	N/A
MW394	Upgradient	No	5	N/A	1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.221	S= 0.061	CV(1)= 0.277	K factor**= 2.523	TL(1)= 0.376	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.534	S= 0.212	CV(2) =-0.138	K factor**= 2.523	TL(2)= -0.999	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
W-11 March	MW220

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.427	-0.851
1/13/2004	0.309	-1.174
4/13/2004	0.2	-1.609
7/21/2004	0.202	-1.599
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	()
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0505	NO	-2.986	N/A
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A
MW222	Sidegradient	Yes	0.197	NO	-1.625	N/A
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A
MW369	Downgradien	t Yes	0.112	NO	-2.189	N/A
MW372	Downgradien	t No	0.05	N/A	-2.996	N/A
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A
MW387	Downgradien	t No	0.05	N/A	-2.996	N/A
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A
MW394	Upgradient	No	0.05	N/A	-2.996	N/A
N/A = Result	Its identified as N	Ion Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.425	S= 0.615	CV(1)= 1.447	K factor**= 2.523	TL(1)= 1.976	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.322	S= 0.786	CV(2) =-0.595	K factor**= 2.523	TL(2)= 0.663	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW220

Wall Mumber

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2. 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0105	N/A	-4.556	NO
MW221	Sidegradient	Yes	0.0191	N/A	-3.958	NO
MW222	Sidegradient	Yes	0.00798	N/A	-4.831	NO
MW223	Sidegradient	Yes	0.00592	N/A	-5.129	NO
MW224	Sidegradient	Yes	0.00712	N/A	-4.945	NO
MW369	Downgradien	t Yes	0.017	N/A	-4.075	NO
MW372	Downgradien	t Yes	1.13	N/A	0.122	NO
MW384	Sidegradient	Yes	0.0481	N/A	-3.034	NO
MW387	Downgradien	t Yes	0.0301	N/A	-3.503	NO
MW391	Downgradien	t Yes	0.029	N/A	-3.540	NO
MW394	Upgradient	Yes	0.0209	N/A	-3.868	NO
N/A - Resu	Its identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

	kground Data from fells with Transformed Result
Well Number:	MW220

Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
W7 11 NT 1	N 411/20 4	
Well Number:	MW394	
Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Upgradient	Yes	0.211	NO	-1.556	N/A		
Sidegradient	Yes	0.466	NO	-0.764	N/A		
Sidegradient	Yes	0.38	NO	-0.968	N/A		
Sidegradient	Yes	0.387	NO	-0.949	N/A		
Sidegradient	Yes	0.203	NO	-1.595	N/A		
Downgradien	t Yes	0.345	NO	-1.064	N/A		
Downgradien	t Yes	0.525	NO	-0.644	N/A		
Sidegradient	Yes	0.27	NO	-1.309	N/A		
Downgradien	t Yes	0.534	NO	-0.627	N/A		
Downgradien	t Yes	0.569	NO	-0.564	N/A		
Upgradient	Yes	0.561	NO	-0.578	N/A		
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	GradientDetected?ResultUpgradientYes0.211SidegradientYes0.466SidegradientYes0.38SidegradientYes0.387SidegradientYes0.203DowngradientYes0.345DowngradientYes0.525SidegradientYes0.534DowngradientYes0.534DowngradientYes0.569	GradientDetected?ResultResult >TL(1)?UpgradientYes0.211NOSidegradientYes0.466NOSidegradientYes0.38NOSidegradientYes0.387NOSidegradientYes0.203NODowngradientYes0.345NODowngradientYes0.525NOSidegradientYes0.527NODowngradientYes0.534NODowngradientYes0.569NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.211 NO -1.556 Sidegradient Yes 0.466 NO -0.764 Sidegradient Yes 0.38 NO -0.968 Sidegradient Yes 0.387 NO -0.949 Sidegradient Yes 0.203 NO -1.595 Downgradient Yes 0.345 NO -1.064 Downgradient Yes 0.525 NO -0.644 Sidegradient Yes 0.277 NO -1.309 Downgradient Yes 0.534 NO -0.627 Downgradient Yes 0.569 NO -0.564		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 27.638	S= 4.743	CV(1)= 0.172	K factor**= 2.523	TL(1)= 39.604	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.304	S = 0.183	CV(2) =0.055	K factor**= 2.523	TL(2)= 3.765	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/14/2002	23.6	3.161					
1/15/2003	25.9	3.254					
4/10/2003	30.4	3.414					
7/14/2003	33.9	3.523					
10/13/2003	21.3	3.059					
1/13/2004	20.3	3.011					
4/13/2004	23.8	3.170					
7/21/2004	19	2.944					
Well Number:	MW394						
Date Collected	Result	LN(Result)					
8/13/2002	29.5	3.384					
9/16/2002	29.9	3.398					
10/16/2002	31.2	3.440					
1/13/2003	30.7	3.424					
4/10/2003	34.4	3.538					
7/16/2003	29.6	3.388					
10/14/2003	30.3	3.411					

28.4

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	20.1	NO	3.001	N/A	
MW221	Sidegradient	Yes	20.7	NO	3.030	N/A	
MW222	Sidegradient	Yes	12.1	NO	2.493	N/A	
MW223	Sidegradient	Yes	19.5	NO	2.970	N/A	
MW224	Sidegradient	Yes	15.2	NO	2.721	N/A	
MW369	Downgradien	t Yes	16	NO	2.773	N/A	
MW372	Downgradien	t Yes	60.6	YES	4.104	N/A	
MW384	Sidegradient	Yes	24	NO	3.178	N/A	
MW387	Downgradien	t Yes	42	YES	3.738	N/A	
MW391	Downgradien	t Yes	25.6	NO	3.243	N/A	
MW394	Upgradient	Yes	26.9	NO	3.292	N/A	
N/A - Resu	Its identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.346

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 35.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.555	S= 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= 3.555	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/14/2002	35	3.555					
1/15/2003	35	3.555					
4/10/2003	35	3.555					
7/14/2003	35	3.555					
10/13/2003	35	3.555					
1/13/2004	35	3.555					
4/13/2004	35	3.555					
7/21/2004	35	3.555					
Well Number:	MW394						
Date Collected	Result	LN(Result)					
8/13/2002	35	3.555					
9/16/2002	35	3.555					
10/16/2002	35	3.555					
1/13/2003	35	3.555					
4/10/2003	35	3.555					
7/16/2003	35	3.555					

10/14/2003

1/13/2004

35

35

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	20	N/A	2.996	N/A
MW221	Sidegradient	No	20	N/A	2.996	N/A
MW222	Sidegradient	No	20	N/A	2.996	N/A
MW223	Sidegradient	Yes	11.3	NO	2.425	N/A
MW224	Sidegradient	No	20	N/A	2.996	N/A
MW369	Downgradien	t No	20	N/A	2.996	N/A
MW372	Downgradien	t No	20	N/A	2.996	N/A
MW384	Sidegradient	No	20	N/A	2.996	N/A
MW387	Downgradien	t No	20	N/A	2.996	N/A
MW391	Downgradien	t No	20	N/A	2.996	N/A
MW394	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

3.555

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 49.044	S= 11.278	CV(1)= 0.230	K factor**= 2.523	TL(1)= 77.499	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.866	S = 0.244	CV(2) =0.063	K factor**= 2.523	TL(2)= 4.482	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
MW220							
Result	LN(Result)						
44.6	3.798						
43.2	3.766						
31.5	3.450						
30.8	3.428						
40.9	3.711						
40.8	3.709						
	MW220 Result 44.6 43.2 31.5 30.8 40.9						

7/21/2004	40.8	3.709	
Well Number:	MW394		
Date Collected	Result	LN(Result)	
8/13/2002	60.4	4.101	
9/16/2002	60.3	4.099	
10/16/2002	58	4.060	
1/13/2003	60.7	4.106	
4/10/2003	62.9	4.142	
7/16/2003	58.1	4.062	
10/14/2003	58.2	4.064	
1/13/2004	56	4.025	

37.5

4/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	18.2	NO	2.901	N/A	
MW221	Sidegradient	Yes	35.7	NO	3.575	N/A	
MW222	Sidegradient	Yes	27.7	NO	3.321	N/A	
MW223	Sidegradient	Yes	28	NO	3.332	N/A	
MW224	Sidegradient	Yes	11.5	NO	2.442	N/A	
MW369	Downgradien	t Yes	28.7	NO	3.357	N/A	
MW372	Downgradien	t Yes	41.1	NO	3.716	N/A	
MW384	Sidegradient	Yes	22.9	NO	3.131	N/A	
MW387	Downgradien	t Yes	38	NO	3.638	N/A	
MW391	Downgradien	t Yes	44.4	NO	3.793	N/A	
MW394	Upgradient	Yes	46.1	NO	3.831	N/A	
N/A Pecu	Its identified as N	Ion Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.624

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.016	S= 0.040	CV(1)= 2.440	K factor**= 2.523	TL(1)= 0.116	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.582	S = 1.573	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.613	LL(2)= N/A

	kground Data from fells with Transformed Result
W-11 March and	MW220

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0041	-5.497
1/15/2003	0.00496	-5.306
4/10/2003	0.00289	-5.846
7/14/2003	0.161	-1.826
10/13/2003	0.0226	-3.790
1/13/2004	0.00464	-5.373
4/13/2004	0.001	-6.908
7/21/2004	0.00264	-5.937
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00052	4 N/A	-7.554	NO
MW221	Sidegradient	No	0.001	N/A	-6.908	N/A
MW222	Sidegradient	Yes	0.00314	N/A	-5.764	NO
MW223	Sidegradient	Yes	0.00043	8 N/A	-7.733	NO
MW224	Sidegradient	No	0.001	N/A	-6.908	N/A
MW369	Downgradien	t Yes	0.00441	N/A	-5.424	NO
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	No	0.001	N/A	-6.908	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 382.132 S = 107.134 CV(1) =0.280	K factor**= 2.523	TL(1)= 652.432 LL(1)=N/A
Statistics-Transformed Background Data	X = 5.716 S = 1.164 CV(2) =0.204	K factor**= 2.523	TL(2)= 8.652 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Date Collected	Result	LN(Result)		
10/14/2002	368	5.908		
1/15/2003	433.2	6.071		
4/10/2003	489	6.192		
7/14/2003	430	6.064		
10/13/2003	346	5.846		
1/13/2004	365	5.900		
4/13/2004	416	6.031		
7/21/2004	353	5.866		
Well Number:	MW394			
Date Collected	Result	LN(Result)		
8/13/2002	406	6.006		
9/16/2002	418	6.035		

411

422

420

438

3.91

395

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	334	NO	5.811	N/A
MW221	Sidegradient	Yes	396	NO	5.981	N/A
MW222	Sidegradient	Yes	290	NO	5.670	N/A
MW223	Sidegradient	Yes	366	NO	5.903	N/A
MW224	Sidegradient	Yes	321	NO	5.771	N/A
MW369	Downgradien	t Yes	359	NO	5.883	N/A
MW372	Downgradien	t Yes	754	YES	6.625	N/A
MW384	Sidegradient	Yes	497	NO	6.209	N/A
MW387	Downgradien	t Yes	550	NO	6.310	N/A
MW391	Downgradien	t Yes	516	NO	6.246	N/A
MW394	Upgradient	Yes	404	NO	6.001	N/A
N/4 - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

6.019

6.045

6.040

6.082

1.364

5.979

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.010	CV(1)= 0.429	K factor**= 2.523	TL(1)= 0.050	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.794	S = 0.312	CV(2) =-0.082	K factor**= 2.523	TL(2)= -3.007	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	0.0211	-3.858			
1/15/2003	0.02	-3.912			
4/10/2003	0.02	-3.912			
7/14/2003	0.02	-3.912			
10/13/2003	0.02	-3.912			
1/13/2004	0.02	-3.912			
4/13/2004	0.02	-3.912			
7/21/2004	0.02	-3.912			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	0.05	-2.996			
9/16/2002	0.05	-2.996			
10/16/2002	0.02	-3.912			
1/13/2003	0.02	-3.912			
4/10/2003	0.02	-3.912			
7/16/2003	0.02	-3.912			
10/14/2003	0.02	-3.912			

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	~ *	D 10	D 1	D 1 77 (1) 0		
Well No.	Gradient	Detected?	Result	Result \geq TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00153	NO	-6.482	N/A
MW221	Sidegradient	Yes	0.00116	NO	-6.759	N/A
MW222	Sidegradient	Yes	0.00073	9 NO	-7.210	N/A
MW223	Sidegradient	Yes	0.00105	NO	-6.859	N/A
MW224	Sidegradient	Yes	0.00044	9 NO	-7.708	N/A
MW369	Downgradien	t Yes	0.00136	NO	-6.600	N/A
MW372	Downgradien	t No	0.002	N/A	-6.215	N/A
MW384	Sidegradient	No	0.00045	1 N/A	-7.704	N/A
MW387	Downgradien	t No	0.00050	8 N/A	-7.585	N/A
MW391	Downgradien	t No	0.002	N/A	-6.215	N/A
MW394	Upgradient	Yes	0.00106	NO	-6.849	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.784	S= 1.887	CV(1)= 0.499	K factor**= 2.523	TL(1)= 8.545	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.182	S = 0.612	CV(2)= 0.518	K factor**= 2.523	TL(2)= 2.727	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	6.79	1.915			
1/15/2003	7.25	1.981			
4/10/2003	3.6	1.281			
7/14/2003	0.94	-0.062			
10/13/2003	1.65	0.501			
1/13/2004	3.48	1.247			
4/13/2004	1.05	0.049			
7/21/2004	4.46	1.495			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	6.09	1.807			
9/16/2002	3.85	1.348			
10/16/2002	5.11	1.631			
1/13/2003	3.83	1.343			
4/10/2003	4.15	1.423			
7/16/2003	1.83	0.604			
10/14/2003	3.33	1.203			

3.14

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	5.9	NO	1.775	N/A
MW221	Sidegradient	Yes	5.23	NO	1.654	N/A
MW222	Sidegradient	Yes	2.63	NO	0.967	N/A
MW223	Sidegradient	Yes	3.42	NO	1.230	N/A
MW224	Sidegradient	Yes	2.92	NO	1.072	N/A
MW369	Downgradien	t Yes	2.76	NO	1.015	N/A
MW372	Downgradien	t Yes	2.23	NO	0.802	N/A
MW384	Sidegradient	Yes	2.76	NO	1.015	N/A
MW387	Downgradien	t Yes	5.12	NO	1.633	N/A
MW391	Downgradien	t Yes	4.92	NO	1.593	N/A
MW394	Upgradient	Yes	5.1	NO	1.629	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.144

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 232.68	8 S= 27.490	CV(1)= 0.118	K factor**= 2.523	TL(1)= 302.045	LL(1)=N/A
Statistics-Transformed Background	X= 5.443	S= 0.118	CV(2)= 0.022	K factor**= 2.523	TL(2)= 5.740	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW220	
Data Callestad	D14	I N(D14)

Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.509
Date Collected	Result	()
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 247 259 201 228 249 240	5.509 5.557 5.303 5.429 5.517 5.481

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	172	NO	5.147	N/A
MW221	Sidegradient	Yes	191	NO	5.252	N/A
MW222	Sidegradient	Yes	164	NO	5.100	N/A
MW223	Sidegradient	Yes	194	NO	5.268	N/A
MW224	Sidegradient	Yes	202	NO	5.308	N/A
MW369	Downgradien	t Yes	186	NO	5.226	N/A
MW372	Downgradien	t Yes	428	YES	6.059	N/A
MW384	Sidegradient	Yes	196	NO	5.278	N/A
MW387	Downgradien	t Yes	299	NO	5.700	N/A
MW391	Downgradien	t Yes	175	NO	5.165	N/A
MW394	Upgradient	Yes	184	NO	5.215	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.897	S= 1.050	CV(1)= 1.170	K factor**= 2.523	TL(1)= 3.545	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.565	S = 0.951	CV(2) =-1.683	K factor**= 2.523	TL(2)= 1.834	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW220

Wall Number

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.429	-0.846
7/14/2003	4.33	1.466
10/13/2003	1.81	0.593
1/13/2004	0.793	-0.232
4/13/2004	0.13	-2.040
7/21/2004	0.382	-0.962
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.293
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 1.34	0.293
Date Collected 8/13/2002 9/16/2002	Result 1.34 0.328	0.293 -1.115
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.34 0.328 1.38	0.293 -1.115 0.322
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.34 0.328 1.38 1.3	0.293 -1.115 0.322 0.262
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.34 0.328 1.38 1.3 0.494	0.293 -1.115 0.322 0.262 -0.705
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.34 0.328 1.38 1.3 0.494 0.62	0.293 -1.115 0.322 0.262 -0.705 -0.478

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.161	N/A	-1.826	NO
MW221	Sidegradient	No	0.1	N/A	-2.303	N/A
MW222	Sidegradient	Yes	0.326	N/A	-1.121	NO
MW223	Sidegradient	No	0.1	N/A	-2.303	N/A
MW224	Sidegradient	Yes	0.0685	N/A	-2.681	NO
MW369	Downgradien	t Yes	0.191	N/A	-1.655	NO
MW372	Downgradien	t No	0.1	N/A	-2.303	N/A
MW384	Sidegradient	No	0.1	N/A	-2.303	N/A
MW387	Downgradien	t Yes	0.0479	N/A	-3.039	NO
MW391	Downgradien	t Yes	0.0476	N/A	-3.045	NO
MW394	Upgradient	Yes	0.0422	N/A	-3.165	NO
N/A - Resu	Its identified as N	Ion Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.796 S = 1.703	CV(1)= 0.158	K factor**= 2.523	TL(1)= 15.092	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.368 S = 0.158	CV(2)= 0.067	K factor**= 2.523	TL(2)= 2.766	LL(2)=N/A

Historical Bac Upgradient W		a from insformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	9.16	2.215
1/15/2003	10	2.303
4/10/2003	10.8	2.380
7/14/2003	14.7	2.688
10/13/2003	9.03	2.201
1/13/2004	8.49	2.139
4/13/2004	9.7	2.272
7/21/2004	8.06	2.087
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	11.8	2.468
9/16/2002	12.1	2.493
10/16/2002	11.3	2.425
1/13/2003	10.3	2.332
4/10/2003	11.7	2.460

12

12.2

11.4

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	8.28	NO	2.114	N/A
Sidegradient	Yes	9.11	NO	2.209	N/A
Sidegradient	Yes	5.47	NO	1.699	N/A
Sidegradient	Yes	7.79	NO	2.053	N/A
Sidegradient	Yes	6.58	NO	1.884	N/A
Downgradien	t Yes	6.56	NO	1.881	N/A
Downgradien	t Yes	21.9	YES	3.086	N/A
Sidegradient	Yes	10.1	NO	2.313	N/A
Downgradien	t Yes	18.3	YES	2.907	N/A
Downgradien	t Yes	10.8	NO	2.380	N/A
Upgradient	Yes	11.4	NO	2.434	N/A
	Upgradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient Downgradient Upgradient	UpgradientYesSidegradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYes	UpgradientYes8.28SidegradientYes9.11SidegradientYes5.47SidegradientYes7.79SidegradientYes6.58DowngradientYes6.56DowngradientYes21.9SidegradientYes10.1DowngradientYes18.3DowngradientYes10.8UpgradientYes11.4	UpgradientYes8.28NOSidegradientYes9.11NOSidegradientYes5.47NOSidegradientYes7.79NOSidegradientYes6.58NODowngradientYes6.56NODowngradientYes21.9YESSidegradientYes10.1NODowngradientYes18.3YESDowngradientYes10.8NOUpgradientYes11.4NO	UpgradientYes8.28NO2.114SidegradientYes9.11NO2.209SidegradientYes5.47NO1.699SidegradientYes7.79NO2.053SidegradientYes6.58NO1.884DowngradientYes6.56NO1.881DowngradientYes21.9YES3.086SidegradientYes10.1NO2.313DowngradientYes18.3YES2.907DowngradientYes10.8NO2.380

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.485

2.501

2.434

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

Wells with Exceedances MW372 MW387

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.287	S= 0.619	CV(1)= 2.156	K factor**= 2.523	TL(1)= 1.848	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.455	S= 1.619	CV(2) =-0.659	K factor**= 2.523	TL(2)= 1.630	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0306	-3.487
1/15/2003	0.0291	-3.537
4/10/2003	0.0137	-4.290
7/14/2003	2.54	0.932
10/13/2003	0.378	-0.973
1/13/2004	0.159	-1.839
4/13/2004	0.00707	-4.952
7/21/2004	0.0841	-2.476
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	0.542	-0.612
9/16/2002	0.155	-1.864
10/16/2002	0.103	-2.273
1/13/2003	0.128	-2.056
4/10/2003	0.005	-5.298
7/16/2003	0.272	-1.302
10/14/2003	0.0795	-2.532

0.0658

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00753	N/A	-4.889	NO
MW221	Sidegradient	No	0.005	N/A	-5.298	N/A
MW222	Sidegradient	Yes	0.023	N/A	-3.772	NO
MW223	Sidegradient	Yes	0.00101	N/A	-6.898	NO
MW224	Sidegradient	Yes	0.00241	N/A	-6.028	NO
MW369	Downgradien	t Yes	0.0133	N/A	-4.320	NO
MW372	Downgradien	t No	0.005	N/A	-5.298	N/A
MW384	Sidegradient	Yes	0.00208	N/A	-6.175	NO
MW387	Downgradien	t Yes	0.00326	N/A	-5.726	NO
MW391	Downgradien	t No	0.005	N/A	-5.298	N/A
MW394	Upgradient	Yes	0.00105	N/A	-6.859	NO
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.721

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.813	S= 0.750	CV(1)= 0.156	K factor**= 2.523	TL(1)= 6.705	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.552	S = 0.229	CV(2)= 0.148	K factor**= 2.523	TL(2)= 2.130	LL(2)= N/A

Upgradient Wells with Transformed Result	Historical Background Data from
	Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	5	1.609
1/15/2003	5	1.609
4/10/2003	5	1.609
7/14/2003	5	1.609
10/13/2003	5	1.609
1/13/2004	5	1.609
4/13/2004	5	1.609
7/21/2004	5	1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 2	1.609 0.693
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5 2 5	1.609 0.693 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5 2 5 5 5	1.609 0.693 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5 2 5 5 5 5	1.609 0.693 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5 2 5 5 5 5 5	1.609 0.693 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.54	NO	-0.616	N/A	
MW221	Sidegradient	Yes	0.55	NO	-0.598	N/A	
MW222	Sidegradient	Yes	0.53	NO	-0.635	N/A	
MW223	Sidegradient	Yes	0.54	NO	-0.616	N/A	
MW224	Sidegradient	Yes	0.54	NO	-0.616	N/A	
MW369	Downgradien	t Yes	0.53	NO	-0.635	N/A	
MW372	Downgradien	t No	5	N/A	1.609	N/A	
MW384	Sidegradient	Yes	0.89	NO	-0.117	N/A	
MW387	Downgradien	t Yes	0.9	NO	-0.105	N/A	
MW391	Downgradien	t No	5	N/A	1.609	N/A	
MW394	Upgradient	No	5	N/A	1.609	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.006	S= 0.008	CV(1)= 1.261	K factor**= 2.523	TL(1)= 0.026	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.747	S = 1.205	CV(2) =-0.210	K factor**= 2.523	TL(2)= -2.708	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Date Collected	Result	LN(Result)		
10/14/2002	0.00558	-5.189		
1/15/2003	0.00983	-4.622		
4/10/2003	0.0109	-4.519		
7/14/2003	0.00245	-6.012		
10/13/2003	0.00566	-5.174		
1/13/2004	0.00572	-5.164		
4/13/2004	0.001	-6.908		
7/21/2004	0.00392	-5.542		
Well Number:	MW394			
Date Collected	Result	LN(Result)		
8/13/2002	0.025	-3.689		
9/16/2002	0.025	-3.689		
10/16/2002	0.001	-6.908		
1/13/2003	0.001	-6.908		
4/10/2003	0.001	-6.908		
7/16/2003	0.001	-6.908		

0.001

0.001

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00071	N/A	-7.250	NO	
MW221	Sidegradient	Yes	0.00229	N/A	-6.079	NO	
MW222	Sidegradient	Yes	0.00092	N/A	-6.991	NO	
MW223	Sidegradient	Yes	0.00529	N/A	-5.242	NO	
MW224	Sidegradient	Yes	0.00060	6 N/A	-7.409	NO	
MW369	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW394	Upgradient	No	0.001	N/A	-6.908	N/A	
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratorv analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-6.908

-6.908

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.127	S = 0.228	CV(1)= 1.790	K factor**= 2.523	TL(1)= 0.701	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.617	S= 1.837	CV(2) =-0.508	K factor**= 2.523	TL(2)= 1.019	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	0.418	-0.872			

-0.304

-0.609

-2.244

-2.939

-3.868

-5.298

-3.953

-2.996

-2.996

-5.298

-5.298

-5.298

-5.298

-5.298

-5.298

LN(Result)

0.738

0.544

0.106

0.0529

0.0209

0.005

0.0192

MW394

Result

0.05

0.05

0.005

0.005

0.005

0.005

0.005

0.005

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00991	N/A	-4.614	NO
MW221	Sidegradient	Yes	0.0105	N/A	-4.556	NO
MW222	Sidegradient	Yes	0.0224	N/A	-3.799	NO
MW223	Sidegradient	Yes	0.0427	N/A	-3.154	NO
MW224	Sidegradient	Yes	0.00722	N/A	-4.931	NO
MW369	Downgradient	t Yes	0.00278	N/A	-5.885	NO
MW372	Downgradient	t Yes	0.00104	N/A	-6.869	NO
MW384	Sidegradient	Yes	0.00102	N/A	-6.888	NO
MW387	Downgradient	t Yes	0.00060	7 N/A	-7.407	NO
MW391	Downgradient	t No	0.002	N/A	-6.215	N/A
MW394	Upgradient	Yes	0.00464	N/A	-5.373	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 179.87	2 S = 86.318	CV(1)= 0.480	K factor**= 2.523	TL(1)= 397.652	LL(1)=N/A
Statistics-Transformed Background Data	X= 4.861	S= 1.252	CV(2)= 0.258	K factor**= 2.523	TL(2)= 8.021	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	366	NO	5.903	N/A	
MW221	Sidegradient	Yes	421	YES	6.043	N/A	
MW222	Sidegradient	Yes	356	NO	5.875	N/A	
MW223	Sidegradient	Yes	374	NO	5.924	N/A	
MW224	Sidegradient	Yes	366	NO	5.903	N/A	
MW369	Downgradien	t Yes	480	YES	6.174	N/A	
MW372	Downgradien	t Yes	403	YES	5.999	N/A	
MW384	Sidegradient	Yes	361	NO	5.889	N/A	
MW387	Downgradien	t Yes	417.5	YES	6.034	N/A	
MW391	Downgradien	t Yes	328	NO	5.793	N/A	
MW394	Upgradient	Yes	469	YES	6.151	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances			
MW221			
MW369			
MW372			
MW387			
MW394			

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.138	S= 0.282	CV(1)= 0.046	K factor**= 2.904	TL(1)= 6.957	LL(1)=5.3179
Statistics-Transformed Background Data	X= 1.813	S = 0.047	CV(2)= 0.026	K factor**= 2.904	TL(2)= 1.950	LL(2)=1.6765

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.04	1.798
1/15/2003	6.31	1.842
4/10/2003	6.5	1.872
7/14/2003	6.3	1.841
10/13/2003	6.34	1.847
1/13/2004	6.33	1.845
4/13/2004	6.3	1.841
7/21/2004	5.9	1.775
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	5.8	1.758
9/30/2002	5.93	1.780
10/16/2002	5.42	1.690
1/13/2003	6	1.792
4/10/2003	6.04	1.798
7/16/2003	6.2	1.825
10/14/2003	6.4	1.856
1/13/2004	6.39	1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.12	NO	1.812	N/A
MW221	Sidegradient	Yes	6.08	NO	1.805	N/A
MW222	Sidegradient	Yes	6.12	NO	1.812	N/A
MW223	Sidegradient	Yes	6.16	NO	1.818	N/A
MW224	Sidegradient	Yes	6.17	NO	1.820	N/A
MW369	Downgradien	t Yes	6.09	NO	1.807	N/A
MW372	Downgradien	t Yes	6.15	NO	1.816	N/A
MW384	Sidegradient	Yes	6.17	NO	1.820	N/A
MW387	Downgradien	t Yes	6.29	NO	1.839	N/A
MW391	Downgradien	t Yes	6.18	NO	1.821	N/A
MW394	Upgradient	Yes	6	NO	1.792	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.654	S= 9.310	CV(1)= 1.399	K factor**= 2.523	TL(1)= 30.144	LL(1)= N/A
Statistics-Transformed Background	X= 1.130	S= 1.208	CV(2)= 1.069	K factor**= 2.523	TL(2)= 4.178	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	6.7	1.902			
1/15/2003	29.7	3.391			
4/10/2003	24.9	3.215			
7/14/2003	1.13	0.122			
10/13/2003	3.43	1.233			
1/13/2004	6.71	1.904			
4/13/2004	19.3	2.960			
7/21/2004	3.97	1.379			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	2	0.693			
9/16/2002	2	0.693			
10/16/2002	1.03	0.030			
1/13/2003	1.1	0.095			
4/10/2003	1.24	0.215			

1.14

1.05

1.07

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

a 1' .		Current Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Upgradient	Yes	3.6	N/A	1.281	NO		
Sidegradient	Yes	2.39	N/A	0.871	NO		
Sidegradient	Yes	0.428	N/A	-0.849	NO		
Sidegradient	Yes	2.02	N/A	0.703	NO		
Sidegradient	Yes	0.845	N/A	-0.168	NO		
Downgradient	t Yes	0.577	N/A	-0.550	NO		
Downgradient	t Yes	2.1	N/A	0.742	NO		
Sidegradient	Yes	1.4	N/A	0.336	NO		
Downgradient	t Yes	1.89	N/A	0.637	NO		
Downgradient	t Yes	1.51	N/A	0.412	NO		
Upgradient	Yes	1.35	N/A	0.300	NO		
	Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradient Downgradient Downgradient Downgradient Upgradient	UpgradientYesSidegradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYes	UpgradientYes3.6SidegradientYes2.39SidegradientYes0.428SidegradientYes2.02SidegradientYes0.845DowngradientYes0.577DowngradientYes2.1SidegradientYes1.4DowngradientYes1.89DowngradientYes1.51UpgradientYes1.35	UpgradientYes3.6N/ASidegradientYes2.39N/ASidegradientYes0.428N/ASidegradientYes2.02N/ASidegradientYes0.845N/ADowngradientYes0.577N/ADowngradientYes2.1N/ASidegradientYes1.4N/ADowngradientYes1.89N/ADowngradientYes1.51N/A	UpgradientYes3.6N/A1.281SidegradientYes2.39N/A0.871SidegradientYes0.428N/A-0.849SidegradientYes2.02N/A0.703SidegradientYes0.845N/A-0.168DowngradientYes0.577N/A-0.550DowngradientYes2.1N/A0.742SidegradientYes1.4N/A0.336DowngradientYes1.89N/A0.637DowngradientYes1.51N/A0.412		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.131

0.049

0.068

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =36.363 S =	8.666	CV(1)= 0.238	K factor**= 2.523	TL(1)= 58.227	LL(1)=N/A
Statistics-Transformed Background Data	X =3.570 S =	0.222	CV(2) =0.062	K factor**= 2.523	TL(2)= 4.129	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	35.4	3.567				
1/15/2003	40.6	3.704				
4/10/2003	51	3.932				
7/14/2003	58.2	4.064				
10/13/2003	38.1	3.640				
1/13/2004	37	3.611				
4/13/2004	43.2	3.766				
7/21/2004	33.8	3.520				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	32.9	3.493				
9/16/2002	29.9	3.398				

29

27.1

24.8

35.6

33.9

31.3

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	37.7	NO	3.630	N/A
MW221	Sidegradient	Yes	48.5	NO	3.882	N/A
MW222	Sidegradient	Yes	40	NO	3.689	N/A
MW223	Sidegradient	Yes	45.3	NO	3.813	N/A
MW224	Sidegradient	Yes	47	NO	3.850	N/A
MW369	Downgradien	t Yes	50.6	NO	3.924	N/A
MW372	Downgradien	t Yes	54.9	NO	4.006	N/A
MW384	Sidegradient	Yes	46.4	NO	3.837	N/A
MW387	Downgradien	t Yes	50.1	NO	3.914	N/A
MW391	Downgradien	t Yes	32.9	NO	3.493	N/A
MW394	Upgradient	Yes	34	NO	3.526	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.367

3.300

3.211

3.572

3.523

3.444

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.481	S= 2.648	CV(1)= 0.253	K factor**= 2.523	TL(1)= 17.161	LL(1)= N/A
Statistics-Transformed Background	X= 2.322	S = 0.239	CV(2)= 0.103	K factor**= 2.523	TL(2)= 2.925	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Date Collected	Result	LN(Result)		
10/14/2002	10.4	2.342		
1/15/2003	9.8	2.282		
4/10/2003	15.4	2.734		
7/14/2003	14.9	2.701		

13.5

10.3

14.3

10.5

MW394

Result

11.2

8.3

8.5

7.9

8.4

8.2

8.1

8

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	16.4	NO	2.797	N/A
MW221	Sidegradient	Yes	14.7	NO	2.688	N/A
MW222	Sidegradient	Yes	10.9	NO	2.389	N/A
MW223	Sidegradient	Yes	11	NO	2.398	N/A
MW224	Sidegradient	Yes	6.74	NO	1.908	N/A
MW369	Downgradien	t Yes	7.93	NO	2.071	N/A
MW372	Downgradien	t Yes	135	YES	4.905	N/A
MW384	Sidegradient	Yes	18.9	YES	2.939	N/A
MW387	Downgradien	t Yes	27.7	YES	3.321	N/A
MW391	Downgradien	t Yes	12.3	NO	2.510	N/A
MW394	Upgradient	Yes	12.1	NO	2.493	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.603

2.332

2.660

2.351

2.416

2.116

2.079

2.140

2.067

2.128

2.104

2.092

LN(Result)

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with	Exceedances
MW372	
MW384	
MW387	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.354	S= 9.280	CV(1)= 0.992	K factor**= 2.523	TL(1)= 32.8	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.270	S = 0.849	CV(2)= 0.374	K factor**= 2.523	TL(2)= 3.262	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	19.7	2.981				
1/15/2003	26.1	3.262				
4/10/2003	3.56	1.270				
7/14/2003	0	#Func!				
10/13/2003	21	3.045				
1/13/2004	6.32	1.844				
4/13/2004	3	1.099				
7/21/2004	14.6	2.681				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	14	2.639				
9/16/2002	5.45	1.696				
10/16/2002	2.49	0.912				
1/13/2003	18.3	2.907				
4/10/2003	-1.45	#Func!				
7/16/2003	-1.71	#Func!				
10/14/2003	18.3	2.907				
1/13/2004	0	#Func!				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	14.2	N/A	2.653	N/A
MW221	Sidegradient	No	6.8	N/A	1.917	N/A
MW222	Sidegradient	No	-4.66	N/A	#Error	N/A
MW223	Sidegradient	No	-2.04	N/A	#Error	N/A
MW224	Sidegradient	No	-2.52	N/A	#Error	N/A
MW369	Downgradien	t Yes	61.6	YES	4.121	N/A
MW372	Downgradien	t Yes	85.4	YES	4.447	N/A
MW384	Sidegradient	Yes	32.8	NO	3.490	N/A
MW387	Downgradien	t Yes	45.9	YES	3.826	N/A
MW391	Downgradien	t No	-2.57	N/A	#Error	N/A
MW394	Upgradient	No	1.64	N/A	0.495	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances					
MW369					
MW372					
MW387					

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis **Historical Background Comparison UNITS: mg/L** Total Organic Carbon (TOC) URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	-	5	e e			
Statistics-Background Data	X= 1.494	S = 0.737	CV(1)= 0.493	K factor**= 2.523	TL(1)= 3.353	LL(1)=N/A
Statistics-Transformed Background Data	X = 0.315	S = 0.402	CV(2)= 1.279	K factor**= 2.523	TL(2)= 1.330	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.262
Date Collected	Result	
Date Collected 8/13/2002	Result 1.3	0.262
Date Collected 8/13/2002 9/16/2002	Result 1.3 1	0.262 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.3 1 1	0.262 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.3 1 1 1.6	0.262 0.000 0.000 0.470
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.3 1 1.6 1	0.262 0.000 0.000 0.470 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.712	NO	-0.340	N/A
MW221	Sidegradient	Yes	0.52	NO	-0.654	N/A
MW222	Sidegradient	Yes	0.44	NO	-0.821	N/A
MW223	Sidegradient	Yes	0.578	NO	-0.548	N/A
MW224	Sidegradient	Yes	0.587	NO	-0.533	N/A
MW369	Downgradien	t Yes	0.792	NO	-0.233	N/A
MW372	Downgradien	t Yes	0.745	NO	-0.294	N/A
MW384	Sidegradient	Yes	0.79	NO	-0.236	N/A
MW387	Downgradien	t Yes	0.759	NO	-0.276	N/A
MW391	Downgradien	t Yes	0.78	NO	-0.248	N/A
MW394	Upgradient	Yes	0.546	NO	-0.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 63.475	S= 16	53.135	CV(1)= 2.570	K factor**= 2.523	TL(1)= 475.063	LL(1)=N/A
Statistics-Transformed Background	X= 3.103	S= 1.1	145	CV(2)= 0.369	K factor**= 2.523	TL(2)= 5.992	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	50	3.912			
1/15/2003	10	2.303			
4/10/2003	10	2.303			
7/14/2003	10	2.303			
10/13/2003	10	2.303			
1/13/2004	10	2.303			
4/13/2004	10	2.303			
7/21/2004	10	2.303			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	50	3.912			
9/16/2002	672	6.510			
10/16/2002	50	3.912			

36.1

10

22

42.7

12.8

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	12.3	N/A	2.510	NO	
MW221	Sidegradient	Yes	9.52	N/A	2.253	NO	
MW222	Sidegradient	Yes	4.22	N/A	1.440	NO	
MW223	Sidegradient	Yes	7.44	N/A	2.007	NO	
MW224	Sidegradient	Yes	5.3	N/A	1.668	NO	
MW369	Downgradien	t Yes	15.2	N/A	2.721	NO	
MW372	Downgradien	t Yes	16.7	N/A	2.815	NO	
MW384	Sidegradient	Yes	8.96	N/A	2.193	NO	
MW387	Downgradien	t Yes	33.5	N/A	3.512	NO	
MW391	Downgradien	t Yes	10.9	N/A	2.389	NO	
MW394	Upgradient	Yes	15.2	N/A	2.721	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.586

2.303

3.754

3.091

2.549

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 8.813	S = 8.376	CV(1)= 0.951	K factor**= 2.523	TL(1)= 29.946	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.395	S = 1.449	CV(2)= 1.039	K factor**= 2.523	TL(2)= 5.052	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1 111/000

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.773
Date Collected	Result	()
Date Collected 8/13/2002	Result 16	2.773
Date Collected 8/13/2002 9/30/2002	Result 16 20	2.773 2.996
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 16 20 17	2.773 2.996 2.833
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 16 20 17 15	2.773 2.996 2.833 2.708
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 16 20 17 15 10	2.773 2.996 2.833 2.708 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 16 20 17 15 10 19	2.773 2.996 2.833 2.708 2.303 2.944

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	1.26	N/A	0.231	N/A	
MW221	Sidegradient	Yes	2.69	N/A	0.990	N/A	
MW222	Sidegradient	Yes	0.9	N/A	-0.105	N/A	
MW223	Sidegradient	Yes	2.42	N/A	0.884	N/A	
MW224	Sidegradient	Yes	1.41	N/A	0.344	N/A	
MW369	Downgradien	t Yes	5.84	NO	1.765	N/A	
MW372	Downgradien	t Yes	5.24	NO	1.656	N/A	
MW384	Sidegradient	Yes	1.43	N/A	0.358	N/A	
MW387	Downgradien	t Yes	1.61	N/A	0.476	N/A	
MW391	Downgradien	t Yes	2.87	N/A	1.054	N/A	
MW394	Upgradient	Yes	6.13	NO	1.813	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.036	S= 0.026	CV(1)= 0.722	K factor**= 2.523	TL(1)= 0.101	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.485	S = 0.525	CV(2) =-0.151	K factor**= 2.523	TL(2)= -2.162	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/14/2002	0.025	-3.689					
1/15/2003	0.035	-3.352					
4/10/2003	0.035	-3.352					
7/14/2003	0.0389	-3.247					
10/13/2003	0.026	-3.650					
1/13/2004	0.02	-3.912					
4/13/2004	0.02	-3.912					
7/21/2004	0.02	-3.912					
Well Number:	MW394						
Date Collected	Result	LN(Result)					
8/13/2002	0.1	-2.303					
9/16/2002	0.1	-2.303					
10/16/2002	0.025	-3.689					
1/13/2003	0.035	-3.352					
4/10/2003	0.035	-3.352					
7/16/2003	0.02	-3.912					

0.02

0.02

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.00334	NO	-5.702	N/A		
MW221	Sidegradient	No	0.02	N/A	-3.912	N/A		
MW222	Sidegradient	No	0.02	N/A	-3.912	N/A		
MW223	Sidegradient	No	0.02	N/A	-3.912	N/A		
MW224	Sidegradient	No	0.02	N/A	-3.912	N/A		
MW369	Downgradien	t Yes	0.00342	NO	-5.678	N/A		
MW372	Downgradien	t No	0.02	N/A	-3.912	N/A		
MW384	Sidegradient	No	0.02	N/A	-3.912	N/A		
MW387	Downgradien	t No	0.02	N/A	-3.912	N/A		
MW391	Downgradien	t No	0.02	N/A	-3.912	N/A		
MW394	Upgradient	No	0.02	N/A	-3.912	N/A		
N/A = Result	lts identified as N	Jon-Detects	during lah	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.258	S= 0.221	CV(1)= 0.856	K factor**= 2.523	TL(1)= 0.815	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.266	S= 2.485	CV(2) =-1.097	K factor**= 2.523	TL(2)= 4.003	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	0.2	-1.609						
9/16/2002	0.2	-1.609						
10/16/2002	0.0002	-8.517						
1/13/2003	0.737	-0.305						
4/10/2003	0.2	-1.609						
7/16/2003	0.2	-1.609						

0.2

0.2

MW397

Result

0.824

0.0002

0.363

0.2

0.2

0.2

0.2

0.2

10/14/2003 1/13/2004

Well Number:

Date Collected

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	No	0.05	N/A	-2.996	N/A		
MW373	Downgradient	No	0.05	N/A	-2.996	N/A		
MW385	Sidegradient	Yes	0.0308	NO	-3.480	N/A		
MW388	Downgradient	No	0.05	N/A	-2.996	N/A		
MW392	Downgradient	Yes	0.0403	NO	-3.211	N/A		
MW395	Upgradient	No	0.05	N/A	-2.996	N/A		
MW397	Upgradient	Yes	0.0241	NO	-3.726	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

-1.609

-0.194

-1.609

-8.517

-1.013

-1.609

-1.609

-1.609

-1.609

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.034	S = 1.030	CV(2) =-0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				

Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.693
Date Collected	Result	()
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 2. 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.243	N/A	-1.415	NO
MW373	Downgradien	t Yes	1.71	N/A	0.536	NO
MW385	Sidegradient	Yes	0.0192	N/A	-3.953	NO
MW388	Downgradien	t Yes	0.0296	N/A	-3.520	NO
MW392	Downgradien	t Yes	0.0247	N/A	-3.701	NO
MW395	Upgradient	Yes	0.0236	N/A	-3.747	NO
MW397	Upgradient	Yes	0.01	N/A	-4.605	NO
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number	MW395				

wen number.	101 00 395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	0.561	NO	-0.578	N/A
MW373	Downgradient	t Yes	0.521	NO	-0.652	N/A
MW385	Sidegradient	Yes	0.197	NO	-1.625	N/A
MW388	Downgradient	t Yes	0.45	NO	-0.799	N/A
MW392	Downgradient	t Yes	0.547	NO	-0.603	N/A
MW395	Upgradient	Yes	0.566	NO	-0.569	N/A
MW397	Upgradient	Yes	0.404	NO	-0.906	N/A
N/A - Resul	lts identified as N	on-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 23.103	S= 11.538	CV(1)= 0.499	K factor**= 2.523	TL(1)= 52.213	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.357	S= 2.411	CV(2)= 1.023	K factor**= 2.523	TL(2)= 8.439	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	32.2	3.472				
9/16/2002	33	3.497				
10/16/2002	0.0295	-3.523				
1/13/2003	32.1	3.469				
4/10/2003	40.2	3.694				
7/16/2003	32.4	3.478				
10/14/2003	33.9	3.523				
1/13/2004	31.2	3.440				
Well Number:	MW397					
Date Collected	Result	LN(Result)				

19.4

0.0179

17.8

20.3

19.4

19.9

18.8

19

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Wells with Exceedances

MW373

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	30.5	NO	3.418	N/A
MW373	Downgradient	t Yes	64.6	YES	4.168	N/A
MW385	Sidegradient	Yes	44.9	NO	3.804	N/A
MW388	Downgradient	t Yes	24.3	NO	3.190	N/A
MW392	Downgradient	t Yes	24	NO	3.178	N/A
MW395	Upgradient	Yes	26.9	NO	3.292	N/A
MW397	Upgradient	Yes	18.1	NO	2.896	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.965

2.944

-4.023

2.879

3.011

2.965

2.991

2.934

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 35.313	S= 1.250	CV(1)= 0.035	K factor**= 2.523	TL(1)= 38.466	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.564	S = 0.033	CV(2) =0.009	K factor**= 2.523	TL(2)= 3.648	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	35	3.555				
9/16/2002	35	3.555				
10/16/2002	35	3.555				
1/13/2003	35	3.555				
4/10/2003	35	3.555				
7/16/2003	35	3.555				
10/14/2003	35	3.555				
1/13/2004	35	3.555				
Well Number:	MW397					

Result

40

35

35

35

35

35

35

35

Date Collected

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	No	20	N/A	2.996	N/A	
MW373	Downgradient	No	20	N/A	2.996	N/A	
MW385	Sidegradient	Yes	43.3	YES	3.768	N/A	
MW388	Downgradient	Yes	17.7	NO	2.874	N/A	
MW392	Downgradient	Yes	9.21	NO	2.220	N/A	
MW395	Upgradient	No	20	N/A	2.996	N/A	
MW397	Upgradient	Yes	9.21	NO	2.220	N/A	
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

LN(Result)

3.689

3.555

3.555

3.555

3.555

3.555

3.555

3.555

Wells with Exceedances MW385

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 51.844	S= 11.652	CV(1)= 0.225	K factor**= 2.523	TL(1)= 81.242	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.924	S= 0.229	CV(2)= 0.058	K factor**= 2.523	TL(2)= 4.501	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	62.2	4.130			
9/16/2002	64.7	4.170			
10/16/2002	62.2	4.130			
1/13/2003	63.5	4.151			
4/10/2003	64.1	4.160			
7/16/2003	64	4.159			
10/14/2003	63.2	4.146			
1/13/2004	60.6	4.104			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	38.9	3.661			
9/16/2002	39.8	3.684			
10/17/2002	39.3	3.671			
1/13/2003	40.5	3.701			
4/8/2003	42.1	3.740			
7/16/2003	42	3.738			
10/14/2003	40.8	3.709			

41.6

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	41.6	NO	3.728	N/A	
MW373	Downgradien	t Yes	36.5	NO	3.597	N/A	
MW385	Sidegradient	Yes	18.4	NO	2.912	N/A	
MW388	Downgradien	t Yes	40.2	NO	3.694	N/A	
MW392	Downgradien	t Yes	43.2	NO	3.766	N/A	
MW395	Upgradient	Yes	48.6	NO	3.884	N/A	
MW397	Upgradient	Yes	35.3	NO	3.564	N/A	
N/A Pecu	lte identified op N	Ion Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.728

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW395

Date Collected	Result	LN(Result)
8/13/2002	5	1.609
9/30/2002	5	1.609
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.609
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	No	1	N/A	0.000	N/A	
MW373	Downgradient	No	1	N/A	0.000	N/A	
MW385	Sidegradient	No	1	N/A	0.000	N/A	
MW388	Downgradient	No	1	N/A	0.000	N/A	
MW392	Downgradient	Yes	0.39	NO	-0.942	N/A	
MW395	Upgradient	No	1	N/A	0.000	N/A	
MW397	Upgradient	No	1	N/A	0.000	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.007	S= 0.011	CV(1)= 1.515	K factor**= 2.523	TL(1)= 0.034	LL(1)=N/A
Statistics-Transformed Background	X= -6.053	S= 1.416	CV(2) =-0.234	K factor**= 2.523	TL(2)= -2.480	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resu					
Well Number:	MW395				

wen runnber.	11111375	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	No	0.001	N/A	-6.908	N/A	
MW373	Downgradient	Yes	0.00034	4 N/A	-7.975	NO	
MW385	Sidegradient	Yes	0.00066	5 N/A	-7.316	NO	
MW388	Downgradient	No	0.001	N/A	-6.908	N/A	
MW392	Downgradient	No	0.001	N/A	-6.908	N/A	
MW395	Upgradient	No	0.001	N/A	-6.908	N/A	
MW397	Upgradient	No	0.001	N/A	-6.908	N/A	
N/A - Resul	lts identified as N	on-Detects	during labo	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 377.875 S = 5	52.101	CV(1)= 0.138	K factor**= 2.523	TL(1)= 509.326	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.926 S = (0.136	CV(2) =0.023	K factor**= 2.523	TL(2)= 6.270	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	М	W395				
$\mathbf{D} \leftarrow \mathbf{G} \parallel 1 \leftarrow 1$	D	1.	L M/D	1.0		

Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.775
Date Collected	Result	())
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 322 315 317 320 390 354	5.775 5.753 5.759 5.768 5.966 5.869

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	466	NO	6.144	N/A
MW373	Downgradient	t Yes	788	YES	6.669	N/A
MW385	Sidegradient	Yes	480	NO	6.174	N/A
MW388	Downgradient	t Yes	394	NO	5.976	N/A
MW392	Downgradient	t Yes	345	NO	5.844	N/A
MW395	Upgradient	Yes	393	NO	5.974	N/A
MW397	Upgradient	Yes	322	NO	5.775	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.028	S= 0.013	CV(1)= 0.474	K factor**= 2.523	TL(1)= 0.061	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.662	S = 0.406	CV(2)= -0.111	K factor**= 2.523	TL(2)= -2.638	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	0.05	-2.996			
9/16/2002	0.05	-2.996			
10/16/2002	0.0281	-3.572			
1/13/2003	0.02	-3.912			
4/10/2003	0.02	-3.912			
7/16/2003	0.02	-3.912			
10/14/2003	0.02	-3.912			
1/13/2004	0.02	-3.912			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	0.05	-2.996			
9/16/2002	0.05	-2.996			
10/17/2002	0.02	-3.912			

0.02

0.02

0.02

0.02

0.02

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.00061	4 NO	-7.396	N/A
MW373	Downgradient	Yes	0.00034	8 NO	-7.963	N/A
MW385	Sidegradient	No	0.00049	6 N/A	-7.609	N/A
MW388	Downgradient	No	0.00055	1 N/A	-7.504	N/A
MW392	Downgradient	Yes	0.00057	2 NO	-7.466	N/A
MW395	Upgradient	Yes	0.00178	NO	-6.331	N/A
MW397	Upgradient	Yes	0.00034	2 NO	-7.981	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.						

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-3.912

-3.912 -3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.678	S= 2.431	CV(1)= 0.520	K factor**= 2.523	TL(1)= 10.812	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.414	S = 0.550	CV(2) =0.389	K factor**= 2.523	TL(2)= 2.802	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	7.29	1.987			
9/30/2002	4.03	1.394			
10/16/2002	3.85	1.348			
1/13/2003	2.36	0.859			
4/10/2003	1.14	0.131			
7/16/2003	1.76	0.565			
10/14/2003	4.05	1.399			
1/13/2004	4.26	1.449			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	11.56	2.448			
9/16/2002	5.86	1.768			
10/17/2002	5.94	1.782			
1/13/2003	4.66	1.539			

3.77

3.47

5.34

5.51

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	4	NO	1.386	N/A
MW373	Downgradien	t Yes	2.11	NO	0.747	N/A
MW385	Sidegradient	Yes	1.24	NO	0.215	N/A
MW388	Downgradien	t Yes	5.8	NO	1.758	N/A
MW392	Downgradien	t Yes	2.64	NO	0.971	N/A
MW395	Upgradient	Yes	5.1	NO	1.629	N/A
MW397	Upgradient	Yes	6.63	NO	1.892	N/A
N/A - Resu	lts identified as N	Ion-Detects	lurino lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.327

1.244

1.675

1.707

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 219.250	S= 34.107	CV(1)= 0.156	K factor**= 2.523	TL(1)= 305.301	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.379	S = 0.152	CV(2) =0.028	K factor**= 2.523	TL(2)= 5.762	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	249	5.517			

9/16/2002 272 5.606 10/16/2002 255 5.541 1/13/2003 211 5.352 4/10/2003 289 5.666 7/16/2003 236 5.464 10/14/2003 5.412 224 1/13/2004 235 5.460 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 187 5.231 9/16/2002 197 5.283 10/17/2002 183 5.209 1/13/2003 182 5.204 4/8/2003 217 5.380 196 7/16/2003 5.278 10/14/2003 198 5.288 1/13/2004 177 5.176

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	230	NO	5.438	N/A
MW373	Downgradien	t Yes	441	YES	6.089	N/A
MW385	Sidegradient	Yes	231	NO	5.442	N/A
MW388	Downgradien	t Yes	220	NO	5.394	N/A
MW392	Downgradien	t Yes	160	NO	5.075	N/A
MW395	Upgradient	Yes	180	NO	5.193	N/A
MW397	Upgradient	Yes	158	NO	5.063	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.400	S = 0.514	CV(1)= 1.286	K factor**= 2.523	TL(1)= 1.698	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.197	S= 2.634	CV(2) =-1.199	K factor**= 2.523	TL(2)= 4.449	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	0.294	-1.224				
9/16/2002	0.2	-1.609				
10/16/2002	0.0002	-8.517				
1/13/2003	1.33	0.285				
4/10/2003	1.31	0.270				
7/16/2003	0.2	-1.609				
10/14/2003	0.1	-2.303				
1/13/2004	0.1	-2.303				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	1.58	0.457				
9/16/2002	0.232	-1.461				
10/17/2002	0.0002	-8.517				
1/13/2003	0.453	-0.792				
4/8/2003	0.2	-1.609				

0.2

0.1

0.1

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.1	N/A	-2.303	N/A
MW373	Downgradient	t No	0.1	N/A	-2.303	N/A
MW385	Sidegradient	Yes	0.0793	N/A	-2.535	NO
MW388	Downgradient	t Yes	0.0554	N/A	-2.893	NO
MW392	Downgradient	t Yes	0.129	N/A	-2.048	NO
MW395	Upgradient	No	0.1	N/A	-2.303	N/A
MW397	Upgradient	Yes	0.0547	N/A	-2.906	NO
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

-2.303

-2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.102	S= 4.685	CV(1)= 0.515	K factor**= 2.523	TL(1)= 20.922	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.423	S = 2.408	CV(2)= 1.692	K factor**= 2.523	TL(2)= 7.500	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	12.5	2.526				
9/16/2002	13	2.565				
10/16/2002	0.0127	-4.366				
1/13/2003	11.2	2.416				
4/10/2003	17.5	2.862				
7/16/2003	12.9	2.557				
10/14/2003	13.4	2.595				
1/13/2004	12.4	2.518				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	7.83	2.058				
9/16/2002	7.64	2.033				
10/17/2002	0.00658	-5.024				
1/13/2003	6.69	1.901				
4/8/2003	7.28	1.985				
7/16/2003	7.82	2.057				

7.94

7.51

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	12.8	NO	2.549	N/A
MW373	Downgradient	t Yes	25.3	YES	3.231	N/A
MW385	Sidegradient	Yes	15.4	NO	2.734	N/A
MW388	Downgradient	t Yes	10.7	NO	2.370	N/A
MW392	Downgradient	t Yes	10.3	NO	2.332	N/A
MW395	Upgradient	Yes	11.4	NO	2.434	N/A
MW397	Upgradient	Yes	7.66	NO	2.036	N/A
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.072

2.016

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.131	S= 0.195	CV(1)= 1.487	K factor**= 2.523	TL(1)= 0.624	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.104	S= 1.529	CV(2) =-0.493	K factor**= 2.523	TL(2)= 0.755	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	0.361	-1.019				
9/16/2002	0.028	-3.576				
10/16/2002	0.026	-3.650				
1/13/2003	0.0713	-2.641				
4/10/2003	0.629	-0.464				
7/16/2003	0.297	-1.214				
10/14/2003	0.0198	-3.922				
1/13/2004	0.0126	-4.374				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	0.466	-0.764				
9/16/2002	0.077	-2.564				
10/17/2002	0.028	-3.576				
1/13/2003	0.0164	-4.110				

0.0407

0.0167

0.00555

0.005

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.005	N/A	-5.298	N/A
MW373	Downgradien	t Yes	0.0183	N/A	-4.001	NO
MW385	Sidegradient	Yes	0.117	N/A	-2.146	NO
MW388	Downgradien	t No	0.005	N/A	-5.298	N/A
MW392	Downgradien	t Yes	0.238	N/A	-1.435	NO
MW395	Upgradient	No	0.005	N/A	-5.298	N/A
MW397	Upgradient	Yes	0.00151	l N/A	-6.496	NO
N/A D 1		T D ()		, <u>1</u> .	1 . 1.1	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.202

-4.092

-5.194 -5.298

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.625	S= 3.074	CV(1)= 0.547	K factor**= 2.523	TL(1)= 13.381	LL(1)=N/A
Statistics-Transformed Background	X= 1.614	S= 0.483	CV(2)= 0.300	K factor**= 2.523	TL(2)= 2.834	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					

Date Collected	Result	LN(Result)
8/13/2002	14	2.639
9/30/2002	2	0.693
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.485
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 12	2.485
Date Collected 8/13/2002 9/30/2002	Result 12 2	2.485 0.693
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 12 2 5	2.485 0.693 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 12 2 5 5 5	2.485 0.693 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 12 2 5 5 5 5	2.485 0.693 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 12 2 5 5 5 5 5 5	2.485 0.693 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	5	N/A	1.609	N/A
MW373	Downgradien	t Yes	0.51	NO	-0.673	N/A
MW385	Sidegradient	Yes	0.88	NO	-0.128	N/A
MW388	Downgradien	t Yes	0.87	NO	-0.139	N/A
MW392	Downgradien	t No	5	N/A	1.609	N/A
MW395	Upgradient	No	5	N/A	1.609	N/A
MW397	Upgradient	Yes	0.53	NO	-0.635	N/A
N/A Deputs identified as Non Detects during the retery analysis on data validation and ware not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.007	S= 0.011	CV(1)= 1.451	K factor**= 2.523	TL(1)= 0.034	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.990	S= 1.443	CV(2) =-0.241	K factor**= 2.523	TL(2)= -2.349	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW395			

Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00609	-5.101
4/10/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.001	N/A	-6.908	N/A
MW373	Downgradient	No	0.001	N/A	-6.908	N/A
MW385	Sidegradient	Yes	0.00088	4 N/A	-7.031	NO
MW388	Downgradient	No	0.001	N/A	-6.908	N/A
MW392	Downgradient	Yes	0.00023	2 N/A	-8.369	NO
MW395	Upgradient	No	0.001	N/A	-6.908	N/A
MW397	Upgradient	No	0.001	N/A	-6.908	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.018	S= 0.020	CV(1)= 1.089	K factor**= 2.523	TL(1)= 0.068	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.540	S = 1.020	CV(2) =-0.225	K factor**= 2.523	TL(2)= -1.965	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

NAN2205

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	()
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.00502	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.00502 0.00502	-2.996 -2.996 -5.298 -5.294 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.05 0.05 0.005 0.00502 0.005 0.005	-2.996 -2.996 -5.298 -5.294 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	0.00079	1 N/A	-7.142	NO	
MW373	Downgradient	Yes	0.00145	N/A	-6.536	NO	
MW385	Sidegradient	Yes	0.00159	N/A	-6.444	NO	
MW388	Downgradient	Yes	0.00065	1 N/A	-7.337	NO	
MW392	Downgradient	Yes	0.00193	N/A	-6.250	NO	
MW395	Upgradient	Yes	0.00090	7 N/A	-7.005	NO	
MW397	Upgradient	Yes	0.00090	6 N/A	-7.006	NO	
N/A - Resu	lts identified as N	on-Detects of	during labo	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	,		0			
Statistics-Background Data	X= 157.250	S= 52.376	CV(1)= 0.333	K factor**= 2.523	TL(1)= 289.395	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.003	S= 0.348	CV(2) =0.069	K factor**= 2.523	TL(2)= 5.880	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	80	4.382			
9/16/2002	145	4.977			
10/16/2002	125	4.828			
1/13/2003	85	4.443			
4/10/2003	159	5.069			
7/16/2003	98	4.585			
10/14/2003	138	4.927			
1/13/2004	233	5.451			

Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/30/2002	140	4.942
10/17/2002	185	5.220
1/13/2003	230	5.438
4/8/2003	155	5.043
7/16/2003	188	5.236
10/14/2003	187	5.231
1/13/2004	253	5.533

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	468	YES	6.148	N/A
MW373	Downgradient	Yes	399	YES	5.989	N/A
MW385	Sidegradient	Yes	343	YES	5.838	N/A
MW388	Downgradient	Yes	407	YES	6.009	N/A
MW392	Downgradient	Yes	375	YES	5.927	N/A
MW395	Upgradient	Yes	425	YES	6.052	N/A
MW397	Upgradient	Yes	377	YES	5.932	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW370
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW373
concentration with respect to historical background data.	MW385
	MW388
	MW392
	MW395
	MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.048	S= 0.248	CV(1)= 0.041	K factor**= 2.904	TL(1)= 6.767	LL(1)=5.3289
Statistics-Transformed Background Data	X= 1.799	S= 0.042	CV(2)= 0.023	K factor**= 2.904	TL(2)= 1.920	LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	5.8	1.758				
9/16/2002	6	1.792				
10/16/2002	5.47	1.699				
1/13/2003	6	1.792				
4/10/2003	6.18	1.821				
7/16/2003	6	1.792				
10/14/2003	6.31	1.842				
1/13/2004	6.24	1.831				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	5.84	1.765				
9/30/2002	6	1.792				
10/17/2002	5.75	1.749				
1/13/2003	6	1.792				
4/8/2003	6.3	1.841				
7/16/2003	6.2	1.825				
10/14/2003	6.36	1.850				

6.32

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW370	Downgradient	Yes	6.05	NO	1.800	N/A	
MW373	Downgradient	Yes	6.09	NO	1.807	N/A	
MW385	Sidegradient	Yes	6.58	NO	1.884	N/A	
MW388	Downgradient	Yes	6.12	NO	1.812	N/A	
MW392	Downgradient	Yes	6.1	NO	1.808	N/A	
MW395	Upgradient	Yes	6.05	NO	1.800	N/A	
MW397	Upgradient	Yes	6.06	NO	1.802	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.844

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.590	S= 0.642	CV(1)= 0.404	K factor**= 2.523	TL(1)= 3.208	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.306	S= 2.457	CV(2) =-8.028	K factor**= 2.523	TL(2)= 5.892	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	2	0.693			
9/16/2002	2	0.693			
10/16/2002	0.00129	-6.653			
1/13/2003	1.51	0.412			
4/10/2003	1.67	0.513			
7/16/2003	1.73	0.548			
10/14/2003	1.7	0.531			
1/13/2004	1.58	0.457			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	2.03	0.708			
9/16/2002	2	0.693			
10/17/2002	0.00145	-6.536			
1/13/2003	1.69	0.525			
4/8/2003	1.73 0.548				
7/16/2003	2	0.693			
10/14/2003	1.92	0.652			

1.87

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	2.69	NO	0.990	N/A
MW373	Downgradien	t Yes	2.61	NO	0.959	N/A
MW385	Sidegradient	Yes	1.88	NO	0.631	N/A
MW388	Downgradien	t Yes	1.76	NO	0.565	N/A
MW392	Downgradien	t Yes	2.15	NO	0.765	N/A
MW395	Upgradient	Yes	1.63	NO	0.489	N/A
MW397	Upgradient	Yes	1.81	NO	0.593	N/A
	10	Ion Dataata		anatami analizaia an	data validatio	n and record not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.626

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 29.560	S= 13.894	CV(1)= 0.470	K factor**= 2.523	TL(1)= 64.616	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.615	S = 2.411	CV(2) =0.922	K factor**= 2.523	TL(2)= 8.699	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			

Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Date Collected	Result	LN(Result)
Date Collected 8/13/2002	Result 35.2	LN(Result) 3.561
		()
8/13/2002	35.2	3.561
8/13/2002 9/16/2002	35.2 34.3	3.561 3.535
8/13/2002 9/16/2002 10/17/2002	35.2 34.3 0.0336	3.561 3.535 -3.393
8/13/2002 9/16/2002 10/17/2002 1/13/2003	35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	46.9	NO	3.848	N/A
MW373	Downgradien	t Yes	52	NO	3.951	N/A
MW385	Sidegradient	Yes	29.8	NO	3.395	N/A
MW388	Downgradien	t Yes	45.7	NO	3.822	N/A
MW392	Downgradien	t Yes	25.2	NO	3.227	N/A
MW395	Upgradient	Yes	32.4	NO	3.478	N/A
MW397	Upgradient	Yes	33.1	NO	3.500	N/A
N/A Dagul	to identified as N	Ion Dotoota	اما مستحد	oratory analysis or	data validatio	n and wara not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.756 S = 2.147	CV(1)= 0.200	K factor**= 2.523	TL(1)= 16.173	LL(1)= N/A
Statistics-Transformed Background Data	X =2.356 S = 0.203	CV(2)= 0.086	K factor**= 2.523	TL(2)= 2.869	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW395			
Date Collected	Result	LN(Result)		
8/13/2002	10.3	2.332		
9/16/2002	9.1	2.208		
10/16/2002	8.8	2.175		
1/13/2003	9	2.197		
4/10/2003	8.3	2.116		
7/16/2003	8.2	2.104		
10/14/2003	8.3	2.116		
1/13/2004	8.2	2.104		
Well Number:	MW397			
Date Collected	Result	LN(Result)		
8/13/2002	14	2.639		
9/16/2002	12.8	2.549		
10/17/2002	12.3	2.510		
1/13/2003	12.7	2.542		
4/8/2003	12.8	2.549		
7/16/2003	13.1	2.573		

12.1

12.1

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	19.9	YES	2.991	N/A
MW373	Downgradien	t Yes	155	YES	5.043	N/A
MW385	Sidegradient	Yes	19.3	YES	2.960	N/A
MW388	Downgradien	t Yes	19.9	YES	2.991	N/A
MW392	Downgradien	t Yes	8.4	NO	2.128	N/A
MW395	Upgradient	Yes	11.7	NO	2.460	N/A
MW397	Upgradient	Yes	12	NO	2.485	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.493

2.493

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370 MW373 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 11.359 S	S= 9.138	CV(1)= 0.805	K factor**= 2.523	TL(1)= 34.414	LL(1)= N/A
Statistics-Transformed Background	X= 2.398	S= 0.859	CV(2)= 0.358	K factor**= 2.523	TL(2)= 3.246	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	20.8	3.035				
9/16/2002	16.2	2.785				
10/16/2002	8.28	2.114				
1/13/2003	13	2.565				
4/10/2003	-9.37	#Func!				
7/16/2003	0.826	-0.191				
10/14/2003	14.1	2.646				
1/13/2004	0	#Func!				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	6.06	1.802				
9/16/2002	17.3	2.851				
10/17/2002	25.7	3.246				
1/13/2003	20.9	3.040				
4/8/2003	20.1	3.001				
7/16/2003	9.2	2.219				
10/14/2003	10.1	2.313				
1/13/2004	8.54	2.145				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	30.7	NO	3.424	N/A
MW373	Downgradient	t No	12.5	N/A	2.526	N/A
MW385	Sidegradient	Yes	20.5	NO	3.020	N/A
MW388	Downgradient	t No	6.1	N/A	1.808	N/A
MW392	Downgradient	t No	1.34	N/A	0.293	N/A
MW395	Upgradient	No	12.5	N/A	2.526	N/A
MW397	Upgradient	No	8.51	N/A	2.141	N/A
NT/A D	1. 1	T D ()			1 . 1.1	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.544	S = 0.856	CV(1)= 0.554	K factor**= 2.523	TL(1)= 3.702	LL(1)=N/A
Statistics-Transformed Background Data	X = 0.325	S = 0.452	CV(2)= 1.393	K factor**= 2.523	TL(2)= 1.465	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				

wen ramoen	111 11 0 7 0	
Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.000
Date Collected	Result	()
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1 1 3.6 1.9 1.1	0.000 0.000 0.000 1.281 0.642 0.095

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	0.776	NO	-0.254	N/A	
MW373	Downgradient	t Yes	0.894	NO	-0.112	N/A	
MW385	Sidegradient	Yes	0.74	NO	-0.301	N/A	
MW388	Downgradient	t Yes	0.566	NO	-0.569	N/A	
MW392	Downgradient	t Yes	0.683	NO	-0.381	N/A	
MW395	Upgradient	Yes	0.474	NO	-0.747	N/A	
MW397	Upgradient	Yes	0.464	NO	-0.768	N/A	
N/A - Resu	V/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 31.513	S= 18.609	CV(1)= 0.591	K factor**= 2.523	TL(1)= 78.462	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.240	S = 0.707	CV(2)= 0.218	K factor**= 2.523	TL(2)= 5.024	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	50	3.912				
9/16/2002	50	3.912				
10/16/2002	50	3.912				
1/13/2003	18.3	2.907				
4/10/2003	51.2	3.936				
7/16/2003	42.6	3.752				
10/14/2003	12.3	2.510				
1/13/2004	10	2.303				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	50	3.912				
9/16/2002	50	3.912				
10/17/2002	50	3.912				
1/13/2003	12	2.485				

19.9

17.9

10

10

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	8.08	NO	2.089	N/A	
MW373	Downgradien	t Yes	14.4	NO	2.667	N/A	
MW385	Sidegradient	No	10	N/A	2.303	N/A	
MW388	Downgradien	t Yes	14.8	NO	2.695	N/A	
MW392	Downgradien	t Yes	35.7	NO	3.575	N/A	
MW395	Upgradient	Yes	18.4	NO	2.912	N/A	
MW397	Upgradient	Yes	6.44	NO	1.863	N/A	
NT/1 D							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.991

2.885

2.303

2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.313	S = 5.701	CV(1)= 0.780	K factor**= 2.523	TL(1)= 21.695	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.467	S = 1.213	CV(2)= 0.827	K factor**= 2.523	TL(2)= 4.528	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW	395				
	-			4.5		

Result	LN(Result)
11	2.398
14	2.639
12	2.485
14	2.639
14	2.639
13	2.565
12	2.485
11	2.398
MW397	
MW397 Result	LN(Result)
	LN(Result) 1.609
Result	· · · · ·
Result 5	1.609
Result 5 5	1.609 1.609
Result 5 5 1	1.609 1.609 0.000
Result 5 5 1 1	1.609 1.609 0.000 0.000
Result 5 5 1 1 1	1.609 1.609 0.000 0.000 0.000
	11 14 12 14 14 13 12 11

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	4.22	N/A	1.440	N/A	
MW373	Downgradient	t Yes	5.76	NO	1.751	N/A	
MW385	Sidegradient	Yes	0.74	N/A	-0.301	N/A	
MW388	Downgradient	t Yes	1.52	N/A	0.419	N/A	
MW392	Downgradient	t Yes	3.07	N/A	1.122	N/A	
MW395	Upgradient	Yes	7.11	NO	1.962	N/A	
MW397	Upgradient	Yes	0.74	N/A	-0.301	N/A	
N/A Dam	Ita idantified on N	Ian Dataata	اما م	anatamy analyzaia an	data validatio	n and man nat	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T First Quarter 2023 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =265.000 S = 113.855	5 CV(1)=0.430	K factor**= 3.188	TL(1)= 627.968	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.472 S = 0.541	CV(2) =0.099	K factor**= 3.188	TL(2)= 7.195	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	147	NO	4.990	N/A		
MW393	Downgradient	t Yes	357	NO	5.878	N/A		
MW396	Upgradient	Yes	240	NO	5.481	N/A		

Conclusion of Statistical Analysis on Current Data

LN(Result)

4.382

5.805

5.991

5.198

5.252

5.817

5.948

5.380

Current Background Data from Upgradient

MW396

Result

80

332

400

181

191

336

383

217

Wells with Transformed Result

Well Number:

Date Collected

1/26/2021

4/14/2021

7/21/2021

10/18/2021

1/13/2022

4/19/2022

7/20/2022

10/17/2022

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis **Current Background Comparison URGA** Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =24.513 S = 2.908	CV(1)= 0.119	K factor**= 2.523	TL(1)= 31.850	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.192 S = 0.120	CV(2) =0.038	K factor**= 2.523	TL(2)= 3.496	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	60.6	YES	4.104	N/A
MW387	Downgradient	t Yes	42	YES	3.738	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Wells with Exceedances MW372 MW387

10/18/2022	20.5	3.020
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/26/2021	25.5	3.239
4/14/2021	26.8	3.288
7/21/2021	24.9	3.215
10/18/2021	24.6	3.203
1/13/2022	25.4	3.235
4/19/2022	28.2	3.339
7/20/2022	26.1	3.262
10/17/2022	26.6	3.281

Current Background Data from Upgradient

LN(Result)

3.040

3.321

3.100 3.059

3.091

3.371

3.016

MW220

Result

20.9

27.7

22.2

21.3

22

29.1

20.4

Wells with Transformed Result

Well Number:

Date Collected

1/25/2021

4/15/2021

7/19/2021

10/27/2021

1/19/2022

4/13/2022

7/18/2022

C-746-S/T First Quarter 2023 Statistical AnalysisCurrent Background ComparisonConductivityUNITS: umho/cmURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =385.625 S = 32.924	CV(1)= 0.085	K factor**= 2.523	TL(1)= 468.692	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.951 S = 0.086	CV(2)= 0.014	K factor**= 2.523	TL(2)= 6.169	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

		· · · ·
1/25/2021	344	5.841
4/15/2021	438	6.082
7/19/2021	359	5.883
10/27/2021	341	5.832
1/19/2022	376	5.930
4/13/2022	436	6.078
7/18/2022	350	5.858
10/18/2022	332	5.805
Well Number:	MW394	
Date Collected	Result	LN(Result)
Date Collected 1/26/2021	Result 390	LN(Result) 5.966
		()
1/26/2021	390	5.966
1/26/2021 4/14/2021	390 392	5.966 5.971
1/26/2021 4/14/2021 7/21/2021	390 392 400	5.966 5.971 5.991
1/26/2021 4/14/2021 7/21/2021 10/18/2021	390 392 400 394	5.966 5.971 5.991 5.976
1/26/2021 4/14/2021 7/21/2021 10/18/2021 1/13/2022	390 392 400 394 401	5.966 5.971 5.991 5.976 5.994
1/26/2021 4/14/2021 7/21/2021 10/18/2021 1/13/2022 4/19/2022	390 392 400 394 401 413	5.966 5.971 5.991 5.976 5.994 6.023

Current Background Data from Upgradient

LN(Result)

MW220

Result

Wells with Transformed Result

Well Number:

Date Collected

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	754	YES	6.625	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis **Current Background Comparison Dissolved Solids URGA** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 208.438 S =	= 34.386	CV(1)= 0.165	K factor**= 2.523	TL(1)= 295.193	LL(1)= N/A
Statistics-Transformed Background	X = 5.327 S =	= 0.160	CV(2) =0.030	K factor**= 2.523	TL(2)= 5.730	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/25/2021	161	5.081
4/15/2021	250	5.521
7/19/2021	196	5.278
10/27/2021	194	5.268
1/19/2022	179	5.187
4/13/2022	236	5.464
7/18/2022	164	5.100
10/18/2022	179	5.187
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.278
Date Collected	Result	()
Date Collected 1/26/2021	Result 196	5.278
Date Collected 1/26/2021 4/14/2021	Result 196 207	5.278 5.333
Date Collected 1/26/2021 4/14/2021 7/21/2021	Result 196 207 290	5.278 5.333 5.670
Date Collected 1/26/2021 4/14/2021 7/21/2021 10/18/2021	Result 196 207 290 219	5.278 5.333 5.670 5.389
Date Collected 1/26/2021 4/14/2021 7/21/2021 10/18/2021 1/13/2022	Result 196 207 290 219 230	5.278 5.333 5.670 5.389 5.438

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	Quarter Data	1			
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)

	Gradient	Detected.	Result	$\operatorname{Result} \in \operatorname{IL}(1)$:	Li ((itesuit)	Li ((itesuit) /	1 L(2)
MW372	Downgradient	t Yes	428	YES	6.059	N/A	

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Current Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.266 S = 1.321	CV(1)= 0.129	K factor**= 2.523	TL(1)= 13.597	LL(1)=N/A
Statistics-Transformed Background Data	X =2.321 S = 0.132	CV(2)= 0.057	K factor**= 2.523	TL(2)= 2.653	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	21.9	YES	3.086	N/A
MW387	Downgradient	t Yes	18.3	YES	2.907	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.166

2.460

2.229

2.117

2.219

2.493

2.160

2.123

2.370

2.398

2.370

2.332

2.351

2.468 2.460

2.416

LN(Result)

MW220

Result

8.72

11.7

9.29

8.31

9.2

12.1

8.67

8.36

MW394

Result

10.7

10.7

10.3

10.5

11.8

11.7

11.2

11

Wells with Transformed Result

Well Number:

Date Collected

1/25/2021

4/15/2021

7/19/2021

10/27/2021

1/19/2022

4/13/2022

7/18/2022

10/18/2022

Well Number:

Date Collected

1/26/2021

4/14/2021

7/21/2021

10/18/2021

1/13/2022

4/19/2022

7/20/2022

10/17/2022

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Wells with Exceedances MW372 MW387

C-746-S/T First Quarter 2023 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =407.500 S = 45.795	CV(1)= 0.112	K factor**= 2.523	TL(1)= 523.041	LL(1)= N/A
Statistics-Transformed Background Data	X = 6.004 S = 0.114	CV(2)= 0.019	K factor**= 2.523	TL(2)= 6.293	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected LN(Result) Result 1/25/2021 496 6.207 4/15/2021 410 6.016 7/19/2021 6.006 406 443 6.094 10/27/2021 1/19/2022 406 6.006 4/13/2022 412 6.021 7/18/2022 411 6.019 10/18/2022 398 5.986 Well Number: MW394 Date Collected Result LN(Result) 1/26/2021 309 5.733 4/14/2021 393 5.974 7/21/2021 408 6.011 10/18/2021 370 5.914 5.974 1/13/2022 393 4/19/2022 432 6.068 7/20/2022 487 6.188 10/17/2022 346 5.846

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW221	Sidegradient	Yes	421	NO	6.043	N/A
MW369	Downgradient	t Yes	480	NO	6.174	N/A
MW372	Downgradient	t Yes	403	NO	5.999	N/A
MW387	Downgradient	t Yes	417.5	NO	6.034	N/A
MW394	Upgradient	Yes	469	NO	6.151	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =15.488 S = 4.461	CV(1)= 0.288	K factor**= 2.523	TL(1)= 26.742	LL(1)=N/A
Statistics-Transformed Background Data	X = 2.705 S = 0.267	CV(2) =0.099	K factor**= 2.523	TL(2)= 3.378	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected LN(Result) Result 1/25/2021 15.9 2.766 4/15/2021 24.4 3.195 7/19/2021 17 2.833 10/27/2021 16.9 2.827 1/19/2022 19.2 2.955 4/13/2022 24.9 3.215 7/18/2022 18.5 2.918 10/18/2022 2.754 15.7 MW394 Well Number: Date Collected LN(Result) Result 1/26/2021 11.4 2.434 4/14/2021 12.5 2.526 7/21/2021 11.8 2.468 10/18/2021 11.9 2.477 1/13/2022 11.7 2.460 4/19/2022 11.7 2.460 7/20/2022 12.2 2.501 10/17/2022 12.1 2.493

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	135	YES	4.905	N/A
MW384	Sidegradient	Yes	18.9	NO	2.939	N/A
MW387	Downgradient	t Yes	27.7	YES	3.321	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Wells with Exceedances MW372 MW387

C-746-S/T First Quarter 2023 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.844 S = 6.083	CV(1)= 0.561	K factor**= 2.523	TL(1)= 26.190	LL(1)=N/A
Statistics-Transformed Background Data	X =1.883 S = 1.624	CV(2)= 0.863	K factor**= 2.523	TL(2)= 5.982	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	Yes	61.6	YES	4.121	N/A
MW372	Downgradien	t Yes	85.4	YES	4.447	N/A
MW387	Downgradient	Yes	45.9	YES	3.826	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.332

2.493

2.588

2.542

2.856

2.773

2.955

3.059

2.434

-3.184

2.300

1.802

1.697

-0.826 1.907

2.407

LN(Result)

MW220

Result

10.3

12.1

13.3

12.7

17.4

19.2

21.3

MW394

Result

0.0414

11.4

9.97

6.06

5.46

0.438

6.73

11.1

16

Wells with Transformed Result

Well Number:

Date Collected

1/25/2021

4/15/2021

7/19/2021

10/27/2021

1/19/2022

4/13/2022

7/18/2022

10/18/2022

1/26/2021

4/14/2021

7/21/2021

10/18/2021

1/13/2022

4/19/2022

7/20/2022

10/17/2022

Well Number: Date Collected

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW369 MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Current Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =21.856 S = 3.592	CV(1)= 0.164	K factor**= 2.523	TL(1)= 30.918	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.072 S = 0.165	CV(2) =0.054	K factor**= 2.523	TL(2)= 3.487	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW373	Downgradient	Yes	64.6	YES	4.168	N/A

Date Collected	Result	LN(Result)
1/25/2021	18.8	2.934
4/14/2021	18.4	2.912
7/19/2021	18.3	2.907
10/14/2021	18.1	2.896
1/13/2022	18.2	2.901
4/19/2022	18.5	2.918
7/18/2022	18.5	2.918
10/18/2022	18.7	2.929

Current Background Data from Upgradient

LN(Result)

3.211

3.195

3.219

3.190

3.239

3.273

3.215

3.292

MW395

Result

24.8

24.4

24.3

25.5

26.4

24.9

26.9 MW397

25

Wells with Transformed Result

Well Number:

Date Collected

1/26/2021

4/14/2021

7/21/2021

10/18/2021

1/13/2022

4/19/2022

7/20/2022

10/17/2022

Well Number:

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical AnalysisCurrent Background ComparisonChemical Oxygen Demand (COD)UNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =21.344 S = 5.477	CV(1)= 0.257	K factor**= 2.523	TL(1)= 35.162	LL(1)= N/A
Statistics-Transformed Background Data	X =3.031 S = 0.248	CV(2) =0.082	K factor**= 2.523	TL(2)= 3.658	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(
MW385	Sidegradient	Yes	43.3	YES	3.768	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

3.186

2.996

2.595

3.131

3.174

2.996

2.996

3.307

2.728

2.996

2.856

3.503

2.815

2.996

3.424

2.803

LN(Result)

MW395

Result

24.2

13.4 22.9

23.9

20

20

27.3

MW397

Result

15.3

17.4

33.2

16.7

30.7

16.5

20

20

20

Wells with Transformed Result

Well Number:

Date Collected

1/26/2021

4/14/2021

7/21/2021

10/18/2021

1/13/2022

4/19/2022

7/20/2022

10/17/2022

1/25/2021

4/14/2021

7/19/2021

10/14/2021

1/13/2022

4/19/2022

7/18/2022

10/18/2022

Well Number: Date Collected

> Wells with Exceedances MW385

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical AnalysisCurrent Background ComparisonConductivityUNITS: umho/cmLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 347.688 S = 30.002	CV(1)= 0.086	K factor**= 2.523	TL(1)= 423.382	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.848 S= 0.087	CV(2)= 0.015	K factor**= 2.523	TL(2)= 6.068	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/26/2021	358	5.881
4/14/2021	366	5.903
7/21/2021	372	5.919
10/18/2021	375	5.927
1/13/2022	376	5.930
4/19/2022	383	5.948
7/20/2022	380	5.940
10/17/2022	388	5.961
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.768
Date Collected	Result	(
Date Collected 1/25/2021	Result 320	5.768
Date Collected 1/25/2021 4/14/2021	Result 320 314	5.768 5.749
Date Collected 1/25/2021 4/14/2021 7/19/2021	Result 320 314 326	5.768 5.749 5.787
Date Collected 1/25/2021 4/14/2021 7/19/2021 10/14/2021	Result 320 314 326 295	5.768 5.749 5.787 5.687
Date Collected 1/25/2021 4/14/2021 7/19/2021 10/14/2021 1/13/2022	Result 320 314 326 295 340	5.768 5.749 5.787 5.687 5.829

Current Background Data from Upgradient

Wells with Transformed Result

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	788	YES	6.669	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 166.72	3 S = 47.704	CV(1)= 0.286	K factor**= 2.523	TL(1)= 287.080	LL(1)= N/A
Statistics-Transformed Background	X= 4.981	S= 0.766	CV(2)= 0.154	K factor**= 2.523	TL(2)= 6.914	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
1/26/2021	8.57	2.148
4/14/2021	184	5.215
7/21/2021	204	5.318
10/18/2021	194	5.268
1/13/2022	201	5.303
4/19/2022	210	5.347
7/20/2022	199	5.293
10/17/2022	196	5.278
TTT 1		
Well Number:	MW397	
		LN(Result)
		LN(Result) 5.017
Date Collected	Result	()
Date Collected 1/25/2021	Result 151	5.017
Date Collected 1/25/2021 4/14/2021	Result 151 157	5.017 5.056
Date Collected 1/25/2021 4/14/2021 7/19/2021	Result 151 157 173	5.017 5.056 5.153
Date Collected 1/25/2021 4/14/2021 7/19/2021 10/14/2021	Result 151 157 173 166	5.017 5.056 5.153 5.112
Date Collected 1/25/2021 4/14/2021 7/19/2021 10/14/2021 1/13/2022	Result 151 157 173 166 141	5.017 5.056 5.153 5.112 4.949

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW395

Data

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	441	YES	6.089	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis **Current Background Comparison** LRGA Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.205	S= 1.573	CV(1)= 0.171	K factor**= 2.523	TL(1)= 13.174	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.206	S= 0.171	CV(2)= 0.078	K factor**= 2.523	TL(2)= 2.639	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW373	Downgradient	Yes	25.3	YES	3.231	N/A	

10/18/2021	10.3	2.332
1/13/2022	10.6	2.361
4/19/2022	11	2.398
7/20/2022	11.2	2.416
10/17/2022	11.3	2.425
Well Number:	MW397	
Date Collected	Result	LN(Result)
Date Conected	Result	LIN(Result)
1/25/2021	7.94	2.072
	1000000	()
1/25/2021	7.94	2.072
1/25/2021 4/14/2021	7.94 7.68	2.072 2.039
1/25/2021 4/14/2021 7/19/2021	7.94 7.68 7.62	2.072 2.039 2.031
1/25/2021 4/14/2021 7/19/2021 10/14/2021	7.94 7.68 7.62 7.57	2.072 2.039 2.031 2.024
1/25/2021 4/14/2021 7/19/2021 10/14/2021 1/13/2022	7.94 7.68 7.62 7.57 7.53	2.072 2.039 2.031 2.024 2.019

7.84

Current Background Data from Upgradient

LN(Result)

2.342

2.322

2.361

MW395

Result

10.4

10.2

10.6

Wells with Transformed Result

Well Number:

Date Collected

1/26/2021

4/14/2021

7/21/2021

10/18/2022

Conclusion of Statistical Analysis on Current Data

2.059

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =390.813 S = 44.106	CV(1)= 0.113	K factor**= 2.523	TL(1)= 502.093	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.962 S = 0.115	CV(2)= 0.019	K factor**= 2.523	TL(2)= 6.251	LL(2)= N/A

Current Background Data from Upgradien Wells with Transformed Result				
Well Number:	MW395			
Date Collected	Result	LN(Result)		
1/26/2021	334	5.811		
4/14/2021	372	5.919		
7/21/2021	414	6.026		
10/18/2021	391	5.969		
1/13/2022	395	5.979		
4/19/2022	412	6.021		
7/20/2022	425	6.052		
10/17/2022	326	5.787		
Well Number:	MW397			
Date Collected	Result	LN(Result)		
1/25/2021	478	6.170		
4/14/2021	391	5.969		
7/19/2021	422	6.045		
10/14/2021	315	5.753		
1/13/2022	352	5.864		
4/19/2022	440	6.087		
7/18/2022	415	6.028		
10/18/2022	371	5.916		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	468	NO	6.148	N/A
MW373	Downgradient	Yes	399	NO	5.989	N/A
MW385	Sidegradient	Yes	343	NO	5.838	N/A
MW388	Downgradient	Yes	407	NO	6.009	N/A
MW392	Downgradient	Yes	375	NO	5.927	N/A
MW395	Upgradient	Yes	425	NO	6.052	N/A
MW397	Upgradient	Yes	377	NO	5.932	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2023 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 11.713 S= 0.283	CV(1)= 0.024	K factor**= 2.523	TL(1)= 12.425	LL(1)=N/A
Statistics-Transformed Background Data	X = 2.460 S = 0.024	CV(2)= 0.010	K factor**= 2.523	TL(2)= 2.521	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected LN(Result) Result 1/26/2021 11.6 2.451 4/14/2021 12.4 2.518 7/21/2021 11.8 2.468 2.477 10/18/2021 11.9 1/13/2022 11.6 2.451 4/19/2022 11.6 2.451 7/20/2022 11.9 2.477 10/17/2022 2.460 11.7 MW397 Well Number: Date Collected Result LN(Result) 1/25/2021 11.5 2.442 4/14/2021 11.3 2.425 7/19/2021 11.3 2.425 10/14/2021 2.485 12 1/13/2022 11.7 2.460 4/19/2022 11.8 2.468 2.477 7/18/2022 11.9 10/18/2022 11.4 2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	19.9	YES	2.991	N/A
MW373	Downgradient	Yes	155	YES	5.043	N/A
MW385	Sidegradient	Yes	19.3	YES	2.960	N/A
MW388	Downgradient	Yes	19.9	YES	2.991	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW370 MW373 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

FOUR RIVERS

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

April 24, 2023

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the first quarter 2023 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Bryan Smith

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2023 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u>

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 *KAR* 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2023 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on January 26, 2023. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for a water level measurement.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters.¹ During January, RGA groundwater flow was directed inward and then north towards the Ohio River. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 4.16×10^{-4} ft/ft. Additional water level measurements in January (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 4.17×10^{-4} ft/ft, northward. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for January 2023, RGA groundwater flow from the landfill area was directed to the north.

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

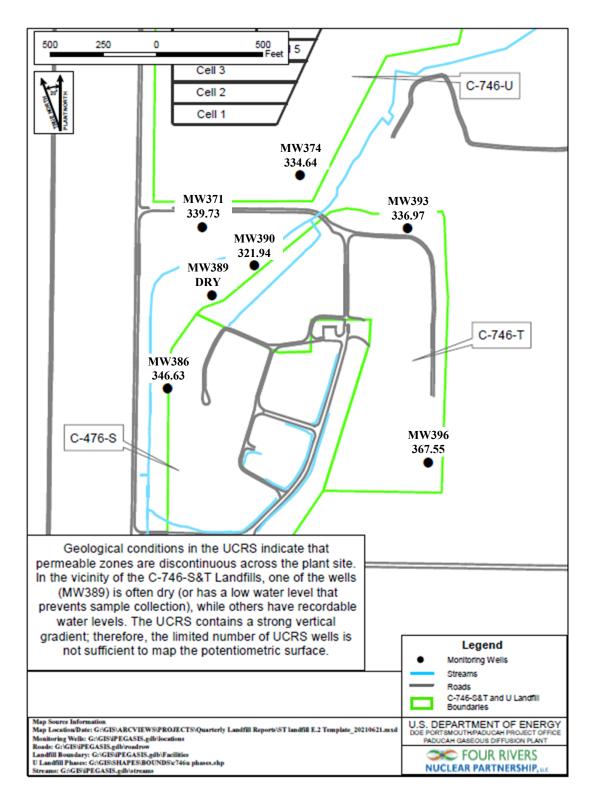


Figure E.1. Potentiometric Measurements of the Upper Continental Recharge System at the C-746-S&T Landfills, January 26, 2023

			C-746-S&T	Γ Landfills (Jan	uary 202	3) Water Le	vels			
				,			Rav	v Data		
				Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
Date	Time	Well	Formation	(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/26/2023	10:52	MW220	URGA	382.01	30.16	0.00	59.92	322.09	59.92	322.09
1/26/2023	10:58	MW221	URGA	391.38	30.17	-0.01	69.62	321.76	69.61	321.77
1/26/2023	10:56	MW222	URGA	395.27	30.17	-0.01	73.35	321.92	73.34	321.93
1/26/2023	10:57	MW223	URGA	394.38	30.17	-0.01	72.45	321.93	72.44	321.94
1/26/2023	10:55	MW224	URGA	395.69	30.17	-0.01	73.80	321.89	73.79	321.90
1/26/2023	10:53	MW225	URGA	385.73	30.17	-0.01	63.77	321.96	63.76	321.97
1/26/2023	9:19	MW353	LRGA	375.05	30.14	0.02	52.56	322.49	52.58	322.47
1/26/2023	10:26	MW369	URGA	364.23	30.16	0.00	42.23	322.00	(ft)(ft)(ft) 09 59.92 322 76 69.61 321 92 73.34 321 93 72.44 321 93 72.44 321 93 72.44 321 93 72.44 321 99 73.79 321 96 63.76 321 49 52.58 3222 90 42.23 3222 91 43.11 322 73 24.91 339 92 37.40 3222 54 24.80 334 92 43.67 322 54 24.80 334 92 43.67 322 53 18.69 346 98 41.50 321 97 41.48 321 94 38.45 321 94 44.73 321 92 43.93 321 92 43.93 321 92 43.93 321 94 44.73 321 94 44.73 321 94 56.27 322 16 56.96 322 55 11.20 367 19 64.81 322	
1/26/2023	10:27	MW370	LRGA	365.12	30.16	0.00	43.11	322.01	43.11	322.01
1/26/2023	10:28	MW371	UCRS	364.64	30.16	0.00	24.91	339.73	24.91	339.73
1/26/2023	10:24	MW372	URGA	359.42	30.16	0.00	37.40	322.02	37.40	322.02
1/26/2023	10:22	MW373	LRGA	359.73	30.16	0.00	37.69	322.04	37.69	322.04
1/26/2023	10:23	MW374	UCRS	359.44	30.16	0.00	24.80	334.64	24.80	334.64
1/26/2023	10:47	MW384	URGA	365.29	30.16	0.00	43.27	322.02	43.27	322.02
1/26/2023	10:49	MW385	LRGA	365.74	30.16	0.00	43.67	322.07	43.67	322.07
1/26/2023	10:48	MW386	UCRS	365.32	30.16	0.00	18.69	346.63	18.69	346.63
1/26/2023	10:45	MW387	URGA	363.48	30.16	0.00	41.50	321.98	41.50	321.98
1/26/2023	10:46	MW388	LRGA	363.45	30.16	0.00	41.48	321.97	41.48	321.97
1/26/2023	10:44	MW389	UCRS	364.11			NA			
1/26/2023	10:43	MW390	UCRS	360.39	30.16	0.00	38.45	321.94	38.45	321.94
1/26/2023	10:31	MW391	URGA	366.67	30.16	0.00	44.73	321.94		321.94
1/26/2023	10:29	MW392	LRGA	365.85	30.16	0.00	43.93	321.92		321.92
1/26/2023	10:30	MW393	UCRS	366.62	30.16	0.00	29.65	336.97		336.97
1/26/2023	10:36	MW394	URGA	378.46	30.16	0.00	56.27	322.19		322.19
1/26/2023	10:35	MW395	LRGA	379.12	30.16	0.00	56.96	322.16		322.16
1/26/2023	10:37	MW396	UCRS	378.75	30.16	0.00	11.20	367.55		367.55
1/26/2023	10:39	MW397	LRGA	387.00	30.16	0.00	64.81	322.19		322.19
1/26/2023	10:31	MW418	URGA	367.21	30.16	0.00	45.17	322.04	45.17	322.04
1/26/2023	10:32	MW419	LRGA	367.05	30.16	0.00	45.02	322.03	45.02	322.03
Reference B	arometri	c Pressure			30.16					
lev = elevation	1 1		•							

Table E.1. C-746-S&T Landfills First Quarter 2023 (January) Water Levels

Elev = elevation amsl = above mean sea level BP = barometric pressure DTW = depth to water in feet below datum URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System *Assumes a barometric efficiency of 1.0



Figure E.2. Composite Potentiometric Surface of the Regional Gravel Aquifer at the C-746-S&T Landfills January 26, 2023

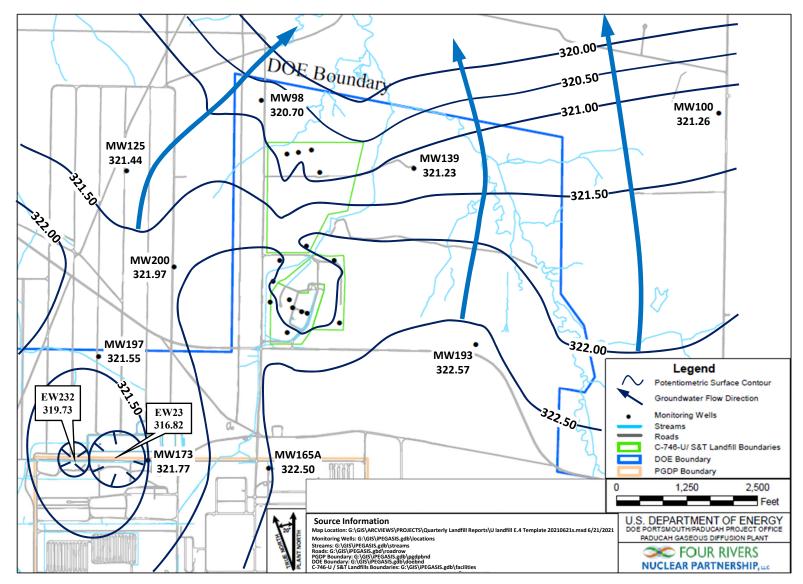


Figure E.3. Vicinity Potentiometric Surface of the Regional Gravel Aquifer, January 26, 2023

Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	4.16×10^{-4}
Vicinity	$4.17 imes 10^{-4}$

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic C	onductivity (K)	Specific l	Discharge (q)	Average	e Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
		Beneath Lar	ndfill Mound		
725	0.256	0.301	1.06×10^{-4}	1.21	4.26×10^{-4}
425	0.150	0.177	6.24×10^{-5}	0.707	2.49×10^{-4}
		Vic	inity		
725	0.256	0.302	1.07×10^{-4}	1.21	4.27×10^{-4}
425	0.150	0.177	6.26×10^{-5}	0.709	$2.50 imes 10^{-4}$

APPENDIX F

NOTIFICATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARSAMETERS NOTIFICATION

The statistical analyses conducted on the first quarter 2023 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Technetium-99	MW369, MW372, MW387

Lower Regional Gravel Aquifer None

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

2/28/2023

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL	
8004-4820	MW369	Trichloroethene	8260D	5.84	ug/L	ţ	5
8004-4808	MW372	Trichloroethene	8260D	5.24	ug/L	ţ	5
8004-4792	MW373	Trichloroethene	8260D	5.76	ug/L	ţ	5
8004-4802	MW394	Trichloroethene	8260D	6.13	ug/L	į	5
8004-4801	MW395	Trichloroethene	8260D	7.11	ug/L	ţ	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

THIS PAGE INTENTIONALLY LEFT BLANK

Gradient S D <thd< th=""> D<!--</th--><th>Groundwater Flow System</th><th>T</th><th></th><th>UCRS</th><th>5</th><th></th><th></th><th></th><th></th><th></th><th>1</th><th>URG</th><th>4</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>LRGA</th><th>4</th><th></th><th></th></thd<>	Groundwater Flow System	T		UCRS	5						1	URG	4								LRGA	4		
Number 360 399 390 291 222 224 384 99 385 392 </th <th></th> <th>S</th> <th></th> <th></th> <th></th> <th>U</th> <th>S</th> <th>S</th> <th>S</th> <th>S</th> <th></th> <th></th> <th></th> <th>D</th> <th>D</th> <th>U</th> <th>U</th> <th>S</th> <th>D</th> <th></th> <th>-</th> <th></th> <th>U</th> <th>U</th>		S				U	S	S	S	S				D	D	U	U	S	D		-		U	U
ACETONE Image: August 2, 2003 Image: August 2, 2004		386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Ounder J. 2003 Image: Autor Auto	-																							
Ounder 1, 2005 Image 4, 2015 Image 4	Quarter 3, 2003							*					*											
Ounder 4, 2019 Image: Applie App	Quarter 4, 2003											*								*				
NPERAACTIVITY No	Quarter 1, 2005									*														
Ounter 4, 2002 Image 4, 2003 Image 4, 2004 Image 4	Quarter 4, 2019																*							
Owner 4, 2008 O <	ALPHA ACTIVITY																							
Oussier 4, 2010 Image: Construct 1, 2003 Image: Construct	Quarter 4, 2002																							
ALUMINUM Image: state in the state in	Quarter 4, 2008																							
Quarter 1, 2003 Image: Construct of the second	Quarter 4, 2010																							
Quarter 2.2003 Image: Constraint of the second	ALUMINUM																							
Quarter 3. 2003 *	Quarter 1, 2003			*				*					*	*	*									
Quarter 1, 2004 *	Quarter 2, 2003			*				*						*	*									
Ounter 1. 2004 *	Quarter 3, 2003			*				*	*					*	*									
Quarter 2, 2004 * <li< td=""><td>Quarter 4, 2003</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td>*</td><td></td><td></td><td>*</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></li<>	Quarter 4, 2003							*	*			*			*									
Quarter 3, 2004 *	Quarter 1, 2004			*				*	*			*												
Quarter 1, 2005 * <td< td=""><td>Quarter 2, 2004</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 2, 2004							*							*									
Quarter 1, 2005 *								*							*									
Quarter 2, 2005 *	Quarter 4, 2004			*																				
Quarter 3, 2005 *	Quarter 1, 2005		1	*														Ī						
Quarter 3, 2005 *	Quarter 2, 2005		1	*				*																
Quarter 1, 2005 *			1	*				*			*											*		
Quarter 1, 2006 *			1	*				*				*												
Quarter 2, 2006 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								*						*										
Quarter 3, 2006 * * * <				*				*																
Quarter 4, 2006 * * * * * * * * * *	< ,							*																
Quarter 1, 2007 *				*				*																-
Quarter 2, 2007 * * * * *	· · ·																	*						-
Quarter 3, 2007 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>																								-
Quarter 4, 2007 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>																		-						-
Quarter 1, 2008 * * * <																								-
Quarter 2, 2008 * <td< td=""><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>	· · ·														*									-
Quarter 4, 2008 *	· · ·	_										*												
Quarter 1, 2009 * * * * *	· · ·							*				Ŧ												<u> </u>
Quarter 1, 2010 * * * * *	· · ·	_		*								*												<u> </u>
Quarter 3, 2010 * * * <																								<u> </u>
Quarter 3, 2010 *								*																
Quarter 1, 2011 * * * <		_													÷			<u>т</u>			÷		<u> </u>	i
Quarter 2, 2011 * <td< td=""><td>· · ·</td><td>_</td><td></td><td>*</td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td>*</td><td></td><td></td><td>*</td><td></td><td><u> </u></td><td>i</td></td<>	· · ·	_		*				4							*			*			*		<u> </u>	i
Quarter 2, 2012 * <td< td=""><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	· · ·							*																
Quarter 1, 2012 *												*												
Quarter 1, 2013 * * * <	· · ·	_	<u> </u>	*				L									<u> </u>						<u> </u>	
Quarter 3, 2013 * <td< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		_																<u> </u>						
Quarter 1, 2014 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								*				*												
Quarter 4, 2014 * * <t< td=""><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				*																				
Quarter 4, 2014 * <td< td=""><td>< ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	< ,							*																
Quarter 1, 2016 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												*												
Quarter 2, 2016	Quarter 4, 2014			*																				
Quarter 1, 2017 * <	Quarter 1, 2016							*																
Quarter 4, 2017 Image: Constraint of the constraint of t															*									
Quarter 1, 2018 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								*																
Quarter 1, 2020 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td></t<>																								*
BARIUM Image: Constraint of the cons								*																
Quarter 3, 2003 Image: Constraint of the second secon														*										
Quarter 4, 2003 Image: Constraint of the constraint of																								
BETA ACTIVITY Image: Constraint of the second sec																								
Quarter 4, 2002	\$ /																							
Quarter 1, 2003	•																							
	Quarter 1, 2003																							

Groundwater Flow System		1	UCRS	3						1	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																			_				
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004										_													
Quarter 1, 2005																				_			
Quarter 2, 2005										_													
Quarter 3, 2005										-													
Quarter 4, 2005										-										_			
Quarter 1, 2006										-			-										
Quarter 2, 2006										_		_											
Quarter 3, 2006	_		_							_													
Quarter 4, 2006										-													
Quarter 1, 2007																							
Quarter 2, 2007										-													
Quarter 3, 2007																			_				
Quarter 4, 2007			-							_			-						-				
Quarter 1, 2008			_							_													
Quarter 2, 2008													-										
Quarter 3, 2008																							
Quarter 4, 2008			-							-													
Quarter 1, 2009										_													
Quarter 2, 2009										-										_			
Quarter 3, 2009										-													
Quarter 4, 2009										-													
Quarter 1, 2010			-														_						
Quarter 2, 2010																							
Quarter 3, 2010										-		_											
Quarter 4, 2010										-													
Quarter 1, 2011			-																				
Quarter 2, 2011										-													
Quarter 3, 2011																							
Quarter 4, 2011			-																	_			
Quarter 1, 2012										_													
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																	-						
Quarter 1, 2013 Quarter 2, 2013										-		-	-						-				
. ,										-			-										
Quarter 3, 2013										-									-				
Quarter 4, 2013										-													
Quarter 1, 2014 Quarter 2, 2014	<u> </u>	<u> </u>				<u> </u>	<u> </u>			-	<u> </u>			<u> </u>				<u> </u>	—				
Quarter 2, 2014	—	<u> </u>				<u> </u>	<u> </u>			-	<u> </u>	<u> </u>						<u> </u>	—				
Quarter 3, 2014 Quarter 4, 2014													-				H						
Quarter 4, 2014 Quarter 1, 2015										-													
Quarter 1, 2015 Quarter 2, 2015										-		-											
Quarter 3, 2015										-			-										
Quarter 4, 2015								-		-					-				-				
Quarter 1, 2015 Quarter 1, 2016										-				<u> </u>	-				-				
Quarter 2, 2016								-		-					-				-				
Quarter 3, 2016										-													_
Quarter 4, 2016										-			-	<u> </u>	-				-				
Quarter 1, 2017										-			-	<u> </u>	-				-				
Quarter 1, 2017 Quarter 2, 2017								-		-					-				-				
Quarter 3, 2017										-			-	<u> </u>	-				-				
Quarter 4, 2017 Quarter 4, 2017								-		-			-		-				-				
Quarter 1, 2017 Quarter 1, 2018								-		-		-	-		-				-				
Quarter 2, 2018			-															<u> </u>					
Quarter 3, 2018			-																				
Zum (01 5, 2010		L				_	L		<u> </u>	_	L	L	_		_	<u> </u>	<u> </u>		_	<u> </u>		<u> </u>	

Groundwater Flow System			UCRS	S						1	URGA	A								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390		396	221	222	223	224	384	369	372		391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019																							
Quarter 3, 2019																	-			L_			
Quarter 4, 2019																							
Quarter 1, 2020																							
Quarter 2, 2020	-									-							-			-			
Quarter 3, 2020 Quarter 4, 2020										-		-	-										
Quarter 1, 2020																		-					
Quarter 2, 2021																							-
Quarter 3, 2021																							
Quarter 4, 2021																							
Quarter 1, 2022																				-			
Quarter 2, 2022																							
Quarter 3, 2022																							
BROMIDE																							
Quarter 1, 2003			*																	1			
Quarter 4, 2003			*																	1			
Quarter 1, 2004			*																	1			
Quarter 2, 2004			*																	1			
Quarter 3, 2004	L		*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*				L				L						_				L		
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010	Ľ											*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*	L			
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*	1			
Quarter 4, 2011	1											*							*	1			
Quarter 1, 2011		1		1	1			İ			1	*	1		1	1		1	*	1		İ	
Quarter 1, 2012																							
												*							*				
Quarter 1, 2012												*											<u> </u>

Groundwater Flow System	Image: Normal base of the term of the term of t																						
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							* *				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							* *				
Quarter 4, 2013 Quarter 1, 2014												*						*	*				
Quarter 2, 2014												*						т —	*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*						-	*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017												*							*				
Quarter 3, 2017	L											*							*				
Quarter 4, 2017												*							*				
Quarter 1, 2018												*							*				
Quarter 2, 2018												*							*				
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*							*				
Quarter 4, 2019												*	*						*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*							*				
Quarter 3, 2020												*	*						*				
Quarter 4, 2020												*	*						*				
Quarter 1, 2021												*	*						*				
Quarter 2, 2021												*							*				
Quarter 3, 2021												*	*						*				
Quarter 4, 2021												*	*						*				
Quarter 1, 2022												*	*						*				
Quarter 2, 2022												*	*						*				
Quarter 3, 2022												*	*						*				
Quarter 4, 2022												*	*						* *				
Quarter 1, 2023												*	*						*				
CARBON DISULFIDE											*						_						
Quarter 4, 2010											*	*	-	-						-	*		
Quarter 1, 2011	<u> </u>				-	<u> </u>						*	*	-			<u> </u>		*	-	*		┣—
Quarter 2, 2017 CHEMICAL OXYGEN DEMAN	I ID											-	*		-				-			-	-
Quarter 1, 2003				*		-											-						
Quarter 2, 2003		-	-	*		-			-	-		-	-	-			-		-	-	-		<u> </u>
Quarter 3, 2003				*			*			*			-						-				
Quarter 4, 2003	1			*																			
Quarter 1, 2004	*			*																			<u> </u>
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						

Gradient S D D D U S S S S D<	Groundwater Flow System	1		UCRS	5						1	URG	A							1	LRGA	Ą		
CHEMICAL ONCE DEMAND OUNDER SUPPORT	-	S	-	-				S	S	S				D	D	U	U	S	D				U	U
opanet 2,3008 • • • • <t< th=""><th>Monitoring Well</th><th>386</th><th>389</th><th>390</th><th>393</th><th>396</th><th>221</th><th>222</th><th>223</th><th>224</th><th>384</th><th>369</th><th>372</th><th>387</th><th>391</th><th>220</th><th>394</th><th>385</th><th>370</th><th>373</th><th>388</th><th>392</th><th>395</th><th>397</th></t<>	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Same 1. 2006 S <	CHEMICAL OXYGEN DEMAN																							
Damer 1.2009 I <																								
Same 2.2009 I <thi< th=""> I <thi< th=""> I I <thi< th=""> <thi< <="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thi<></thi<></thi<></thi<>																								
Sunder 3.2009 I <	· · ·																							
Damard 2000 Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	· · ·																				*			
Damber 12000 Image 2000 Image 2000<																								
Opanter 2.2000 Image: Control 2.2000 Im																								
Outrer 4, 2010Outrer																								
Ounter 4, 2010 Image: A set of a set																								
Quarter 4. 2011 *	· · ·																							
Outrer 4:2011 *	· · ·																							
Outrer 1, 2012 *																								
Ounter 1, 2013 *																								
Outer 3, 2013 Image: Section of the secti																							i	
Outer 1, 2014 Image: Constraint of the const	-																						i	
Outrer 4. 2014 O										*				*					*					
Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2017 Quarter 3, 2018 QUARTER 3,		*					-	*	-	*				*					*				\vdash	├
Ounter 3.2015 Ounter 3.2016 Ounter 3.2016 Ounter 3.2016 Ounter 3.2016 Ounter 3.2016 Ounter 3.2016 Ounter 3.2017 Ounter 3								-	-								*						\vdash	├
Quarter 1, 2016 Image: A grant A g									-							*	Ŧ						\vdash	├
Quarter 4. 2016 Quarter 4. 2017 Quarter 4. 2018 Quarter 4.		I	-	*		-		-	-	-		*	-	-		*								├
Quarter 2.2017 Image: Another Control Image: Another Contro Image: Another Contro<		I	<u> </u>	- *	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>	<u> </u>		*				<u> </u>	<u> </u>	┣
Quarter 3, 2017 * I	· · ·	I	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	*	-	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		-				<u> </u>	<u> </u>	┣
Quarter 3, 2017 Image: Amage: Ama		*	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	*	-	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	*		—				<u> </u>	<u> </u>	┣
Quarter 3, 2018 Image: Applie Appli		-					*									*		—						<u> </u>
Quarter 3, 2018 Image: A granter A, 2019 Image: A granter A, 2019 Image: A granter A, 2018 Image: A granter A, 2019							*								*								*	
Quarter 4, 2018 Image: Ambre 4, 2018 Image: Ambre 4, 2019													*		*								*	
Quarter 2, 2019 Image: 2019													*											*
Quarter 3, 2019 Image: Constraint of the sector of the						.							J.		J.					÷				*
Quarter 4, 2019 *						*								J.	*								*	.
Quarter 1, 2020 Image: Amage: Ama		*			*				*			*		*			*			*			*	*
Quarter 2, 2020 Image: Constraint of the constraint of t		*			*	.			*	4		Ŧ	*				*					J.		
Quarter 1, 2020 I						*				*						*						*	<u> </u>	
Quarter 1, 2021 Image: Constraint of the constraint of t	· · ·															*	*						<u> </u>	
Quarter 2, 2021 * <td>· · ·</td> <td></td> <td>J.</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	· · ·												J.				*							
Quarter 4, 2021 *							*						*			*							<u> </u>	
Quarter 1, 2022Image: state s		J.					*									*								
Quarter 2, 2022 *		*					*		*	<u>т</u>					J.	÷					÷	J.		
Quarter 4, 2022 * Image: Constraint of the second sec	· · ·								ѫ	*						*					*	*		
Quarter 1, 2023Image: constraint of the second		J.					*								*									
CHLORIDE Image: Chlorid structure of the stru		*					-											4					i	
Quarter 1, 2003 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		*						
Quarter 4, 2003 * <td< td=""><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				*																				
Quarter 3, 2003 * <td< td=""><td></td><td> </td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td><u> </u></td><td></td><td> </td><td> </td><td><u> </u></td><td> </td><td></td><td>—</td><td></td><td></td><td></td><td><u> </u></td><td></td><td><u> </u></td></td<>							<u> </u>				<u> </u>				<u> </u>			—				<u> </u>		<u> </u>
Quarter 4, 2003 Image: Constraint of the constraint of t			<u> </u>			<u> </u>				<u> </u>														-
Quarter 1, 2004 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td>├</td></td<>									-														\vdash	├
Quarter 2, 2004 * <td< td=""><td>(),</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></td<>	(),						-																	<u> </u>
Quarter 3, 2004 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td>├──</td></td<>									-								\vdash						\vdash	├──
Quarter 4, 2004 Image: Sector of the sec									-															<u> </u>
Quarter 1, 2005 * <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>\vdash</td><td>⊢</td></td<>			-			-		-	-	-		-							-	-	-		\vdash	⊢
Quarter 2, 2005 * * <t< td=""><td></td><td>1</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>1</td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td><u> </u></td></t<>		1			-				1		-				-							-		<u> </u>
Quarter 3, 2005 * <td< td=""><td>-</td><td>1</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>1</td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>\vdash</td><td><u> </u></td></td<>	-	1	-		-	-		-	1	-		-						-	-	-	-		\vdash	<u> </u>
Quarter 1, 2005 * <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>\vdash</td><td><u> </u></td></td<>			-			-		-	-	-		-							-	-	-		\vdash	<u> </u>
Quarter 1, 2006 Image: Constraint of the constraint of t		1	-		-	-		-	1	-		-						-	-	-	-		\vdash	<u> </u>
Quarter 2,2006 *																			*		-			<u> </u>
Quarter 3,2006 *				*				-	1			-							-	-	-			<u> </u>
Quarter 4, 2006 * * <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>\vdash</td><td><u> </u></td></t<>			-			-		-	-	-		-						-	-	-	-		\vdash	<u> </u>
Quarter 1, 2007 * * <t< td=""><td></td><td>1</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>1</td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td><u> </u></td></t<>		1			-				1		-				-							-		<u> </u>
Quarter 3, 2007 * <td< td=""><td></td><td>I</td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td><u> </u></td><td>-</td></td<>		I	-		-	-		-		-	-		-	-	-	-					-	-	<u> </u>	-
Quarter 3, 2007 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>1</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td><u> </u></td></td<>								-	1			-							-	-	-			<u> </u>
Quarter 4, 2007 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></td<>									-															<u> </u>
Quarter 1, 2008 * Image: Constraint of the system of the		-	-		-	-	-	-	-	-	-		-	-	-	-						-	 	<u> </u>
Quarter 2, 2008 *			<u> </u>			<u> </u>	-	-		<u> </u>		-							-	-	-		\vdash	<u> </u>
Quarter 3, 2008 *			<u> </u>			<u> </u>	-	-		<u> </u>		-							-	-	-		\vdash	<u> </u>
			-			-		-	-	-													-	-
			1			1	I	İ		<u> </u>	I		L		I							L		
				¥																				

Groundwater Flow System	1		UCRS	3						1	URGA	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390		396		222		224	384	369	372	387	391		394	385	370			392		397
CHLORIDE																							
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				
Quarter 4, 2010			*																				
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				
Quarter 3, 2013			*																				
Quarter 4, 2013			*																				
Quarter 4, 2014			*																				
Quarter 2, 2019																					*		
CHROMIUM								-															
Quarter 4, 2002	1	<u> </u>		L	L	I							L	L					L		L	_	<u> </u>
Quarter 1, 2003	1					I	-																┣
Quarter 2, 2003	1	<u> </u>																					<u> </u>
Quarter 3, 2009 Quarter 1, 2019	1																						-
COBALT	1																-						
Quarter 3, 2003	-					-	*										-						
CONDUCTIVITY	-	<u> </u>					*										_						
Quarter 4, 2002	-	1	1		1		1	1	-	*	[-	1		1	1		-	*	1	<u> </u>	<u> </u>	1
Quarter 1, 2002	-		*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							*									*				1
Quarter 1, 2004																			*				1
Quarter 2, 2004										*									*				
Quarter 3, 2004										*									*				
Quarter 4, 2004			*							*									*				
Quarter 1, 2005										*		*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005	_																		*				
Quarter 4, 2005										*		*							*				
Quarter 1, 2006	-											*							*				
Quarter 2, 2006 Quarter 3, 2006	-											*							*				
												Ŧ					*		*				
Quarter 4, 2006 Quarter 1, 2007	1		-			-	-	-				*			-		*		*	-			
Quarter 2, 2007	1									-							*		*				<u> </u>
Quarter 3, 2007	1		-	-			-	-		-	-			-	-		*		*	-			+
Quarter 4, 2007	1											*					*		*				1
Quarter 1, 2008	1											*							*				t –
Quarter 2, 2008	1		1	1	1	l	l	1	1			*	1	1	1			1	*	1	1	1	t –
Quarter 3, 2008												*					*		*				
Quarter 4, 2008						L						*							*				L
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010	1		<u> </u>	L			<u> </u>	<u> </u>				*		L	<u> </u>				*	<u> </u>			L
Quarter 2, 2010	1											* *							* *				L
Quarter 3, 2010	1	<u> </u>		<u> </u>	<u> </u>	I	<u> </u>					* *	<u> </u>	<u> </u>	<u> </u>				* *	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2010	1		<u> </u>	-	-		<u> </u>	<u> </u>	-	ىلو		*	-	-	<u> </u>			-	*	<u> </u>	-	-	┣
Quarter 1, 2011	1		<u> </u>	-	-		<u> </u>	<u> </u>	-	*		*	-	-	<u> </u>			-	*	<u> </u>	-	-	┣
Quarter 2, 2011	1	<u> </u>				<u> </u>						*							*				┣—
Quarter 3, 2011 Quarter 4, 2011	1					<u> </u>						*							*				├
Quarter 1, 2011 Quarter 1, 2012	-		<u> </u>			I		<u> </u>	<u> </u>		*	*			<u> </u>			<u> </u>	*	<u> </u>			┣—
Quarter 1, 2012 Quarter 2, 2012	1										*	*							*				┣──
Quarter 2, 2012 Quarter 3, 2012	1	-			-		-		-			*	-			\vdash		-	*		-	-	├
Quarter 3, 2012	-						L			_	_	Ŧ					<u> </u>		Ŧ				

Groundwater Flow System			UCRS	3						I	JRGA	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016																			*				
Quarter 3, 2016												*							*				
Quarter 4, 2016	1																		* *				<u> </u>
Quarter 1, 2017	1																		* *				<u> </u>
Quarter 2, 2017	1	<u> </u>				<u> </u>							<u> </u>				<u> </u>		* *				<u> </u>
Quarter 3, 2017	1																		*				<u> </u>
Quarter 4, 2017	1	L																	* *				<u> </u>
Quarter 1, 2018	1	L																	*				<u> </u>
Quarter 2, 2018	1																		*				<u> </u>
Quarter 3, 2018	1																		*				<u> </u>
Quarter 4, 2018	-																		*				
Quarter 1, 2019																			*				
Quarter 2, 2019																							
Quarter 3, 2019												*							* *				
Quarter 4, 2019	-											* *							*				
Quarter 1, 2020												*							*	*			
Quarter 2, 2020												*							*	*			
Quarter 3, 2020												*							*				
Quarter 4, 2020												*							*				
Quarter 1, 2021 Quarter 2, 2021	-											*							*				
Quarter 2, 2021 Quarter 3, 2021	-											*							*				
Quarter 4, 2021	-											÷							*				
Quarter 1, 2022	-											*							*				
Quarter 2, 2022	-											*							*				
Quarter 3, 2022	-											*					*		*				
Quarter 4, 2022												*					*	*	*				
Quarter 1, 2022												*					-	-	*				
DISSOLVED OXYGEN												-							-				
Quarter 3, 2006	1		*			-		*									-						
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003	1		*							*									*				
Quarter 2, 2003	1		*							*									*				
Quarter 3, 2003	1		*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004	1	1	1							*		*		1					*	1			1
Quarter 3, 2004	1									*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005	1											*							*				
Quarter 2, 2005	1																		*				
Quarter 3, 2005	1	1	1										1	1			*	*	*	*	*		
Quarter 4, 2005	1																*	*	*	*	*		
Quarter 1, 2006	1																*	*	*	*	*		
Quarter 2, 2006	1					-							1				*	*	*	*	*		t
Quarter 3, 2006	1			-								-					*	*	*	*	*		-
Quarter 4, 2006	1			-						*		*					*		*				-
Quarter 1, 2007	1	-		-			-					-	<u> </u>					-	*			-	1
	1			-			-			*		*						-	*			-	
V_{1} U_{1} U_{1} U_{1} U_{1}		Ì.		L						*		*	<u> </u>						*			<u> </u>	
Quarter 2, 2007 Ouarter 3, 2007										*													
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007										Ŧ		*							*				

DISSOLVED COUSE Image: Constraint of the con	Groundwater Flow System	T		UCRS	S						1	URG	A								LRGA	A		
Dissolf vis Soll Des Dissolf vis Soll Des <th>Gradient</th> <th>S</th> <th>D</th> <th>D</th> <th>D</th> <th>U</th> <th>S</th> <th>S</th> <th>S</th> <th>S</th> <th>S</th> <th>D</th> <th>D</th> <th>D</th> <th>D</th> <th>U</th> <th>U</th> <th>S</th> <th>D</th> <th>D</th> <th>D</th> <th>D</th> <th>U</th> <th>U</th>	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Opanter 1.2008DDD	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Same 2 Same 3 Same 3<	DISSOLVED SOLIDS																							
Dames 4 2008 Description	Quarter 1, 2008												*							*				
Sumer 1:2005 Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Quarter 2, 2008												*							*				
Darter Darter Description Des	Quarter 3, 2008												*							*				
Same 2 Same 3 Same 3<	Quarter 4, 2008										*		*							*				
Dustrer A. 2000 Distrer A. 2000 Distrer A. 2010 Distrer A. 2012 Distrer A. 2013 Distrer A. 2014 Distrer A.	Quarter 1, 2009												*							*				
Ounsert A 2009 Image A 200	Quarter 2, 2009												*	*						*				
Outrier 1.2010 Outrier 2.2010 Outrier 2.2010 Outrier 2.2011 Outrier 2.2012 Outrier 2.2013 Outrier 2.2013 Outrier 2.2013 Outrier 2.2013 Outrier 2.2013 Outrier 2.2014 Outrier	Quarter 3, 2009												*	*						*				
Quarter 2.2010 Image: Construct A.2010	Quarter 4, 2009													*										
Quarter A. 2010 Image: All and																								
Summer 2, 2010 Summer 2, 2011 Summer 2, 2012 Summer 2, 2013 Summer 2, 2013 Summer 2, 2013 Summer 2, 2013 Summer 2, 2014 Summer 2, 2015 Summer	Quarter 2, 2010													*										
Ounter 1. 2011 Image 2. 2013 Image 2. 2014 Image 2																								
Suster 2, 2011 Image: 2011 Image: 2012																								
Nutrer 1, 2011 Nutrer 1, 2012 Nutrer 1, 2014 Nutrer 1, 2015 Nutrer 1, 2014 Nutrer											*													
Quarter 4. 2011 Quarter 4. 2012 Quarter 4. 2013 Quarter 4. 2013 Quarter 4. 2013 Quarter 4. 2014 Quarter 4. 2015 Quarter 4.														*									Ļ	<u> </u>
Numer 1912 1<		_																					i	
Ounter 3. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2013 Ounter 4. 2013 Ounter 4. 2013 Ounter 4. 2014 Ounter		_										<u>т</u>		T										<u> </u>
Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2012 Ounter 4. 2013 Ounter 4. 2014 Ounter												*		*									i	
Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2014											÷			т. Т.										-
Quarter 1.2013 Image: Constraint of the second		_	<u> </u>	ļ	<u> </u>				ļ	<u> </u>	*				<u> </u>	<u> </u>						<u> </u>	L	_
Quarter 2, 2013 Image 2, 201		+									*	<u> </u>		*				<u> </u>					<u> </u>	├
Quarter 3, 2013 Image: Applie and Applie a		_									*													
Quarter 1, 2014 Image: Constraint of the second		+	<u> </u>											<u> </u>									—	┣──
Quarter 1. 2014 Image: Constraint of the constraint of t																								
Quarter 2, 2014 Image: A grant and a grant a														*										
Quarter 3, 2014 Image: A grant and a grant a		_												Ŧ										-
Quarter 4, 2014 Image: Application of the second of th										*				*										
Quarter 1, 2015 Image: Constraint of the second	-									-1-														
Quarter 2, 2015 *																								
Quarter 3, 2015 * * * * * * * * * * * * * * * * * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>																								-
Quarter 4, 2015 *																								
Quarter 1, 2016 * * * * * * * * * * * * * * * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td>										*									*	*				
Quarter 2, 2016 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *																								-
Quarter 3, 2016 *													*	*	*					*				
Quarter 4, 2016 * * * * * * * * * * * * * * * * * * * * * * *																				*				
Quarter 1, 2017 Image: Constraint of the constraint of t													*							*				
Quarter 3, 2017 Image: Constraint of the second													*							*				1
Quarter 4, 2017 Image: Constraint of the second	Quarter 2, 2017												*							*				
Quarter 1, 2018 Image: Constraint of the constraint of t	Quarter 3, 2017												*		*	*				*				
Quarter 2, 2018 Image: Constraint of the second													*							*				
Quarter 3, 2018 Image: Constraint of the second	Quarter 1, 2018												*							*				
Quarter 4, 2018 Image: Constraint of the constraint of t	Quarter 2, 2018												*							*				
Quarter 1, 2019 * * * * * * * * * * * * * * * *	Quarter 3, 2018												*		*					*				
Quarter 3, 2019 * * * * * *	Quarter 4, 2018												*							*				
Quarter 3, 2019 Image: Constraint of the second	Quarter 1, 2019																							
Quarter 4, 2019 * * * * * * * * * * * * * * * <	Quarter 2, 2019												*							*				
Quarter 1, 2020 * * * * * * * * * * * * * * * * * * * * * *	Quarter 3, 2019													*										
Quarter 2, 2020 * * * * * * * *																								
Quarter 3, 2020 Image: Constraint of the constraint of t																								
Quarter 4, 2020 Image: Constraint of the constraint of t																								
Quarter 1, 2021 Image: Constraint of the constraint of t											*							*						
Quarter 2, 2021 Image: Constraint of the constraint of t														*										
Quarter 3, 2021 Image: Constraint of the constraint of t																								
Quarter 4, 2021 Image: Constraint of the constraint of t		_																						
Quarter 1, 2022 Image: Constraint of the constraint of t		_																						
Quarter 2, 2022 Image: Constraint of the constraint of t		_																					L	┝──
Quarter 3, 2022 Image: Constraint of the constraint of t		_																					⊢	⊢
Quarter 4, 2022 Image: Constraint of the constraint of t		_												*									⊢	⊢
Quarter 1, 2023 Image: Constraint of the constraint of t		-						<u> </u>				<u> </u>									<u> </u>		⊨	⊢
IDDIDE Image: Constraint of the constraint o	-	-						<u> </u>				<u> </u>									<u> </u>		⊨	⊢
Quarter 4, 2002 Image: Constraint of the constraint of	•	-					_						*							*				
Quarter 2, 2003 X		-					_															44		
Quarter 3, 2003 *		+	<u> </u>	<u> </u>			<u>.</u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>	*	└──	┣—
Quarter 1, 2004 * 1		+	<u> </u>	<u> </u>			*	<u> </u>	<u> </u>			<u> </u>	<u> </u>	-11-	<u> </u>	<u> </u>					<u> </u>		┝──	<u> </u>
		+	<u> </u>	-	4			-	-			-	<u> </u>	*	-	-							⊢	_
		-			*			<u> </u>				<u> </u>									<u> </u>	<u>ب</u>	⊨	<u> </u>
	Quarter 3, 2010	+	<u> </u>	<u> </u>				<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>	*	┝──	<u> </u>
Quarter 2, 2013 *	Quarter 2, 2013						_				*										L			

Groundwater Flow System	1	1	UCRS	5						1	URG	A								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004										÷	*												
Quarter 2, 2004										* *	*												
Quarter 3, 2004 Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*				-	-											
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2008												*											
Quarter 3, 2008	1											*											
MAGNESIUM																							
Quarter 1, 2003	1		*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005 Quarter 4, 2005												*							*				
												*							*				
Quarter 1, 2006 Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009	1											*							*				
Quarter 2, 2009	1											*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011	1	L	L						L		L	*	*		L				*	L			L
Quarter 3, 2011												*							*				L
Quarter 4, 2011	I											* *							* *				
Quarter 1, 2012	I										ļ	*							*				L
Quarter 2, 2012	I										ļ	*	ىبر						*				L
Quarter 3, 2012	1	<u> </u>	<u> </u>						<u> </u>		<u> </u>	* *	*		<u> </u>				*	<u> </u>			<u> </u>
Quarter 4, 2012	<u> </u>									<u> </u>		*	*						*				
Quarter 1, 2013												*							*				
Quarter 2, 2013	<u> </u>									<u> </u>									*				
Quarter 3, 2013	<u> </u>									<u> </u>		*							*				
Quarter 4, 2013	<u> </u>									<u> </u>		*						*	*				
Quarter 1, 2014	L	L	L			L			L		L	L	L		L		L	*	*	L			L

Groundwater Flow System		1	UCRS	S						1	URGA	A								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 2, 2014												*	*						*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							* *				
Quarter 4, 2015												*							* *				
Quarter 1, 2016 Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*		~					*				
Quarter 4, 2016												*		*					*				
Quarter 1, 2017												*		*					*				
Quarter 2, 2017												*											
Quarter 3, 2017												*		*									
Quarter 4, 2017												*							*				
Quarter 1, 2018												*	*						*				
Quarter 2, 2018												*											
Quarter 3, 2018												*											
Quarter 4, 2018												*	*	*					*				
Quarter 1, 2019												*		*					*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*	*						*				
Quarter 4, 2019												*	*						*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*	*						*				
Quarter 3, 2020												*	*						*				
Quarter 4, 2020												*	*						*				
Quarter 1, 2021												*	*						*				
Quarter 2, 2021												*	*						*				
Quarter 3, 2021												*	*						* *				
Quarter 4, 2021												*	*						*				
Quarter 1, 2022												*	*						* *				
Quarter 2, 2022												*	*						*				
Quarter 3, 2022 Quarter 4, 2022												*	*						*				
Quarter 1, 2022 Quarter 1, 2023												*	*						*				
MANGANESE													-										
Quarter 4, 2002																					*		
Quarter 3, 2002							*	*													-		
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																-
Quarter 3, 2005										-									-		*		
Quarter 3, 2009	*																						-
Quarter 1, 2022	*																						
OXIDATION-REDUCTION POT	FENT	TIAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006		<u> </u>	*	<u> </u>	<u> </u>							<u> </u>	<u> </u>	<u> </u>				44		<u> </u>			<u> </u>
Quarter 3, 2006			*	L	L							L	L					*		L			
Quarter 4, 2006		<u> </u>	*										<u> </u>	<u> </u>						<u> </u>			<u> </u>
Quarter 1, 2007			*				*						<u> </u>				l			<u> </u>			
Quarter 2, 2007							* *			<u> </u>	<u> </u>		<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
Quarter 3, 2007		<u> </u>	*	<u> </u>	<u> </u>		*					<u> </u>	<u> </u>	<u> </u>						<u> </u>			
Quarter 4, 2007			*			*			*				<u> </u>							<u> </u>			
Quarter 1 2008		1	Ť		L				÷					I	 		<u>т</u>		*	<u>ب</u> د		<u> </u>	<u> </u>
Quarter 1, 2008	*		*	*		*							*										
Quarter 2, 2008	*		*	*		*							*				*		*	*			
	*		* *	* *		* * *	*	*	*				* * *				* * *	*	*	* * *			

Groundwater Flow System	1		UCRS	2						1	URG	4								LRG			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Gradient Monitoring Well	386		390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION PO			570	575	570	221	222	225	221	501	507	572	501	571	220	571	505	570	515	500	372	575	571
Quarter 1, 2009	I		*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*	-	-	-				-	-			*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*	*		*			*		*		*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
Quarter 2, 2017	*		*	*	*												*			*	*		
Quarter 3, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 1, 2018	*		*	*	*	*												*	*	*	*		*
Quarter 2, 2018	*		*	*	*												*	*	*	*	*	*	*
Quarter 3, 2018	*		*	*	*	*	*	*	*								*	*	*	*	*	*	*
Quarter 4, 2018	*		*	*	*	*				*			*		*		*	*	*	*	*		*
Quarter 1, 2019	*		*	*	*	*	*	*			*						*	*	*	*	*	*	*
Quarter 2, 2019	*		*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2019	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2019	*		*	*	*				*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2020	*		*	*	*	*	*	*	*				*			*	*	*	*	*	*	*	
Quarter 2, 2020	*		*	*	*	*	*	*	*	*			*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2020	*		*	*	*	*											*	*	*	*	*	*	*
Quarter 4, 2020	*		*	*	*	*		*						*			*	*	*	*	*	*	
Quarter 1, 2021	*		*	*		*	*	*	*	*			*		*		*	*	*	*		*	*
Quarter 2, 2021	*		*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*
Quarter 3, 2021	*		*	*	*	*	*	*	*				*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2021	*		*	*	*	*	*	*	*						*		*	*	*	*	*	*	*
Quarter 1, 2022	*		*	*	*	*				*			*	*	*		*	*	*	*	*	*	*
Quarter 2, 2022	*		*	*	*		*		*	*		*	*		*	*	*	*	*	*	*	*	*
Quarter 3, 2022	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2022	*		*	*	*	*	*	*			*	*		L	L		*	*	*		*	*	*
Quarter 1, 2023	*			*	*	*					*	*	*			*	*	*	*	*	*	*	*
PCB-1016																							
Quarter 4, 2003	I						*	*	*		*		L	L	L			*	<u> </u>				
Quarter 3, 2004	I	<u> </u>	L		<u> </u>			L			*	L								<u> </u>		<u> </u>	<u> </u>
Quarter 3, 2005	I						*				*		L	L	L				<u> </u>				
Quarter 1, 2006	1										*		L	L	L				<u> </u>				
• /		1	1		L						*												
Quarter 2, 2006								1			*		1						1	1		1	1
Quarter 2, 2006 Quarter 4, 2006																							
Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007											*	*											
Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007						_						*											
Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007											*	*											
Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008											*												
Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007											*	*											

Groundwater Flow System	T		UCRS	5						1	URG	4								LRGA	۱.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
PCB-1016																							
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009											*												
Quarter 4, 2009											*												-
Quarter 1, 2009											*												-
Quarter 2, 2010	-										*												
	-										*												
Quarter 3, 2010	_																						
Quarter 4, 2010											*												
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006																		*					
pH																							
Quarter 4, 2002		1															*						
Quarter 2, 2003	1	1				1											*						
Quarter 3, 2003	1	1															*						
Quarter 4, 2003	1	1					*										*						
Quarter 1, 2003	1	1				1	*										*						1
Quarter 2, 2004	+	1		-			-										*		-				-
Quarter 3, 2004																	*						-
Quarter 4, 2004	+																*						-
										*							*				*		
Quarter 3, 2005	-									*							*				Ŧ		
Quarter 4, 2005										*							*						
Quarter 1, 2006																							
Quarter 2, 2006																	*						
Quarter 3, 2006																	*						
Quarter 3, 2007																	*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
Quarter 4, 2014																					*		
Quarter 2, 2016																		*	*				
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2002	1	1		-															*				\vdash
Quarter 2, 2005	1	1				1													*				1
Quarter 3, 2005	+	1		-															*				-
Quarter 4, 2005	+			-															*				-
Quarter 4, 2005 Quarter 2, 2006	+	<u> </u>														\vdash	-		*				
	-																		*				<u> </u>
Quarter 3, 2006	-																		*				-
Quarter 4, 2006	+	<u> </u>				 											<u> </u>						<u> </u>
Quarter 4, 2008	-	 																	* *				<u> </u>
Quarter 3, 2012	1	<u> </u>				 													*				<u> </u>
Quarter 1, 2013	1	<u> </u>				 													* *				
Quarter 2, 2013	1	<u> </u>				<u> </u>													*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				L
Quarter 2, 2005		L		L					*										L				L
Quarter 1, 2009	1										*												
Quarter 3, 2014	1	1				Ī			*			*											
Quarter 4, 2014	1	1	*								*							*					
Quarter 1, 2015	1	1	*			1	*			*		*						*					
	1	1	*	-			*			*		*						*	-				\vdash
Ouarter 2, 2015										1										1			<u> </u>
Quarter 2, 2015 Quarter 3, 2015	-		*																				

Gradient S D D D D<	Groundwater Flow System	1		UCRS	5						1	URG	4								LRGA	A		
KNUMN226 Image: Solution of the second	Gradient	S		-		U	S	S	S	S	_	_		D	D	U	U	S	D	-		-	U	U
Queure 2, 2015 Queure 3, 2016 Queure 3, 2017 Queure	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2.2016 Quarter 4.2016 Quarter 4.2017 Quarter	RADIUM-226																							
Quarter 3, 2016 Image: A general and a second of	Quarter 4, 2015					*	*									*		*				*	*	
Quarker 1.2016 Quarker 1.2017 Quarker	Quarter 2, 2016			*						*		*	*	*	*	*	*							
Ounter 1, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2018 Ounter 2, 2008 OUNTER	Quarter 3, 2016																		*					
Queure 2, 2017 Queure 3, 2017 Queure 4, 2017 QUEURE 4, 2017 QUEURE	Quarter 4, 2016	*					*			*				*		*					*		*	
Quarter A: 2017 V	Quarter 1, 2017			*							*	*												
Quarter 1. 2017 Quarter 1. 2018 QUARTER 1.																		*	*			*		
Outror 1, 2018 Outror 4, 2018 Outror 4, 2018 Outror 1, 2020 Outror						*				*	*	*												
Quarter 1.2018 Image: Applie App																								
Quarter 1. 2020 Quarter 2. 2020 QUARTER 2. 2020 QUARTER 2. 2020 QUARTER 2. 2020 QUARTER 2. 2020 QUARTER 2. 2020 QUARTER 2. 2020 QUARTER 2. 2020 QUARTER 2. 2020 QUARTER 2. 2020 QUARTER 2. 2020 QUARTER 2. 2021 QUARTER 2.													*						*		*			
Querter 2: 2020 Querter 2: 2020 Querter 2: 2020 Querter 2: 2020 Querter 2: 2020 Querter 2: 2020 Querter 2: 2020 Querter 2: 2020 Querter 2: 2020 QUERCERNING QUERCERNING <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td>														*										
NUMEN28 Normality																		*						
Quarter 2.2005 Image: Constraint of the cons																*								
Outrer 3, 2005 Image: Constraint of the second								-				_												
Quarter 4, 2005 Image: Constraint of the second secon				_				-																
Ounter 1, 2006 Image: Control of the cont				-						_														
SPLENIUM Image: SPLENUM Image: SPLE		1	<u> </u>	<u> </u>				-			<u> </u>	<u> </u>		<u> </u>	<u> </u>				<u> </u>			<u> </u>	<u> </u>	
Quarter 1, 2003Image: Section of the sect							-											-						
Quarter 1, 2003 Image: Control of the con							_											_						
Quarter 2, 2003 Image: A grant A g		1						<u> </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>			—				<u> </u>		
Quarter 3. 2003 Image: Constraint of the constraint of t		1				-		<u> </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>			—				<u> </u>	_	
Quarter 4, 2003 Image: Constraint of the const		1						<u> </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>			—				<u> </u>		
SODIUM Image: solution of the so		1	-																					
Quarter 4, 2002AAA		_		-																				
Quarter 1, 2003 *		-																		*		*		
Quarter 2, 2003MMM	. ,				*					*	*	*								*		Ť		
Quarter 3, 2003 * * * *										Ť				*										
Quarter 1, 2004 Image: Constraint of the constraint of t					*			*	*			Ŧ		Ŧ										
Quarter 1, 2004 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ŧ</td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									Ŧ	*														
Quarter 2, 2004 Image: Constraint of the second								Ŧ							*									
Quarter 3, 2004 Image: Constraint of the constraint of t															-4-									
Quarter 4, 2004 Image: Constraint of the second																								
Quarter 1, 2005 Image: Constraint of the second										*														
Quarter 2, 2005 Image: Constraint of the second																				*				
Quarter 3, 2005 * * * * * * * * * * * * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																								
Quarter 4, 2005 *										*														
Quarter 1, 2006 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ŧ</td><td></td><td></td><td></td><td></td></t<>																				Ŧ				
Quarter 2, 2006																								
Quarter 3, 2006 Image: Constraint of the second											*													
Quarter 4, 2006 Image: Constraint of the second											4		<u>ب</u> د							÷				
Quarter 1, 2007 Image: Construction of the construction of t													*					÷		*				
Quarter 2, 2007 Image: Constraint of the constraint of t											*							*						
Quarter 3, 2007 Image: Constraint of the constraint of t													*											
Quarter 4, 2007 Image: Construction of the construction of t		1	<u> </u>								*													
Quarter 1, 2008 Image: Constraint of the second		1																						
Quarter 3, 2008 Image: Constraint of the second		1																						
Quarter 4, 2008 Image: Construction of the construction of t		1								*														
Quarter 1, 2009 Image: Constraint of the constraint of t	Quarter 3, 2008												*											
Quarter 3, 2009 Image: Construction of the construction of t	Quarter 4, 2008										*													
Quarter 4, 2009 * * <t< td=""><td>Quarter 1, 2009</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td></t<>	Quarter 1, 2009									*										*				
Quarter 1, 2010 Image: Constraint of the constraint of	Quarter 3, 2009																							
Quarter 2, 2010 * * * *	Quarter 4, 2009									*	L	L							L				L	
Quarter 3, 2010 Image: Constraint of the constraint of	Quarter 1, 2010	L											*											
Quarter 4, 2010 Image: Constraint of the constraint of t	Quarter 2, 2010										*		*											
Quarter 1, 2011 Image: Constraint of the constraint of	Quarter 3, 2010	1									*													
Quarter 2, 2011 Image: Constraint of the constraint of	Quarter 4, 2010	1	1							*	*													
Quarter 2, 2011 Image: Constraint of the constraint of t	Quarter 1, 2011	1	1								*													
Quarter 4, 2011 Image: Constraint of the constraint of t	Quarter 2, 2011	1	1							*														
Quarter 1, 2012 * *	Quarter 4, 2011	1	1																	*				
Quarter 3, 2012 * * *	Quarter 1, 2012	1	1									*												
	Quarter 3, 2012	1	1										*							*				
		1	1				-				-	-							-				-	
		-					-	-			_	_		-				-	_				_	

Groundwater Flow System	1	1	UCRS	5						1	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							4				
Quarter 3, 2013												* *							*				
Quarter 4, 2013												* *							*				
Quarter 1, 2014 Quarter 2, 2014									*		*	*							*				
Quarter 2, 2014 Quarter 3, 2014									Ŧ		Ť	*							*				
Quarter 4, 2014									*	*		*	*						Ŧ				
Quarter 1, 2015													*										
Quarter 2, 2015												*											
Quarter 3, 2015										*		*											
Quarter 4, 2015									*	*		*											
Quarter 2, 2016											*												
Quarter 3, 2016											*												*
Quarter 1, 2017										*	*		*					*					
Quarter 2, 2017									*	*	*												
Quarter 2, 2018										-			*						-				
Quarter 3, 2018	<u> </u>												¥	*									-
Quarter 1, 2019	<u> </u>												* *										-
Quarter 2, 2019 Quarter 4, 2019												*	*										-
Quarter 4, 2019 Quarter 1, 2020											*	*							*				
Quarter 1, 2020 Quarter 2, 2020	-						-				*	Ŧ	*						*	-			
Quarter 2, 2020 Quarter 3, 2020											*	*							·T				
Quarter 4, 2020												*											
Quarter 1, 2020												*	*										
Quarter 2, 2021												*											
Quarter 3, 2021												*											
Quarter 4, 2021												*											
Quarter 1, 2022												*	*										
Quarter 2, 2022													*										
Quarter 3, 2022												*	*										
Quarter 4, 2022												*											
STRONTIUM-90																							
Quarter 2, 2003										_													
Quarter 1, 2004										-													
SULFATE																			*				
Quarter 4, 2002										-		*	*				*		*				
Quarter 1, 2003 Quarter 2, 2003										*		*	*				Ť	*	*				
Quarter 3, 2003										*		*	*					Ŧ	*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2005										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004	1									*		*	*					*	*				
Quarter 1, 2005	1	1	1	1	1			1		*	1	*	*				*	*	*		1		İ
Quarter 2, 2005	1									*		*	*					*	*				
Quarter 3, 2005	Ī									*		*	*				*	*	*				
Quarter 4, 2005										*		*	*					*	*	*			
Quarter 1, 2006	Í –									*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007	L								*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
	*	1	1							*		*	*				*	*	*				
Quarter 4, 2009			_																				
Quarter 4, 2009 Quarter 1, 2010	*								*	*		*	*				*		*				

Groundwater Flow System	1		UCRS	3						1	URGA	A								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SULFATE																							
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			1
Quarter 4, 2010	*									*		*	*				*	*	*				1
Quarter 1, 2011	*									*		*	*				*	*	*				1
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			-
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012	Ť									*		*	*				*	*	*	*			
	_									*		*	*				*	*	*	*			
Quarter 1, 2013	_									*		*		*			*	*	*	*			
Quarter 2, 2013	_												* *	*									
Quarter 3, 2013	_									*		*	*	*			*	*	*	*			
Quarter 4, 2013	1	<u> </u>	L							* *	L	*	* *	<u> </u>	L		*	*	* *	*			⊢
Quarter 1, 2014	1							*		*		*	*				*	*	*	*			⊢
Quarter 2, 2014										*		*	*	*			*	*	*	*			
Quarter 3, 2014										*		*	*	*			*	*	*	*			
Quarter 4, 2014										*		*	*				*	*	*	*			
Quarter 1, 2015		L					L	L		*		*	*	L			*	*	*	*			L
Quarter 2, 2015										*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			Ľ
Quarter 4, 2015	T									*		*	*	*			*		*	*			
Quarter 1, 2016								*		*		*	*	*			*	*	*	*			
Quarter 2, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2016								*		*		*	*	*	*		*	*	*	*			1
Quarter 4, 2016										*		*	*	*	*		*	*	*	*			1
Quarter 1, 2017										*		*	*	*	*		*	*	*	*			1
Quarter 2, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2017										*		*	*	*	*		*	*	*	*			
Quarter 1, 2018	_									*		*	*	*	-		*	*	*	*			
Quarter 2, 2018	-							*		*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2018	-							*		*	-1-	*		*	*		*	*	*	*			
Quarter 4, 2018	_									*		*	*	*			*	*	*	*			
Quarter 1, 2018	_							*		*		*	*	*	*		*	*	*	*			
	_							*		*		*	*	*	*		*	*	*	*			
Quarter 2, 2019	_		*					*													*		
Quarter 3, 2019	_		*					*		*		*	*	*	*		*	*	*	*	*		
Quarter 4, 2019	_		*					*							÷								
Quarter 1, 2020	_							*		*		*	* *	*	*		*	*	* *	*	*		
Quarter 2, 2020	_		<u>ب</u> د					*		* *		*	* *	*	*		*	*	* *	*	* *		
Quarter 3, 2020	_		*							*		*	*				*	*	*	*	*		
Quarter 4, 2020										*		*	*				*	*	*	*			
Quarter 1, 2021	_									*		*	*				*	*	*	*			
Quarter 2, 2021	1							*		*		*	*		*		*	*	*	*	*		⊢
Quarter 3, 2021	1									*		*	* =				*	*	* :	*			⊢
Quarter 4, 2021	1									*		*	*				*	*	*	*			⊢
Quarter 1, 2022	1									*		*	*		*		*	*	*	*			L
Quarter 2, 2022	1		_						*	*		*	*		*		*	*	*	*			L
Quarter 3, 2022	1		*							*		*	*		*		*	*	*	*			
Quarter 4, 2022										*		*	*				*	*	*	*			
Quarter 1, 2023										*		*	*				*	*	*	*			
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003	Ι					L				Ľ			*				*		*				Ľ
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003	T		*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*				*		*				
Quarter 2, 2004	1	1	*					1				*	*	1			*		*	*			İ –
Quarter 3, 2004	1		*									*					*		*				<u> </u>
Quarter 4, 2004	1		*							*		*	*				*	*	*				<u> </u>
Quarter 1, 2005	1	<u> </u>	*			-		<u> </u>	<u> </u>	*		*	*	<u> </u>			*		-	*	<u> </u>	<u> </u>	1
、, =	+	<u> </u>	*					<u> </u>		*			*	<u> </u>			*	*	*	*			<u> </u>
Ouarter 2, 2005																							1
Quarter 2, 2005	-		*							*			*				*	*	*	*			
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005			*							*		*	* *				* *	*	*	*			

Groundwater Flow System	T		UCRS	5						1	URGA	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223		384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*						*	*			
Quarter 1, 2007			*							*			*				*		*	*			
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008			J.							*		*	*				*	4	÷	*			
Quarter 4, 2008			*							*		* *	*				*	*	*	*	 		┢
Quarter 1, 2009			*							*		*	*				*	т.		*			
Quarter 2, 2009			*							* *	*	*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*					——	
Quarter 1, 2010	┣──		*							*		*	*				*	*		*	┣───	\vdash	├
Quarter 2, 2010 Quarter 3, 2010	<u> </u>	<u> </u>	*							* *	*	*	*				*	*		*		\vdash	├
Quarter 3, 2010 Quarter 4, 2010		-	*							*	*	*	*				*			<u> </u>	├	\vdash	├
Quarter 1, 2010	-	-								*			*	-			*			<u> </u>		\vdash	├──
Quarter 2, 2011	-	-	*		\vdash				\vdash	*			*				*			*		\vdash	├
Quarter 3, 2011	-		*							*			*				*			*			<u> </u>
Quarter 4, 2011		-	*							*	*	*	*				*			<u> </u>	<u> </u>		<u> </u>
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*	-		-
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			
Quarter 1, 2015			*							*	*	*	*				*			*			
Quarter 2, 2015			*							*	*		*				*			*			
Quarter 3, 2015			*							*	*	*	*				*	*	*	*			
Quarter 4, 2015			*							*	*	*	*				*	*		*			
Quarter 1, 2016			*							*	*		*				*		*	*			
Quarter 2, 2016			*			*				*			*				*	*		*			
Quarter 3, 2016			*							*		*	*				*	*		*			
Quarter 4, 2016	<u> </u>		*							*	*		*				*	ال ا		*	┣—		⊢
Quarter 1, 2017	┣──		*							*			*	-			*	*		*	┣──		_
Quarter 2, 2017 Quarter 3, 2017	 	-	*	<u> </u>			<u> </u>			*	*		*				*	*	<u> </u>	*	<u> </u>	\vdash	_
· · ·		-	*							*	*	*	*	-			*	*		*	┣──	\vdash	├
Quarter 4, 2017 Quarter 1, 2018		<u> </u>	*							* *	*	*	*				*	*		*	├──	\vdash	├
Quarter 1, 2018 Quarter 2, 2018	<u> </u>	<u> </u>	*							* *	*	*	*				*	*		*		\vdash	├
Quarter 3, 2018		-	*							*		*	*				*	*		*	<u> </u>		├
Quarter 4, 2018		-	*							*	*	*	*				*	*		*	<u> </u>		├
Quarter 1, 2019	├──	-	*							*	*	*	*	-			*	*		*	├		├──
Quarter 2, 2019	1		*	-			-			*	*	*	*	-		-	*	*	-	*	<u> </u>		 _
Quarter 3, 2019	1		*	-			-			*	*	*	*	-		-	*	*	-	*	<u> </u>		 _
Quarter 4, 2019	-		*							*		*	*				*	*	*	*	<u> </u>		<u> </u>
Quarter 1, 2020			*							*		*	*				*	*		*	<u> </u>		1
Quarter 2, 2020	1	1	*							*		*	*				*	*		*			
Quarter 3, 2020			*							*		*	*				*	*		*	<u> </u>		1
Quarter 4, 2020			*							*		*	*				*	*					
Quarter 1, 2021	İ –		*							*	*	*	*				*	*					
Quarter 2, 2021			*								*	*	*					*					
	1	1	*							*	*	*	*				*	*		1			
Quarter 3, 2021																							
Quarter 3, 2021 Quarter 4, 2021			*							*	*	*	*					*					

Groundwater Flow System			UCRS	3		r				1	URG	Ą								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 1, 2022			*							*	*	*	*				*						
Quarter 2, 2022			*							*	*	*	*				*			*			
Quarter 3, 2022			*								*	*	*										
Quarter 4, 2022			*							*	*	*					*			*			
Quarter 1, 2023											*	*	*										
THORIUM-230																							
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*		*												_								
Quarter 3, 2015	*								*	*			*		*								
Quarter 1, 2017			*							*							*						
THORIUM-234						*			*					*									
Quarter 2, 2003	-					*			*					*									
Quarter 4, 2007									*														
TOLUENE Quarter 2, 2014	-					_				*	*		*				-						
TOTAL ORGANIC CARBON						_				Ŧ	Ŧ		Ť										
Quarter 4, 2002																					*		
Quarter 1, 2002		-		*						*	*							*	*		*		
Quarter 2, 2003	<u> </u>	<u> </u>			-		-	-	-	*	*		*	-	-		-			-	*	-	-
Quarter 3, 2003	-	-	-	-	-		*	*	*	*	*	*	-1+							-	-1+		-
Quarter 4, 2003	<u> </u>	<u> </u>		-	-		*	*	*	*	- **		-	-	-		-	-	-	-		-	-
Quarter 1, 2003										*			-	-	-			-	-			-	
Quarter 2, 2004							-			*	*		-	-	-			-	-			-	
Quarter 3, 2004		-								*	-												
Quarter 4, 2004										*													
Quarter 1, 2004 Quarter 1, 2005										*													
Quarter 2, 2005										*											*		
Quarter 3, 2005										*		*									*		
										*		Ť									*		
Quarter 4, 2005										*											*		
Quarter 1, 2006										*		*											
Quarter 2, 2006										*		*					÷						
Quarter 4, 2006	4									÷							*						
Quarter 1, 2007	*					÷	4	4	<u>т</u>	*			4	4			4						
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2011											*												
Quarter 3, 2012	*																						
Quarter 3, 2016																			*				
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004		<u> </u>	L	L					I											L	*		L
Quarter 3, 2004	*	<u> </u>	<u> </u>	L	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>						<u> </u>			<u> </u>	<u> </u>		<u> </u>
Quarter 1, 2005	*	-	-	-	-			-		-	-									-	-		-
Quarter 2, 2005	*	-	-	-	-			-		-	-									-	-		-
Quarter 3, 2005	*	<u> </u>							<u> </u>								<u> </u>						<u> </u>
Quarter 4, 2005	*																						
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006 Quarter 4, 2006	*		<u> </u>			<u> </u>			<u> </u>								*				<u> </u>		
-	*		<u> </u>			<u> </u>			<u> </u>								Ļ_				<u> </u>		
Quarter 1, 2007 Quarter 2, 2007	*		<u> </u>			<u> </u>											<u> </u>				<u> </u>		
Quarter 2, 2007 Quarter 3, 2007	*		<u> </u>			—											<u> </u>				<u> </u>		
Quarter 3, 2007 Quarter 4, 2007	*			<u> </u>					<u> </u>								<u> </u>				*		
Quarter 1, 2007 Quarter 1, 2008	*						-						-	-	-			-	-			-	
Quarter 4, 2008	*																						-
Quarter 4, 2008 Quarter 4, 2008	*	-		-					<u> </u>						-			-	-			-	-
Quarter 1, 2009	*																						
Quarter 2, 2009	*						-						-	-	-			-	-		*	-	
Quarter 3, 2009	*						-						-	-	-			-	-			-	
Quarter 5, 2007	*						-						-	-	-			-	-			-	
				L	1			1	1	L	L									L		L	
Quarter 4, 2009																							
Quarter 4, 2009 Quarter 1, 2010	*																						
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010	*																						
Quarter 4, 2009 Quarter 1, 2010	*																						

Groundwater Flow System	1	1	UCRS	3						1	URGA	4								LRGA	1		-
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOTAL ORGANIC HALIDES																							
Quarter 4, 2010	*					_																	
Quarter 1, 2010	*																						+
Quarter 3, 2013																					*		
TRICHLOROETHENE																					Ŧ	-	
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004												_											
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005	Ī																						Ī
Quarter 1, 2006	Ĩ	l											1		1					1			İ
Quarter 2, 2006	1	1											1		1		1			1			1
Quarter 2, 2007	1																						1
Quarter 3, 2007	1						-		-		-		<u> </u>		<u> </u>					<u> </u>			<u>†</u>
Quarter 4, 2007																							
Quarter 1, 2008						-																-	
Quarter 2, 2008																							
Quarter 3, 2008																					-		
Quarter 4, 2008																						<u> </u>	
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							-
Quarter 1, 2012																							
Quarter 2, 2012																-							-
Quarter 3, 2012																					-		
																					-		
Quarter 4, 2012											-												
Quarter 1, 2013	I													-			 				-	⊢	\vdash
Quarter 2, 2013	I															I					-	┝──	
Quarter 3, 2013	I												L		L	<u> </u>	I			L		<u> </u>	<u> </u>
Quarter 4, 2013	I												L		L					L		<u> </u>	<u> </u>
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																							
Quarter 4, 2014	ľ	ſ											Γ		Γ		I			Γ		[
Quarter 1, 2015																							
Quarter 2, 2015	Ī —																l						
Quarter 3, 2015	1															1							<u> </u>
Quarter 4, 2015	1						-		-		-		<u> </u>		<u> </u>					<u> </u>		<u> </u>	<u>†</u>
Quarter 1, 2015																						<u> </u>	1
Quarter 2, 2016																<u> </u>					-		+
• /	I	<u> </u>											<u> </u>		<u> </u>					<u> </u>	-		──
Quarter 3, 2016	I					——											 					<u> </u>	\vdash
Quarter 4, 2016	L	L	L			L	L	L	L	L	L		L		L		L	L		L		<u> </u>	

Groundwater Flow System			UCRS	5						1	URG	A								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 1, 2017																	-						
Quarter 2, 2017																							
Quarter 3, 2017																							
Quarter 4, 2017																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019																							
Quarter 3, 2019																							
Quarter 4, 2019																							
Quarter 1, 2020	-																						
Quarter 2, 2020	-											_											
Quarter 3, 2020																							
Quarter 4, 2020	-																						
Quarter 1, 2020	-																						
Quarter 2, 2021	-																						
Quarter 3, 2021	-																		_				
Quarter 4, 2021	-																						
Quarter 1, 2021 Quarter 1, 2022	-																						
Quarter 2, 2022	-																						
Quarter 3, 2022	-													-		-			-				
Quarter 4, 2022	-																				-		
Quarter 1, 2022 Quarter 1, 2023																					-		
TURBIDITY	-					_					-	-				-			-			-	-
Quarter 4, 2002	-					_															*	-	
Quarter 1, 2002 Quarter 1, 2003	-						*					*		*									
URANIUM						_	Ŧ					~		Ť									
Quarter 4, 2002	-																	*	*			-	
Quarter 1, 2002 Quarter 1, 2003	-																		*				
Quarter 4, 2003	-						*												Ŧ				
Quarter 1, 2003 Quarter 1, 2004	-						*	*	*					*			*						
Quarter 1, 2004 Quarter 4, 2004	-						Ť	Ť	Ť					•			*						
	-																÷		*		*	\vdash	
Quarter 4, 2006	-					_						<u> </u>	<u> </u>	<u> </u>			_		-		*		
ZINC	-											*					_						_
Quarter 3, 2003	-						*		*			*										\vdash	
Quarter 4, 2003	_						*		*		<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	——					\square	
Quarter 4, 2004	-						*	*	*													\vdash	
Quarter 4, 2007						L	Ŧ	*	*		L	L	L	L	L		L						
	1	. 1		:	C			11															
* Statistical test results indicate	an eleva	ated c	oncer	itratic	on (1.e	e., a st	atıstıc	cally s	signifi	cant	increa	ise).											
MCL Exceedance									1.00														
Previously reported as an N			nce; h	owev	er, re	sult v	as eq	jual to	o MCI	L.													
UCRS = Upper Continental Rech																							
URGA = Upper Regional Gravel																							
LRGA = Lower Regional Gravel																							
S = Sidegradient; D = Downgradi	ent; U =	= Upg	gradie	nt																			

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX H

METHANE MONITORING DATA

THIS PAGE INTENTIONALLY LEFT BLANK

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date: March								Time: 1300 Monitor:									Robert Kirby											
Weather Conditions: Sunny, 70° F, slight wind, humidity: 68%																												
Monitoring Equipm	Monitoring Equipment::Multi RAE – Serial # 11882																											
Monitoring Location															Reading (% LEL)													
Ogden Landing Road Entrance	Che	ecked	d at g	round	lleve	el																			. (
North Landfill Gate	Che	ecked	d at g	round	leve	el																		0				
West Side of Landfill: North 37° 07.652' West 88° 48.029'	Checked at ground level															0												
East Side of Landfill: North 37° 07.628' West 88° 47.798'	Che	Checked at ground level															0											
Cell 1 Gas Vent (17)	1 0	2 0	3 0	4 0	5 0	6 0		7 0	8 0		9 .0	10 0	11 0		12 0	13 0	14 0		5 0	16 0		17 0			()		
Cell 2 Gas Vent (3)	1 0	2 0	3 0																						()		
Cell 3 Gas Vent (7)	1 2 3 4 5 6 7 0 0 0 0 0 0 0														0													
Landfill Office																0												
Suspect or Problem Areas	Noi	None noted																N	/A									
Remarks:																												
All gas vents checked 1" from opening.																												
Performed by: 03/15/23																												
Signature													Date															

APPENDIX I

SURFACE WATER ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number: SW07300014, SW07300015, SW07300045 Frankfort, KY 40601 (502)564-6716 FINDS/UNIT: KY8-890-008-982 / 1

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPSI	REAM", or "De	OWNSTREAM")	L135 UPSTRE	AM	L154 INSTRE	AM	L136 INSTRI	EAM		
Sample Sequer	nce	#				1		1		1			/
If sample is a	a BI	lank, specify Type: (F)ield, (T)r	ip, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		1/3/2023 14:	21	1/3/2023 15	56	1/3/2023 14	:36		/
Duplicate (")	2" o	or "N") ¹				Ν		N		Ν			
Split ('Y' or	r "1	۷") ²				Ν		N		Ν			1
Facility Samp	ole	ID Number (if applicable)				L135SS2-23	3	L154US2-2	3	L136SS2-2	23		/
Laboratory Sa	ampl	le ID Number (if applicable)				606000001		605998002	2	60600000	2		i
Date of Analy	ysis	s (Month/Day/Year)				1/25/2023		1/20/2023		1/25/2023	3		
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQI ⁵	F L A G S ⁷
A200-00-0	0	Flow	т	MGD	Field		*		*		*		
16887-00-6	2	Chloride(s)	т	MG/L	300.0	8.72	*	7.51	*	1.49	*		\backslash
14808-79-8	0	Sulfate	т	MG/L	300.0	4.61		4.4		9.87			\mathbf{N}
7439-89-6	0	Iron	т	MG/L	200.8	1.23		1.23		0.226			$\left \right\rangle$
7440-23-5	0	Sodium	т	MG/L	200.8	5.98		5.13		1.41			
S0268	0	Organic Carbon ⁶	т	MG/L	9060	13.6		11		10.7			
s0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	76.4		61.5		67.9		V	

 1 Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page. STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID

LAB ID: <u>None</u> For Official Use Only

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant
Permit Number: SW07300015, SW07300015, SW07300045

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	: (KPDES Discharge Number, or	r "(JPSTREAM" or	"DOWNSTREAM")	L135 UPSTR	EAM	L154 INSTRE	EAM	L136 INSTR	EAM		\Box
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	A G S ⁷
S0145	1	Specific Conductance	т	µHMS/CM	Field	150		153		298			
S0270	0	Total Suspended Solids	т	MG/L	160.2	17.5		16.5		0.8	J		
S0266	0	Total Dissolved Solids	т	MG/L	160.1	112	*	96	*	180	*		
S0269	0	Total Solids	т	MG/L	SM-2540 B 17	122	*	97	*	176	*		
S0296	0	рН	т	Units	Field	7.3		7.74		7.41			
7440-61-1		Uranium	т	MG/L	200.8	0.00184		0.00136		0.00169			
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	3.17	*	6.08	*	-0.816	*		
12587-47-2		Gross Beta (β)	т	pCi/L	9310	16.2	*	0.655	*	5.56	*	χ	
													Λ
													\square
													\square
												/	\square
												/	\square

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>

LAB ID: None

RESIDENTIAL/INERT – QUARTERLY

Finds/Unit: <u>KY8-890-008-982 / 1</u>

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID: None

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ing Facility Sample ID	Constituent	Flag	Description
L135	L135SS2-23	Flow Rate		Analysis of constituent not required and not performed.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.06. Rad error is 6.04.
		Beta activity		TPU is 7.19. Rad error is 6.66.
L154	L154US2-23	Flow Rate		Analysis of constituent not required and not performed.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.08. Rad error is 6.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.17. Rad error is 5.16.
L136	L136SS2-23	Flow Rate		Insufficient flow to collect a sample.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Insufficient flow to collect a sample.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.4. Rad error is 5.4.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.79. Rad error is 5.71.

APPENDIX J

ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 and 2016 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 16th day of June 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2023

APPENDIX K

LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260D		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and
		1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 8082A	SW846 3535A	Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020B	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056A		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0 Modified		904.0Mod, Ra228, Liquid
SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid
SW846 9020B		Total Organic Halogens (TOX)

APPENDIX L

MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-S&T Landfills

			<u> </u>		<u> </u>
			of the state of th	510	dorren tr
		R	unho		Je ^{on} (i
	/	ature	in the	Unit	20th
	THE	one contraction	Strift Call	, 500H	od oxyeen to
MW220	<u>/~~</u>	<u>/~</u>		<u>/ \(\)</u>	/~
Date Collected:1/23/23					
1010	62.0	332	6.34	6.50	3.36
1013	61.6	333	6.20	5.93	2.24
1016	61.4	334	6.12	5.90	2.16
MW222 Date Collected:1/23/23					
0843	59.3	293	6.24	3.19	6.50
0846	59.0	291	6.15	2.71	6.31
0849	59.1	290	6.12	2.63	6.24
MW224					
Date Collected:1/23/23					
0926	61.5	319	6.21	3.61	2.16
0929 0932	61.6 61.7	320 321	6.17	2.89 2.92	2.19
0932 MW370	01./	321	6.17	2.92	2.42
Date Collected:1/19/23					
0814	60.7	460	6.10	4.71	0.00
0817	60.7	464	6.05	4.03	0.00
0820	60.8	466	6.05	4.00	0.00
MW373					
Date Collected:1/19/23	 - 				
1036 1039	60.7 60.9	787	6.12 6.10	2.51 2.19	0.00
1039	60.9	787 788	6.09	2.19	0.00
MW385	00.9	788	0.09	2.11	0.00
Date Collected:1/24/23					
1025	59.5	482	6.60	3.37	6.40
1028	59.5	481	6.58	1.29	6.50
1031	59.6	480	6.58	1.24	6.39
MW387					
Date Collected:1/24/23 0809	56.8	565	6.37	6.99	3.40
0809	57.8	554	6.29	5.29	3.32
0815	58.3	550	6.29	5.12	2.89
MW391					,
Date Collected:1/25/23					
0922	59.5	521	6.44	5.91	1.78
0925	59.1	518	6.20	4.99	1.50
0928 MW393	59.1	516	6.18	4.92	1.44
MW393 Date Collected:1/25/23					
1048	62.0	370	6.33	3.41	3.10
1051	61.9	371	6.24	3.23	3.00
1054	61.7	372	6.23	3.20	2.95
MW395					
Date Collected:1/25/23					
0807	59.3	390	6.03	5.33	1.14
0810	59.2 59.2	392 393	6.05 6.05	5.13 5.10	1.10
0.012	39.2	393	0.03	5.10	1.19
0813 MW307					
MW397					
MW397 Date Collected:1/23/23	61.5	322	6.20	6.88	2.10
MW397	61.5 61.6	322 323	6.20 6.12	6.88 6.70	2.10 2.04