

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000 RECEIVED

By Terri.Drake at 7:29 am, Feb 27, 2023

PPPO-02-10023622-23B

February 23, 2023

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Ms. Jamie Nielsen Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-S&T LANDFILLS FOURTH QUARTER CALENDAR YEAR 2022 (OCTOBER–DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0246/V4, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the fourth quarter calendar year (CY) 2022 has been uploaded to the Kentucky eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). This report includes groundwater analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses of the fourth quarter CY 2022 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Monitoring Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical increase notification for the fourth quarter CY 2022, in accordance with Monitoring Condition GSTR0003, Standard Requirement 5, of the Permit. None of the preliminary Type 2 exceedances in downgradient wells had increasing trends and are considered to be a Type 1 exceedances—not attributable to the C-746-S&T Landfills.

I am not authorized to negotiate, or make any agreements or commitments, which involve a change in the scope, price, period of performance, terms or conditions of the contract. If you believe that a change has been directed as a result of this correspondence, then in accordance with contract clause DEAR 952.242-70 "Technical Direction," you are directed to contact the Contracting Officer, in writing, within five (5) working days after receipt of this letter (or email) and prior to taking any action as a result of this letter.

If you have any questions or require additional information, please contact Ryan Callihan at (740) 970-0255.

Sincerely,

April Ladd Digitally signed by April Ladd Date: 2023.02.23 16:12:27 -06'00'

April Ladd
Acting Paducah Site Lead
Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills Fourth Quarter Calendar Year 2022 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0246/V4

cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov FRNP christopher.travis@ky.gov, KDEP dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jaime.morrow@pad.pppo.gov, FRNP jennifer.woodard@pppo.gov, PPPO joel.bradburne@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov reinhard.knerr@pppo.gov, PPPO ryan.callihan@pppo.gov, PPPO stephaniec.brock@ky.gov, KDEP

cc via KY eForms portal: jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP

C-746-S&T Landfills Fourth Quarter Calendar Year 2022 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

2-20-23 Date

FRNP-RPT-0246/V4

C-746-S&T Landfills
Fourth Quarter Calendar Year 2022
(October—December)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—February 2023

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURE		v
ΤA	ABLES		v
A(CRONYMS		vii
1.	INTRODU	JCTION	1
	1.1 BAC	CKGROUND	1
	1.2 MO	NITORING PERIOD ACTIVITIES	1
	1.2.1	Groundwater Monitoring	1
	1.2.2	Methane Monitoring	3
	1.2.3	Surface Water Monitoring	3
	1.3 KEY	RESULTS	5
2.		ALUATION/STATISTICAL SYNOPSIS	
	2.1 STA	TISTICAL ANALYSIS OF GROUNDWATER DATA	
	2.1.1		
	2.1.2		
	2.1.3		
	2.2 DAT	TA VERIFICATION AND VALIDATION	11
3.	PROFESS	IONAL GEOLOGIST AUTHORIZATION	13
4.	REFEREN	ICES	15
Αŀ	PPENDIX A	: GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
Αŀ	PPENDIX B	: FACILITY INFORMATION SHEET	B-1
Αŀ	PPENDIX C	: GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
Αŀ	PPENDIX D	: STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
Αŀ	PPENDIX E	: GROUNDWATER FLOW RATE AND DIRECTION	E-1
Αŀ	PPENDIX F	NOTIFICATIONS	F-1
Αŀ	PPENDIX G	: CHART OF MCL AND UTL EXCEEDANCES	G-1
Αŀ	PPENDIX H	: METHANE MONITORING DATA	H-1
Αŀ	PPENDIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
Αŀ	PPENDIX J.	ANALYTICAL LABORATORY CERTIFICATION	J-1

APPENDIX K:	LABORATORY ANALYTICAL METHODS	. K-1
APPENDIX L:	MICROPURGING STABILITY PARAMETERS	. L-1

FIGURE

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
2.	C-746-S&T Landfills Surface Water Monitoring Locations	4
	TABLES	
1.	Summary of MCL Exceedances	5
2.	Exceedances of Statistically Derived Historical Background Concentrations	5
	Exceedances of Current Background UTL in Downgradient Wells	
4.	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	6
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells*	7
	Monitoring Wells Included in Statistical Analysis ^a	

ACRONYMS

CFR Code of Federal Regulations
COD chemical oxygen demand

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit

MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit VOA volatile organic analytes

1. INTRODUCTION

This report, *C-746-S&T Landfills Fourth Quarter Calendar Year* 2022 (*October–December*) *Compliance Monitoring Report*, *Paducah Gaseous Diffusion Plant*, *Paducah*, *Kentucky*, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND

The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter, except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a sample.

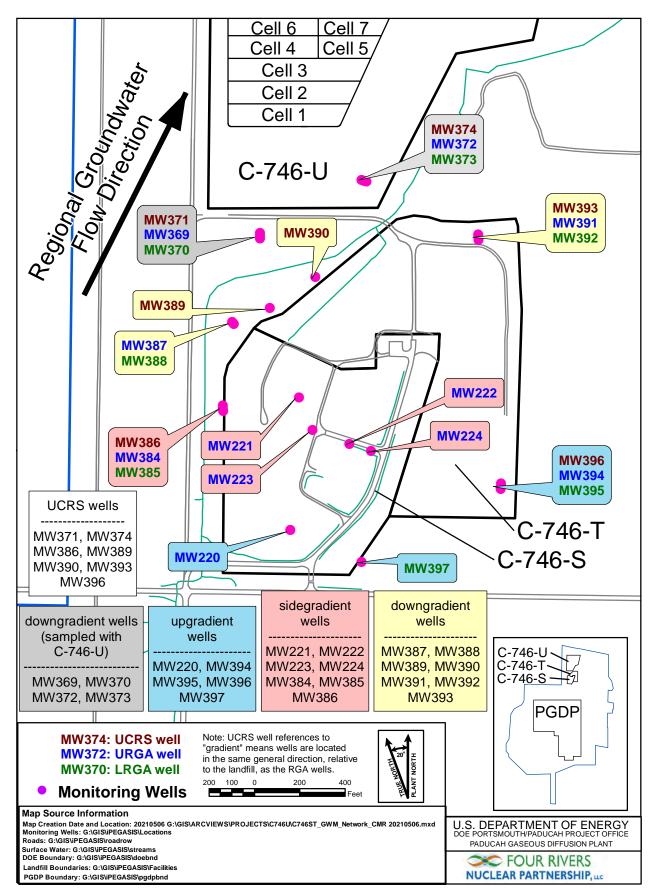


Figure 1. C-746-S&T Landfills Groundwater Monitoring Well Network

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL (for background), and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2022 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the fourth quarter 2022 was conducted in October 2022. The laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 25, 2022, in MWs of the C-746-S&T Landfills (see Appendix E, Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Appendix E, Figure E.3). Water level measurements in 38 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During October, RGA groundwater flow was directed inward and then northeast towards the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in October was 6.17×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was approximately 4.05×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills ranged from 0.688 to 1.17 ft/day (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the Solid Waste Landfill Permit. Industrial Hygiene staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on December 12, 2022. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Monitoring Report provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at the three locations (Figure 2) monitored for the C-746-S&T Landfills: (1) upstream location L135, (2) instream location L154, and (3) instream location L136. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045,

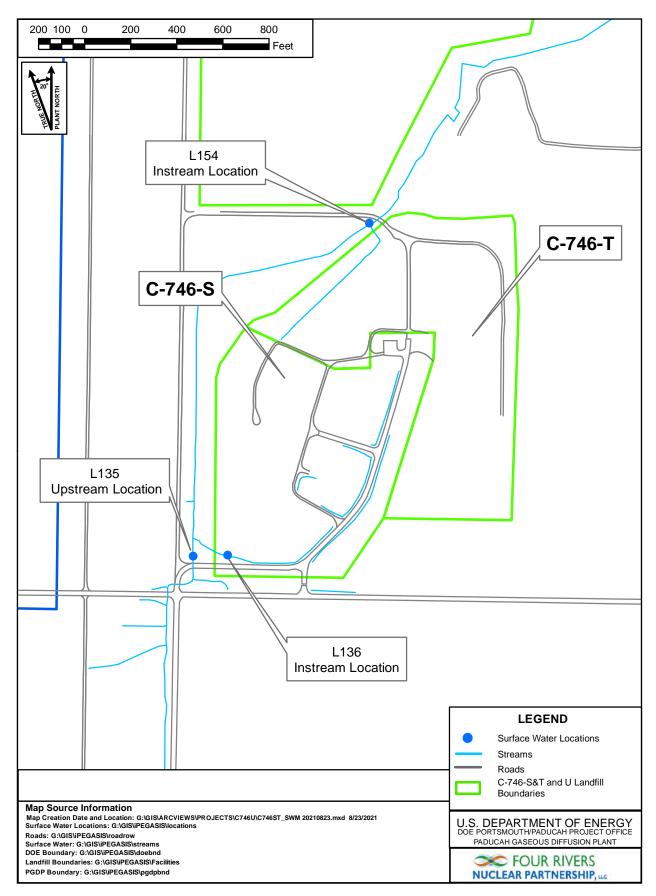


Figure 2. C-746-S&T Landfill Surface Water Monitoring Locations

Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059 (FRNP 2021), which is Technical Application Attachment 24 of the Solid Waste Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters that exceeded their MCL and also exceeded their historical background UTL, as well as other parameters that do not have MCLs but have concentrations that exceeded the statistically derived historical background UTL¹ during the fourth quarter 2022. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells designated as background wells (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW394: Trichloroethene	MW392: Trichloroethene
		MW395: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS ^a	URGA	LRGA
MW386: Chemical oxygen demand	MW221: Oxidation-reduction	MW370: Conductivity,
(COD), oxidation-reduction	potential ^b	oxidation-reduction potential, ^b
potential ^b		sulfate
MW390: Oxidation-reduction	MW222: Oxidation-reduction	MW373: Calcium, conductivity,
potential, ^b technetium-99	potential ^b	dissolved solids, magnesium,
		oxidation-reduction potential, ^b
		sulfate
MW393: Oxidation-reduction	MW223: Oxidation-reduction	MW385: Conductivity,
potential ^b	potential ^b	oxidation-reduction potential, ^b
		sulfate, technetium-99
MW396: Oxidation-reduction	MW369: Oxidation-reduction	MW388: Sulfate, technetium-99
potential ^b	potential, ^b technetium-99	
	MW372: Calcium, conductivity,	MW392: Oxidation-reduction
	dissolved solids, magnesium,	potential ^b
	oxidation-reduction potential, ^b	
	sodium, sulfate, technetium-99	
	MW384: Sulfate, technetium-99	MW395: Oxidation-reduction
		potential ^b
	MW387: Calcium, magnesium,	MW397: Oxidation-reduction
	sulfate	potential ^b

^a Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Background wells: MW220, MW394, MW395, MW396, MW397

5

^b Oxidation-reduction potential calibrated as Eh.

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL.

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW369: Technetium-99	MW370: Conductivity, sulfate
MW372: Calcium, conductivity, dissolved	MW373: Calcium, conductivity, dissolved
solids, magnesium, sodium, sulfate,	solids, magnesium, sulfate
technetium-99	
MW387: Calcium, magnesium, sulfate	MW388: Sulfate, technetium-99

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), the MCL exceedance for TCE in MW392 (downgradient well) did not exceed the historical background concentration and is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL to identify if the current downgradient well concentrations are consistent with current background values. The current background UTL was developed using the most recent eight quarters of data from wells identified as background wells. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-S&T Landfills source; therefore, they are a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL and do not have an identified source are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan (LATA Kentucky 2014). To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. None of the twenty preliminary Type 2 exceedances in downgradient wells have increasing trends and are considered to be a Type 1 exceedances—not attributable to the C-746-S&T Landfills.

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
C-746-	MW369	Technetium-99	8	0.05	0.274	-6	No Trend
S&T Landfills	MW370	Conductivity	8	0.05	0.274	6	No Trend
		Sulfate	8	0.05	0.016	-18	Decreasing

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters (Continued)

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
		Calcium	8	0.05	0.089	-12	No Trend
		Conductivity	8	0.05	0.119	-8	No Trend
		Dissolved Solids	8	0.05	0.36	-5	No Trend
	MW372	Magnesium	8	0.05	0.002	-22	Decreasing
		Sodium	8	0.05	0.452	-2	No Trend
		Sulfate	8	0.05	0.002	-22	Decreasing
		Technetium-99	8	0.05	0.054	14	No Trend
C-746-	MW373	Calcium	8	0.05	0.054	-15	No Trend
S&T		Conductivity	8	0.05	0.274	-7	No Trend
Landfills		Dissolved Solids	8	0.05	0.452	2	No Trend
		Magnesium	8	0.05	0.274	-6	No Trend
		Sulfate	8	0.05	0.054	-15	No Trend
		Calcium	8	0.05	0.548	0	No Trend
	MW387	Magnesium	8	0.05	0.089	13	No Trend
		Sulfate	8	0.05	0.452	-2	No Trend
	MW388	Sulfate	8	0.05	0.138	11	No Trend
		Technetium-99	8	0.05	0.548	0	No Trend

¹ An alpha of 0.05 represents a 95% confidence interval.

Note: Statistics generated using ProUCL.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 39:090.

The statistical evaluation of UCRS concentrations against the current UCRS background UTL identified UCRS well MW390 with a technetium-99 value that exceeds both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW390: Technetium-99

^{*}In the same direction (relative to the landfill) as RGA wells.

²The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses; the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2022 groundwater data collected from the C-746-S&T Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as downgradient wells) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient well concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance—could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

To calculate the UTL, the data were divided into censored (non-detects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis^a

UCRS	URGA	LRGA
MW386	MW220 (background)	MW370
MW389 ^b	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396 ^c	MW224	MW392
	MW369	MW395 (background)
	MW372	MW397 (background)
	MW384	
	MW387	
	MW391	
	MW394 (background)	

^a Map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient well concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, chemical oxygen demand (COD), oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL in downgradient well MW390 and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^b Well had insufficient water to permit a water sample for laboratory analysis.

^c In the same direction (relative to the landfill) as RGA wells considered to be background.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

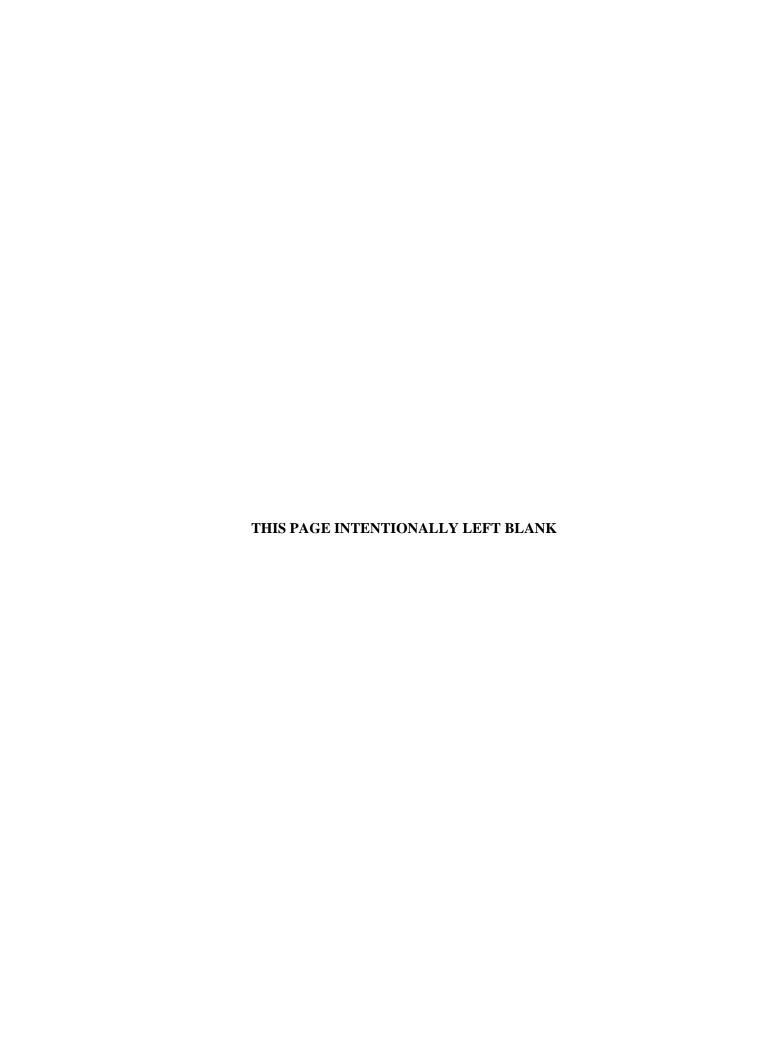
Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

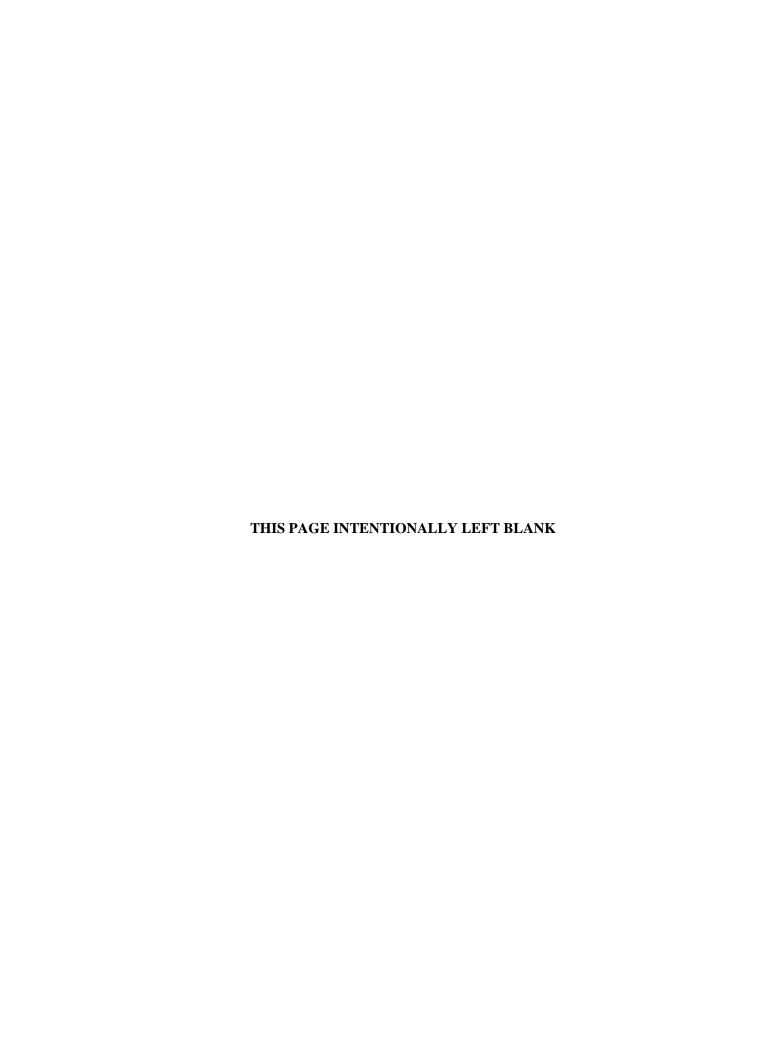
C-746-S&T Landfills Fourth Quarter Calendar Year 2022 (October-December) Compliance Monitoring Report, Paducah

Gaseous Diffusion Plant, Paducah, Kentucky


(FRNP-RPT-0246/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Februsry 20, 2023 Date


PG113927

13

4. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2021. Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 24, Four Rivers Nuclear Partnership, LLC, Paducah, KY, March.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky,* PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. D	U.S. DOE-Paducah Gaseous Diffusion Plant					C-746-S&T Landfills
·	(As	officially	y shown o	on DWM	Permit Face)		
SW07300014, Permit No: SW07300015, SW07300045		Fin	nds/Unit No:	Quarter & Yea	r 4th Qtr. CY 2022		
Please check the	following (as appl	icable:				
Character	rization	X	Quar	terly	Semiannual	Annua	1 Assessment
Please check app	licable sub	mittal((s): _	X	Groundwater	X	Surface Water
					Leachate	X	Methane Monitoring
lab report is NOT control of the report is NOT control of the person that is a system design in the person that is a system design including the possibility.	ty of law that ned to assure or persons of, true, acculility of fine a	t this do directly rate, and imp	cument qualified respon d compl	and all a personr sible for ete. I am	attachments were prepared nel properly gather and ev gathering the information a aware that there are signi- ch violations.	are attached. Do not l under my direction valuate the informat n, the information su ifficant penalties for	techniques. Submitting the submit the instruction pages or supervision in accordance ion submitted. Based on my abmitted is, to the best of my submitting false information. A REDFIELD (Affiliate) 3 -06'00'
Myrna E. Redfi					/ Date. 2023.	Date	-00 00
Four Rivers Nu			_			2	
April La	add				// -	gned by April 3.02.23 16:09	
April Ladd, Act U.S. Departmen	_		e Lead	[Date	

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date: Facility Name:	Groundwater: October 2022 Methane: December 2022 Surface Water: December 2022 U.S. DOE—Paducah Gaseous Diff		Permit Nos.	SW07300014, SW07300015, SW07300045
(As officially shown on DWM Permit Face) Site Address: Kentucky Wards by Market Street (1997)				
Site Address:	5600 Hobbs Road Street	Kevil, Kentucky City/State		42053 Zip
Phone No:	(270) 441-6800 Latitude	: N 37° 07' 37.70"	Longitude:	W 88° 47' 55.41"
OWNER INFORMATION				
Facility Owner:	U.S. DOE, Joel Bradburne, Manag	ger, Portsmouth/Paducah Project Office	Phone No:	(859) 219-4000
Contact Person:	Bruce Ford	•	Phone No:	(270) 441-5357
Contact Person Title: Director, Environmental Services, Four Rivers Nuclear Partnership, LLC				
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053
	Street	City/State		Zip
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)				
Company:	GEO Consultants Corporation			
Contact Person:	Jason Boulton		Phone No:	(270) 816-3415
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky		42053
	Street	City/State		Zip
LABORATORY RECORD #1				
Laboratory:	GEL Laboratories, LLC	Lab ID No: _K	Y90129	
Contact Person:	Valerie Davis		Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charleston, South Carolina		29407
	Street	City/State		Zip
LABORATORY RECORD #2				
Laboratory:	N/A	Lab ID No:	N/A	
Contact Person:	N/A		Phone No:	N/A
Mailing Address:	N/A		•	
	Street	City/State		Zip
LABORATORY RECORD #3				
Laboratory:	Lab ID No: N/A			
Contact Person:	N/A		Phone No:	N/A
Mailing Address:	N/A		1 110110 1 101	
	Street	City/State		Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: $\underline{KY8-890-008-982}/\underline{1}$

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			·	8000-520	1	8000-52	202	8000-52	242	8000-524	13
Facility's Loc	cal Well or Spring Number (e.g., N	4W−1	., MW-2, etc	:.)	220		221		222		223	
Sample Sequence	ce #				1		1		1		1	
If sample is a H	Slank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/18/2022 0	08:24	10/12/2022	2 07:33	10/12/2022	2 09:23	10/12/2022	08:36
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW220SG1	1-23	MW221S	G1-23	MW222S0	G1-23	MW223SG	1-23
Laboratory Sam	boratory Sample ID Number (if applicable)						596605	001	596605	003	5966050	05
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					22	10/14/2	022	10/14/20	022	10/14/20	22
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP		SIDE	Ξ	SIDE	Ξ	SIDE	
CAS RN4	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.202		0.445		0.345		0.385	
16887-00-6	Chloride(s)	т	mg/L	9056	17.8	J	34.3	J	24.5	J	28.3	J
16984-48-8	Fluoride	Т	mg/L	9056	0.169	J	0.197	J	0.295	J	0.286	J
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.862	J	1.05	J	1.02	J	1.19	J
14808-79-8	Sulfate	Т	mg/L	9056	15.7		13.7		9.24		11.4	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.12		29.95		29.94		29.93	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	332		399		327		376	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Lo	ocal Well or Spring Number (e.g., M	√-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.61		323.9		324.02		324.14	
N238	Dissolved Oxygen	т	mg/L	Field	6.27		5.95		2.67		4.43	
S0266	Total Dissolved Solids	Т	mg/L	160.1	179		206		171		199	
S0296	рн	т	Units	Field	5.84		6.04		6.22		6.15	
NS215	Eh	Т	mV	Field	398		485		442		464	
s0907	Temperature	Т	°C	Field	16.28		17.11		17.06		16.94	
7429-90-5	Aluminum	T	mg/L	6020	<0.05		<0.05		0.0292	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.206		0.197		0.24		0.217	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00884	J	0.0168		0.00695	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	20.5		21		14.4		20.5	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		0.0146	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.00045	J	0.000421	J
7440-50-8	Copper	т	mg/L	6020	0.000527	J	0.000987	J	0.000367	J	0.000553	J
7439-89-6	Iron	т	mg/L	6020	0.0336	J	<0.1		0.0409	J	0.0556	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	8.36		9.3		6.56		8.26	
7439-96-5	Manganese	т	mg/L	6020	<0.005		0.00111	J	0.00143	J	0.00583	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				8000-52	01	8000-52	02	8000-524	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.000523	J	0.00173		0.00141		0.00551	
7440-02-0	Nickel	т	mg/L	6020	0.007		0.00678		0.0202		0.0412	
7440-09-7	Potassium	т	mg/L	6020	2.26		1.1		0.607		1.64	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.00218	J	<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	37.2		47.2		44.9		44.6	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00432	BJ	<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

C

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-52	243
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	12	8000-524	43
Facility's Loc	al Well or Spring Number (e.g., N	1W −1	L, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000204		<0.0000202	*	<0.0000194	*	<0.0000202	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.1		<0.1		<0.0978		<0.0986	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.1	*	<0.1		<0.0978		<0.0986	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.1		<0.1		<0.0978		<0.0986	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.1		<0.1		<0.0978		<0.0986	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.1		<0.0978		<0.0986	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.1		<0.0978		<0.0986	

C-7

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.1		<0.1		<0.0978		<0.0986	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.1	*	<0.1		<0.0978		<0.0986	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.1		<0.1		<0.0978		<0.0986	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.272	*	0.0985	*	-1.69	*	1.28	*
12587-47-2	Gross Beta	Т	pCi/L	9310	7.13	*	7.6	*	2.58	*	19.9	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.27	*	0.567	*	0.173	*	-0.156	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	4.34	*	4.89	*	0.667	*	0.483	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	21.3	*	12.1	*	10.8	*	11.2	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.361	*	0.33	*	0.251	*	0.514	*
10028-17-8	Tritium	Т	pCi/L	906.0	77.9	*	45.9	*	48.7	*	84.9	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	13	J	<20		<20		13	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.429	J	0.56	J	0.479	*J	0.399	*J
s0586	Total Organic Halides	т	mg/L	9020	<0.01		<0.01		0.0045	J	<0.01	
					_							

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: $\underline{KY8-890-008-982}/\underline{1}$

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480	J8
Facility's Loc	al Well or Spring Number (e.g., N	w−1	., MW-2, etc	.)	224		369		370		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/18/2022 0	7:35	10/11/2022	2 07:21	10/11/2022	2 08:06	10/11/2022	09:42
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW224SG1	-23	MW369U	G1-23	MW370U0	G1-23	MW372UG	1-23
Laboratory Sam	boratory Sample ID Number (if applicable)						596410	001	596410	003	5964100	07
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						10/18/2	022	10/18/20	022	10/18/202	22
Gradient with	respect to Monitored Unit (UP, DO	, NW	SIDE, UNKN	OWN)	SIDE		DOW	N	DOW	N	DOWN	ı
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.274		0.344		0.538		0.499	
16887-00-6	Chloride(s)	т	mg/L	9056	17.7	J	28.2	J	38.5	J	39.6	J
16984-48-8	Fluoride	т	mg/L	9056	0.244	J	0.216	J	0.18	J	0.2	J
s0595	0595 Nitrate & Nitrite T mg/L 9				0.883	J	1.02	J	1.25	J	1.36	J
14808-79-8	Sulfate	Т	mg/L	9056	11.1		8.07		19.5		131	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.1		30.2		30.21		30.22	
S0145	Specific Conductance	т	μ MH 0/cm	Field	402		485		552		914	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

			, 00									
AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., M	W-1, 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	323.82		323.95		323.94		324.01	
N238	Dissolved Oxygen	Т	mg/L	Field	2.67		3.44		4.8		2.55	
S0266	Total Dissolved Solids	т	mg/L	160.1	231		212		247		455	
S0296	рн	Т	Units	Field	5.94		6.05		6.07		6.04	
NS215	Eh	Т	mV	Field	303		406		427		416	
s0907	Temperature	т	°C	Field	15.72		15.44		15.89		17.06	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0869		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	T	mg/L	6020	0.206		0.373		0.235		0.051	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0129	J	0.0235		0.311		1.4	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	20.6		16		28.9		62.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	T	mg/L	6020	<0.001		0.0043		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000732	J	0.0011	J	0.000377	J	<0.002	
7439-89-6	Iron	т	mg/L	6020	<0.1		0.129		<0.1		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	8.84		6.84		12.6		21.7	
7439-96-5	Manganese	т	mg/L	6020	0.00108	J	0.00362	J	0.00122	J	<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8000-52	44	8004-48	20	8004-48	18	8004-48	08
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	0.000641	J	0.000339	J	<0.001		<0.001	
7440-02-0	Nickel	Т	mg/L	6020	0.00899		0.00326		0.001	J	0.00125	J
7440-09-7	Potassium	т	mg/L	6020	0.936		0.588		2.6		2.1	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00336	J	<0.005		0.00313	J
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	56.7		50.1		45.3		62.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.00455	BJ	<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		0.0024	J	<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	T	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		0.00037	J	<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	308
Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00102		0.00168		0.00278	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-4820)	8004-48	18	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g., N	1 ₩−1	1, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000202		<0.0000196		<0.0000195		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0968		<0.104		<0.0995		<0.0983	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0968		<0.104		<0.0995		<0.0983	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0968		<0.104		<0.0995		<0.0983	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0968		<0.104		<0.0995		<0.0983	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0968		<0.104		<0.0995		<0.0983	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0968		<0.104		<0.0995		<0.0983	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480	8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0968		<0.104		<0.0995		<0.0983	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0968		<0.104		<0.0995		<0.0983	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0968		<0.104		<0.0995		<0.0983	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.802	*	5.48	*	-0.0478	*	2.23	*
12587-47-2	Gross Beta	Т	pCi/L	9310	10.5	*	34.3	*	20	*	49.1	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.0507	*	-0.0125	*	-0.158	*	0.0805	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.899	*	1.92	*	-0.627	*	-5.66	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	0.623	*	56.4	*	20.9	*	69.7	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.369	*	1.03	*	0.329	*	0.529	*
10028-17-8	Tritium	Т	pCi/L	906.0	19.7	*	-11.3	*	28.7	*	12.5	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	16.5	J	<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.518	J	1.02	J	1.07	J	0.745	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00554	J	0.00678	J	0.00792	J	0.00874	J

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-48	309	8004-48	310	8004-480)4
Facility's Loc	al Well or Spring Number (e.g., N	1W−1	., MW-2, etc	:.)	373		384		385		386	
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		10/11/2022 1	0:23	10/13/2022	2 09:30	10/13/2022	2 10:12	10/20/2022	08:39
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	cility Sample ID Number (if applicable)						MW384S0	G1-23	MW385S0	G1-23	MW386SG1	I-23R
Laboratory Sam	boratory Sample ID Number (if applicable)						596843	001	596843	003	5977150	03
Date of Analys	tte of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					2	10/19/2	022	10/19/20	022	10/22/202	22
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	S RN4 CONSTITUENT T Unit M CONSTITUENT T Unit M D OF MEASURE		METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	
24959-67-9	Bromide	т	mg/L	9056	0.494		0.295		0.21		<0.2	*
16887-00-6	Chloride(s)	Т	mg/L	9056	37.8	J	25	J	19.5	J	9.67	*J
16984-48-8	Fluoride	Т	mg/L	9056	0.194	J	0.145	J	0.179	J	0.769	J
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.829	J	0.856	J	0.451	J	<10	
14808-79-8	Sulfate	Т	mg/L	9056	143		19.2	*	19.7	*	39.9	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.22		29.95		29.94		30.03	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	939		433		511		596	

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

^{* =} See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324		323.79		323.83		343.17	
N238	Dissolved Oxygen	т	mg/L	Field	2.31		5.01		1.56		2.03	
s0266	Total Dissolved Solids	Т	mg/L	160.1	484		212		231		356	
s0296	рН	Т	Units	Field	6.12		5.95		6.41		6.58	
NS215	Eh	Т	mV	Field	401		301		344		322	
s0907	Temperature	Т	°C	Field	17.22		16.33		16.5		13.94	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00215	J
7440-39-3	Barium	т	mg/L	6020	0.0274		0.215		0.239		0.179	
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	2.93		0.051		0.0246		0.0108	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	65.6		24.3		39.5		19.8	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000416	J	<0.001		<0.001		0.00585	
7440-50-8	Copper	т	mg/L	6020	<0.002		0.000347	J	0.000377	J	0.00145	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.156		<0.1		0.332	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	25.6		10.1	В	14.3	В	8.68	
7439-96-5	Manganese	т	mg/L	6020	0.0229		0.0082		0.0112		1.23	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

_

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	, Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000203	J	0.000261	J	0.000837	J
7440-02-0	Nickel	т	mg/L	6020	0.00218		0.00108	J	0.00133	J	0.00519	
7440-09-7	Potassium	т	mg/L	6020	2.73		1.46		1.82		0.266	J
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	55		45.4		31.5		101	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.000258		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00496	J	<0.02		<0.02		0.00357	J
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	0.00181	J	<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-48	310	8004-48	304
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00413		0.00053	J	<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-48	10	8004-48	04
Facility's Loc	cal Well or Spring Number (e.g., N	1 ₩−1	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000192		<0.0000201		<0.00002		<0.0000198	*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0988		<0.0983		<0.1		<0.1	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0988		<0.0983	*	<0.1	*	<0.1	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0988		<0.0983		<0.1		<0.1	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0988		<0.0983		<0.1		<0.1	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0988		<0.0983		<0.1		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0988		<0.0983		<0.1		<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-4792		8004-4809		8004-481	0	8004-480	4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0988		<0.0983		<0.1		<0.1	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0988		<0.0983	*	<0.1	*	<0.1	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0988		<0.0983		<0.1		<0.1	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.115	*	-2.28	*	-2.07	*	-0.262	*
12587-47-2	Gross Beta	Т	pCi/L	9310	12.1	*	40	*	11	*	2.41	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.468	*	0.496	*	0.38	*	0.17	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.44	*	1.15	*	1.07	*	2.1	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-1.78	*	49.9	*	47.5	*	-7.91	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.12	*	0.384	*	0.398	*	-0.547	*
10028-17-8	Tritium	т	pCi/L	906.0	78.9	*	19.7	*	45.5	*	-66	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	16.5	J	20.1		16.5	J	54.5	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.743	J	0.618	*J	0.503	*J	5.18	
s0586	Total Organic Halides	Т	mg/L	9020	0.0084	J	0.0114		0.00596	J	0.14	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

 $\texttt{FINDS/UNIT:} \underline{\texttt{KY8-890-008-982}} / \underline{1}$

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	312	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., N	⁄W−1	., MW-2, etc	:.)	387		388		389		390	
Sample Sequence	ce #				1		1		1		1	
If sample is a E	Slank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/13/2022 0	8:07	10/13/2022	2 08:48	NA		10/13/2022 0	7:24
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	Le ID Number (if applicable)				MW387SG1	-23	MW388S	G1-23	NA		MW390SG1-	-23
Laboratory Sam	boratory Sample ID Number (if applicable)					9	596843	011	NA		59684301	3
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					2	10/19/2	022	NA		10/19/2022	2
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT T Unit MET CONSTITUENT T Unit MET D OF MEASURE		METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	
24959-67-9	Bromide	т	mg/L	9056	0.514		0.452			*	0.371	
16887-00-6	Chloride(s)	т	mg/L	9056	38.3	J	37.5	J		*	39.4	J
16984-48-8	Fluoride	Т	mg/L	9056	1.03	J	0.131	J		*	0.295	J
s0595	0595- Nitrate & Nitrite T mg/L 90			9056	1.05	J	1.06	J		*	2.12	J
14808-79-8	Sulfate	Т	mg/L	9056	28.8	*	19.7	*		*	35.6	*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.94		29.94			*	29.93	
S0145	Specific Conductance	т	μ MH 0/cm	Field	586		420			*	640	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-1	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	323.85		323.77			*	323.99	
N238	Dissolved Oxygen	Т	mg/L	Field	5.03		5.62			*	3.64	
s0266	Total Dissolved Solids	Т	mg/L	160.1	302		212			*	355	
s0296	Нд	Т	Units	Field	6.19		5.98			*	6.23	
NS215	Eh	Т	mV	Field	282		219			*	174	
s0907	Temperature	Т	°C	Field	15.56		15.94			*	14.61	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05			*	0.025	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.11		0.188			*	0.227	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0307		0.0307			*	0.0103	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	42.4		24.2			*	29	
7440-47-3	Chromium	Т	mg/L	6020	0.00719	J	<0.01			*	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000389	J	0.000385	J		*	0.00116	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		<0.1			*	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	18.6	В	10.3	В		*	12.2	В
7439-96-5	Manganese	Т	mg/L	6020	0.00207	J	<0.005			*	<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBE	ER ¹ , Facility Well/Spring Number				8004-48	15	8004-48	316	8004-48	12	8004-481	1
Facility's	Local Well or Spring Number (e.g	., MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001			*	0.000225	J
7440-02-0	Nickel	т	mg/L	6020	0.000879	J	0.00138	J		*	0.00193	J
7440-09-7	Potassium	т	mg/L	6020	1.9		1.71			*	0.354	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	47.6		42.7			*	88	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.000131	J
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	16	8004-48	312	8004-481	1
Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00063	J	<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4816	5	8004-48	12	8004-4811	
Facility's Loc	al Well or Spring Number (e.g., N	1W −1	L, MW-2, et	cc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000195			*	<0.0000193	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.101		<0.104			*	<0.103	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.101	*	<0.104	*		*	<0.103	*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.101		<0.104			*	<0.103	
11141-16-5	PCB-1232	т	ug/L	8082	<0.101		<0.104			*	<0.103	
53469-21-9	PCB-1242	т	ug/L	8082	<0.101		<0.104			*	<0.103	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.101		<0.104			*	<0.103	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815		8004-4816		8004-481	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	387		388		389		390	
CAS RN⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.101		<0.104			*	<0.103	
11096-82-5	PCB-1260	т	ug/L	8082	<0.101	*	<0.104	*		*	<0.103	*
11100-14-4	PCB-1268	т	ug/L	8082	<0.101		<0.104			*	<0.103	
12587-46-1	Gross Alpha	т	pCi/L	9310	-2.49	*	0.333	*		*	1.03	*
12587-47-2	Gross Beta	Т	pCi/L	9310	22.5	*	42	*		*	34.1	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.424	*	0.483	*		*	0.549	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.94	*	-3.04	*		*	4.3	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	14.5	*	90.5	*		*	49.5	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.27	*	-0.0051	*		*	0.0324	*
10028-17-8	Tritium	Т	pCi/L	906.0	-44.8	*	-20.3	*		*	56.3	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	13	J	23.7			*	30.8	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.6	*J	0.55	*J		*	1.15	*J
s0586	Total Organic Halides	Т	mg/L	9020	0.00732	J	0.0192			*	0.0158	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

 $\texttt{FINDS/UNIT:} \underline{\texttt{KY8-890-008-982}} / \underline{1}$

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						8004-48	306	8004-48	307	8004-480	02
Facility's Loc	cal Well or Spring Number (e.g., N	ſW−1	., MW-2, etc	:.)	391		392		393		394	
Sample Sequenc	ce #				1		1		1		1	
If sample is a F	Slank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA	NA		NA			NA	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)						10/17/2022	2 10:17	10/17/2022	2 11:14	10/17/2022	07:24
Duplicate ("Y"		N		N		N		N				
Split ("Y" or		N		N		N		N				
Facility Sampl	Facility Sample ID Number (if applicable)						MW392S	G1-23	MW393S0	G1-23	MW394SG	1-23
Laboratory Sam	mple ID Number (if applicable)				59718200)1	597182	003	597182	005	5971820	07
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/19/202	2	10/19/2	022	10/19/20	022	22 10/19/20:	
Gradient with	respect to Monitored Unit (UP, DO	WN,	SIDE, UNKN	OWN)	DOWN		DOWN		DOWN		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.559		0.587		0.165	J	0.545	
16887-00-6	Chloride(s)	т	mg/L	9056	42	J	44.6	J	11.2	J	43.6	J
16984-48-8	Fluoride	т	mg/L	9056	0.188	J	0.217	J	0.202	J	0.156	J
s0595	Nitrate & Nitrite T mg/L 9056				1.42	J	0.741	J	0.273	J	1.1	J
14808-79-8	Sulfate T mg/L 9056		9056	12.7		8.68		16.4		12.1		
NS1894	Barometric Pressure Reading	ng T Inches/Hg Field		30.04		30.04		30.04		30.02		
s0145	Specific Conductance T µMH0/cm Fiel				398		366		390		417	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

^{* =} See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	7	8004-4802	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.6		323.55		339.09		323.96	
N238	Dissolved Oxygen	т	mg/L	Field	4.7		2.72		1.39		5.4	
S0266	Total Dissolved Solids	T	mg/L	160.1	194	*	184	*	243	*	198	*
S0296	рН	T	Units	Field	5.94		5.91		6.07		5.92	
NS215	Eh	T	mV	Field	395		389		226		346	
s0907	Temperature	т	°C	Field	15.89		16		16.28		15.61	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0223	J	0.0209	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.227		0.239		0.113		0.249	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0263		0.0238		0.0164		0.0211	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	25.6		25.4		13.3		26.6	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000371	J	0.000457	J	0.000332	J	0.00142	J
7439-89-6	Iron	т	mg/L	6020	0.055	J	0.0502	J	0.667		0.0369	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.5		10.6		3.6		11.2	
7439-96-5	Manganese	Т	mg/L	6020	0.00122	J	0.0119		0.0316		0.0014	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	KGWA NUMBER ¹ , Facility Well/Spring Number acility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						8004-48	06	8004-48	07	8004-48	02
Facility's I	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.000414	BJ	0.000411	BJ	0.000244	BJ	<0.001	
7440-02-0	Nickel	Т	mg/L	6020	0.000796	J	0.00198	J	0.00115	J	0.00367	
7440-09-7	Potassium	Т	mg/L	6020	1.55		2.02		0.392		1.25	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	34.3		26.4		70.6		33.7	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		0.00259	BJ	<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480)6	8004-48	307	8004-48	302
Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		0.00069	J	<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		0.00038	J
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00344		0.0122		<0.001		0.007	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-480)7	8004-48	02
Facility's Lo	cal Well or Spring Number (e.g., N	1 ₩-1	L, MW-2, et	cc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000206	*	<0.0000203	*	<0.0000203	*	<0.0000202	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.103		<0.1		<0.1		<0.101	
12674-11-2	PCB-1016	т	ug/L	8082	<0.103		<0.1		<0.1		<0.101	
11104-28-2	PCB-1221	т	ug/L	8082	<0.103		<0.1		<0.1		<0.101	
11141-16-5	PCB-1232	т	ug/L	8082	<0.103		<0.1		<0.1		<0.101	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.103		<0.1		<0.1		<0.101	
12672-29-6	PCB-1248	т	ug/L	8082	<0.103		<0.1		<0.1		<0.101	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-4805		8004-4806		8004-480	7	8004-480	2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.103		<0.1		<0.1		<0.101	
11096-82-5	PCB-1260	т	ug/L	8082	<0.103		<0.1		<0.1		<0.101	
11100-14-4	PCB-1268	т	ug/L	8082	<0.103		<0.1		<0.1		<0.101	
12587-46-1	Gross Alpha	Т	pCi/L	9310	3.58	*	0.536	*	0.161	*	0.882	*
12587-47-2	Gross Beta	Т	pCi/L	9310	-0.82	*	-1.61	*	4.11	*	3.79	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.186	*	0.428	*	-0.0449	*	0.179	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.627	*	-2.75	*	-0.353	*	0.0813	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	11.4	*	4.19	*	4.3	*	11.1	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.441	*	1.43	*	1.04	*	1.19	*
10028-17-8	Tritium	Т	pCi/L	906.0	-64.4	*	-13.8	*	-85.8	*	-109	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	16.5	J	23.7		23.7		23.7	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.405	*J	0.366	*J	1.3	*J	0.444	*J
s0586	Total Organic Halides	Т	mg/L	9020	0.00828	J	0.0154		0.013		0.0175	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: $\underline{KY8-890-008-982}/\underline{1}$

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-48	303	8004-48	317	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	., MW-2, etc	:.)	395		396		397		E. BLANK	
Sample Sequence	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		E	
Sample Date ar		10/17/2022 0	8:07	10/17/2022	2 08:49	10/18/2022	09:10	10/20/2022	06:55			
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or		N		N		N		N				
Facility Sampl	le ID Number (if applicable)				MW395SG1	-23	MW396S	G1-23	MW397S0	31-23	RI1SG1-23R	
Laboratory Sam	mple ID Number (if applicable)				59718200	9	597182	011	597287	005	597715006	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/19/202	2	10/19/2	022	10/20/20)22	10/22/202	22
Gradient with	respect to Monitored Unit (UP, DO	, NW	SIDE, UNKN	OWN)	UP	UP		UP			NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.567		0.896		0.43			*
16887-00-6	Chloride(s)	Т	mg/L	9056	45.3	J	55.9	J	33.8	J		*
16984-48-8	Fluoride	Т	mg/L	9056	0.154	J	0.611	J	0.104	J		*
s0595	95 Nitrate & Nitrite T mg/L 9056				1.28	J	<10		1.18	J		*
14808-79-8	Sulfate T mg/L 9056		9056	11.7		27.1		11.4			*	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.03		30.03		30.15			*
S0145	Specific Conductance T µMH0/cm Fiel				388		712		324			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	7	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., M	√-1, 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.31		364.24		323.89			*
N238	Dissolved Oxygen	Т	mg/L	Field	5.48		1.07		6.8			*
S0266	Total Dissolved Solids	Т	mg/L	160.1	196	*	405	*	157			*
S0296	рН	Т	Units	Field	5.94		6.28		5.76			*
NS215	Eh	Т	mV	Field	326		217		371			*
s0907	Temperature	Т	°C	Field	16.22		16.06		16.28			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.0426	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.264		0.405		0.133		<0.004	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0207		0.00713	J	0.00859	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	26.9		33		18.7		<0.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.0031		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000691	J	0.000541	J	<0.002		<0.002	
7439-89-6	Iron	Т	mg/L	6020	<0.1		1.87		0.0775	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	11.3		14.4		7.84		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.514		0.0022	J	<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	, Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-000	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		0.000625	BJ	<0.001		<0.001	
7440-02-0	Nickel	Т	mg/L	6020	0.000883	J	0.00157	J	0.00109	J	<0.002	
7440-09-7	Potassium	Т	mg/L	6020	1.62		0.784		1.82		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	32		94.8		33.2		<0.25	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005	*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.000083	J	<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		0.00392	BJ	0.00386	J
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		0.00244	BJ	<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-00	000
Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00562		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., N	1W −1	1, MW-2, et	cc.)	395		396		397		E. BLAN	ΙΚ
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000201	*	<0.0000205	*	<0.00002		<0.0000193	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.1		<0.0977		<0.1		<0.103	
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.0977		<0.1		<0.103	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.1		<0.0977		<0.1		<0.103	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.0977		<0.1		<0.103	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.0977		<0.1		<0.103	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.1		<0.0977		<0.1		<0.103	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-4801		8004-4803		8004-481	7	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	395		396		397		E. BLAN	К
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.0977		<0.1		<0.103	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.0977		<0.1		<0.103	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.0977		<0.1		<0.103	
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.89	*	2.91	*	2.68	*	-1.85	*
12587-47-2	Gross Beta	Т	pCi/L	9310	8.05	*	5.52	*	9.31	*	-1.35	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.306	*	0.389	*	-0.0326	*	0.00483	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.809	*	-2.13	*	3.09	*	-4.52	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	8.43	*	7.04	*	23	*	-8.57	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.35	*	-0.328	*	1.03	*	0.841	*
10028-17-8	Tritium	т	pCi/L	906.0	12	*	53.7	*	56.8	*	155	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	27.3		34.4		16.5	J		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		0.673		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.436	*J	2.92	*	0.338	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00734	J	0.0207		<0.01			*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	0000-000)0
Facility's Loc	cal Well or Spring Number (e.g., M	/W−1	l, MW-2, etc	:.)	F. BLANK		T. BLANK 1		T. BLANK	2	T. BLANK	3
Sample Sequence	ce #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	F		Т		Т		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/20/2022	08:45	10/12/2022	06:25	10/13/2022	06:30	10/17/2022	06:25
Duplicate ("Y"	' or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				FB1SG1-2	23R	TB1SG1	L-23	TB2SG1-2	23	TB3SG1-2	3
Laboratory Sam	mple ID Number (if applicable)		5977150	05	5966050	07	59684301	7	59718203	13		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					022	10/14/20)22	10/19/20)22	10/19/20)22
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	OWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	Т	μ MHO/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MW	r-1, 1	MW-2, BLANK-	F, etc.)	F. BLANI	K	T. BLANK	. 1	T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
S0296	рН	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.004			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	Т	mg/L	6020	<0.002			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	00	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLANI	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	T	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	T	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	T	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	0.00348	J		*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.02			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	0.00289	BJ	0.00178	J	<0.005		0.00262	BJ
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-000	00	0000-00	000	0000-00	000
Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	F. BLANK	(T. BLAN	(1	T. BLAN	IK 2	T. BLAN	NK 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	L, MW-2, et	.c.)	F. BLAN	(T. BLANK	1	T. BLAN	(2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000193	*	<0.000199	*	<0.0000198		<0.0000204	*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0963			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0963			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0963			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0963			*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0963			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0963			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000		0000-0000		0000-0000	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	F. BLANK		T. BLANK 1		T. BLANK 2		T. BLANK 3	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0963			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0963			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0963			*		*		*
12587-46-1	Gross Alpha	T	pCi/L	9310	1.31	*		*		*		*
12587-47-2	Gross Beta	T	pCi/L	9310	0.701	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.266	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.827	*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	0.416	*		*		*		*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	-0.0752	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0	16.4	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5			*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-000	0	8004-480	4	\	
Facility's Loca	al Well or Spring Number (e.g., M	₩-1	., MW-2, etc	:.)	T. BLANK	(4	T. BLANK	5	386			
Sample Sequence	e #				1		1		2			
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	Т		Т		NA			
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		10/18/2022 0	6:15	10/20/2022	2 06:50	10/20/2022 (08:39		
Duplicate ("Y"	or "N") ²				N		N		N			
Split ("Y" or	"N") ³				N		N		N			
Facility Sample	cility Sample ID Number (if applicable)						TB5SG1-2	23	MW386DSG1	-23R		
Laboratory Sam	ple ID Number (if applicable)		59728700	7	5977150	07	5977150	01	\ /	!		
Date of Analys:	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						10/22/202	22	10/22/20)22	\ /	
Gradient with :	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	NA		NA		SIDE		l Y	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI	F L A G S
24959-67-9	Bromide	Т	mg/L	9056		*		*	<0.2	*		
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*	7.57	*J		
16984-48-8	Fluoride	T	mg/L	9056		*		*	0.783	J		\prod
s0595	- Nitrate & Nitrite T mg/L S					*		*	<10			$\top \setminus$
14808-79-8	Sulfate	Т	mg/L	9056		*		*	40.8			
NS1894	Barometric Pressure Reading	T	Inches/Hg	Field		*		*		*		
S0145	Specific Conductance	Т	μ MH0/cm	Field		*		*		*	y	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	8004-4804	1	\	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	4	T. BLANK	5	386			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*	\	
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		Π
S0266	Total Dissolved Solids	Т	mg/L	160.1		*		*	351			II
S0296	рН	т	Units	Field		*		*		*		1
NS215	Eh	Т	mV	Field		*		*		*		
s0907	Temperature	т	°C	Field		*		*		*	\ /	
7429-90-5	Aluminum	т	mg/L	6020		*		*	<0.05		\	
7440-36-0	Antimony	т	mg/L	6020		*		*	<0.003		\/	
7440-38-2	Arsenic	т	mg/L	6020		*		*	0.00201	J	X	
7440-39-3	Barium	т	mg/L	6020		*		*	0.158		/\	
7440-41-7	Beryllium	т	mg/L	6020		*		*	<0.0005		/\	
7440-42-8	Boron	т	mg/L	6020		*		*	0.0141	J	/ /	\
7440-43-9	Cadmium	т	mg/L	6020		*		*	<0.001			
7440-70-2	Calcium	T	mg/L	6020		*		*	18.1			\
7440-47-3	Chromium	т	mg/L	6020		*		*	<0.01			\
7440-48-4	Cobalt	Т	mg/L	6020		*		*	0.00367			
7440-50-8	Copper	т	mg/L	6020		*		*	0.00103	J	1	
7439-89-6	Iron	Т	mg/L	6020		*		*	0.464			
7439-92-1	Lead	Т	mg/L	6020		*		*	<0.002		1	
7439-95-4	Magnesium	Т	mg/L	6020		*		*	8.05			
7439-96-5	Manganese	т	mg/L	6020		*		*	0.918		1	
7439-97-6	Mercury	т	mg/L	7470		*		*	<0.0002			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	000	8004-48	04	\	
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANI	K 4	T. BLAN	K 5	386			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*		*	0.000889	J		Π
7440-02-0	Nickel	т	mg/L	6020		*		*	0.00387			Π
7440-09-7	Potassium	Т	mg/L	6020		*		*	0.264	J		1/
7440-16-6	Rhodium	т	mg/L	6020		*		*	<0.005			/
7782-49-2	Selenium	т	mg/L	6020		*		*	<0.005			
7440-22-4	Silver	т	mg/L	6020		*		*	<0.001		\ /	
7440-23-5	Sodium	т	mg/L	6020		*		*	104		\ /	
7440-25-7	Tantalum	Т	mg/L	6020		*		*	<0.005		\/	
7440-28-0	Thallium	Т	mg/L	6020		*		*	<0.002		X	
7440-61-1	Uranium	Т	mg/L	6020		*		*	<0.0002		/\	
7440-62-2	Vanadium	Т	mg/L	6020		*		*	0.00337	J	/ \	
7440-66-6	Zinc	Т	mg/L	6020		*		*	<0.02			
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			\
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			<u> </u>
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		/	

C-48

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-000	00	8004-4	804	1	
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	cc.)	T. BLANK	4	T. BLAN	₹5	386)		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			\prod
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			/
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		\/	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			1
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		1	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*		
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						0000-0000		8004-4804		\	
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)					4	T. BLANK	5	386			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005			
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<u> </u>	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000197		<0.0000194	*	<0.0000202	*	\bigvee	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<u> </u>	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001			
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ '	<u> </u>
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001			<u> </u>
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			\perp
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			\coprod
1336-36-3	PCB,Total	Т	ug/L	8082		*		*	<0.103			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.103			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.103			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.103			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.103		/	
12672-29-6	PCB-1248	Т	ug/L	8082		*		*	<0.103		<u> </u>	7

C-49

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						0000-0000		8004-4804			
Facility's Lo	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						T. BLANK 5		386			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
11097-69-1	PCB-1254	Т	ug/L	8082		*		*	<0.103			\prod
11096-82-5	PCB-1260	Т	ug/L	8082		*		*	<0.103			\prod
11100-14-4	PCB-1268	Т	ug/L	8082		*		*	<0.103			\mathcal{T}
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*	-1.49	*		
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*	3.14	*	\ /	
10043-66-0	Iodine-131	Т	pCi/L			*		*		*	\ /	
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*	0.377	*	\ /	
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*	-1.08	*	V	
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*	-3.59	*	\land	
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*	-0.18	*	/\	
10028-17-8	Tritium	Т	pCi/L	906.0		*		*	-19.5	*	/ \	
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*	<20		/ /	1
57-12-5	Cyanide	Т	mg/L	9012		*		*	<0.2			
20461-54-5	Iodide	т	mg/L	300.0		*		*	<0.5			
s0268	Total Organic Carbon	т	mg/L	9060		*		*	5.28			
s0586	Total Organic Halides	Т	mg/L	9020		*		*	0.144			
											/	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

PCB-1016 Y1 MS/MSD recovery outside acceptance criteria. PCB-1260 Y1 Indicates analyze for, but not detected. Tis 3-37. Requirer is 3-37 each analyze for, but not detected. Tis 3-37. Requirer is 3-37 each analyze for, but not detected. Tis 3-37. Requirer is 3-37 each analyze for, but not detected. Tis 3-35. Requirer is 3-37 each analyze for, but not detected. Tis 1-36. Sea for is 3-48. PCB-1041 Y1 Indicates analyze for is 3-48. PCB-1041 Y		Facility Sample ID	Constituent	Flag	Description
PCB-1260 Y1 MS/MSD recovery outside acceptance criteria. Gross alpha U Indicates analylar/unclide was analyzed for, but not detected. T is 3.3°. Rad error is 3.7°. Strontium-90 U Indicates analylar-unclide was analyzed for, but not detected. T is 0.70°. Rad error is 0.70°. Strontium-90 U Indicates analylar-unclide was analyzed for, but not detected. T is 0.70°. Rad error is 0.70°. Brad error is 0.70°. Brad error is 0.70°. Brad error is 0.70°. Tritium U Indicates analylar-unclide was analyzed for, but not detected. T is 3.6°. Rad error is 3.4°. Indicates analylar-unclide was analyzed for, but not detected. T is 3.6°. Rad error is 3.4°. Indicates analylar-unclide was analyzed for, but not detected. T is 0.96°. Tritium U Indicates analylar-unclide was analyzed for, but not detected. T is 0.96°. Rad error is 0.95°. Tritium U Indicates analylar-unclide was analyzed for, but not detected. T is 4.9°. Indicates analylar-unclide was analyzed for, but not detected. T is 4.1°. Rad error is 4.2°. Indicates analylar-unclide was analyzed for, but not detected. T is 4.2°. Rad error is 4.2°. Indicates analylar-unclide was analyzed for, but not detected. T is 4.2°. Rad error is 7.1°. Analysis of constituent not required and not performed. Radium-22°. U Indicates analylar-unclide was analyzed for, but not detected. T is 6.0°. Rad error is 7.1°. Analysis of constituent not required and not performed. Throirum-23°. U Indicates analylar-unclide was analyzed for, but not detected. T is 1.6°. Rad error is 7.1°. Analysis of constituent not required and not performed. Indicates analylar-unclide was analyzed for, but not detected. T is 1.6°. Rad error is 1.0°. Now analysed for, but not detected. T is 1.0°. Rad error is 1.0°. Now analyzed for, but not detected. T is 1.0°. Rad error is 0.0°. Rad error is 0.0°. See analyzed for, but not detected. T is 0.0°. Rad error is 0.0°. See analyzed for, but not detected. T is 0.0°. Rad	8000-5201 MW220 MW	/220SG1-23	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
Gross alpha Gross beta Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.37. Rad error is 3.37. Indicates analyte/nuclide was analyzed for, but not detected. T is 7.65. Rad error is 7.55. Analysis of constituent not required and not performed. Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.709. Rad error is 7.56. Rad error is 7.56. Rad error is 7.56. Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 7.56. Rad error is 7.56. Rad error is 7.56. Rad error is 7.56. Rad error is 7.56. Rad error is 7.56. Rad error is 7.56. Rad error is 7.56. Rad error is 7.56. Rad error is 7.56.			PCB-1016	Y1	MS/MSD recovery outside acceptance criteria.
is 3.37. Rad error is 3.37. Gross beta Unificates analyte/nuclide was analyzed for, but not detected. I is 7.65. Rad error is 7.55. Analysis of constituent not required and not performed. Radium-226 Strontium-90 Unificates analyte/nuclide was analyzed for, but not detected. I is 0.709. Rad error is 3.48. Technetium-99 Unificates analyte/nuclide was analyzed for, but not detected. I is 3.55. Rad error is 3.48. Thorium-230 Unificates analyte/nuclide was analyzed for, but not detected. I is 3.55. Rad error is 3.48. Indicates analyte/nuclide was analyzed for, but not detected. I is 13.3. Rad error is 13.1. Indicates analyte/nuclide was analyzed for, but not detected. I is 0.962. Rad error is 7.55. Indicates analyte/nuclide was analyzed for, but not detected. I is 14.1. Rad error is 14.0. Indicates analyte/nuclide was analyzed for, but not detected. I is 4.24. Rad error is 4.25. Indicates analyte/nuclide was analyzed for, but not detected. I is 7.26. Rad error is 4.25. Indicates analyte/nuclide was analyzed for, but not detected. I is 7.26. Rad error is 4.25. Indicates analyte/nuclide was analyzed for, but not detected. I is 7.26. Rad error is 4.25. Indicates analyte/nuclide was analyzed for, but not detected. I is 6.45. Rad error is 4.25. Indicates analyte/nuclide was analyzed for, but not detected. I is 6.45. Rad error is 4.25. Indicates analyte/nuclide was analyzed for, but not detected. I is 6.45. Rad error is 4.25. Indicates analyte/nuclide was analyzed for, but not detected. I is 6.45. Rad error is 4.25. Indicates analyte/nuclide was analyzed for, but not detected. I is 1.5. Rad error is 6.75. Indicates analyte/nuclide was analyzed for, but not detected. I is 1.5. Rad error is 6.75. Indicates analyte/nuclide was analyzed for, but not detected. I is 1.5. Rad error is 6.75. Indicates analyte/nuclide was analyzed for, but not detected. I is 5.0.68. Rad error is 5.86. Indicates analyte/nuclide was analyzed for, but not detected. I is 5.0.68. Rad error is 5.86. Indicates analyte/nuclide was analyzed for, but			PCB-1260	Y1	MS/MSD recovery outside acceptance criteria.
is 7.65. Rad error is 7.55. Analysis of constituent not required and not performed. Radium-226 Ul Indicates analyteriucidide was analyzed for, but not detected. Tis 0.709. Rad error is 0.709. Rad error is 0.709. Strontium-90 Ul Indicates analyteriucidide was analyzed for, but not detected. Tis 15.5. Rad error is 3.48. Technetium-99 Ul Indicates analyteriucide was analyzed for, but not detected. Tis 13.3. Rad error is 13.4. Thorium-230 Ul Indicates analyteriucide was analyzed for, but not detected. Tis 15.9. Rad error is 10.957. Tritium Ul Indicates analyteriucide was analyzed for, but not detected. Tis 141. Rad error is 140. Strontium-90 Tritium-230 Ul Indicates analyteriucide was analyzed for, but not detected. Tis 141. Rad error is 140. Strontium-90 Ul Indicates analyteriucide was analyzed for, but not detected. Tis 7.26. Rad error is 4.23. Gross beta Ul Indicates analyteriucide was analyzed for, but not detected. Tis 7.26. Rad error is 7.15. Analysis of constituent not required and not performed. Radium-226 Ul Indicates analyteriucide was analyzed for, but not detected. Tis 15.6. Rad error is 1.4. Technetium-99 Ul Indicates analyteriucide was analyzed for, but not detected. Tis 15.6. Rad error is 1.4. Tritium Ul Indicates analyteriucide was analyzed for, but not detected. Tis 15.6. Rad error is 1.32. Tritium Ul Indicates analyteriucide was analyzed for, but not detected. Tis 15.7. Rad error is 1.32. Tritium Ul Indicates analyteriucide was analyzed for, but not detected. Tis 15.7. Rad error is 1.32. Tritium Ul Indicates analyteriucide was analyzed for, but not detected. Tis 15.7. Rad error is 1.32. Tritium-20 Ul Indicates analyteriucide was analyzed for, but not detected. Tis 15.7. Rad error is 1.32. Tritium-21 Ul Indicates analyteriucide was analyzed for, but not detected. Tis 15.7. Rad error is 1.32. Tritium-226 Ul Indicates analyteriucide was analyzed for, but not detected. Tis 15.8. Rad error is 1.32. Tritium-230 Ul Indicates analyteriucide was analyzed for, but not detected. Tis 15.8. Rad error is 1.34.			Gross alpha	U	
Radium-226 Strontium-90 U Indicates analyter/luclide was analyzed for, but not detected. Tile 0.709. Rad error is 0.957. Rad error is 0.959. Rad error is 0.959. Rad error is 0.959. Rad error is 0.959. Rad error is 0.759. Rad e				U	
Strontium-90 Strontium-90 Strontium-99 Undicates analyte/muclide was analyzed for, but not detected. T is 3.55. Rad error is 3.48. Technetium-99 Undicates analyte/muclide was analyzed for, but not detected. T is 13.3. Rad error is 13.1. Thorium-230 Undicates analyte/muclide was analyzed for, but not detected. T is 952. Rad error is 0.957. Tritium Undicates analyte/muclide was analyzed for, but not detected. T is 14. Rad error is 140. Undicates analyte/muclide was analyzed for, but not detected. T is 141. Rad error is 140. Undicates analyte/muclide was analyzed for, but not detected. T is 24. Rad error is 4.23. Gross beta Undicates analyte/muclide was analyzed for, but not detected. T is 24. Rad error is 2.3. Undicates analyte/muclide was analyzed for, but not detected. T is 25. Rad error is 0.696. Strontium-90 Undicates analyte/muclide was analyzed for, but not detected. T is 45. Rad error is 0.696. Strontium-90 Undicates analyte/muclide was analyzed for, but not detected. T is 15. Rad error is 0.696. Tritium Undicates analyte/muclide was analyzed for, but not detected. T is 15. Rad error is 0.693. Tritium Undicates analyte/muclide was analyzed for, but not detected. T is 15. Rad error is 0.693. Undicates analyte/muclide was analyzed for, but not detected. T is 15. Rad error is 0.693. Tritium Undicates analyte/muclide was analyzed for, but not detected. T is 15. Rad error is 0.693. Tritium Undicates analyte/muclide was analyzed for, but not detected. T is 35. Rad error is 0.693. Tritium Undicates analyte/muclide was analyzed for, but not detected. T is 3.55. Rad error is 0.693. Tritium-90 Undicates analyte/muclide was analyzed for, but not detected. T is 5.98. Rad error is 3.54. Tritium-90 Undicates analyte/muclide was analyzed for, but not detected. T is 5.98. Rad error is 0.643. Tritium-90 Undicates analyte/muclide was analyzed for, but not detected. T is 5.98. Rad error is 0.593. Trechnetium-90 Undicates analyte/muclide was analyzed for, but not detected. T is 5.98. Rad error is 0.593. Tritium-90 Und			lodine-131		Analysis of constituent not required and not performed.
Technetium-99			Radium-226	U	
is 13.3. Rad error is 13.1. Thorium-230 Tritium Tritium U indicates analyte/inuclide was analyzed for, but not detected. I is 0.962. Rad error is 0.957. Tritium WishINDS recovery outside acceptance criteria and MS/MSD R outside acceptance criteria. Gross alpha Gross beta U indicates analyte/inuclide was analyzed for, but not detected. I is 7.26. Rad error is 140. Gross beta U indicates analyte/inuclide was analyzed for, but not detected. I is 7.26. Rad error is 7.26. Rad e			Strontium-90	U	
Tritium Tri			Technetium-99	U	
is 141. Rad error is 140. MS/MSD recovery outside acceptance criteria and MS/MSD Routside acceptance criteria and MS/MSD Routside acceptance criteria. Gross alpha Undicates analyte/nuclide was analyzed for, but not detected. To is 4.24. Rad error is 4.23. Gross beta Undicates analyte/nuclide was analyzed for, but not detected. To is 7.26. Rad error is 0.698. Strontium-90 Undicates analyte/nuclide was analyzed for, but not detected. To is 0.697. Rad error is 0.698. Strontium-90 Undicates analyte/nuclide was analyzed for, but not detected. To is 0.697. Rad error is 0.698. Technetium-99 Undicates analyte/nuclide was analyzed for, but not detected. To is 0.697. Rad error is 0.698. Tritium Undicates analyte/nuclide was analyzed for, but not detected. To is 0.697. Rad error is 0.698. Tritium Undicates analyte/nuclide was analyzed for, but not detected. To is 0.697. Rad error is 0.698. Tritium Undicates analyte/nuclide was analyzed for, but not detected. To is 0.697. Tritium Undicates analyte/nuclide was analyzed for, but not detected. To is 0.697. Tritium Undicates analyte/nuclide was analyzed for, but not detected. To is 10.99. Gross alpha Undicates analyte/nuclide was analyzed for, but not detected. To is 3.55. Rad error is 3.54. Gross alpha Undicates analyte/nuclide was analyzed for, but not detected. To is 3.55. Rad error is 3.54. Gross beta Undicates analyte/nuclide was analyzed for, but not detected. To is 5.98. Rad error is 5.98. Undicates analyte/nuclide was analyzed for, but not detected. To is 0.483. Rad error is 0.483. Strontium-90 Undicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 0.758. Tritium Undicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 0.758. Tritium Undicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 0.758.			Thorium-230	U	
Gross alpha Gross alpha Gross beta Gros			Tritium	U	
is 4.24. Rad error is 4.23. Gross beta Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. T is 7.26. Rad error is 7.15. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.697. Rad error is 0.696. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 4.54. Rad error is 4.47. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 4.54. Rad error is 10.9 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 11. Rad error is 10.9 Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 132. Rad error is 0.673. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 132. Rad error is 132. WW222 MW222 MW222SG1-23 1,2-Dibromo-3-chloropropane Y1Y2 MS/MSD recovery outside acceptance criteria and MS/MSD R outside acceptance criteria and MS/MSD R outside acceptance criteria. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.55. Rad error is 3.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. T is 5.98. Rad error is 5.98. Rad error is 5.98. Rad error is 5.96. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.483. Rad error is 0.483. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.483. Rad error is 0.483. Strontium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.483. Rad error is 0.483. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.78. Rad error is 0.758. Indicates analyte/nuclide was analyzed for, but not detected. T is 0.762. Rad error is 0.758. Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 0.758.	3000-5202 MW221 MW	/221SG1-23	1,2-Dibromo-3-chloropropane	Y1Y2	
is 7.26. Rad error is 7.15. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.697. Rad error is 0.696. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. To is 4.54. Rad error is 10.696. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. To is 4.54. Rad error is 10.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. To is 11. Rad error is 10.9. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 10.677. Rad error is 0.673. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 132. Rad error is 132. WS/MSD recovery outside acceptance criteria and MS/MSD Routside acceptance criteria and MS/MSD Routside acceptance criteria. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. To is 3.55. Rad error is 3.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. To is 5.96. Rad error is 5.96. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.483. Rad error is 0.483. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.483. Rad error is 0.675. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. To is 1.5. Rad error is 1.6. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 1.14. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 1.75. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 1.75. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 1.14. Indicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 1.14. Indicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 1.14. Indicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad er			Gross alpha	U	
Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.697. Rad error is 0.696. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 4.54. Rad error is 4.47. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 11. Rad error is 10.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.677. Rad error is 0.673. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 132. Rad error is 132. Rad error is 132. Rad error is 132. Rad error is 132. Rad error is 132. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.55. Rad error is 3.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. T is 5.98. Rad error is 5.96. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.483. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.483. Rad error is 0.483. Strontium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.483. Rad error is 0.483. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 115. Rad error is 13.67. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 115. Rad error is 0.758. Titium U Indicates analyte/nuclide was analyzed for, but not detected. T is 115. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 115. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.			Gross beta	U	
is 0.697. Rad error is 0.696. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 4.54. Rad error is 14.47. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 11. Rad error is 10.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.677. Rad error is 0.673. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 132. Rad error is 132. MW222 MW222SG1-23 1,2-Dibromo-3-chloropropane Y1Y2 MS/MSD recovery outside acceptance criteria and MS/MSD R outside acceptance criteria and MS/MSD R outside acceptance criteria. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.55. Rad error is 3.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. T is 5.98. Rad error is 5.96. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.483. Rad error is 0.483. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.483. Rad error is 0.483. Strontium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 11.5. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 11.5. Rad error is 0.762. Rad error is 0.762. Rad error is 0.762. Rad error is 0.762. Rad error is 0.763. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 1.6. Rad error is 0.762. Rad error is 0.762. Rad error is 0.762. Rad error is 0.763. Indicates analyte/nuclide was analyzed for, but not detected. T is 1.15. Rad error is 1.14. Indicates analyte/nuclide was analyzed for, but not detected. T is 1.15. Rad error is 1.14. Indicates analyte/nuclide was analyzed for, but not detected. T is 1.15. Rad error is 1.14.			lodine-131		Analysis of constituent not required and not performed.
is 4.54. Rad error is 4.47. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. To is 11. Rad error is 10.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.677. Rad error is 0.673. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 132. Rad error is 132. Indicates analyte/nuclide was analyzed for, but not detected. To is 132. Rad error is 132. Indicates analyte/nuclide was analyzed for, but not detected. To is 3.55. Rad error is 3.54. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. To is 3.58. Rad error is 5.96. Indicates analyte/nuclide was analyzed for, but not detected. To is 5.98. Rad error is 5.96. Indicates analyte/nuclide was analyzed for, but not detected. To is 0.483. Rad error is 0.483. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. To is 3.67. Rad error is 0.483. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. To is 11.5. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 0.758.			Radium-226	U	
is 11. Rad error is 10.9. Thorium-230 Thorium-230 Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.677. Rad error is 0.673. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 132. Rad error is 132. MS/MSD recovery outside acceptance criteria and MS/MSD Routside acceptance criteria. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. To is 3.55. Rad error is 3.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. To is 5.98. Rad error is 5.96. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.483. Rad error is 0.483. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. To is 3.67. Rad error is 0.483. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. To is 1.5. Rad error is 3.67. Technetium-230 U Indicates analyte/nuclide was analyzed for, but not detected. To is 1.5. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. To is 1.5. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.762. Rad error is 0.758.			Strontium-90	U	
is 0.677. Rad error is 0.673. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 132. Rad error is 132. Rad error is 132. MS/MSD recovery outside acceptance criteria and MS/MSD Routside acceptance criteria and MS/MSD Routside acceptance criteria. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. To is 3.55. Rad error is 3.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. To is 5.98. Rad error is 5.96. Indicates analyte/nuclide was analyzed for, but not detected. To is 0.483. Rad error is 0.483. Rad error is 0.483. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. To is 3.67. Rad error is 3.67. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. To is 11.5. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. To is 0.752. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. To is 131. Rad error is 131.			Technetium-99	U	
is 132. Rad error is 132. Sample S			Thorium-230	U	
outside acceptance criteria. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.55. Rad error is 3.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. T is 5.98. Rad error is 5.96. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.483. Rad error is 0.483. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.67. Rad error is 3.67. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 11.5. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.762. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.			Tritium	U	
Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.55. Rad error is 3.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. T is 5.98. Rad error is 5.96. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.483. Rad error is 0.483. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.67. Rad error is 3.67. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 11.5. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.762. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.	8000-5242 MW222 MW	/222SG1-23	1,2-Dibromo-3-chloropropane	Y1Y2	
is 5.98. Rad error is 5.96. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.483. Rad error is 0.483. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.67. Rad error is 3.67. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 11.5. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.762. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.483. Rad error is 0.483. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.67. Rad error is 3.67. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 11.5. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.762. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.			Gross beta	U	
is 0.483. Rad error is 0.483. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.67. Rad error is 3.67. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 11.5. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.762. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.			lodine-131		Analysis of constituent not required and not performed.
Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.67. Rad error is 3.67. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 11.5. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.762. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.			Radium-226	U	
Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 11.5. Rad error is 11.4. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.762. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T
Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.762. Rad error is 0.758. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.			Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T
Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T
			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T
			Total Organic Carbon	W	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5243 MW223	MW223SG1-23	1,2-Dibromo-3-chloropropane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RP outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 3.03. Rad error is 3.02.
		Gross beta		TPU is 7.04. Rad error is 6.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.361. Rad error is 0.361.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 3.9. Rad error is 3.9.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 11.2. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.92. Rad error is 0.914.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 137. Rad error is 136.
		Total Organic Carbon	W	Post-digestion spike recovery out of control limits.
000-5244 MW224 MW224SG1-23	MW224SG1-23	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 4.33. Rad error is 4.33.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 8.85. Rad error is 8.68.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.457. Rad error is 0.457.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.22. Rad error is 2.22.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 9.5. Rad error is 9.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.05. Rad error is 1.05.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 129. Rad error is 129.
3004-4820 MW369	MW369UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 6.11. Rad error is 5.99.
		Gross beta		TPU is 11. Rad error is 9.47.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.429. Rad error is 0.429.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 3.38. Rad error is 3.36.
		Technetium-99		TPU is 14.1. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.18. Rad error is 1.17.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 132. Rad error is 132.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4818 MW370) MW370UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.12. Rad error is 4.12.
		Gross beta		TPU is 8.08. Rad error is 7.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.388. Rad error is 0.388.
	Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.58. Rad error is 2.58.	
		Technetium-99		TPU is 9.85. Rad error is 9.57.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.61. Rad error is 1.61.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 135. Rad error is 135.
8004-4808 MW372 MW372UG1-23		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.96. Rad error is 4.94.
	Gross beta		TPU is 13.3. Rad error is 10.6.	
	lodine-131		Analysis of constituent not required and not performed.	
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.351. Rad error is 0.351.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 3.7. Rad error is 3.7.
		Technetium-99		TPU is 15.2. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.02. Rad error is 1.01.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 134. Rad error is 134.
004-4792 MW373	3 MW373UG1-23	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.41. Rad error is 4.41.
		Gross beta		TPU is 7.72. Rad error is 7.45.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.512. Rad error is 0.511.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 3.09. Rad error is 3.09.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.9. Rad error is 1.88.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 139. Rad error is 138.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description						
004-4809 MW384	MW384SG1-23	Sulfate	W	Post-digestion spike recovery out of control limits.						
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits						
		PCB-1016	Y1	MS/MSD recovery outside acceptance criteria.						
		PCB-1260	Y1	MS/MSD recovery outside acceptance criteria.						
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.79. Rad error is 2.79.						
		Gross beta		TPU is 10.7. Rad error is 8.35.						
		Iodine-131		Analysis of constituent not required and not performed.						
			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.636. Rad error is 0.635.					
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.23. Rad error is 4.22.						
		Technetium-99		TPU is 15.1. Rad error is 14.1.						
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.791. Rad error is 0.786.						
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 128. Rad error is 128.						
		Total Organic Carbon	W	Post-digestion spike recovery out of control limits.						
004-4810 MW385	MW385SG1-23	MW385SG1-23	MW385SG1-23	MW385SG1-23	MW385SG1-23	MW385SG1-23	MW385SG1-23	Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits						
		PCB-1016	Y1	MS/MSD recovery outside acceptance criteria.						
			PCB-1260	Y1	MS/MSD recovery outside acceptance criteria.					
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.64. Rad error is 2.64.						
		Gross beta		TPU is 6.61. Rad error is 6.36.						
		Iodine-131		Analysis of constituent not required and not performed.						
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.579. Rad error is 0.579.						
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.36. Rad error is 4.36.						
		Technetium-99		TPU is 15.3. Rad error is 14.4.						
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.901. Rad error is 0.896.						
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 130. Rad error is 130.						
		Total Organic Carbon	W	Post-digestion spike recovery out of control limits.						

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW386	MW386SG1-23R	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria.
		1,2-Dibromo-3-chloropropane	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.71. Rad error is 6.71.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.32. Rad error is 5.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.517. Rad error is 0.517.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.49. Rad error is 4.48.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.2. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.595. Rad error is 0.594.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 116. Rad error is 116.
004-4815 MW387	MW387SG1-23	Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB-1016	Y1	MS/MSD recovery outside acceptance criteria.
		PCB-1260	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.69. Rad error is 2.68.
		Gross beta		TPU is 10.1. Rad error is 9.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.581. Rad error is 0.581.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.47. Rad error is 4.43.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.2. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.672. Rad error is 0.672.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 115. Rad error is 115.
		Total Organic Carbon	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4816 MW3	88 MW388SG1-23	Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB-1016	Y1	MS/MSD recovery outside acceptance criteria.
		PCB-1260	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.59. Rad error is 3.59.
		Gross beta		TPU is 12.2. Rad error is 9.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.563. Rad error is 0.563.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.71. Rad error is 3.71.
		Technetium-99		TPU is 17.7. Rad error is 14.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.1. Rad error is 1.1.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 124. Rad error is 124.
		Total Organic Carbon	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample w collected.
		Temperature		During sampling, the well was dry; therefore, no sample w collected.
		Aluminum		During sampling, the well was dry; therefore, no sample w collected.
		Antimony		During sampling, the well was dry; therefore, no sample was collected.
		Arsenic		During sampling, the well was dry; therefore, no sample was collected.
		Barium		During sampling, the well was dry; therefore, no sample w collected.
		Beryllium		During sampling, the well was dry; therefore, no sample w collected.
		Boron		During sampling, the well was dry; therefore, no sample w collected.
		Cadmium		During sampling, the well was dry; therefore, no sample w collected.
		Calcium		During sampling, the well was dry; therefore, no sample w collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample w collected.
		Copper		During sampling, the well was dry; therefore, no sample w collected.
		Iron		During sampling, the well was dry; therefore, no sample w collected.
		Lead		During sampling, the well was dry; therefore, no sample w collected.
		Magnesium		During sampling, the well was dry; therefore, no sample w collected.
		Manganese		During sampling, the well was dry; therefore, no sample w collected.
		Mercury		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample was collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample was collected.
		Selenium		During sampling, the well was dry; therefore, no sample was collected.
		Silver		During sampling, the well was dry; therefore, no sample was collected.
		Sodium		During sampling, the well was dry; therefore, no sample w collected.
		Tantalum		During sampling, the well was dry; therefore, no sample w collected.
		Thallium		During sampling, the well was dry; therefore, no sample was collected.
		Uranium		During sampling, the well was dry; therefore, no sample w collected.
		Vanadium		During sampling, the well was dry; therefore, no sample w collected.
		Zinc		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample w collected.
		Acetone		During sampling, the well was dry; therefore, no sample w collected.
		Acrolein		During sampling, the well was dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample w collected.
		Benzene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		Xylenes		During sampling, the well was dry; therefore, no sample w collected.
		Styrene		During sampling, the well was dry; therefore, no sample w collected.
		Toluene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample w collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample w collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample w collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample w collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample w collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample w collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
6004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample w collected.
		lodomethane		During sampling, the well was dry; therefore, no sample w collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample w collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample w collected.
		Gross beta		During sampling, the well was dry; therefore, no sample w collected.
		lodine-131		During sampling, the well was dry; therefore, no sample w collected.
		Radium-226		During sampling, the well was dry; therefore, no sample w collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample w collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample w collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample w collected.
		Tritium		During sampling, the well was dry; therefore, no sample w collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample w collected.
		Cyanide		During sampling, the well was dry; therefore, no sample w collected.
		lodide		During sampling, the well was dry; therefore, no sample w collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample w collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample v collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4811 MW390 MW390SG1-23		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB-1016	Y1	MS/MSD recovery outside acceptance criteria.
		PCB-1260	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.08. Rad error is 4.07.
		Gross beta		TPU is 11.1. Rad error is 9.54.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.587. Rad error is 0.587.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.49. Rad error is 4.44.
		Technetium-99		TPU is 15.5. Rad error is 14.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.794. Rad error is 0.793.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 135. Rad error is 134.
		Total Organic Carbon	W	Post-digestion spike recovery out of control limits.
004-4805 MW391	MW391SG1-23	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.9. Rad error is 3.85.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.39. Rad error is 3.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.624. Rad error is 0.624.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.37. Rad error is 3.37.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 9.45. Rad error is 9.37.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.815. Rad error is 0.814.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 128. Rad error is 128.
		Total Organic Carbon	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0004-4806 MW392 MW392SG1-23		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.4. Rad error is 3.4.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.91. Rad error is 5.91.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.713. Rad error is 0.712.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.44. Rad error is 3.44.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 9.75. Rad error is 9.73.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.14. Rad error is 1.12.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.
		Total Organic Carbon	W	Post-digestion spike recovery out of control limits.
004-4807 MW39	3 MW393SG1-23	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.93. Rad error is 3.92.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.72. Rad error is 6.69.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.571. Rad error is 0.571.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.82. Rad error is 2.82.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 9.63. Rad error is 9.62.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.18. Rad error is 1.16.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 127. Rad error is 127.
		Total Organic Carbon	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4802 MW394 MW394SG1-23		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.37. Rad error is 3.36.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.29. Rad error is 8.26.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.533. Rad error is 0.533.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.4. Rad error is 3.4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.2. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.22. Rad error is 1.21.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 126. Rad error is 126.
		Total Organic Carbon	W	Post-digestion spike recovery out of control limits.
004-4801 MW39	5 MW395SG1-23	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.14. Rad error is 4.1.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.41. Rad error is 6.27.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.635. Rad error is 0.635.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.54. Rad error is 2.54.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 9.05. Rad error is 9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.862. Rad error is 0.857.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 134. Rad error is 134.
		Total Organic Carbon	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4803 MW396 MW396SG1-23		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.54. Rad error is 4.5.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.22. Rad error is 6.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.812. Rad error is 0.812.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.89. Rad error is 2.89.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 9.44. Rad error is 9.41.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.33. Rad error is 1.33.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 137. Rad error is 137.
		Total Organic Carbon	W	Post-digestion spike recovery out of control limits.
8004-4817 MW39	7 MW397SG1-23	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.96. Rad error is 3.94.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 7.07. Rad error is 6.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.469. Rad error is 0.469.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.95. Rad error is 2.91.
		Technetium-99		TPU is 14.2. Rad error is 14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.15. Rad error is 1.14.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 136. Rad error is 136.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG1-23R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria.
		1,2-Dibromo-3-chloropropane	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.39. Rad error is 3.39.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.97. Rad error is 6.97.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.346. Rad error is 0.345.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.66. Rad error is 3.66.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.3. Rad error is 1.29.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 150. Rad error is 147.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1SG1-23R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria.
		1,2-Dibromo-3-chloropropane	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.82. Rad error is 2.81.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.74. Rad error is 5.74.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.514. Rad error is 0.514.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.37. Rad error is 4.37.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 12.3. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.78. Rad error is 1.77.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 126. Rad error is 126.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG1-23	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG1-23	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD R outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG1-23	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG1-23	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID: None

GROUNDWATER WRITTEN COMMENTS

Finds/Unit: <u>KY8-890-008-982 / 1</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG1-23	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG1-23	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not perf

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG1-23	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG1-23	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB5SG1-23	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		pН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB5SG1-23	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria.
		1,2-Dibromo-3-chloropropane	Y1	MS/MSD recovery outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW386	6 MW386DSG1-23R	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria.
		1,2-Dibromo-3-chloropropane	Y1	MS/MSD recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.85. Rad error is 2.84.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 6.54. Rad error is 6.52.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.6. Rad error is 0.6.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 3.98. Rad error is 3.98.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 12.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.66. Rad error is 0.66.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 121. Rad error is 121.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Finds/Unit: <u>KY8-980-008-982/1</u> Lab ID: None

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2022 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2022 data used to conduct the statistical analyses were collected in October 2022. The statistical analyses for this report first used data from the initial eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one compliance well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater
	Турс	Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW3891*	TW	UCRS
$MW390^1$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

¹ **NOTE:** The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

BG: upgradient or background wells

TW: compliance or test wells

SG: sidegradient wells

^{*}Well was dry this quarter and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the background wells (identified as "BG"), the compliance or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2022. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

lower $TL = X - (K \times S)$

-

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations.

 $upper TL = X + (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters
Acetone
Aluminum
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
cis-1,2-Dichloroethene
Cobalt
Conductivity
Copper
Dissolved Oxygen
Dissolved Solids
Iodide
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential ¹
pH^2
Potassium
Sodium
Sulfate
Technetium-99
Toluene (To G)
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene

Vanadium

¹Oxidation-Reduction Potential calibrated as Eh.
² For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	2	2	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	0	4	Yes
Bromide	4	1	3	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	0	4	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	2	2	Yes
Conductivity	4	0	4	Yes
Copper	4	0	4	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	3	1	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	1	3	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	2	2	Yes
Nickel	4	0	4	Yes
Oxidation-Reduction Potential	4	0	4	Yes
PCB, Total	4	4	0	No
PCB-1016	4	4	0	No
PCB-1221	4	4	0	No
PCB-1232	4	4	0	No
PCB-1242	4	4	0	No
PCB-1248	4	4	0	No
PCB-1254	4	4	0	No
PCB-1260	4	4	0	No
PCB-1268	4	4	0	No
pН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	3	1	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	4	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

1,1,2-Tetrachloroethane	Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1-2-Trichloroethane	1,1,1,2-Tetrachloroethane	11	11	0	No
1,1-Dichloroethane	1,1,2,2-Tetrachloroethane	11	11	0	No
1.2.3-Trichloropropane	1,1,2-Trichloroethane	11	11	0	No
1.2-Dibromo-3-chloropropane	1,1-Dichloroethane	11	11	0	No
1.2-Dibromoethane	1,2,3-Trichloropropane	11	11	0	No
1,2-Dichlorobenzene	1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dichloropropane	1,2-Dibromoethane	11	11	0	No
2-Butanone 11 11 0 No 2-Hexanone 11 11 0 No 4-Methyl-2-pentanone 11 11 0 No Acctone 11 10 1 Yes Acrolein 11 11 0 No Aluminum 11 11 0 No Aluminum 11 11 0 No Beryllium 11 11 0 No Beryllium 11 11 0 No Bromodlomethane 11 11 0 No Bromodlomethane 11 11 0 No Bromodi	1,2-Dichlorobenzene	11	11	0	No
2-Hexanone	1,2-Dichloropropane	11	11	0	No
A-Methyl-2-pentanone	2-Butanone	11	11	0	No
Acetone	2-Hexanone	11	11	0	No
Acrolein	4-Methyl-2-pentanone	11	11	0	No
Acrylonitrile	Acetone	11	10	1	Yes
Aluminum 11 9 2 Yes Antimony 11 11 0 No Beryllium 11 11 0 No Bromo 11 1 10 Yes Bromodle 11 0 11 Yes Bromochloromethane 11 11 0 No Bromodichloromethane 11 11 0 No Bromodichloromethane 11 11 0 No Bromoform 11 11 0 No Bromodichloromethane 11 11 0 No Bromodichloromethane 11 11 0 No Calcium 11 11 0 No Carbon disulfide 11 11 0 No Chemical Oxygen Demand (COD) 11 4 7 Yes Chloride 11 1 0 No Chlorobenzene 11 11 0	Acrolein	11	11	0	No
Aluminum	Acrylonitrile	11	11	0	No
Beryllium	Aluminum	11	9	2	Yes
Boron 11 1 10 Yes Bromide 11 0 11 Yes Bromochloromethane 11 11 0 No Bromodichloromethane 11 11 0 No Bromoform 11 11 0 No Bromomethane 11 11 0 No Calcium 11 0 11 Yes Carbon disulfide 11 11 0 No Chemical Oxygen Demand (COD) 11 4 7 Yes Chloride 11 0 11 Yes Chlorobenzene 11 11 0 No Chloroethane 11 11 0 No Chloroform 11 11 0 No Chloroethane 11 11 0 No Chloropethane 11 11 0 No Cis-1,2-Dichloroethene 11 11 0	Antimony	11	11	0	No
Boronide 11 1 10 Yes Bromide 11 0 11 Yes Bromochloromethane 11 11 0 No Bromodichloromethane 11 11 0 No Bromoform 11 11 0 No Bromomethane 11 11 0 No Bromomethane 11 11 0 No Calcium 11 0 11 Yes Carbon disulfide 11 11 0 No Chemical Oxygen Demand (COD) 11 4 7 Yes Chloride 11 1 0 No Chlorobenzene 11 11 0 No Chloropethane 11 11 0 No Chloroform 11 11 0 No Chloromethane 11 11 0 No cis-1,3-Dichloroethene 11 11 0	Beryllium	11	11	0	No
Bromochloromethane 11 11 0 No Bromodichloromethane 11 11 0 No Bromoform 11 11 0 No Bromomethane 11 11 0 No Calcium 11 0 11 Yes Carbon disulfide 11 11 0 No Chemical Oxygen Demand (COD) 11 4 7 Yes Chloride 11 0 11 Yes Chloride 11 0 11 Yes Chlorobenzene 11 11 0 No Chlorobenzene 11 11 0 No Chloroethane 11 11 0 No Chloroethane 11 11 0 No Chloromethane 11 11 0 No cis-1,2-Dichloroethene 11 11 0 No Cobalt 11 1 0		11	1	10	Yes
Bromodichloromethane 11 11 0 No Bromoform 11 11 11 0 No Bromomethane 11 11 0 No Calcium 11 11 0 11 Yes Carbon disulfide 11 11 0 No Chemical Oxygen Demand (COD) 11 4 7 Yes Chloride 11 0 11 Yes Chloride 11 0 11 Yes Chlorobenzene 11 11 0 No Chloroethane 11 11 0 No Chloroform 11 11 0 No Chloromethane 11 11 0 No cis-1,2-Dichloroethene 11 11 0 No cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11<	Bromide	11	0	11	Yes
Bromoform 11 11 0 No Bromomethane 11 11 0 No Calcium 11 0 11 Yes Carbon disulfide 11 11 0 No Chemical Oxygen Demand (COD) 11 4 7 Yes Chloride 11 0 11 Yes Chlorobenzene 11 11 0 No Chlorocthane 11 11 0 No Chloroform 11 11 0 No Chloromethane 11 11 0 No Chloromethane 11 11 0 No Cis-1,2-Dichloroethene 11 11 0 No cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Copper 11 1 0	Bromochloromethane	11	11	0	No
Bromomethane	Bromodichloromethane	11	11	0	No
Calcium 11 0 11 Yes Carbon disulfide 11 11 0 No Chemical Oxygen Demand (COD) 11 4 7 Yes Chloride 11 0 11 Yes Chlorobenzene 11 11 0 No Chloroethane 11 11 0 No Chloroform 11 11 0 No Chloromethane 11 11 0 No Chloromethane 11 11 0 No Cis-1,2-Dichloroethene 11 11 0 No cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Copper 11 1 10 No Dibromochloromethane 11 11 0 No Dibromomethane 11 11 <td< td=""><td>Bromoform</td><td>11</td><td>11</td><td>0</td><td>No</td></td<>	Bromoform	11	11	0	No
Calcium 11 0 11 Yes Carbon disulfide 11 11 0 No Chemical Oxygen Demand (COD) 11 4 7 Yes Chloride 11 0 11 Yes Chlorobenzene 11 11 0 No Chloroethane 11 11 0 No Chloroform 11 11 0 No Chloromethane 11 11 0 No Chloromethane 11 11 0 No Cis-1,2-Dichloroethene 11 11 0 No cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Copper 11 1 10 No Dibromochloromethane 11 11 0 No Dibromomethane 11 11 <td< td=""><td>Bromomethane</td><td>11</td><td>11</td><td>0</td><td>No</td></td<>	Bromomethane	11	11	0	No
Carbon disulfide 11 11 0 No Chemical Oxygen Demand (COD) 11 4 7 Yes Chloride 11 0 11 Yes Chlorobenzene 11 11 0 No Chloroethane 11 11 0 No Chloroform 11 11 0 No Chloroethane 11 11 0 No Chloromethane 11 11 0 No Cis-1,2-Dichloroethene 11 11 0 No cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Copper 11 1 10 Yes Cyanide 11 1 0 No Dibromochloromethane 11 11 0 No Dibromochloromethane 11 11					
Chemical Oxygen Demand (COD) 11 4 7 Yes Chloride 11 0 11 Yes Chlorobenzene 11 11 0 No Chloroethane 11 11 0 No Chloromethane 11 11 0 No Chloroethane 11 11 0 No Cis-1,2-Dichloroethene 11 11 0 No Cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Copper 11 1 10 Yes Cyanide 11 11 0 No Dibromochloromethane 11 11 0 <td>Carbon disulfide</td> <td>11</td> <td>11</td> <td>0</td> <td>No</td>	Carbon disulfide	11	11	0	No
Chloride 11 0 11 Yes Chlorobenzene 11 11 11 0 No Chloroethane 11 11 11 0 No Chloroform 11 11 11 0 No Chloromethane 11 11 0 No Chloromethane 11 11 0 No Cis-1,2-Dichloroethene 11 11 0 No Cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Copper 11 1 10 Yes Cyanide 11 1 0 No Dibromochloromethane 11 11 1 0 No Dimethylbenzene, Total 11 11 0 No Dissolved Oxygen 11 0 11 Yes <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Chlorobenzene 11 11 0 No Chloroethane 11 11 0 No Chloroform 11 11 0 No Chloromethane 11 11 0 No Chloromethane 11 11 0 No Cis-1,2-Dichloroethene 11 11 0 No Cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Copper 11 1 10 Yes Cyanide 11 11 0 No Dibromochloromethane 11 11 0 No Dibromochlarene 11 11 0 No Dimethylbenzene, Total 11 11 0 No Dissolved Oxygen 11 0 11 Yes Dissolved Solids 11 0 <				11	
Chloroethane 11 11 0 No Chloroform 11 11 0 No Chloromethane 11 11 0 No Cis-1,2-Dichloroethene 11 11 0 No cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Cyanide 11 1 10 Yes Cyanide 11 11 0 No Dibromochloromethane 11 11 0 No Dibromomethane 11 11 0 No Dissolved Oxygen 11 0 11 Yes Dissolved Solids 11 0 No Ethylbenzene 11 11 0 No					
Chloroform 11 11 0 No Chloromethane 11 11 0 No cis-1,2-Dichloroethene 11 11 0 No cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Cyanide 11 1 10 Yes Cyanide 11 11 0 No Dibromochloromethane 11 11 0 No Dibromomethane 11 11 0 No Dissolved Oxygen 11 0 11 Yes Ethylbenzene 11 11 0 No					
Chloromethane 11 11 0 No cis-1,2-Dichloroethene 11 11 0 No cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Copper 11 1 10 Yes Cyanide 11 11 0 No Dibromochloromethane 11 11 0 No Dibromomethane 11 11 0 No Dissolved Oxygen 11 0 11 Yes Dissolved Solids 11 0 11 Yes Ethylbenzene 11 11 0 No					
cis-1,2-Dichloroethene 11 11 0 No cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Copper 11 1 10 Yes Cyanide 11 11 0 No Dibromochloromethane 11 11 0 No Dibromomethane 11 11 0 No Dimethylbenzene, Total 11 11 0 No Dissolved Oxygen 11 0 11 Yes Ethylbenzene 11 11 0 No					
cis-1,3-Dichloropropene 11 11 0 No Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Copper 11 1 10 Yes Cyanide 11 11 0 No Dibromochloromethane 11 11 0 No Dibromomethane 11 11 0 No Dimethylbenzene, Total 11 11 0 No Dissolved Oxygen 11 0 11 Yes Dissolved Solids 11 0 11 Yes Ethylbenzene 11 11 0 No					
Cobalt 11 8 3 Yes Conductivity 11 0 11 Yes Copper 11 1 10 Yes Cyanide 11 11 0 No Dibromochloromethane 11 11 0 No Dibromomethane 11 11 0 No Dimethylbenzene, Total 11 11 0 No Dissolved Oxygen 11 0 11 Yes Dissolved Solids 11 0 11 Yes Ethylbenzene 11 11 0 No					
Conductivity 11 0 11 Yes Copper 11 1 10 Yes Cyanide 11 11 0 No Dibromochloromethane 11 11 0 No Dibromomethane 11 11 0 No Dimethylbenzene, Total 11 11 0 No Dissolved Oxygen 11 0 11 Yes Dissolved Solids 11 0 11 Yes Ethylbenzene 11 11 0 No					
Copper 11 1 10 Yes Cyanide 11 11 0 No Dibromochloromethane 11 11 0 No Dibromomethane 11 11 0 No Dimethylbenzene, Total 11 11 0 No Dissolved Oxygen 11 0 11 Yes Dissolved Solids 11 0 11 Yes Ethylbenzene 11 11 0 No					
Cyanide 11 11 0 No Dibromochloromethane 11 11 0 No Dibromomethane 11 11 0 No Dimethylbenzene, Total 11 11 0 No Dissolved Oxygen 11 0 11 Yes Dissolved Solids 11 0 11 Yes Ethylbenzene 11 11 0 No					
Dibromochloromethane 11 11 0 No Dibromomethane 11 11 0 No Dimethylbenzene, Total 11 11 0 No Dissolved Oxygen 11 0 11 Yes Dissolved Solids 11 0 11 Yes Ethylbenzene 11 11 0 No					
Dibromomethane 11 11 0 No Dimethylbenzene, Total 11 11 0 No Dissolved Oxygen 11 0 11 Yes Dissolved Solids 11 0 11 Yes Ethylbenzene 11 11 0 No	•				
Dimethylbenzene, Total 11 11 0 No Dissolved Oxygen 11 0 11 Yes Dissolved Solids 11 0 11 Yes Ethylbenzene 11 11 0 No					
Dissolved Oxygen 11 0 11 Yes Dissolved Solids 11 0 11 Yes Ethylbenzene 11 11 0 No					
Dissolved Solids11011YesEthylbenzene11110No					
Ethylbenzene 11 11 0 No					
•					
Iodide 11 11 0 No	<u> </u>				

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	11	11	0	No
Iron	11	4	7	Yes
Magnesium	11	0	11	Yes
Manganese	11	2	9	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	5	6	Yes
Nickel	11	0	11	Yes
Oxidation-Reduction Potential	11	0	11	Yes
PCB, Total	11	11	0	No
PCB-1016	11	11	0	No
PCB-1221	11	11	0	No
PCB-1232	11	11	0	No
PCB-1242	11	11	0	No
PCB-1248	11	11	0	No
PCB-1254	11	11	0	No
PCB-1260	11	11	0	No
PCB-1268	11	11	0	No
pH	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	8	3	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	3	8	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	5	6	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	11	0	No
Vinyl Acetate	11	11	0	No
Zinc	11	11	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	6	1	Yes
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	5	2	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
	7	1		Yes
Chemical Oxygen Demand (COD) Chloride	7	0	7	Yes
Chlorobenzene	7	7		No
			0	
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	1	Yes
cis-1,3-Dichloropropene			0	No
Cobalt	7	6	1	Yes
Conductivity	7	0	7	Yes
Copper	7	2	5	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	5	2	Yes
Magnesium	7	0	7	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Manganese	7	2	5	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	6	1	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	7	0	No
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	7	0	No
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	3	4	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	6	1	Yes
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	3	4	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	6	1	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	7	0	No

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. For the UCRS, URGA, and LRGA, the test was applied to 26, 26, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which include those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background upper tolerance limit (UTL) for chemical oxygen demand (COD), oxidation-reduction potential, and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Chemical Oxygen Demand (COD), oxidation-reduction potential*	MW221: Oxidation-reduction potential*	MW370: Conductivity, oxidation-reduction potential,* sulfate
MW390: Oxidation-reduction potential,* technetium-99	MW222: Oxidation-reduction potential*	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential,* sulfate
MW393: Oxidation-reduction potential*	MW223: Oxidation-reduction potential*	MW385: Conductivity, oxidation-reduction potential,* sulfate, technetium-99
MW396: Oxidation-reduction potential*	MW369: Oxidation-reduction potential,* technetium-99	MW388: Sulfate, technetium-99
	MW372: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential,* sodium, sulfate, technetium-99	MW392: Oxidation-reduction potential*
	MW384: Sulfate, technetium-99	MW395: Oxidation-reduction potential*
	MW387: Calcium, magnesium, sulfate	MW397: Oxidation-reduction potential*

^{*}Oxidation-Reduction Potential calibrated as Eh.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	Current results exceed statistically derived historical background concentration in MW386.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential ¹	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Oxidation-Reduction Potential calibrated as Eh.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372 and MW387.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential ¹	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW221, MW222, MW223, MW369, and MW372.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW372.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, and MW384.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ²	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Oxidation-Reduction Potential calibrated as Eh.

Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW370, MW373 and MW385.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential ¹	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW392, MW395, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW385 and MW388.
Toluene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ²	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

¹ Oxidation-Reduction Potential calibrated as Eh.

² Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. For the UCRS, URGA, and LRGA, the test was applied to 3, 8, and 7 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: Technetium-99	MW370: Conductivity, sulfate
MW372: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Calcium, magnesium, sulfate	MW388: Sulfate, technetium-99

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the technetium-99 concentration in UCRS well MW390 exceeded the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Chemical Oxygen Demand (COD)	Tolerance Interval	0.41	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW386 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential ¹	Tolerance Interval	0.44	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	171.77	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

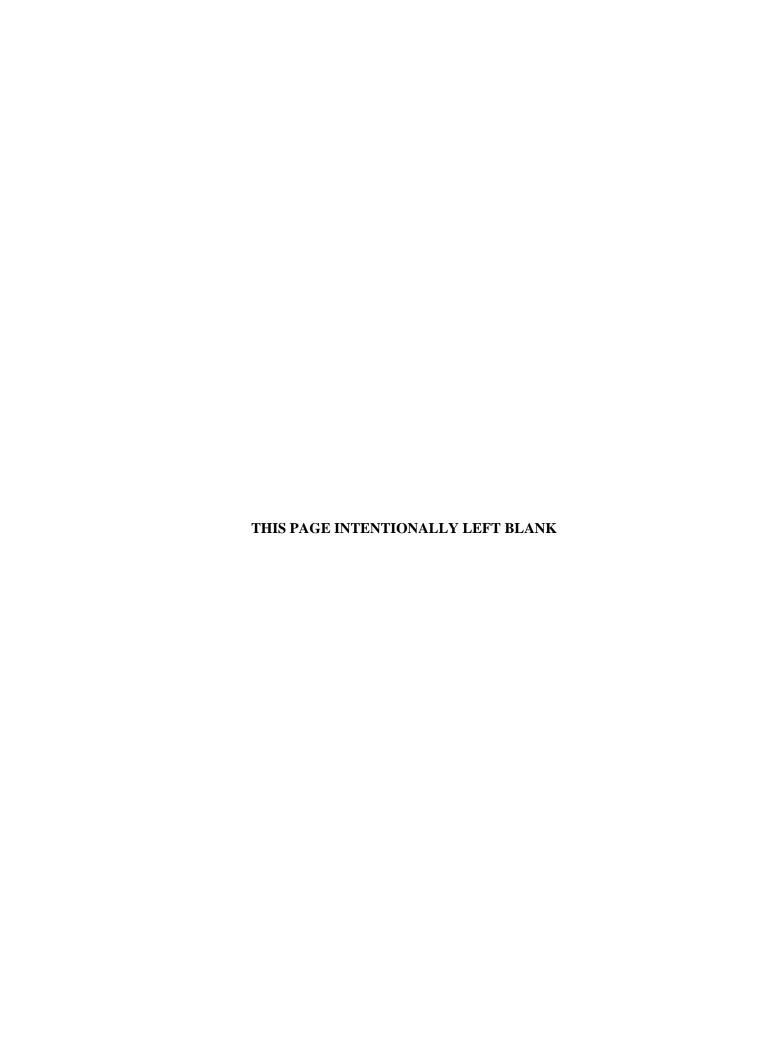
¹ Oxidation-Reduction Potential calibrated as Eh.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.12	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.08	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.18	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.13	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential ¹	Tolerance Interval	0.11	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.13	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.29	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.61	MW369, MW372, and MW384 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation *If CV > 1.0, used log-transformed data. 1 Oxidation-Reduction Potential calibrated as Eh.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA


Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.16	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.08	MW370, MW373, and MWW385 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.29	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.16	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential ¹	Tolerance Interval	0.17	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.03	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.48	MW385 and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

1 Oxidation-Reduction Potential calibrated as Eh.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

S = 0.182 CV(1) = 0.567

K factor=** 3.188

TL(1) = 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259 S = 0.503

CV(2) = -0.400

K factor**= 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW390	Downgradien	t Yes	0.025	NO	-3.689	N/A	
MW393	Downgradien	t Yes	0.0209	NO	-3.868	N/A	
MW396	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S= 0.833 **CV(1)**=1.282

K factor=** 3.188

TL(1) = 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = -1.034

S= 1.066

CV(2) = -1.031

K factor=** 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0141	N/A	-4.262	NO
MW390	Downgradien	t Yes	0.0103	N/A	-4.576	NO
MW393	Downgradien	t Yes	0.0164	N/A	-4.110	NO
MW396	Upgradient	Yes	0.00713	N/A	-4.943	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

CV(1)=0.236

K factor=** 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.301

S= 0.327 **S**= 0.252

CV(2) = 0.838

K factor**= 3.188

TL(2)=1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.2	N/A	-1.609	N/A	
MW390	Downgradien	t Yes	0.371	NO	-0.992	N/A	
MW393	Downgradien	t Yes	0.165	NO	-1.802	N/A	
MW396	Upgradient	Yes	0.896	NO	-0.110	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor=** 3.188

TL(1)= 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.711

S = 0.241

CV(2) = 0.065

K factor**= 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 38.4 3.648 9/16/2002 42.9 3.759 10/16/2002 40.2 3.694 1/13/2003 46.7 3.844 4/8/2003 49.8 3.908 7/16/2003 43.3 3.768 10/14/2003 49.7 3.906 1/14/2004 23.6 3.161

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	19.8	NO	2.986	N/A
MW390	Downgradien	t Yes	29	NO	3.367	N/A
MW393	Downgradien	t Yes	13.3	NO	2.588	N/A
MW396	Upgradient	Yes	33	NO	3.497	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744

CV(1)=0.021 K factor**= 3.188

TL(1) = 37.747

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.566

S = 0.021

CV(2) = 0.006

K factor=** 3.188

TL(2) = 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:		MW396			
	Date Collected	Result	LN(Result)		
	8/13/2002	36	3.584		
	9/16/2002	35	3.555		
	10/16/2002	37	3.611		
	1/13/2003	35	3.555		
	4/8/2003	35	3.555		
	7/16/2003	35	3.555		
	10/14/2003	35	3.555		
	1/14/2004	35	3.555		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	54.5	YES	3.998	N/A		
MW390	Downgradien	t Yes	30.8	NO	3.428	N/A		
MW393	Downgradien	t Yes	23.7	NO	3.165	N/A		
MW396	Upgradient	Yes	34.4	NO	3.538	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Chloride **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

CV(1)=0.052**K factor**=** 3.188 **TL(1)=** 118.447

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.621 S = 0.053

CV(2) = 0.011

K factor**= 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	9.67	NO	2.269	N/A		
MW390	Downgradien	t Yes	39.4	NO	3.674	N/A		
MW393	Downgradien	t Yes	11.2	NO	2.416	N/A		
MW396	Upgradient	Yes	55.9	NO	4.024	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-8

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

S= 0.011 **CV(1)**=1.340

K factor=** 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X= -5.645 **S**= 1.339

CV(2) = -0.237

K factor**= 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	0.025	-3.689		
9/16/2002	0.025	-3.689		
10/16/2002	0.001	-6.908		
1/13/2003	0.00324	-5.732		
4/8/2003	0.00436	-5.435		
7/16/2003	0.00276	-5.893		
10/14/2003	0.001	-6.908		
1/14/2004	0.001	-6.908		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.00585	N/A	-5.141	NO		
MW390	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW396	Upgradient	Yes	0.0031	N/A	-5.776	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor**= 3.188

TL(1)= 1265.579 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.822

 $S= 0.111 \quad CV(2)=0.016$

K factor**= 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	596	NO	6.390	N/A		
MW390	Downgradien	t Yes	640	NO	6.461	N/A		
MW393	Downgradien	t Yes	390	NO	5.966	N/A		
MW396	Upgradient	Yes	712	NO	6.568	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **UCRS** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1) = 0.481S = 0.014

K factor=** 3.188

TL(1) = 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414

CV(2) = -0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	0.00145	NO	-6.536	N/A			
MW390	Downgradien	t Yes	0.00116	NO	-6.759	N/A			
MW393	Downgradien	t Yes	0.00033	2 NO	-8.010	N/A			
MW396	Upgradient	Yes	0.00054	1 NO	-7.522	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-11

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

S= 1.677 **CV(1)**=1.202

K factor=** 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043

S= 0.814

CV(2) = -18.867

K factor=** 3.188

TL(2)= 2.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	2.03	N/A	0.708	NO		
MW390	Downgradien	t Yes	3.64	N/A	1.292	NO		
MW393	Downgradien	t Yes	1.39	N/A	0.329	NO		
MW396	Upgradient	Yes	1.07	N/A	0.068	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor**= 3.188

TL(1)= 882.980

LL(1)=N/A

Statistics-Transformed Background

X = 6.298

S = 0.162 CV(2) = 0.026

K factor**= 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	356	NO	5.875	N/A
MW390	Downgradien	t Yes	355	NO	5.872	N/A
MW393	Downgradien	t Yes	243	NO	5.493	N/A
MW396	Upgradient	Yes	405	NO	6.004	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-13

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

CV(1)=0.132

K factor=** 3.188

TL(1) = 3.052

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.759

S= 0.123

S = 0.283

CV(2) = 0.162

K factor**= 3.188

TL(2)= 1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.673	NO	-0.396	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

 $S= 3.723 \quad CV(1)=0.478$

K factor=** 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880

S= 0.723

CV(2) = 0.384

K factor**= 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.464	NO	-0.768	N/A
MW390	Downgradien	t No	0.1	N/A	-2.303	N/A
MW393	Downgradien	t Yes	0.667	NO	-0.405	N/A
MW396	Upgradient	Yes	1.87	NO	0.626	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 16.876 S = 3.313

K factor**= 3.188

TL(1) = 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.804 **S**= 0.240

CV(2)=0.086

CV(1)=0.196

K factor**= 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 15.5 2.741 9/16/2002 17.3 2.851 10/16/2002 17.8 2.879 1/13/2003 19.2 2.955 4/8/2003 17.8 2.879 7/16/2003 17.8 2.879 10/14/2003 20.2 3.006 1/14/2004 9.41 2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	8.68	NO	2.161	N/A
MW390	Downgradien	t Yes	12.2	NO	2.501	N/A
MW393	Downgradien	t Yes	3.6	NO	1.281	N/A
MW396	Upgradient	Yes	14.4	NO	2.667	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

CV(1)=0.456

K factor=** 3.188

TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

S = 0.353

X = -0.566 S = 1.192 CV(2) = -2.105

K factor=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.23	NO	0.207	N/A
MW390	Downgradien	t No	0.005	N/A	-5.298	N/A
MW393	Downgradien	t Yes	0.0316	NO	-3.455	N/A
MW396	Upgradient	Yes	0.514	NO	-0.666	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-17

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

CV(1)=1.507

K factor=** 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.928 S

S= 1.420

S = 0.011

CV(2) = -0.240

K factor**= 3.188

TL(2) = -1.400

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

L	Current Quarter Data						
W	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
N	MW386	Sidegradient	Yes	0.00088	9 N/A	-7.025	NO
N	MW390	Downgradien	t Yes	0.00022	5 N/A	-8.399	NO
N	MW393	Downgradien	t No	0.00024	4 N/A	-8.318	N/A
N	MW396	Upgradient	No	0.00062	5 N/A	-7.378	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Nickel

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

CV(1)=1.272

K factor=** 3.188

TL(1) = 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

S = 0.021

CV(2) = -0.225

K factor**= 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00519	N/A	-5.261	NO
MW390	Downgradien	t Yes	0.00193	N/A	-6.250	NO
MW393	Downgradien	t Yes	0.00115	N/A	-6.768	NO
MW396	Upgradient	Yes	0.00157	N/A	-6.457	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-19

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 13.000 **S**= 61.952 **CV(1)**=4.766

K factor=** 3.188

TL(1) = 210.502

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.364

S = 0.333

CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	322	N/A	5.775	YES
MW390	Downgradien	t Yes	174	N/A	5.159	YES
MW393	Downgradien	t Yes	226	N/A	5.421	YES
MW396	Upgradient	Yes	217	N/A	5.380	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

CV(1)=0.054

K factor**= 3.736

TL(1) = 7.77

LL(1)=5.15

Statistics-Transformed Background Data

X = 1.864

S= 0.350 **S**= 0.054

CV(2) = 0.029

K factor**= 3.736

TL(2)=2.067

LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well N	o. Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW38	86 Sidegradient	Yes	6.58	NO	1.884	N/A
MW39	90 Downgradier	nt Yes	6.23	NO	1.829	N/A
MW39	93 Downgradier	nt Yes	6.07	NO	1.803	N/A
MW39	96 Upgradient	Yes	6.28	NO	1.837	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

S = 0.399 CV(1) = 0.282

K factor=** 3.188

TL(1)=2.682

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311

S= 0.271

CV(2) = 0.870

K factor**= 3.188

TL(2)=1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.266	NO	-1.324	N/A
MW390	Downgradien	t Yes	0.354	NO	-1.038	N/A
MW393	Downgradien	t Yes	0.392	NO	-0.936	N/A
MW396	Upgradient	Yes	0.784	NO	-0.243	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor=** 3.188

TL(1)= 208.973

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.595 S = 0.492

CV(2) = 0.107

K factor**= 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	104	NO	4.644	N/A
MW390	Downgradien	t Yes	88	NO	4.477	N/A
MW393	Downgradien	t Yes	70.6	NO	4.257	N/A
MW396	Upgradient	Yes	94.8	NO	4.552	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.463 S = 8.876

CV(1)=0.395 K factor**= 3.188

TL(1)= 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054 S = 0.351

CV(2) = 0.115

K factor=** 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	40.8	NO	3.709	N/A
MW390	Downgradien	t Yes	35.6	NO	3.572	N/A
MW393	Downgradien	t Yes	16.4	NO	2.797	N/A
MW396	Upgradient	Yes	27.1	NO	3.300	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1)=0.860

K factor=** 3.188

TL(1)= 28.531

LL(1)=N/A

Statistics-Transformed Background

X = 1.498

S= 1.321

S = 6.558

CV(2) = 0.882

K factor=** 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter	Data
-			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	-3.59	N/A	#Error	N/A
MW390	Downgradien	t Yes	49.5	YES	3.902	N/A
MW393	Downgradien	t No	4.3	N/A	1.459	N/A
MW396	Upgradient	No	7.04	N/A	1.952	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

S= 4.696 **CV(1)**=0.470

K factor=** 3.188

TL(1)= 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 0.454

CV(2) = 0.205

K factor**= 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	5.28	NO	1.664	N/A			
MW390	Downgradien	t Yes	1.15	NO	0.140	N/A			
MW393	Downgradien	t Yes	1.3	NO	0.262	N/A			
MW396	Upgradient	Yes	2.92	NO	1.072	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

K factor**= 3.188

TL(1)= 313.314 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.896

 $S= 0.390 \quad CV(2)=0.080$

K factor**= 3.188

TL(2) = 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	144	NO	4.970	N/A			
MW390	Downgradien	t Yes	15.8	NO	2.760	N/A			
MW393	Downgradien	t Yes	13	NO	2.565	N/A			
MW396	Upgradient	Yes	20.7	NO	3.030	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Vanadium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.021

CV(1)=0.109

K factor=** 3.188

TL(1) = 0.029

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.856 S = 0.103

S = 0.002

CV(2) = -0.027

K factor**= 3.188

TL(2) = -3.527

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.00357	NO	-5.635	N/A		
MW390	Downgradien	t No	0.02	N/A	-3.912	N/A		
MW393	Downgradien	t No	0.02	N/A	-3.912	N/A		
MW396	Upgradient	No	0.02	N/A	-3.912	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **URGA** Acetone

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.250 S = 1.000

CV(1)=0.098

K factor**= 2.523

TL(1)=12.773

LL(1)=N/A

Statistics-Transformed Background

X = 2.324

S = 0.084

CV(2) = 0.036

K factor=** 2.523

TL(2) = 2.536

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 10 2.303 1/15/2003 10 2.303 4/10/2003 10 2.303 7/14/2003 10 2.303 10/13/2003 10 2.303 4/13/2004 10 2.303 7/21/2004 10 2.303 10/11/2004 10 2.303 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 10 2.303 9/30/2002 10 2.303 10/16/2002 10 2.303 1/13/2003 10 2.303 4/10/2003 10 2.303 7/16/2003 10 2.303 10/14/2003 14 2.639 10

4/12/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	No	5	N/A	1.609	N/A	
MW221	Sidegradient	No	5	N/A	1.609	N/A	
MW222	Sidegradient	No	5	N/A	1.609	N/A	
MW223	Sidegradient	No	5	N/A	1.609	N/A	
MW224	Sidegradient	No	5	N/A	1.609	N/A	
MW369	Downgradien	t Yes	2.4	NO	0.875	N/A	
MW372	Downgradien	t No	5	N/A	1.609	N/A	
MW384	Sidegradient	No	5	N/A	1.609	N/A	
MW387	Downgradien	t No	5	N/A	1.609	N/A	
MW391	Downgradien	t No	5	N/A	1.609	N/A	
MW394	Upgradient	No	5	N/A	1.609	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-29

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.221

S = 0.061

CV(1)=0.277

K factor**= 2.523

TL(1) = 0.376

LL(1)=N/A

Statistics-Transformed Background

X = -1.534 S = 0.212 CV(2) = -0.138

K factor=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6090.2 4/10/2003 -1.6097/14/2003 0.2 -1.609 10/13/2003 0.427 -0.8511/13/2004 0.309 -1.1744/13/2004 0.2 -1.609 7/21/2004 0.202 -1.599Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.2 -1.609 9/16/2002 0.2 -1.60910/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Upgradient	No	0.05	N/A	-2.996	N/A		
Sidegradient	No	0.05	N/A	-2.996	N/A		
Sidegradient	Yes	0.0292	NO	-3.534	N/A		
Sidegradient	No	0.05	N/A	-2.996	N/A		
Sidegradient	No	0.05	N/A	-2.996	N/A		
Downgradien	t Yes	0.0869	NO	-2.443	N/A		
Downgradien	t No	0.05	N/A	-2.996	N/A		
Sidegradient	No	0.05	N/A	-2.996	N/A		
Downgradien	t No	0.05	N/A	-2.996	N/A		
Downgradien	t No	0.05	N/A	-2.996	N/A		
Upgradient	No	0.05	N/A	-2.996	N/A		
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Sidegradient Downgradien Downgradien Downgradient Downgradient Upgradient Upgradient	Gradient Detected? Upgradient No Sidegradient Yes Sidegradient No Sidegradient No Sidegradient No Downgradient Yes Downgradient No Sidegradient No Downgradient No Downgradient No Downgradient No Upgradient No	Gradient Detected? Result Upgradient No 0.05 Sidegradient Yes 0.0292 Sidegradient No 0.05 Sidegradient No 0.05 Sidegradient No 0.05 Downgradient Yes 0.0869 Downgradient No 0.05 Sidegradient No 0.05 Sidegradient No 0.05 Downgradient No 0.05 Downgradient No 0.05 Downgradient No 0.05 Upgradient No 0.05	Gradient Detected? Result Result >TL(1)? Upgradient No 0.05 N/A Sidegradient No 0.05 N/A Sidegradient Yes 0.0292 NO Sidegradient No 0.05 N/A Downgradient Yes 0.0869 NO Downgradient No 0.05 N/A Sidegradient No 0.05 N/A Downgradient No 0.05 N/A Downgradient No 0.05 N/A Upgradient No 0.05 N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient No 0.05 N/A -2.996 Sidegradient Yes 0.0292 NO -3.534 Sidegradient No 0.05 N/A -2.996 Sidegradient No 0.05 N/A -2.996 Downgradient Yes 0.0869 NO -2.443 Downgradient No 0.05 N/A -2.996 Sidegradient No 0.05 N/A -2.996 Downgradient No 0.05 N/A -2.996 Downgradient No 0.05 N/A -2.996 Downgradient No 0.05 N/A -2.996 Upgradient No 0.05 N/A -2.996		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.425

CV(1) = 1.447S = 0.615

K factor**= 2.523

TL(1)= 1.976

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.322 S = 0.786 CV(2) = -0.595

K factor=** 2.523

TL(2) = 0.663

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2 0.2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00884	N/A	-4.728	NO
MW221	Sidegradient	Yes	0.0168	N/A	-4.086	NO
MW222	Sidegradient	Yes	0.00695	N/A	-4.969	NO
MW223	Sidegradient	No	0.015	N/A	-4.200	N/A
MW224	Sidegradient	Yes	0.0129	N/A	-4.351	NO
MW369	Downgradien	t Yes	0.0235	N/A	-3.751	NO
MW372	Downgradien	t Yes	1.4	N/A	0.336	NO
MW384	Sidegradient	Yes	0.051	N/A	-2.976	NO
MW387	Downgradien	t Yes	0.0307	N/A	-3.483	NO
MW391	Downgradien	t Yes	0.0263	N/A	-3.638	NO
MW394	Upgradient	Yes	0.0211	N/A	-3.858	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-31

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Bromide URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.000**K factor**=** 2.523 Statistics-Background Data X = 1.000S = 0.000TL(1)=1.000LL(1)=N/A **Statistics-Transformed Background** X = 0.000**CV(2)=**#Num! S = 0.000**K factor**=** 2.523 TL(2) = 0.000LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1 0.000 4/10/2003 0.0007/14/2003 1 0.00010/13/2003 1 0.000 1/13/2004 1 0.000 4/13/2004 1 0.0007/21/2004 1 0.000Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1 0.0009/16/2002 1 0.000 10/16/2002 0.000 1/13/2003 0.000 4/10/2003 0.0007/16/2003 1 0.000 10/14/2003 1 0.000 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	0.202	NO	-1.599	N/A			
MW221	Sidegradient	Yes	0.445	NO	-0.810	N/A			
MW222	Sidegradient	Yes	0.345	NO	-1.064	N/A			
MW223	Sidegradient	Yes	0.385	NO	-0.955	N/A			
MW224	Sidegradient	Yes	0.274	NO	-1.295	N/A			
MW369	Downgradien	t Yes	0.344	NO	-1.067	N/A			
MW372	Downgradien	t Yes	0.499	NO	-0.695	N/A			
MW384	Sidegradient	Yes	0.295	NO	-1.221	N/A			
MW387	Downgradien	t Yes	0.514	NO	-0.666	N/A			
MW391	Downgradien	t Yes	0.559	NO	-0.582	N/A			
MW394	Upgradient	Yes	0.545	NO	-0.607	N/A			
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not			

 Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-32

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Calcium **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 27.638 S = 4.743

CV(1)=0.172

K factor=** 2.523

TL(1) = 39.604

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.304

S = 0.183 CV(2) = 0.055

K factor=** 2.523

TL(2) = 3.765

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 23.6 3.161 1/15/2003 25.9 3.254 4/10/2003 30.4 3.414 7/14/2003 33.9 3.523 10/13/2003 21.3 3.059 1/13/2004 20.3 3.011 4/13/2004 23.8 3.170 19 7/21/2004 2.944 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 29.5 3.384 9/16/2002 29.9 3.398 10/16/2002 31.2 3.440 1/13/2003 30.7 3.424 4/10/2003 34.4 3.538 7/16/2003 29.6 3.388 3.411 10/14/2003 30.3 1/13/2004 28.4 3.346

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	20.5	NO	3.020	N/A			
MW221	Sidegradient	Yes	21	NO	3.045	N/A			
MW222	Sidegradient	Yes	14.4	NO	2.667	N/A			
MW223	Sidegradient	Yes	20.5	NO	3.020	N/A			
MW224	Sidegradient	Yes	20.6	NO	3.025	N/A			
MW369	Downgradien	t Yes	16	NO	2.773	N/A			
MW372	Downgradien	t Yes	62.2	YES	4.130	N/A			
MW384	Sidegradient	Yes	24.3	NO	3.190	N/A			
MW387	Downgradien	t Yes	42.4	YES	3.747	N/A			
MW391	Downgradien	t Yes	25.6	NO	3.243	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

26.6

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

MW372 MW387

3.281

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

Yes

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-33

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.000**K** factor**= 2.523 Statistics-Background Data X = 35.000 S = 0.000TL(1)=35.000LL(1)=N/A **Statistics-Transformed Background** CV(2) = 0.000X = 3.555S = 0.000**K factor**=** 2.523 TL(2) = 3.555LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	13	NO	2.565	N/A			
MW221	Sidegradient	No	20	N/A	2.996	N/A			
MW222	Sidegradient	No	20	N/A	2.996	N/A			
MW223	Sidegradient	Yes	13	NO	2.565	N/A			
MW224	Sidegradient	Yes	16.5	NO	2.803	N/A			
MW369	Downgradien	t No	20	N/A	2.996	N/A			
MW372	Downgradien	t No	20	N/A	2.996	N/A			
MW384	Sidegradient	Yes	20.1	NO	3.001	N/A			
MW387	Downgradien	t Yes	13	NO	2.565	N/A			
MW391	Downgradien	t Yes	16.5	NO	2.803	N/A			
MW394	Upgradient	Yes	23.7	NO	3.165	N/A			
N/A Pagu	Its identified as N	Jon Detects	during lak	orotory analysis or	data validatio	n and ware not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-34

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison Chloride** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor**= 2.523

TL(1) = 77.499

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.866 S = 0.244 CV(2) = 0.063

K factor=** 2.523

TL(2) = 4.482

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.101
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	Yes	17.8	NO	2.879	N/A		
MW221	Sidegradient	Yes	34.3	NO	3.535	N/A		
MW222	Sidegradient	Yes	24.5	NO	3.199	N/A		
MW223	Sidegradient	Yes	28.3	NO	3.343	N/A		
MW224	Sidegradient	Yes	17.7	NO	2.874	N/A		
MW369	Downgradien	t Yes	28.2	NO	3.339	N/A		
MW372	Downgradien	t Yes	39.6	NO	3.679	N/A		
MW384	Sidegradient	Yes	25	NO	3.219	N/A		
MW387	Downgradien	t Yes	38.3	NO	3.645	N/A		
MW391	Downgradien	t Yes	42	NO	3.738	N/A		
MW394	Upgradient	Yes	43.6	NO	3.775	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-35

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Cobalt **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=2.440**K factor**=** 2.523 Statistics-Background Data X = 0.016S = 0.040TL(1) = 0.116LL(1)=N/A **Statistics-Transformed Background** X = -5.582 S = 1.573 CV(2) = -0.282**K factor**=** 2.523 TL(2) = -1.613LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.497 1/15/2003 0.00496 -5.3060.00289 4/10/2003 -5.8467/14/2003 0.161 -1.82610/13/2003 0.0226 -3.7901/13/2004 0.00464 -5.3734/13/2004 0.001 -6.908 7/21/2004 0.00264 -5.937Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	0.001	N/A	-6.908	N/A		
MW221	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW222	Sidegradient	Yes	0.00045	N/A	-7.706	NO		
MW223	Sidegradient	Yes	0.00042	1 N/A	-7.773	NO		
MW224	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW369	Downgradien	t Yes	0.0043	N/A	-5.449	NO		
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW394	Upgradient	No	0.001	N/A	-6.908	N/A		
N/A - Resu	lts identified as N	Non-Detects	during labo	oratory analysis or	data validatio	n and were not		

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-36

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor=** 2.523

TL(1)= 652.432 LL(1

LL(1)=N/A

Statistics-Transformed Background

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2)= 8.652

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	368	5.908
1/15/2003	433.2	6.071
4/10/2003	489	6.192
7/14/2003	430	6.064
10/13/2003	346	5.846
1/13/2004	365	5.900
4/13/2004	416	6.031
7/21/2004	353	5.866
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 6.006
Date Collected	Result	
Date Collected 8/13/2002	Result 406	6.006
Date Collected 8/13/2002 9/16/2002	Result 406 418	6.006 6.035
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 406 418 411	6.006 6.035 6.019
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 406 418 411 422	6.006 6.035 6.019 6.045
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 406 418 411 422 420	6.006 6.035 6.019 6.045 6.040

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	332	NO	5.805	N/A			
MW221	Sidegradient	Yes	399	NO	5.989	N/A			
MW222	Sidegradient	Yes	327	NO	5.790	N/A			
MW223	Sidegradient	Yes	376	NO	5.930	N/A			
MW224	Sidegradient	Yes	402	NO	5.996	N/A			
MW369	Downgradien	t Yes	485	NO	6.184	N/A			
MW372	Downgradien	t Yes	914	YES	6.818	N/A			
MW384	Sidegradient	Yes	433	NO	6.071	N/A			
MW387	Downgradien	t Yes	586	NO	6.373	N/A			
MW391	Downgradien	t Yes	398	NO	5.986	N/A			
MW394	Upgradient	Yes	417	NO	6.033	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.429**K factor**=** 2.523 Statistics-Background Data X = 0.024S = 0.010TL(1) = 0.050LL(1)=N/A **Statistics-Transformed Background** X = -3.794 S = 0.312 CV(2) = -0.082LL(2)=N/A

K factor=** 2.523

TL(2) = -3.007

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.8581/15/2003 0.02 -3.9120.02 -3.9124/10/2003 7/14/2003 0.02 -3.91210/13/2003 0.02 -3.9121/13/2004 0.02 -3.9124/13/2004 0.02 -3.9127/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996-3.91210/16/2002 0.02 1/13/2003 0.02 -3.9124/10/2003 0.02 -3.912-3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW220	Upgradient	Yes	0.00052	7 NO	-7.548	N/A			
MW221	Sidegradient	Yes	0.00098	7 NO	-6.921	N/A			
MW222	Sidegradient	Yes	0.00036	7 NO	-7.910	N/A			
MW223	Sidegradient	Yes	0.00055	3 NO	-7.500	N/A			
MW224	Sidegradient	Yes	0.00073	2 NO	-7.220	N/A			
MW369	Downgradien	t Yes	0.0011	NO	-6.812	N/A			
MW372	Downgradien	t No	0.002	N/A	-6.215	N/A			
MW384	Sidegradient	Yes	0.00034	7 NO	-7.966	N/A			
MW387	Downgradien	t Yes	0.000389	9 NO	-7.852	N/A			
MW391	Downgradien	t Yes	0.00037	1 NO	-7.899	N/A			
MW394	Upgradient	Yes	0.00142	NO	-6.557	N/A			
37/4 75	1. 11 1 3	T			4 . 4 . 4	•			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.784

S= 1.887 **CV(1)**=0.499

K factor=** 2.523

TL(1)= 8.545

LL(1)=N/A

Statistics-Transformed Background

X= 1.182

S = 0.612

CV(2) = 0.518

K factor=** 2.523

TL(2) = 2.727

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 4/10/2003 3.6 1.281 7/14/2003 0.94 -0.06210/13/2003 0.501 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 3.83 1.343 4/10/2003 4.15 1.423 7/16/2003 1.83 0.604 10/14/2003 3.33 1.203 1/13/2004 3.14 1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW220	Upgradient	Yes	6.27	NO	1.836	N/A			
MW221	Sidegradient	Yes	5.95	NO	1.783	N/A			
MW222	Sidegradient	Yes	2.67	NO	0.982	N/A			
MW223	Sidegradient	Yes	4.43	NO	1.488	N/A			
MW224	Sidegradient	Yes	2.67	NO	0.982	N/A			
MW369	Downgradien	t Yes	3.44	NO	1.235	N/A			
MW372	Downgradien	t Yes	2.55	NO	0.936	N/A			
MW384	Sidegradient	Yes	5.01	NO	1.611	N/A			
MW387	Downgradien	t Yes	5.03	NO	1.615	N/A			
MW391	Downgradien	t Yes	4.7	NO	1.548	N/A			
MW394	Upgradient	Yes	5.4	NO	1.686	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Dissolved Solids URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor**= 2.523

TL(1) = 302

LL(1)=N/A

Statistics-Transformed Background

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	,
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	179	NO	5.187	N/A			
MW221	Sidegradient	Yes	206	NO	5.328	N/A			
MW222	Sidegradient	Yes	171	NO	5.142	N/A			
MW223	Sidegradient	Yes	199	NO	5.293	N/A			
MW224	Sidegradient	Yes	231	NO	5.442	N/A			
MW369	Downgradien	t Yes	212	NO	5.357	N/A			
MW372	Downgradien	t Yes	455	YES	6.120	N/A			
MW384	Sidegradient	Yes	212	NO	5.357	N/A			
MW387	Downgradien	t Yes	302	NO	5.710	N/A			
MW391	Downgradien	t Yes	194	NO	5.268	N/A			
MW394	Upgradient	Yes	198	NO	5.288	N/A			
NI/A D	1, 11, 200 1 3	T D ()	1 . 11		1 / 1:1 /:	1 .			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-40

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.170**K** factor**= 2.523 Statistics-Background Data X = 0.897S = 1.050TL(1) = 3.545LL(1)=N/A **Statistics-Transformed Background** X = -0.565 S = 0.951

CV(2) = -1.683

K factor=** 2.523

TL(2) = 1.834

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6094/10/2003 0.429 -0.8467/14/2003 4.33 1.466 10/13/2003 0.593 1.81 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.0407/21/2004 0.382 -0.962Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38 1/13/2003 1.3 0.2624/10/2003 0.494 -0.705-0.4787/16/2003 0.62 10/14/2003 0.37 -0.9941/13/2004 0.251 -1.382

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW220	Upgradient	Yes	0.0336	N/A	-3.393	NO				
MW221	Sidegradient	No	0.1	N/A	-2.303	N/A				
MW222	Sidegradient	Yes	0.0409	N/A	-3.197	NO				
MW223	Sidegradient	Yes	0.0556	N/A	-2.890	NO				
MW224	Sidegradient	No	0.1	N/A	-2.303	N/A				
MW369	Downgradien	t Yes	0.129	N/A	-2.048	NO				
MW372	Downgradien	t No	0.1	N/A	-2.303	N/A				
MW384	Sidegradient	Yes	0.156	N/A	-1.858	NO				
MW387	Downgradien	t No	0.1	N/A	-2.303	N/A				
MW391	Downgradien	t Yes	0.055	N/A	-2.900	NO				
MW394	Upgradient	Yes	0.0369	N/A	-3.300	NO				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 10.796 S= 1.703 CV(1)=0.158 K factor**= 2.523 TL(1)=15.092 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.368 S= 0.158 CV(2)=0.067 K factor**= 2.523 TL(2)=2.766 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 9.16 2.215 1/15/2003 10 2.303 4/10/2003 2.380 10.8 7/14/2003 14.7 2.688 10/13/2003 9.03 2.201 1/13/2004 8.49 2.139 4/13/2004 9.7 2.272 7/21/2004 8.06 2.087 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 11.8 2.468 9/16/2002 12.1 2.493 10/16/2002 11.3 2.425 1/13/2003 10.3 2.332 4/10/2003 11.7 2.460 7/16/2003 12 2.485 10/14/2003 12.2 2.501 1/13/2004 11.4 2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	8.36	NO	2.123	N/A			
MW221	Sidegradient	Yes	9.3	NO	2.230	N/A			
MW222	Sidegradient	Yes	6.56	NO	1.881	N/A			
MW223	Sidegradient	Yes	8.26	NO	2.111	N/A			
MW224	Sidegradient	Yes	8.84	NO	2.179	N/A			
MW369	Downgradien	t Yes	6.84	NO	1.923	N/A			
MW372	Downgradien	t Yes	21.7	YES	3.077	N/A			
MW384	Sidegradient	Yes	10.1	NO	2.313	N/A			
MW387	Downgradien	t Yes	18.6	YES	2.923	N/A			
MW391	Downgradien	t Yes	10.5	NO	2.351	N/A			
MW394	Upgradient	Yes	11.2	NO	2.416	N/A			
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=2.156**K factor**=** 2.523 Statistics-Background Data X = 0.287S = 0.619TL(1)= 1.848 LL(1)=N/A **Statistics-Transformed Background** X = -2.455 S = 1.619 CV(2) = -0.659**K factor**=** 2.523 TL(2) = 1.630LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.5370.0137 -4.2904/10/2003 7/14/2003 2.54 0.932 10/13/2003 -0.9730.378 1/13/2004 0.159 -1.8394/13/2004 0.00707 -4.9527/21/2004 0.0841 -2.476Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.864-2.27310/16/2002 0.103 1/13/2003 0.128 -2.0564/10/2003 0.005-5.2987/16/2003 0.272 -1.30210/14/2003 0.0795 -2.5320.0658 1/13/2004 -2.721

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.005	N/A	-5.298	N/A	
MW221	Sidegradient	Yes	0.00111	N/A	-6.803	NO	
MW222	Sidegradient	Yes	0.00143	N/A	-6.550	NO	
MW223	Sidegradient	Yes	0.00583	N/A	-5.145	NO	
MW224	Sidegradient	Yes	0.00108	N/A	-6.831	NO	
MW369	Downgradien	t Yes	0.00362	N/A	-5.621	NO	
MW372	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW384	Sidegradient	Yes	0.0082	N/A	-4.804	NO	
MW387	Downgradien	t Yes	0.00207	N/A	-6.180	NO	
MW391	Downgradien	t Yes	0.00122	N/A	-6.709	NO	
MW394	Upgradient	Yes	0.0014	N/A	-6.571	NO	
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not	

 Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Molybdenum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.261**K factor**=** 2.523 Statistics-Background Data X = 0.006S = 0.008TL(1) = 0.026LL(1)=N/A **Statistics-Transformed Background** X = -5.747 S = 1.205 CV(2) = -0.210**K factor**=** 2.523 TL(2) = -2.708LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.00558 -5.1891/15/2003 0.00983 -4.6220.0109 -4.519 4/10/2003 7/14/2003 0.00245 -6.01210/13/2003 0.00566 -5.1741/13/2004 0.00572 -5.1644/13/2004 0.001 -6.908 7/21/2004 0.00392 -5.542Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001-6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00052	3 N/A	-7.556	NO	
MW221	Sidegradient	Yes	0.00173	N/A	-6.360	NO	
MW222	Sidegradient	Yes	0.00141	N/A	-6.564	NO	
MW223	Sidegradient	Yes	0.00551	N/A	-5.201	NO	
MW224	Sidegradient	Yes	0.00064	1 N/A	-7.352	NO	
MW369	Downgradien	t No	0.00033	9 N/A	-7.990	N/A	
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW384	Sidegradient	Yes	0.00020	3 N/A	-8.502	NO	
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW391	Downgradien	t No	0.00041	4 N/A	-7.790	N/A	
MW394	Upgradient	No	0.001	N/A	-6.908	N/A	
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not	

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Nickel URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.790**K factor**=** 2.523 Statistics-Background Data X = 0.127S = 0.228TL(1) = 0.701LL(1)=N/A **Statistics-Transformed Background** X = -3.617 S = 1.837 CV(2) = -0.508**K factor**=** 2.523 TL(2) = 1.019LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.304-0.609 4/10/2003 0.544 7/14/2003 0.106-2.24410/13/2003 -2.9390.0529 1/13/2004 0.0209 -3.8684/13/2004 0.005 -5.298 7/21/2004 0.0192 -3.953Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/16/2002 0.005 -5.2981/13/2003 0.005 -5.2984/10/2003 0.005-5.2987/16/2003 0.005 -5.29810/14/2003 0.005 -5.2980.005 1/13/2004 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.007	N/A	-4.962	NO	
MW221	Sidegradient	Yes	0.00678	N/A	-4.994	NO	
MW222	Sidegradient	Yes	0.0202	N/A	-3.902	NO	
MW223	Sidegradient	Yes	0.0412	N/A	-3.189	NO	
MW224	Sidegradient	Yes	0.00899	N/A	-4.712	NO	
MW369	Downgradien	t Yes	0.00326	N/A	-5.726	NO	
MW372	Downgradien	t Yes	0.00125	N/A	-6.685	NO	
MW384	Sidegradient	Yes	0.00108	N/A	-6.831	NO	
MW387	Downgradien	t Yes	0.00087	9 N/A	-7.037	NO	
MW391	Downgradien	t Yes	0.00079	6 N/A	-7.136	NO	
MW394	Upgradient	Yes	0.00367	N/A	-5.608	NO	
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not	

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-45

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor**= 2.523

TL(1) = 398

LL(1)=N/A

Statistics-Transformed Background

X = 4.861 S = 1.252 CV(2) = 0.258

K factor=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	,
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	398	NO	5.986	N/A	
MW221	Sidegradient	Yes	485	YES	6.184	N/A	
MW222	Sidegradient	Yes	442	YES	6.091	N/A	
MW223	Sidegradient	Yes	464	YES	6.140	N/A	
MW224	Sidegradient	Yes	303	NO	5.714	N/A	
MW369	Downgradien	t Yes	406	YES	6.006	N/A	
MW372	Downgradien	t Yes	416	YES	6.031	N/A	
MW384	Sidegradient	Yes	301	NO	5.707	N/A	
MW387	Downgradien	t Yes	282	NO	5.642	N/A	
MW391	Downgradien	t Yes	395	NO	5.979	N/A	
MW394	Upgradient	Yes	346	NO	5.846	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW221 MW222

MW223

MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-46

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 6.138 S= 0.282 CV(1)=0.046 K factor**= 2.904 TL(1)=6.96 LL(1)=5.32

 Statistics-Transformed Background Data
 X= 1.813 S= 0.047 CV(2)=0.026 K factor**= 2.904 TL(2)=1.950 LL(2)=1.6765

Historical Background Data from

Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.798 6.04 1/15/2003 6.31 1.842 4/10/2003 6.5 1.872 7/14/2003 6.3 1.841 10/13/2003 6.34 1.847 1/13/2004 6.33 1.845 4/13/2004 6.3 1.841 7/21/2004 5.9 1.775 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.8 1.758 9/30/2002 5.93 1.780 10/16/2002 5.42 1.690 1/13/2003 6 1.792 4/10/2003 6.04 1.798

6.2

6.4

6.39

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Z umi tei	Dutte

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	5.84	NO	1.765	N/A
MW221	Sidegradient	Yes	6.04	NO	1.798	N/A
MW222	Sidegradient	Yes	6.22	NO	1.828	N/A
MW223	Sidegradient	Yes	6.15	NO	1.816	N/A
MW224	Sidegradient	Yes	5.94	NO	1.782	N/A
MW369	Downgradien	t Yes	6.05	NO	1.800	N/A
MW372	Downgradien	t Yes	6.04	NO	1.798	N/A
MW384	Sidegradient	Yes	5.95	NO	1.783	N/A
MW387	Downgradien	t Yes	6.19	NO	1.823	N/A
MW391	Downgradien	t Yes	5.94	NO	1.782	N/A
MW394	Upgradient	Yes	5.92	NO	1.778	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.825

1.856

1.855

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 6.654
 S= 9.310
 CV(1)=1.399
 K factor**= 2.523
 TL(1)= 30.144
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.130
 S= 1.208
 CV(2)=1.069
 K factor**= 2.523
 TL(2)= 4.178
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.902 6.7 1/15/2003 29.7 3.391 4/10/2003 24.9 3.215 7/14/2003 1.13 0.122 10/13/2003 3.43 1.233 1/13/2004 6.71 1.904 4/13/2004 19.3 2.960 7/21/2004 3.97 1.379 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 1.03 0.030 1/13/2003 1.1 0.095 4/10/2003 1.24 0.215 7/16/2003 1.14 0.131 10/14/2003 1.05 0.049

1.07

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	2.26	N/A	0.815	NO
MW221	Sidegradient	Yes	1.1	N/A	0.095	NO
MW222	Sidegradient	Yes	0.607	N/A	-0.499	NO
MW223	Sidegradient	Yes	1.64	N/A	0.495	NO
MW224	Sidegradient	Yes	0.936	N/A	-0.066	NO
MW369	Downgradien	t Yes	0.588	N/A	-0.531	NO
MW372	Downgradien	t Yes	2.1	N/A	0.742	NO
MW384	Sidegradient	Yes	1.46	N/A	0.378	NO
MW387	Downgradien	t Yes	1.9	N/A	0.642	NO
MW391	Downgradien	t Yes	1.55	N/A	0.438	NO
MW394	Upgradient	Yes	1.25	N/A	0.223	NO
N/A - Resu	Its identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.068

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Sodium **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 36.363 S = 8.666

CV(1)=0.238

K factor=** 2.523

TL(1) = 58.227

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.570

 $S = 0.222 \quad CV(2) = 0.062$

K factor**= 2.523

TL(2) = 4.129

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	35.4	3.567
1/15/2003	40.6	3.704
4/10/2003	51	3.932
7/14/2003	58.2	4.064
10/13/2003	38.1	3.640
1/13/2004	37	3.611
4/13/2004	43.2	3.766
7/21/2004	33.8	3.520
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.493
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 32.9	3.493
Date Collected 8/13/2002 9/16/2002	Result 32.9 29.9	3.493 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 32.9 29.9 29	3.493 3.398 3.367
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 32.9 29.9 27.1	3.493 3.398 3.367 3.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 32.9 29.9 29 27.1 24.8	3.493 3.398 3.367 3.300 3.211

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	37.2	NO	3.616	N/A	
MW221	Sidegradient	Yes	47.2	NO	3.854	N/A	
MW222	Sidegradient	Yes	44.9	NO	3.804	N/A	
MW223	Sidegradient	Yes	44.6	NO	3.798	N/A	
MW224	Sidegradient	Yes	56.7	NO	4.038	N/A	
MW369	Downgradien	t Yes	50.1	NO	3.914	N/A	
MW372	Downgradien	t Yes	62.9	YES	4.142	N/A	
MW384	Sidegradient	Yes	45.4	NO	3.816	N/A	
MW387	Downgradien	t Yes	47.6	NO	3.863	N/A	
MW391	Downgradien	t Yes	34.3	NO	3.535	N/A	
MW394	Upgradient	Yes	33.7	NO	3.517	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.481 S = 2.648 CV(1) = 0.253

K factor**= 2.523

TL(1)= 17.161

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.322 S = 0.239

CV(2) = 0.103

K factor**= 2.523

TL(2) = 2.925

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.416
Date Collected	Result	
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	15.7	NO	2.754	N/A	
MW221	Sidegradient	Yes	13.7	NO	2.617	N/A	
MW222	Sidegradient	Yes	9.24	NO	2.224	N/A	
MW223	Sidegradient	Yes	11.4	NO	2.434	N/A	
MW224	Sidegradient	Yes	11.1	NO	2.407	N/A	
MW369	Downgradien	t Yes	8.07	NO	2.088	N/A	
MW372	Downgradien	t Yes	131	YES	4.875	N/A	
MW384	Sidegradient	Yes	19.2	YES	2.955	N/A	
MW387	Downgradien	t Yes	28.8	YES	3.360	N/A	
MW391	Downgradien	t Yes	12.7	NO	2.542	N/A	
MW394	Upgradient	Yes	12.1	NO	2.493	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.354

CV(1)=0.992

K factor=** 2.523

TL(1)= 32.768

LL(1)=N/A

Statistics-Transformed Background

X = 2.270

S= 0.849

S = 9.280

CV(2) = 0.374

K factor=** 2.523

TL(2) = 3.262

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 19.7 2.981 1/15/2003 26.1 3.262 4/10/2003 3.56 1.270 7/14/2003 0 #Func! 10/13/2003 21 3.045 1/13/2004 6.32 1.844 4/13/2004 3 1.099 7/21/2004 14.6 2.681 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 14 2.639 9/16/2002 5.45 1.696 0.912 10/16/2002 2.49 1/13/2003 18.3 2.907 4/10/2003 -1.45#Func! 7/16/2003 -1.71#Func! 10/14/2003 18.3 2.907 1/13/2004 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	21.3	N/A	3.059	N/A
MW221	Sidegradient	No	12.1	N/A	2.493	N/A
MW222	Sidegradient	No	10.8	N/A	2.380	N/A
MW223	Sidegradient	No	11.2	N/A	2.416	N/A
MW224	Sidegradient	No	0.623	N/A	-0.473	N/A
MW369	Downgradien	t Yes	56.4	YES	4.032	N/A
MW372	Downgradien	t Yes	69.7	YES	4.244	N/A
MW384	Sidegradient	Yes	49.9	YES	3.910	N/A
MW387	Downgradien	t No	14.5	N/A	2.674	N/A
MW391	Downgradien	t No	11.4	N/A	2.434	N/A
MW394	Upgradient	No	11.1	N/A	2.407	N/A
N/A - Recu	Its identified as N	Jon-Detects	during lak	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW372 MW384

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Total Organic Carbon (TOC) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.494CV(1)=0.493**K** factor**= 2.523 Statistics-Background Data S = 0.737TL(1) = 3.353LL(1)=N/A **Statistics-Transformed Background** X = 0.315S = 0.402TL(2) = 1.330LL(2)=N/A

CV(2) = 1.279

K factor=** 2.523

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1.1 0.095 4/10/2003 1 0.0007/14/2003 3.3 1.194 10/13/2003 1.8 0.588 1/13/2004 1 0.000 4/13/2004 2 0.693 7/21/2004 3.1 1.131 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.3 0.262 9/16/2002 1 0.000 0.000 10/16/2002 1 1/13/2003 1.6 0.470 4/10/2003 1 0.0007/16/2003 1.4 0.336 10/14/2003 1.3 0.262 0.000 1/13/2004 1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.429	NO	-0.846	N/A
MW221	Sidegradient	Yes	0.56	NO	-0.580	N/A
MW222	Sidegradient	Yes	0.479	NO	-0.736	N/A
MW223	Sidegradient	Yes	0.399	NO	-0.919	N/A
MW224	Sidegradient	Yes	0.518	NO	-0.658	N/A
MW369	Downgradien	t Yes	1.02	NO	0.020	N/A
MW372	Downgradien	t Yes	0.745	NO	-0.294	N/A
MW384	Sidegradient	Yes	0.618	NO	-0.481	N/A
MW387	Downgradien	t Yes	0.6	NO	-0.511	N/A
MW391	Downgradien	t Yes	0.405	NO	-0.904	N/A
MW394	Upgradient	Yes	0.444	NO	-0.812	N/A
37/4 B		· -			4 . 4	•

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor**= 2.523

TL(1) = 475.063LL(1)=N/A

Statistics-Transformed Background

X = 3.103 S = 1.145 CV(2) = 0.369

K factor=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.912 50 1/15/2003 10 2.303 4/10/2003 10 2.303 7/14/2003 10 2.303 10/13/2003 10 2.303 1/13/2004 10 2.303 4/13/2004 10 2.303 7/21/2004 10 2.303 Well Number: MW394 Date Collected Result LN(Result) 50 8/13/2002 3.912 9/16/2002 672 6.510 3.912 10/16/2002 50 1/13/2003 36.1 3.586 4/10/2003 10 2.303 7/16/2003 42.7 3.754 10/14/2003 22 3.091 1/13/2004 12.8 2.549

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	10	N/A	2.303	N/A
MW221	Sidegradient	No	10	N/A	2.303	N/A
MW222	Sidegradient	Yes	4.5	N/A	1.504	NO
MW223	Sidegradient	No	10	N/A	2.303	N/A
MW224	Sidegradient	Yes	5.54	N/A	1.712	NO
MW369	Downgradien	t Yes	6.78	N/A	1.914	NO
MW372	Downgradien	t Yes	8.74	N/A	2.168	NO
MW384	Sidegradient	Yes	11.4	N/A	2.434	NO
MW387	Downgradien	t Yes	7.32	N/A	1.991	NO
MW391	Downgradien	t Yes	8.28	N/A	2.114	NO
MW394	Upgradient	Yes	17.5	N/A	2.862	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-53

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 8.813
 S= 8.376
 CV(1)=0.951 K factor**= 2.523
 TL(1)=29.946 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.395
 S= 1.449
 CV(2)=1.039 K factor**= 2.523
 TL(2)=5.052 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1 0.000 0.0004/10/2003 7/14/2003 1 0.00010/13/2003 1 0.000 1/13/2004 1 0.000 4/13/2004 1 0.0007/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 19 7/16/2003 2.944 10/14/2003 20 2.996 1/13/2004 16 2.773

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t Yes	1.02	N/A	0.020	N/A
MW372	Downgradien	t Yes	2.78	N/A	1.022	N/A
MW384	Sidegradient	Yes	0.53	N/A	-0.635	N/A
MW387	Downgradien	t Yes	0.63	N/A	-0.462	N/A
MW391	Downgradien	t Yes	3.44	N/A	1.235	N/A
MW394	Upgradient	Yes	7	NO	1.946	N/A
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.063 **S**= 0.250

CV(1)=0.025

K factor=** 2.523

TL(1)= 10.693

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.309

S = 0.024

CV(2) = 0.010

K factor=** 2.523

TL(2) = 2.369

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	10	2.303
10/16/2002	10	2.303
1/13/2003	10	2.303
4/10/2003	10	2.303
7/16/2003	10	2.303
10/14/2003	10	2.303
4/12/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.303
Date Collected	Result	
Date Collected 8/13/2002	Result 10	2.303
Date Collected 8/13/2002 9/30/2002	Result 10 10	2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 10 10 10	2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 10 10 10 10	2.303 2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 10 10 10 10 10	2.303 2.303 2.303 2.303 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	5	N/A	1.609	N/A
MW373	Downgradient	Yes	1.81	NO	0.593	N/A
MW385	Sidegradient	No	5	N/A	1.609	N/A
MW388	Downgradient	No	5	N/A	1.609	N/A
MW392	Downgradient	No	2.59	N/A	0.952	N/A
MW395	Upgradient	No	5	N/A	1.609	N/A
MW397	Upgradient	No	5	N/A	1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

CV(1)=0.856S = 0.221

K factor**= 2.523

TL(1) = 0.815

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.266 S = 2.485 CV(2) = -1.097

K factor=** 2.523

TL(2) = 4.003

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 8/13/2002	Result 0.824	LN(Result) -0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	LN(Result) -0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	LN(Result) -0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	LN(Result) -0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	LN(Result) -0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.05	N/A	-2.996	N/A
MW373	Downgradient	No	0.05	N/A	-2.996	N/A
MW385	Sidegradient	No	0.05	N/A	-2.996	N/A
MW388	Downgradient	No	0.05	N/A	-2.996	N/A
MW392	Downgradient	Yes	0.0223	NO	-3.803	N/A
MW395	Upgradient	No	0.05	N/A	-2.996	N/A
MW397	Upgradient	Yes	0.0426	NO	-3.156	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-56

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

CV(1)=1.238S = 0.805

K factor**= 2.523

TL(1) = 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030 CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	` ,
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 2 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.311	N/A	-1.168	NO
MW373	Downgradient	Yes	2.93	N/A	1.075	NO
MW385	Sidegradient	Yes	0.0246	N/A	-3.705	NO
MW388	Downgradient	Yes	0.0307	N/A	-3.483	NO
MW392	Downgradient	Yes	0.0238	N/A	-3.738	NO
MW395	Upgradient	Yes	0.0207	N/A	-3.878	NO
MW397	Upgradient	Yes	0.00859	N/A	-4.757	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-57

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523 TL(1) = 1.000

Statistics-Transformed Background Data

X= 0.000 **S**= 0.000 **CV(2)**=#Num!

K factor**= 2.523

TL(2)= 0.000

LL(2)=N/A

LL(1)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.0009/16/2002 1 0.000 0.00010/16/2002 1/13/2003 1 0.0004/10/2003 1 0.000 7/16/2003 1 0.000 10/14/2003 1 0.0001/13/2004 1 0.000Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.0009/16/2002 1 0.000 10/17/2002 0.000 1/13/2003 0.0004/8/2003 0.0007/16/2003 1 0.000 10/14/2003 1 0.000 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	t Yes	0.538	NO	-0.620	N/A
MW373	Downgradient	Yes	0.494	NO	-0.705	N/A
MW385	Sidegradient	Yes	0.21	NO	-1.561	N/A
MW388	Downgradient	t Yes	0.452	NO	-0.794	N/A
MW392	Downgradient	t Yes	0.587	NO	-0.533	N/A
MW395	Upgradient	Yes	0.567	NO	-0.567	N/A
MW397	Upgradient	Yes	0.43	NO	-0.844	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.103 S = 11.538 CV(1) = 0.499

K factor**= 2.523

TL(1)=52.213

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.357 S = 2.411 CV(2) = 1.023

K factor=** 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	28.9	NO	3.364	N/A	
MW373	Downgradient	Yes	65.6	YES	4.184	N/A	
MW385	Sidegradient	Yes	39.5	NO	3.676	N/A	
MW388	Downgradient	Yes	24.2	NO	3.186	N/A	
MW392	Downgradient	Yes	25.4	NO	3.235	N/A	
MW395	Upgradient	Yes	26.9	NO	3.292	N/A	
MW397	Upgradient	Yes	18.7	NO	2.929	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-59

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.313 S = 1.250

CV(1)=0.035

K factor**= 2.523

TL(1) = 38.466

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.564

S = 0.033 CV(2) = 0.009

K factor**= 2.523

TL(2) = 3.648

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	No	20	N/A	2.996	N/A	
MW373	Downgradient	Yes	16.5	NO	2.803	N/A	
MW385	Sidegradient	Yes	16.5	NO	2.803	N/A	
MW388	Downgradient	Yes	23.7	NO	3.165	N/A	
MW392	Downgradient	Yes	23.7	NO	3.165	N/A	
MW395	Upgradient	Yes	27.3	NO	3.307	N/A	
MW397	Upgradient	Yes	16.5	NO	2.803	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor=** 2.523

TL(1)= 81.242

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.924

S = 0.229

CV(2) = 0.058

K factor=** 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.661
Date Collected	Result	,
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	38.5	NO	3.651	N/A	
MW373	Downgradient	Yes	37.8	NO	3.632	N/A	
MW385	Sidegradient	Yes	19.5	NO	2.970	N/A	
MW388	Downgradient	Yes	37.5	NO	3.624	N/A	
MW392	Downgradient	Yes	44.6	NO	3.798	N/A	
MW395	Upgradient	Yes	45.3	NO	3.813	N/A	
MW397	Upgradient	Yes	33.8	NO	3.520	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 5.000 S= 0.000 CV(1)=0.000 K factor**= 2.523 TL(1)=5.000 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.609 S= 0.000 CV(2)=0.000 K factor**= 2.523 TL(2)=1.609 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 5 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 4/10/2003 5 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 5 1.609 5 4/8/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	1	N/A	0.000	N/A
MW373	Downgradient	t No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	t No	1	N/A	0.000	N/A
MW392	Downgradient	t Yes	0.69	NO	-0.371	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.011

CV(1)=1.515

K factor**= 2.523

TL(1) = 0.034

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.053 S = 1.416 CV(2) = -0.234

K factor=** 2.523

TL(2) = -2.480

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002		
	0.025	-3.689
10/17/2002	0.025 0.001	-3.689 -6.908
10/17/2002 1/13/2003		2.007
	0.001	-6.908
1/13/2003	0.001 0.001	-6.908 -6.908
1/13/2003 4/8/2003	0.001 0.001 0.001	-6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.001	N/A	-6.908	N/A	
MW373	Downgradient	Yes	0.00041	6 N/A	-7.785	NO	
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW388	Downgradient	No	0.001	N/A	-6.908	N/A	
MW392	Downgradient	No	0.001	N/A	-6.908	N/A	
MW395	Upgradient	No	0.001	N/A	-6.908	N/A	
MW397	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-63

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison **Conductivity** UNITS: umho/cm **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor**= 2.523

TL(1) = 509.326

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.775
Date Collected	Result	
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	552	YES	6.314	N/A	
MW373	Downgradient	Yes	939	YES	6.845	N/A	
MW385	Sidegradient	Yes	511	YES	6.236	N/A	
MW388	Downgradient	Yes	420	NO	6.040	N/A	
MW392	Downgradient	Yes	366	NO	5.903	N/A	
MW395	Upgradient	Yes	388	NO	5.961	N/A	
MW397	Upgradient	Yes	324	NO	5.781	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

MW385

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

S = 0.013

CV(1)=0.474

K factor=** 2.523

TL(1) = 0.061

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.662 S = 0.406

CV(2) = -0.111

K factor=** 2.523

TL(2) = -2.638

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.0281	-3.572
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	,
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	0.00037	7 NO	-7.883	N/A	
MW373	Downgradient	No	0.002	N/A	-6.215	N/A	
MW385	Sidegradient	Yes	0.00037	7 NO	-7.883	N/A	
MW388	Downgradient	Yes	0.00038	5 NO	-7.862	N/A	
MW392	Downgradient	Yes	0.00045	7 NO	-7.691	N/A	
MW395	Upgradient	Yes	0.00069	1 NO	-7.277	N/A	
MW397	Upgradient	No	0.002	N/A	-6.215	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-65

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 4.678

CV(1)=0.520S = 2.431

K factor**= 2.523

TL(1)=10.812

LL(1)=N/A

Statistics-Transformed Background

X = 1.414

 $S = 0.550 \quad CV(2) = 0.389$

K factor**= 2.523

TL(2) = 2.802

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	7.29	1.987
9/30/2002	4.03	1.394
10/16/2002	3.85	1.348
1/13/2003	2.36	0.859
4/10/2003	1.14	0.131
7/16/2003	1.76	0.565
10/14/2003	4.05	1.399
1/13/2004	4.26	1.449
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.448
Date Collected	Result	
Date Collected 8/13/2002	Result 11.56	2.448
Date Collected 8/13/2002 9/16/2002	Result 11.56 5.86	2.448 1.768
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 11.56 5.86 5.94	2.448 1.768 1.782
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 11.56 5.86 5.94 4.66	2.448 1.768 1.782 1.539
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 11.56 5.86 5.94 4.66 3.77	2.448 1.768 1.782 1.539 1.327

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	4.8	NO	1.569	N/A
MW373	Downgradient	Yes	2.31	NO	0.837	N/A
MW385	Sidegradient	Yes	1.56	NO	0.445	N/A
MW388	Downgradient	Yes	5.62	NO	1.726	N/A
MW392	Downgradient	Yes	2.72	NO	1.001	N/A
MW395	Upgradient	Yes	5.48	NO	1.701	N/A
MW397	Upgradient	Yes	6.8	NO	1.917	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor**= 2.523

TL(1)= 305.301

LL(1)=N/A

Statistics-Transformed Background

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	,
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	247	NO	5.509	N/A
MW373	Downgradient	Yes	484	YES	6.182	N/A
MW385	Sidegradient	Yes	231	NO	5.442	N/A
MW388	Downgradient	Yes	212	NO	5.357	N/A
MW392	Downgradient	Yes	184	NO	5.215	N/A
MW395	Upgradient	Yes	196	NO	5.278	N/A
MW397	Upgradient	Yes	157	NO	5.056	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.400

S = 0.514

CV(1)=1.286

K factor=** 2.523

TL(1)= 1.698

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.197 S = 2.634 CV(2) = -1.199

K factor=** 2.523

TL(2) = 4.449

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
	0.1	2.202
Well Number:	MW397	2.505
Well Number: Date Collected		LN(Result)
	MW397	
Date Collected	MW397 Result	LN(Result)
Date Collected 8/13/2002	MW397 Result 1.58	LN(Result) 0.457
Date Collected 8/13/2002 9/16/2002	MW397 Result 1.58 0.232	LN(Result) 0.457 -1.461
Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 1.58 0.232 0.0002	LN(Result) 0.457 -1.461 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 1.58 0.232 0.0002 0.453	LN(Result) 0.457 -1.461 -8.517 -0.792
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	MW397 Result 1.58 0.232 0.0002 0.453 0.2	LN(Result) 0.457 -1.461 -8.517 -0.792 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.1	N/A	-2.303	N/A
MW373	Downgradient	No	0.1	N/A	-2.303	N/A
MW385	Sidegradient	No	0.1	N/A	-2.303	N/A
MW388	Downgradient	No	0.1	N/A	-2.303	N/A
MW392	Downgradient	Yes	0.0502	N/A	-2.992	NO
MW395	Upgradient	No	0.1	N/A	-2.303	N/A
MW397	Upgradient	Yes	0.0775	N/A	-2.557	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-68

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 9.

X= 9.102 **S**= 4.685

CV(1)=0.515

K factor**= 2.523

TL(1)= 20.922

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.423

S= 2.408

CV(2) = 1.692

K factor=** 2.523

TL(2) = 7.500

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	12.5	2.526
9/16/2002	13	2.565
10/16/2002	0.0127	-4.366
1/13/2003	11.2	2.416
4/10/2003	17.5	2.862
7/16/2003	12.9	2.557
10/14/2003	13.4	2.595
1/13/2004	12.4	2.518
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.058
Date Collected	Result	
Date Collected 8/13/2002	Result 7.83	2.058
Date Collected 8/13/2002 9/16/2002	Result 7.83 7.64	2.058 2.033
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 7.83 7.64 0.00658	2.058 2.033 -5.024
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 7.83 7.64 0.00658 6.69	2.058 2.033 -5.024 1.901
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 7.83 7.64 0.00658 6.69 7.28	2.058 2.033 -5.024 1.901 1.985

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	12.6	NO	2.534	N/A
MW373	Downgradient	Yes	25.6	YES	3.243	N/A
MW385	Sidegradient	Yes	14.3	NO	2.660	N/A
MW388	Downgradient	Yes	10.3	NO	2.332	N/A
MW392	Downgradient	Yes	10.6	NO	2.361	N/A
MW395	Upgradient	Yes	11.3	NO	2.425	N/A
MW397	Upgradient	Yes	7.84	NO	2.059	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.131

CV(1) = 1.487S = 0.195

K factor=** 2.523

TL(1) = 0.624

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.104 S = 1.529 CV(2) = -0.493

K factor=** 2.523

TL(2) = 0.755

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.764
Date Collected	Result	
Date Collected 8/13/2002	Result 0.466	-0.764
Date Collected 8/13/2002 9/16/2002	Result 0.466 0.077	-0.764 -2.564
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.466 0.077 0.028	-0.764 -2.564 -3.576
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.466 0.077 0.028 0.0164	-0.764 -2.564 -3.576 -4.110
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.466 0.077 0.028 0.0164 0.0407	-0.764 -2.564 -3.576 -4.110 -3.202

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.00122	N/A	-6.709	NO
MW373	Downgradient	Yes	0.0229	N/A	-3.777	NO
MW385	Sidegradient	Yes	0.0112	N/A	-4.492	NO
MW388	Downgradient	No	0.005	N/A	-5.298	N/A
MW392	Downgradient	Yes	0.0119	N/A	-4.431	NO
MW395	Upgradient	No	0.005	N/A	-5.298	N/A
MW397	Upgradient	Yes	0.0022	N/A	-6.119	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

CV(1)=1.451

K factor=** 2.523

TL(1) = 0.034

LL(1)=N/A

Statistics-Transformed Background

X= -5.990 **S**= 1.443

S = 0.011

CV(2)=-0.241

K factor=** 2.523

TL(2) = -2.349

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.6890.001 -6.908 10/16/2002 1/13/2003 0.00609 -5.101 4/10/2003 0.001 -6.908 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.025 -3.689 9/16/2002 0.025 -3.689 10/17/2002 0.001 -6.9081/13/2003 0.001-6.908 4/8/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.908-6.908 1/13/2004 0.001

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.001	N/A	-6.908	N/A
MW373	Downgradient	t No	0.001	N/A	-6.908	N/A
MW385	Sidegradient	Yes	0.00026	1 N/A	-8.251	NO
MW388	Downgradient	t No	0.001	N/A	-6.908	N/A
MW392	Downgradient	t No	0.00041	1 N/A	-7.797	N/A
MW395	Upgradient	No	0.001	N/A	-6.908	N/A
MW397	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

S = 0.020

CV(1)=1.089

K factor**= 2.523

TL(1) = 0.068

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.540 S = 1.020 CV(2) = -0.225

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.00502	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.005 0.00502 0.005	-2.996 -2.996 -5.298 -5.294 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.001	N/A	-6.908	NO	
MW373	Downgradient	Yes	0.00218	N/A	-6.128	NO	
MW385	Sidegradient	Yes	0.00133	N/A	-6.623	NO	
MW388	Downgradient	Yes	0.00138	N/A	-6.586	NO	
MW392	Downgradient	Yes	0.00198	N/A	-6.225	NO	
MW395	Upgradient	Yes	0.00088	3 N/A	-7.032	NO	
MW397	Upgradient	Yes	0.00109	N/A	-6.822	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-72

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor**= 2.523

TL(1) = 289.395

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.003 S = 0.348 CV(2) = 0.069

K factor**= 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 4.745
Date Collected	Result	
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	427	YES	6.057	N/A	
MW373	Downgradient	Yes	401	YES	5.994	N/A	
MW385	Sidegradient	Yes	344	YES	5.841	N/A	
MW388	Downgradient	Yes	219	NO	5.389	N/A	
MW392	Downgradient	Yes	389	YES	5.964	N/A	
MW395	Upgradient	Yes	326	YES	5.787	N/A	
MW397	Upgradient	Yes	371	YES	5.916	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

MW385

MW392

MW395

MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-73

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison pН **UNITS: Std Unit LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.041K factor**= 2.904 LL(1)=5.33 Statistics-Background Data X = 6.048S = 0.248TL(1) = 6.77**Statistics-Transformed Background** X = 1.799S = 0.042CV(2) = 0.023K factor**= 2.904 **TL(2)=** 1.920 LL(2)=1.6782

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/16/2002 1.792 5.47 1.699 10/16/2002 1/13/2003 6 1.792 4/10/2003 6.18 1.821 7/16/2003 6 1.792 10/14/2003 6.31 1.842 1/13/2004 6.24 1.831 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 5.84 1.765 9/30/2002 1.792 6 10/17/2002 5.75 1.749 1/13/2003 6 1.792 4/8/2003 6.3 1.841 7/16/2003 6.2 1.825 10/14/2003 6.36 1.850 1/13/2004 6.32 1.844

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradient	Yes	6.07	NO	1.803	N/A
MW373	Downgradient	Yes	6.12	NO	1.812	N/A
MW385	Sidegradient	Yes	6.41	NO	1.858	N/A
MW388	Downgradient	Yes	5.98	NO	1.788	N/A
MW392	Downgradient	Yes	5.91	NO	1.777	N/A
MW395	Upgradient	Yes	5.94	NO	1.782	N/A
MW397	Upgradient	Yes	5.76	NO	1.751	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.590

S= 0.642 **CV(1)**=0.404

K factor**= 2.523

TL(1) = 3.208

LL(1)=N/A

Statistics-Transformed Background

X = -0.306 S = 2.457

CV(2) = -8.028

K factor=** 2.523

TL(2) = 5.892

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 0.00129 10/16/2002 -6.6531/13/2003 1.51 0.412 4/10/2003 1.67 0.513 7/16/2003 1.73 0.548 10/14/2003 1.7 0.531 1/13/2004 1.58 0.457 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2.03 0.708 9/16/2002 0.693 2 0.00145 10/17/2002 -6.5361/13/2003 1.69 0.5254/8/2003 1.73 0.5487/16/2003 2 0.693 10/14/2003 1.92 0.652 1/13/2004 1.87 0.626

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	2.6	NO	0.956	N/A	
MW373	Downgradient	Yes	2.73	NO	1.004	N/A	
MW385	Sidegradient	Yes	1.82	NO	0.599	N/A	
MW388	Downgradient	Yes	1.71	NO	0.536	N/A	
MW392	Downgradient	Yes	2.02	NO	0.703	N/A	
MW395	Upgradient	Yes	1.62	NO	0.482	N/A	
MW397	Upgradient	Yes	1.82	NO	0.599	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor**= 2.523

TL(1) = 64.616

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.615 S = 2.411 CV(2) = 0.922

K factor=** 2.523

TL(2) = 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	45.3	NO	3.813	N/A	
MW373	Downgradient	Yes	55	NO	4.007	N/A	
MW385	Sidegradient	Yes	31.5	NO	3.450	N/A	
MW388	Downgradient	Yes	42.7	NO	3.754	N/A	
MW392	Downgradient	Yes	26.4	NO	3.273	N/A	
MW395	Upgradient	Yes	32	NO	3.466	N/A	
MW397	Upgradient	Yes	33.2	NO	3.503	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** Sulfate UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1)=0.200

K factor**= 2.523

TL(1)= 16.173

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.356 S = 0.203 CV(2) = 0.086

K factor=** 2.523

TL(2) = 2.869

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.639
Date Collected	Result	
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	19.5	YES	2.970	N/A	
MW373	Downgradient	Yes	143	YES	4.963	N/A	
MW385	Sidegradient	Yes	19.7	YES	2.981	N/A	
MW388	Downgradient	Yes	19.7	YES	2.981	N/A	
MW392	Downgradient	Yes	8.68	NO	2.161	N/A	
MW395	Upgradient	Yes	11.7	NO	2.460	N/A	
MW397	Upgradient	Yes	11.4	NO	2.434	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.805**K** factor**= 2.523 Statistics-Background Data X = 11.359 S = 9.138TL(1)=34.414LL(1)=N/A **Statistics-Transformed Background** X = 2.398S = 0.859CV(2) = 0.358K factor**= 2.523 TL(2) = 3.246LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
	-	
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result)
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	20.9	NO	3.040	N/A	
MW373	Downgradient	No	-1.78	N/A	#Error	N/A	
MW385	Sidegradient	Yes	47.5	YES	3.861	N/A	
MW388	Downgradient	Yes	90.5	YES	4.505	N/A	
MW392	Downgradient	No	4.19	N/A	1.433	N/A	
MW395	Upgradient	No	8.43	N/A	2.132	N/A	
MW397	Upgradient	Yes	23	NO	3.135	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-78

C-746-S/T Fourth Quarter 2022 Statistical Analysis Historical Background Comparison Toluene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 5.000 S= 0.000 CV(1)=0.000 K factor**= 2.523 TL(1)=5.000 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.609 S= 0.000 CV(2)=0.000 K factor**= 2.523 TL(2)=1.609 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 5 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 4/10/2003 5 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 5 1.609 5 4/8/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.37	NO	-0.994	N/A
MW373	Downgradien	t No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradien	t No	1	N/A	0.000	N/A
MW392	Downgradien	t No	1	N/A	0.000	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Total Organic Carbon (TOC) LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.544CV(1)=0.554**K** factor**= 2.523 Statistics-Background Data S = 0.856TL(1) = 3.702LL(1)=N/A **Statistics-Transformed Background** X = 0.325CV(2) = 1.393S = 0.452**K factor**=** 2.523 TL(2) = 1.465LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.470 1.6 9/16/2002 1.1 0.095 1 0.00010/16/2002 1/13/2003 2 0.693 4/10/2003 3.4 1.224 7/16/2003 2 0.693 10/14/2003 0.0001 1/13/2004 1 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.0009/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 3.6 1.281 4/8/2003 1.9 0.642 7/16/2003 1.1 0.095 10/14/2003 0.000 1 0.000 1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	1.07	NO	0.068	N/A
MW373	Downgradient	Yes	0.743	NO	-0.297	N/A
MW385	Sidegradient	Yes	0.503	NO	-0.687	N/A
MW388	Downgradient	Yes	0.55	NO	-0.598	N/A
MW392	Downgradient	Yes	0.366	NO	-1.005	N/A
MW395	Upgradient	Yes	0.436	NO	-0.830	N/A
MW397	Upgradient	Yes	0.338	NO	-1.085	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-80

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** Total Organic Halides (TOX) UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 31.513 **S**= 18.609 **CV(1)**=0.591

K factor**= 2.523

TL(1) = 78.462

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.240

S = 0.707 CV(2) = 0.218

K factor=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	7.92	NO	2.069	N/A
MW373	Downgradient	Yes	8.4	NO	2.128	N/A
MW385	Sidegradient	Yes	5.96	NO	1.785	N/A
MW388	Downgradient	Yes	19.2	NO	2.955	N/A
MW392	Downgradient	Yes	15.4	NO	2.734	N/A
MW395	Upgradient	Yes	7.34	NO	1.993	N/A
MW397	Upgradient	No	10	N/A	2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-81

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: ug/L Trichloroethene **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313

CV(1)=0.780S = 5.701

K factor**= 2.523

TL(1)=21.695

LL(1)=N/A

Statistics-Transformed Background

X = 1.467

 $S= 1.213 \quad CV(2)=0.827$

K factor=** 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1 1	1.609 1.609 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	1.68	N/A	0.519	N/A
MW373	Downgradient	Yes	4.13	N/A	1.418	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	No	1	N/A	0.000	N/A
MW392	Downgradient	Yes	12.2	NO	2.501	N/A
MW395	Upgradient	Yes	5.62	NO	1.726	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-82

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Vanadium **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.105**K factor**=** 2.523 Statistics-Background Data X = 0.021S = 0.002TL(1) = 0.027LL(1)=N/A **Statistics-Transformed Background** X = -3.856 S = 0.100CV(2) = -0.026**K factor**=** 2.523 TL(2) = -3.604LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.6890.02 -3.91210/16/2002 1/13/2003 0.02 -3.9127/16/2003 0.02 -3.91210/14/2003 0.02 -3.9121/13/2004 0.02 -3.9124/12/2004 0.02 -3.912Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.025 -3.689 9/16/2002 0.025 -3.689 -3.91210/17/2002 0.02 1/13/2003 0.02 -3.912 4/8/2003 0.02 -3.912 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	0.02	N/A	-3.912	N/A
MW373	Downgradient	Yes	0.00496	NO	-5.306	N/A
MW385	Sidegradient	No	0.02	N/A	-3.912	N/A
MW388	Downgradient	No	0.02	N/A	-3.912	N/A
MW392	Downgradient	No	0.02	N/A	-3.912	N/A
MW395	Upgradient	No	0.02	N/A	-3.912	N/A
MW397	Upgradient	No	0.00392	N/A	-5.542	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-83

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Fourth Quarter 2022 Statistical Analysis Current Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.875 **S**= 9.412

CV(1)=0.411

K factor**= 3.188

TL(1) = 52.881

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.051

 $S = 0.432 \quad CV(2)$

CV(2) = 0.142

K factor**= 3.188

TL(2) = 4.428

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/22/2020	31	3.434
1/26/2021	26.5	3.277
4/14/2021	16.1	2.779
7/21/2021	13.4	2.595
10/18/2021	33.2	3.503
1/13/2022	34.6	3.544
4/19/2022	16	2.773
7/20/2022	12.2	2.501

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	V mm tor	

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sideoradient	Ves	54.5	VES	3 998	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW386

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 263.375 S = 114.727 CV(1) = 0.436

K factor**= 3.188 TL(1)

TL(1)= 629.124 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.464 S = 0.543 CV(2) = 0.099

K factor**= 3.188

TL(2) = 7.194

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/22/2020	204	5.318
1/26/2021	80	4.382
4/14/2021	332	5.805
7/21/2021	400	5.991
10/18/2021	181	5.198
1/13/2022	191	5.252
4/19/2022	336	5.817
7/20/2022	383	5.948

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	322	NO	5.775	N/A
MW390	Downgradient	t Yes	174	NO	5.159	N/A
MW393	Downgradient	t Yes	226	NO	5.421	N/A
MW396	Upgradient	Yes	217	NO	5.380	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.047
 S= 8.009
 CV(1)=171.767
 K factor**= 3.188
 TL(1)= 25.578
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.428
 S= 0.056
 CV(2)=0.023
 K factor**= 3.188
 TL(2)= 2.468
 LL(2)=N/A

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/22/2020	-12.9	#Func!
1/26/2021	10.9	2.389
4/14/2021	-0.297	#Func!
7/21/2021	-2.66	#Func!
10/18/2021	-3.65	#Func!
1/13/2022	-1.23	#Func!
4/19/2022	11.8	2.468
7/20/2022	-1.59	#Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradien	t Yes	49.5	N/A	3.902	YES

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Current E Calcium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 24.525 **S**= 3.011

CV(1)=0.123

K factor**= 2.523

TL(1)=32.123

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.192

 $S= 0.125 \quad CV(2)=0.039$

K factor**= 2.523

TL(2) = 3.508

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected LN(Result) Result 10/14/2020 19.9 2.991 1/25/2021 3.040 20.9 4/15/2021 27.7 3.321 22.2 3.100 7/19/2021 10/27/2021 21.3 3.059 1/19/2022 22 3.091 4/13/2022 29.1 3.371 7/18/2022 20.4 3.016

77 1072022	20.1	5.010
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/22/2020	27.4	3.311
1/26/2021	25.5	3.239
4/14/2021	26.8	3.288
7/21/2021	24.9	3.215
10/18/2021	24.6	3.203
1/13/2022	25.4	3.235
4/19/2022	28.2	3.339
7/20/2022	26.1	3.262

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	62.2	YES	4.130	N/A
MW387	Downgradien	t Yes	42.4	YES	3.747	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Current Background Comparison URGA Conductivity** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 383.375 S = 31.305 CV(1) = 0.082

K factor**= 2.523

TL(1)= 462.357

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.946

S = 0.082

CV(2) = 0.014

K factor**= 2.523

TL(2) = 6.152

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220		
Date Collected	Result	LN(Result)	
10/14/2020	338	5.823	
1/25/2021	344	5.841	
4/15/2021	438	6.082	
7/19/2021	359	5.883	
10/27/2021	341	5.832	
1/19/2022	376	5.930	
4/13/2022	436	6.078	
7/18/2022	350	5.858	

330	2.020	
MW394		
Result	LN(Result)	
375	5.927	
390	5.966	
392	5.971	
400	5.991	
394	5.976	
401	5.994	
413	6.023	
387	5.958	
	Result 375 390 392 400 394 401 413	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	914	YES	6.818	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-7

C-746-S/T Fourth Quarter 2022 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 206.375 **S**= 36.511 **CV(1)**=0.177

K factor=** 2.523

TL(1)= 298.492

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.315 S = 0.173 CV(2) = 0.033

K factor**= 2.523

TL(2) = 5.753

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2020 190 5.247 1/25/2021 5.081 161 4/15/2021 250 5.521 7/19/2021 196 5.278

	1,0		
10/27/2021	194	5.268	
1/19/2022	179	5.187	
4/13/2022	236	5.464	
7/18/2022	164	5.100	
Well Number:	MW394		
Date Collected	Result	LN(Result)	
Date Collected 10/22/2020	Result 154	LN(Result) 5.037	
Duit cometica	1100011	` /	
10/22/2020	154	5.037	
10/22/2020 1/26/2021	154 196	5.037 5.278	
10/22/2020 1/26/2021 4/14/2021	154 196 207	5.037 5.278 5.333	

243

193

4/19/2022

7/20/2022

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW372	Downgradient	Yes	455	YES	6.120	N/A

Conclusion of Statistical Analysis on Current Data

5.493

5.263

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Current Background Comparison Magnesium UNITS: mg/L URGA

S = 0.131

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.325 **S**= 1.326

CV(1)=0.128

K factor**= 2.523

TL(1)= 13.670

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.327

CV(2) = 0.056

K factor**= 2.523

TL(2) = 2.657

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected LN(Result) Result 10/14/2020 8.71 2.164 1/25/2021 8.72 2.166 4/15/2021 11.7 2.460 9.29 2.229 7/19/2021 10/27/2021 8.31 2.117 1/19/2022 9.2 2.219 4/13/2022 12.1 2.493 7/18/2022 8 67 2 160

//18/2022	8.07	2.100
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/22/2020	11.8	2.468
1/26/2021	10.7	2.370
4/14/2021	11	2.398
7/21/2021	10.7	2.370
10/18/2021	10.3	2.332
1/13/2022	10.5	2.351
4/19/2022	11.8	2.468
7/20/2022	11.7	2.460

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	21.7	YES	3.077	N/A
MW387	Downgradien	t Yes	18.6	YES	2.923	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2022 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 409.813 S = 43.312 CV(1) = 0.106

K factor**= 2.523

TL(1)= 519.088 LI

LL(1)=N/A

Statistics-Transformed Background Data

X = 6.010 S = 0.108 CV(2) = 0.018

K factor**= 2.523

TL(2)= 6.282

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2020	385	5.953
1/25/2021	496	6.207
4/15/2021	410	6.016
7/19/2021	406	6.006
10/27/2021	443	6.094
1/19/2022	406	6.006
4/13/2022	412	6.021
7/18/2022	411	6.019
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.981
Date Collected	Result	,
Date Collected 10/22/2020	Result 396	5.981
Date Collected 10/22/2020 1/26/2021	Result 396 309	5.981 5.733
Date Collected 10/22/2020 1/26/2021 4/14/2021	Result 396 309 393	5.981 5.733 5.974
Date Collected 10/22/2020 1/26/2021 4/14/2021 7/21/2021	Result 396 309 393 408	5.981 5.733 5.974 6.011
Date Collected 10/22/2020 1/26/2021 4/14/2021 7/21/2021 10/18/2021	Result 396 309 393 408 370	5.981 5.733 5.974 6.011 5.914

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

-	_	
Turrant	Quarter	Data
cui i cii t	Qualter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW221	Sidegradient	Yes	485	NO	6.184	N/A
MW222	Sidegradient	Yes	442	NO	6.091	N/A
MW223	Sidegradient	Yes	464	NO	6.140	N/A
MW369	Downgradien	t Yes	406	NO	6.006	N/A
MW372	Downgradien	t Yes	416	NO	6.031	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Sodium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 0.128

Statistics-Background Data

X= 36.900 **S**= 4.858

CV(1)=0.132

K factor**= 2.523

TL(1)= 49.156

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.600

CV(2) = 0.035

K factor**= 2.523

TL(2)=3.922

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2020	38.3	3.645
1/25/2021	36.1	3.586
4/15/2021	46.5	3.839
7/19/2021	39.7	3.681
10/27/2021	39.2	3.669
1/19/2022	41.6	3.728
4/13/2022	46.2	3.833
7/18/2022	38.1	3.640

20.4	2 (10
38.1	3.640
MW394	
Result	LN(Result)
35.4	3.567
30.9	3.431
32.9	3.493
32.1	3.469
32.4	3.478
31.6	3.453
35.3	3.564
34.1	3.529
	Result 35.4 30.9 32.9 32.1 32.4 31.6 35.3

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quar	ter	Data
--------------	-----	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	62 9	YES	4 142	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Current Bac Sulfate UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 15.325 **S**= 4.521

CV(1)=0.295

K factor**= 2.523

TL(1) = 26.731

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.693

 $S= 0.271 \quad CV(2)=0.101$

K factor**= 2.523

TL(2) = 3.376

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2020	13.9	2.632
1/25/2021	15.9	2.766
4/15/2021	24.4	3.195
7/19/2021	17	2.833
10/27/2021	16.9	2.827
1/19/2022	19.2	2.955
4/13/2022	24.9	3.215
7/18/2022	18.5	2.918
Well Number:	MW394	
Date Collected	Result	LN(Result)

7/18/2022	18.5	2.918
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/22/2020	11.3	2.425
1/26/2021	11.4	2.434
4/14/2021	12.5	2.526
7/21/2021	11.8	2.468
10/18/2021	11.9	2.477
1/13/2022	11.7	2.460
4/19/2022	11.7	2.460
7/20/2022	12.2	2.501

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	131	YES	4.875	N/A
MW384	Sidegradient	Yes	19.2	NO	2.955	N/A
MW387	Downgradient	Yes	28.8	YES	3.360	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2022 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 9.942

S= 6.101

CV(1)=0.614

K factor**= 2.523

TL(1)=25.336

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.733 S = 1.656

CV(2) = 0.955

K factor**= 2.523

TL(2) = 5.910

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected LN(Result) Result 10/14/2020 16.7 2.815 1/25/2021 10.3 2.332 4/15/2021 2.493 12.1 7/19/2021 13.3 2.588 10/27/2021 12.7 2.542 1/19/2022 17.4 2.856 4/13/2022 16 2.773 7/18/2022 19.2 2.955 MW394 Well Number: Date Collected Result LN(Result) 10/22/2020 1.28 0.247 1/26/2021 11.4 2.434 4/14/2021 0.0414 -3.1847/21/2021 9.97 2.300

6.06

5.46

0.438

6.73

10/18/2021

1/13/2022

4/19/2022

7/20/2022

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	Yes	56.4	YES	4.032	N/A
MW372	Downgradient	Yes	69.7	YES	4.244	N/A
MW384	Sidegradient	Yes	49.9	YES	3.910	N/A

Conclusion of Statistical Analysis on Current Data

1.802

1.697

-0.826

1.907

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW372 MW384

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2022 Statistical Analysis Current Backg Calcium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 21.850 **S**= 3.436

CV(1)=0.157

K factor=** 2.523

TL(1)= 30.520

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.072

S = 0.158

CV(2) = 0.052

K factor**= 2.523

TL(2) = 3.472

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/22/2020	25.7	3.246
1/26/2021	24.8	3.211
4/14/2021	24.4	3.195
7/21/2021	25	3.219
10/18/2021	24.3	3.190
1/13/2022	25.5	3.239
4/19/2022	26.4	3.273
7/20/2022	24.9	3.215

Well Number:	MW397	
Date Collected	Result	LN(Result)
10/22/2020	19.8	2.986
1/25/2021	18.8	2.934
4/14/2021	18.4	2.912
7/19/2021	18.3	2.907
10/14/2021	18.1	2.896
1/13/2022	18.2	2.901
4/19/2022	18.5	2.918
7/18/2022	18.5	2.918

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	65.6	YES	4.184	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2022 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 345.813 S = 28.197 CV(1) = 0.082

K factor**= 2.523

TL(1)= 416.955 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.843 S = 0.082 CV(2) = 0.014

K factor**= 2.523

TL(2) = 6.051

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/22/2020 358 5.881 1/26/2021 358 5.881 4/14/2021 5.903 366 5.919 7/21/2021 372 10/18/2021 375 5.927 1/13/2022 376 5.930 4/19/2022 383 5.948

380	5.940
MW397	
Result	LN(Result)
324	5.781
320	5.768
314	5.749
326	5.787
295	5.687
340	5.829
326	5.787
320	5.768
	MW397 Result 324 320 314 326 295 340 326

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	552	YES	6.314	N/A
MW373	Downgradient	Yes	939	YES	6.845	N/A
MW385	Sidegradient	Yes	511	YES	6.236	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373 MW385

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Current Background Comparison Dissolved Solids LRGA** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 162.348 S = 47.815 CV(1) = 0.295

K factor**= 2.523

TL(1)= 282.985

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.954

S = 0.762CV(2) = 0.154 K factor**= 2.523

TL(2) = 6.876

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/22/2020 150 5.011 1/26/2021 8.57 2.148 4/14/2021 5.215 184 7/21/2021 204 5.318 10/18/2021 194 5.268 1/13/2022 201 5.303 4/19/2022 210 5.347 7/20/2022 199 5.293

Well Number:	MW397	
Date Collected	Result	LN(Result)
10/22/2020	133	4.890
1/25/2021	151	5.017
4/14/2021	157	5.056
7/19/2021	173	5.153
10/14/2021	166	5.112
1/13/2022	141	4.949

180

146

4/19/2022

7/18/2022

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	484	YES	6.182	N/A

Conclusion of Statistical Analysis on Current Data

5.193

4.984

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-16

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Current Background Comparison** Magnesium UNITS: mg/L

S = 1.523

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.241

CV(1)=0.165

K factor**= 2.523

TL(1)= 13.083

LRGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.211

S = 0.166CV(2) = 0.075 K factor**= 2.523

TL(2) = 2.630

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected LN(Result) Result 10/22/2020 11.1 2.407 1/26/2021 10.4 2.342 4/14/2021 10.2 2.322 7/21/2021 10.6 2.361 10/18/2021 10.3 2.332 1/13/2022 10.6 2.361

4/19/2022	11	2.398
7/20/2022	11.2	2.416
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/22/2020	8.61	2.153
1/25/2021	7.94	2.072
4/14/2021	7.68	2.039
7/19/2021	7.62	2.031
10/14/2021	7.57	2.024
1/13/2022	7.53	2.019
4/19/2022	7.79	2.053
7/18/2022	7.71	2.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	25.6	YES	3.243	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-17

C-746-S/T Fourth Quarter 2022 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

Statistics-Background Data

X = 381.250 S = 65.729 CV(1) = 0.172

K factor**= 2.523

TL(1)= 547.085

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.925

S = 0.210

CV(2) = 0.035

K factor**= 2.523

TL(2) = 6.456

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395				
Date Collected	Result	LN(Result)			
10/22/2020	354	5.869			
1/26/2021	334	5.811			
4/14/2021	372	5.919			
7/21/2021	414	6.026			
10/18/2021	391	5.969			
1/13/2022	395	5.979			
4/19/2022	412	6.021			
7/20/2022	425	6.052			
112012022	723	0.032			
Well Number:	MW397	0.032			
		LN(Result)			
Well Number:	MW397				
Well Number: Date Collected	MW397 Result	LN(Result)			
Well Number: Date Collected 10/22/2020	MW397 Result 190	LN(Result) 5.247			
Well Number: Date Collected 10/22/2020 1/25/2021	MW397 Result 190 478	LN(Result) 5.247 6.170			
Well Number: Date Collected 10/22/2020 1/25/2021 4/14/2021	MW397 Result 190 478 391	LN(Result) 5.247 6.170 5.969			
Well Number: Date Collected 10/22/2020 1/25/2021 4/14/2021 7/19/2021	MW397 Result 190 478 391 422	LN(Result) 5.247 6.170 5.969 6.045			

415

7/18/2022

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	427	NO	6.057	N/A
MW373	Downgradient	t Yes	401	NO	5.994	N/A
MW385	Sidegradient	Ves	344	NO	5 841	N/A

MW385 Sidegradient NO 5.841 N/A MW392 Downgradient Yes 389 NO 5.964 N/A MW395 Upgradient 326 NO 5.787 N/A Yes MW397 Upgradient Yes 371 NO 5.916 N/A

Conclusion of Statistical Analysis on Current Data

6.028

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-18

C-746-S/T Fourth Quarter 2022 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.694 **S**= 0.313

CV(1) = 0.027

K factor**= 2.523

TL(1)= 12.483

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.459

S = 0.027

CV(2) = 0.011

K factor**= 2.523

TL(2) = 2.526

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected LN(Result) Result 10/22/2020 11.7 2.460 1/26/2021 11.6 2.451 4/14/2021 12.4 2.518 7/21/2021 11.8 2.468 10/18/2021 11.9 2.477 1/13/2022 11.6 2.451

 4/19/2022
 11.6
 2.451

 7/20/2022
 11.9
 2.477

Well Number: MW397

Date Collected Result

10/22/2020 11.1 2.407 1/25/2021 11.5 2.442 4/14/2021 11.3 2.425 7/19/2021 11.3 2.425 10/14/2021 12 2.485 1/13/2022 11.7 2.460 4/19/2022 11.8 2.468 7/18/2022 11.9 2.477 Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	19.5	YES	2.970	N/A
MW373	Downgradient	t Yes	143	YES	4.963	N/A
MW385	Sidegradient	Yes	19.7	YES	2.981	N/A
MW388	Downgradient	t Yes	19.7	YES	2.981	N/A

Conclusion of Statistical Analysis on Current Data

LN(Result)

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2022 Statistical Analysis **Current Background Comparison** Technetium-99 **LRGA** UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 10.571 S = 5.109CV(1)=0.483K factor**= 2.523 TL(1) = 23.460Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** K factor**= 2.523 X = 2.349S = 0.441CV(2) = 0.188TL(2) = 2.896LL(2)=N/A

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/22/2020	-1.04	#Func!
1/26/2021	14	2.639
4/14/2021	3.78	1.330
7/21/2021	9.45	2.246
10/18/2021	8.55	2.146
1/13/2022	5.03	1.615
4/19/2022	17.4	2.856
7/20/2022	11.1	2.407
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.135
Date Collected	Result	
Date Collected 10/22/2020	Result 8.46	2.135
Date Collected 10/22/2020 1/25/2021	Result 8.46 15.2	2.135 2.721
Date Collected 10/22/2020 1/25/2021 4/14/2021	Result 8.46 15.2 14	2.135 2.721 2.639
Date Collected 10/22/2020 1/25/2021 4/14/2021 7/19/2021	Result 8.46 15.2 14 13.8	2.135 2.721 2.639 2.625
Date Collected 10/22/2020 1/25/2021 4/14/2021 7/19/2021 10/14/2021	Result 8.46 15.2 14 13.8 12.8	2.135 2.721 2.639 2.625 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

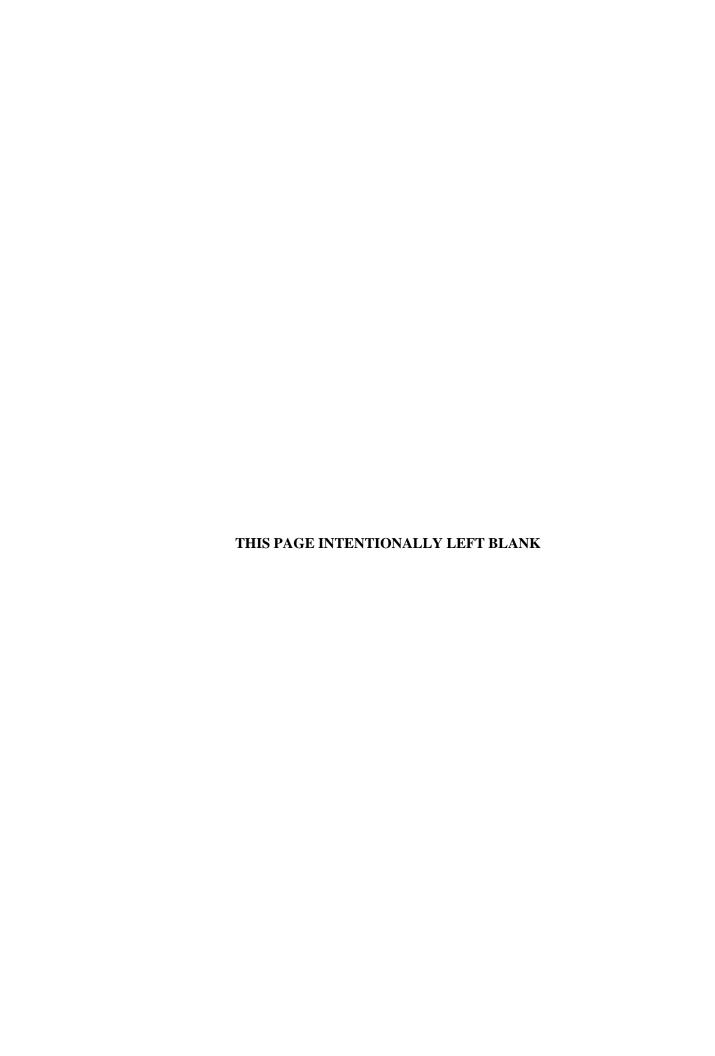
#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

	Current	Quarter Data						
Well No. Gradient		Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
	MW385	Sidegradient	Yes	47.5	YES	3.861	N/A	
	MW388	Downgradient	t Yes	90.5	YES	4.505	N/A	

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances


MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

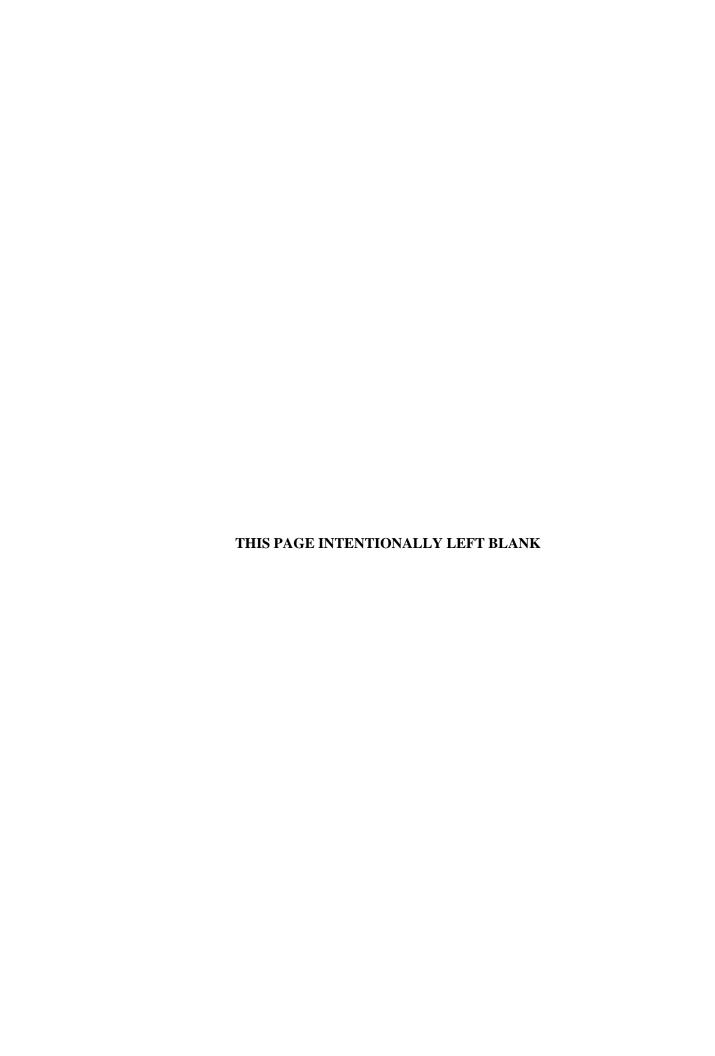
Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

January 23, 2023


Mr. Dennis Greene
 Four Rivers Nuclear Partnership, LLC
 5511 Hobbs Road
 Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the fourth quarter 2022 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2022 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on October 25, 2022. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had sufficient water for a water level measurement.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. During October, RGA groundwater flow was directed inward and then northeast towards the Ohio River. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 4.05×10^{-4} ft/ft. Additional water level measurements in October (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 6.17×10^{-4} ft/ft, northward. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for October 2022, RGA groundwater flow from the landfill area was directed to the northeast.

_

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW197, and MW200), were used to contour the RGA potentiometric surface.

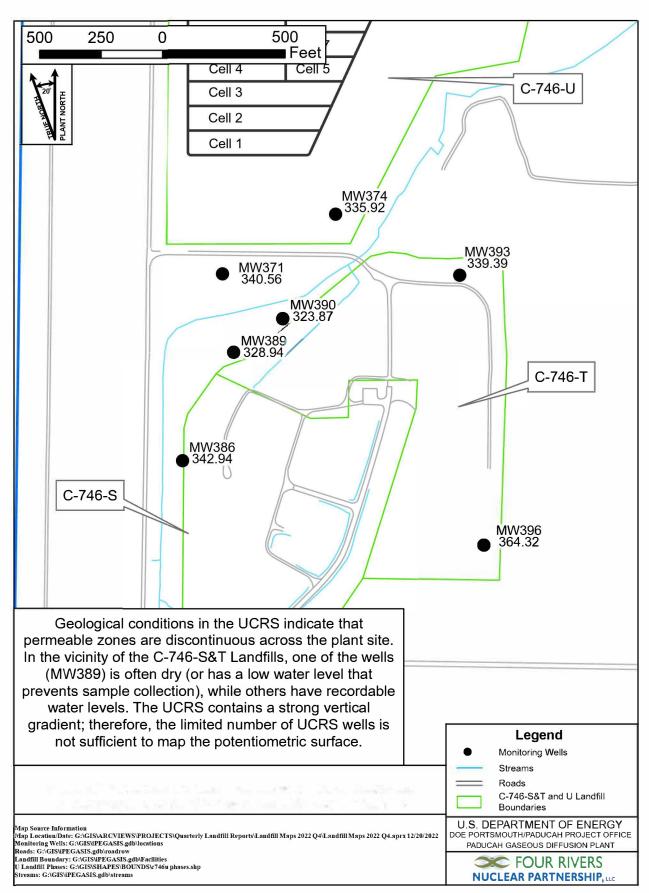


Figure E.1. Potentiometric Measurements of the Upper Continental Recharge System at the C-746-S&T Landfills, October 25, 2022

Table E.1. C-746-S&T Landfills Fourth Quarter 2022 (October) Water Levels

	C-746-S&T Landfills (October 2022) Water Levels										
							Rav	w Data	*Corre	ected Data	
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev	
				(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)	
10/25/2022	9:03	MW220	URGA	382.01	29.68	0.01	57.76	324.25	57.77	324.24	
10/25/2022	8:52	MW221	URGA	391.38	29.69	0.00	67.49	323.89	67.49	323.89	
10/25/2022	8:57	MW222	URGA	395.27	29.68	0.01	71.32	323.95	71.33	323.94	
10/25/2022	8:55	MW223	URGA	394.38	29.68	0.01	70.42	323.96	70.43	323.95	
10/25/2022	8:59	MW224	URGA	395.69	29.68	0.01	71.64	324.05	71.65	324.04	
10/25/2022	9:04	MW225	URGA	385.73	29.68	0.01	61.63	324.10	61.64	324.09	
10/25/2022	9:43	MW353	LRGA	375.05	29.68	0.01	50.28	324.77	50.29	324.76	
10/25/2022	8:46	MW369	URGA	364.23	29.69	0.00	40.31	323.92	40.31	323.92	
10/25/2022	8:48	MW370	LRGA	365.12	29.69	0.00	41.20	323.92	41.20	323.92	
10/25/2022	8:47	MW371	UCRS	364.64	29.69	0.00	24.08	340.56	24.08	340.56	
10/25/2022	8:40	MW372	URGA	359.42	29.69	0.00	35.49	323.93	35.49	323.93	
10/25/2022	8:41	MW373	LRGA	359.73	29.69	0.00	35.79	323.94	35.79	323.94	
10/25/2022	8:42	MW374	UCRS	359.44	29.69	0.00	23.52	335.92	23.52	335.92	
10/25/2022	9:19	MW384	URGA	365.29	29.68	0.01	41.34	323.95	41.35	323.94	
10/25/2022	9:21	MW385	LRGA	365.74	29.68	0.01	41.71	324.03	41.72	324.02	
10/25/2022	9:20	MW386	UCRS	365.32	29.68	0.01	22.37	342.95	22.38	342.94	
10/25/2022	9:15	MW387	URGA	363.48	29.68	0.01	39.58	323.90	39.59	323.89	
10/25/2022	9:16	MW388	LRGA	363.45	29.68	0.01	39.56	323.89	39.57	323.88	
10/25/2022	9:12	MW389	UCRS	364.11	29.68	0.01	35.16	328.95	35.17	328.94	
10/25/2022	9:10	MW390	UCRS	360.39	29.68	0.01	36.51	323.88	36.52	323.87	
10/25/2022	9:36	MW391	URGA	366.67	29.68	0.01	42.78	323.89	42.79	323.88	
10/25/2022	9:37	MW392	LRGA	365.85	29.68	0.01	41.97	323.88	41.98	323.87	
10/25/2022	9:38	MW393	UCRS	366.62	29.68	0.01	27.22	339.40	27.23	339.39	
10/25/2022	9:27	MW394	URGA	378.46	29.68	0.01	54.19	324.27	54.20	324.26	
10/25/2022	9:28	MW395	LRGA	379.12	29.68	0.01	54.88	324.24	54.89	324.23	
10/25/2022	9:29	MW396	UCRS	378.75	29.68	0.01	14.42	364.33	14.43	364.32	
10/25/2022	9:24	MW397	LRGA	387.00	29.68	0.01	62.70	324.30	62.71	324.29	
10/25/2022	9:32	MW418	URGA	367.21	29.68	0.01	43.16	324.05	43.17	324.04	
10/25/2022	9:33	MW419	LRGA	367.05	29.68	0.01	43.02	324.03	43.03	324.02	
Reference Ba	arometri	c Pressure			29.69						

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

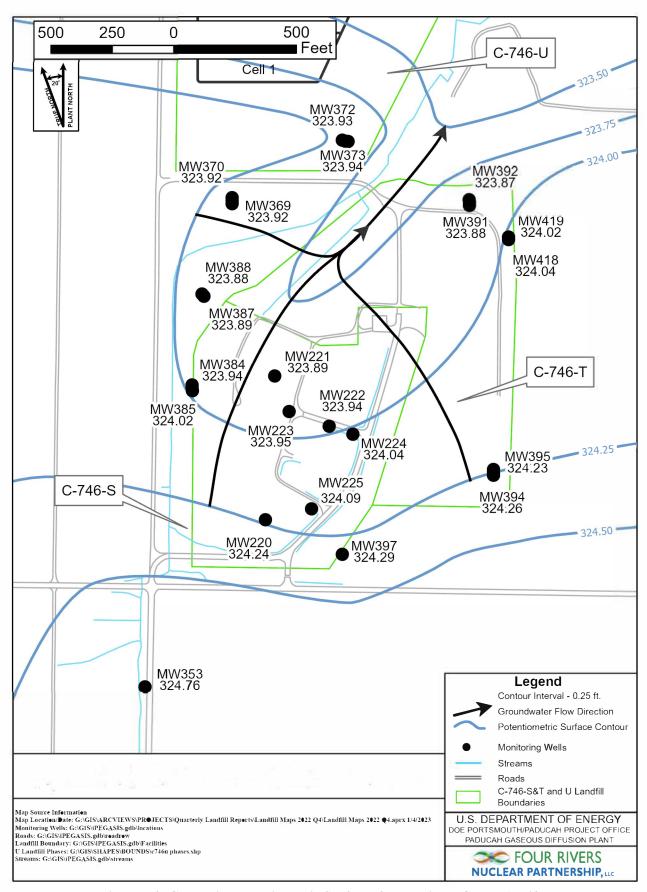


Figure E.2. Composite Potentiometric Surface of the Regional Gravel Aquifer at the C-746-S&T Landfills, October 25, 2022

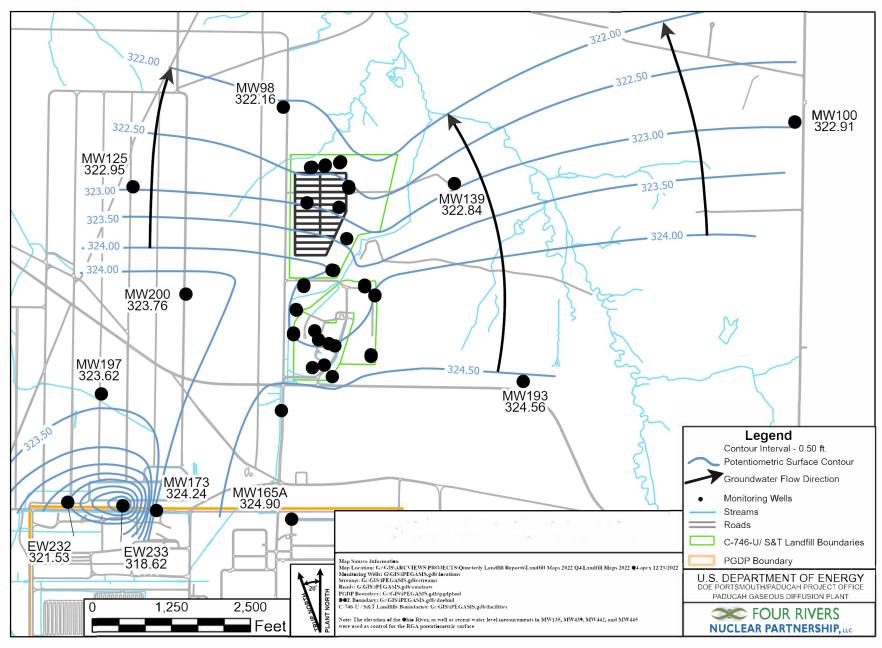


Figure E.3. Vicinity Potentiometric Surface of the Regional Gravel Aquifer, October 25, 2022

Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	4.05 × 10 ⁻⁴
Vicinity	6.17 × 10 ⁻⁴

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic C	Conductivity (K)	Specific	Discharge (q)	Average	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landf	ill Mound				
725	0.256	0.294	1.04 × 10 ⁻⁴	1.17	4.15 × 10 ⁻⁴
425	0.150	0.172	6.07 × 10 ⁻⁵	0.688	2.43 × 10 ⁻⁴
Vicinity					
725	0.256	0.447	1.58×10^{-4}	1.79	6.32 × 10 ⁻⁴
425	0.150	0.262	9.25 × 10 ⁻⁵	1.05	3.70 × 10 ⁻⁴

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the fourth quarter 2022 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan* for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW372 MW369, MW372, MW384
Lower Regional Gravel Aquifer	Technetium-99	MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

11/28/2022

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS

SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4806	MW392	Trichloroethene	8260D	12.2	ug/L	5
8004-4802	MW394	Trichloroethene	8260D	7	ug/L	5
8004-4801	MW395	Trichloroethene	8260D	5.62	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

Gradient Monitoring Well ACETONE Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2005 Quarter 4, 2019	S 386	D 389	D 390	D 393	U 396	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
ACETONE Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2005	386	389	390	393	306	221	40.0												ע			_	
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2005					220	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2003 Quarter 1, 2005																							
Quarter 1, 2005							*					*											
											*								*				
Quarter 4, 2019									*														
																*							
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									1
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*									\vdash
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				_
Quarter 2, 2005			*				*																-
Quarter 2, 2005 Quarter 3, 2005	1	-	*				*			*											*		
Quarter 3, 2005 Quarter 4, 2005	1	-	*				*			*	*										*		-
• /			不								*		40										<u> </u>
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																<u> </u>
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*				-				*												
Quarter 3, 2010			*								*			*			*			*			-
			Ť				*				*			•			•			т.			
Quarter 1, 2011			¥				•																-
Quarter 2, 2011	 	 	*								*												—
Quarter 2, 2012			*				42																₩
Quarter 3, 2012				<u> </u>			*																<u> </u>
Quarter 1, 2013							*				*												<u> </u>
Quarter 3, 2013		L	*																				Щ.
Quarter 1, 2014							*																<u> </u>
Quarter 2, 2014											*												
Quarter 4, 2014			*																				
Quarter 1, 2016							*																
Quarter 2, 2016														*									
Quarter 1, 2017							*																
Quarter 4, 2017																							*
Quarter 1, 2018							*																
Quarter 1, 2020													*										
BARIUM																							
Quarter 3, 2003							•																
Quarter 4, 2003																							
BETA ACTIVITY																							
Quarter 4, 2002													•										
Quarter 1, 2003																							
					_																		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient Monitoring Well BETA ACTIVITY Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004	S 386	D 389	D 390	D 393	U 396	S 221	S 222	S 223	S 224	S 384	D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373	D 388	D 392	U 395	U 397
BETA ACTIVITY Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004	386	389			396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004																							
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004																							
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004																							
Quarter 1, 2004 Quarter 2, 2004			ı																				
Quarter 2, 2004													•										
		1											•										
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006													•				•		•				
Quarter 4, 2006													•										
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007												•	•										
Quarter 4, 2007																							
Quarter 1, 2008													•										
Quarter 2, 2008													•										
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009													•										
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010													•										
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015																							
Quarter 3, 2015																							
Quarter 4, 2015																							
Quarter 1, 2016																							
Quarter 2, 2016																							
Quarter 3, 2016																							
Quarter 4, 2016																							
Quarter 1, 2017																							
Quarter 2, 2017																							
Quarter 3, 2017																							
Quarter 4, 2017																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019										-			_				_	-		•			
Quarter 3, 2019			_							_		_						_				<u> </u>	
Quarter 4, 2019										•		-	-					-					
Quarter 1, 2020			-									-											
Quarter 2, 2020 Quarter 3, 2020																	_			_			
Quarter 4, 2020												_	H										
Quarter 1, 2021																		_					
Quarter 2, 2021																							H
Quarter 3, 2021																							
Quarter 4, 2021																							
Quarter 1, 2022																							
Quarter 2, 2022																							
Quarter 3, 2022																							
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				\Box
Quarter 1, 2009												*				H			*				H
Quarter 2, 2009												*							*				\vdash
Quarter 3, 2009												*							*				\vdash
Quarter 4, 2009												*	 						*				
Quarter 1, 2010												*							*			 	
Quarter 2, 2010												*				H			*				\vdash
Quarter 3, 2010												*							*				\vdash
Quarter 4, 2010												*							*				\vdash
Quarter 1, 2011												*							*			_	\vdash
Quarter 2, 2011												*	*						*				\vdash
Quarter 3, 2011	_	_	_	<u> </u>	_	-	_	_	_	_		*	+-	_		\vdash		-	*			 	\vdash
Quarter 4, 2011		-	-	<u> </u>	-	_	-	-	-		-	*		-	-				*			 	
Quarter 4, 2011 Quarter 1, 2012		-	-	<u> </u>	-	_	-	-	-		-	*		-	-				*			\vdash	\vdash
Quarter 1, 2012 Quarter 2, 2012	_	_	_	_	_	-	_	_	_	_		*	-	_		H			*			<u> </u>	\vdash
Quarter 3, 2012 Quarter 3, 2012	_	_	_	_	_	-	_	_	_	_		*	-	_		H			*			<u> </u>	\vdash
Quarter 3, 2012	_			_		_					_	*			_				*				\Box

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System Cradient		U 394	S 385	**	D 373 * * * * * * *	D 388	D 392	U 395	U 397
CALCIUM Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2021 Quarter 9, 2020 Quarte	394	394	385	*	* * * * * *	388	392	395	397
Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 7, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 7, 2021 Quarter 7, 2021 Quarter 7, 2022 Quarter 7, 2020 Quarter 7, 2021 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2020 Quarter 7, 2021 Quarter 7, 2021 Quarter 7, 2022 Quarter 7, 2020 Quarter 7, 2020 Quarter 7, 2021 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2020 Quarter 7, 2021 Quarter 7, 2021 Quarter 7, 2021 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2020 Quarter 7, 2020 Quarter 7, 2021 Quarter 7, 2020 Quarter 7, 2021 Quarter 7, 2021 Quarter 7, 2020 Quarter 7, 202					* * * * *				
Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2020 Quarter 5, 2021 Quarter 6, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 1, 2021 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2022 Quarter 4, 2020 Quarter 2, 2020 Quarter 2, 2030 Quarter 3, 203					* * * * *				I
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2021 Quarter 4, 2021 Quarter 3, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2020 Quarter 5, 2021 Quarter 6, 2022 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2020 Quarter 9, 2003 Quarter 9, 200					* * * *				+
Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 2, 2018 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 5, 2022 Quarter 6, 2022 Quarter 6, 2022 Quarter 7, 2020 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2020 Quarter 9, 2020 Quarter 9, 2020 Quarter 9, 2020 Quarter 9, 202					* * *				i
Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 1, 2021 Quarter 1, 2022 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 9, 2020 Quarter 1, 2021 Quarter 1, 2020 Quarter 1, 2021 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 1, 2021 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 6, 202					* * *				+
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2021 Quarter 4, 2022 Quarter 5, 2022 Quarter 6, 2022 Quarter 7, 2022 Quarter 7, 2020 Quarter 7, 2022 Quarter 7, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2020 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2020 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *					*			-	+
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2020 Quarter 5, 2021 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 1, 2021 Quarter 1, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2020 Quarter 1, 2030 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *					*		-		₩
Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2020 Quarter 3, 2022 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2022 Quarter 4, 2020 Quarter 4, 2020 Quarter 5, 2021 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 8, 2020 Quarter 9, 202					*			₩	₩
Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 4, 2022 Quarter 3, 2022 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 5, 2022 Quarter 6, 2010 Quarter 1, 2011 Quarter 6, 2010 Quarter 1, 2003 ** ** ** ** ** ** ** ** ** * ** ** **				*			1		₩
Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2021 Quarter 2, 2021 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 1, 2023 Quarter 1, 2023 Quarter 2, 2023 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2021 Quarter 1, 2021 Quarter 2, 2022 Quarter 3, 2022 Quarter 3, 2023 Quarter 3, 2023 Quarter 3, 2023 Quarter 3, 2023 Quarter 1, 2033 ** Quarter 1, 2003 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *				*	*	1		<u> </u>	—
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 3, 2022 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2020 Quarter 5, 2022 Quarter 6, 2021 Quarter 7, 2022 Quarter 7, 2020 Quarter 7, 2020 Quarter 7, 2021 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2022 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2010 Quarter 1, 2030 Quarter 1, 2030 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *					+			<u> </u>	<u> </u>
Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2020 Quarter 3, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2020 Quarter 5, 2022 Quarter 6, 2022 Quarter 6, 2022 Quarter 7, 2003 W ** ** ** ** ** ** ** ** **					*				
Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * Quarter 2, 2016 * * * Quarter 2, 2016 * * * * Quarter 3, 2016 * * * Quarter 3, 2016 * * * Quarter 4, 2016 * * * Quarter 1, 2017 * * Quarter 2, 2017 * * Quarter 2, 2017 * * Quarter 3, 2017 * * Quarter 3, 2017 * * Quarter 4, 2017 * * Quarter 1, 2018 * Quarter 2, 2018 * * Quarter 2, 2018 * * Quarter 2, 2018 * * Quarter 3, 2018 * * Quarter 3, 2018 * * Quarter 3, 2019 * * Quarter 3, 2019 * * Quarter 3, 2019 * * * Quarter 3, 2019 * * * Quarter 3, 2020 * * * * Quarter 3, 2020 * * *					*				
Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2020 Quarter 5, 2021 Quarter 6, 2022 Quarter 7, 2021 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2021 Quarter 7, 2021 Quarter 7, 2021 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2021 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2021 Quarter 7, 202					*				
Quarter 1, 2016 * * * Quarter 2, 2016 * * * Quarter 3, 2016 * * * Quarter 4, 2016 * * * Quarter 1, 2017 * * * Quarter 2, 2017 * * * Quarter 3, 2017 * * * Quarter 1, 2018 * * * Quarter 1, 2018 * * * Quarter 2, 2018 * * * Quarter 3, 2018 * * * Quarter 4, 2018 * * * Quarter 2, 2019 * * * Quarter 2, 2019 * * * Quarter 3, 2019 * * * Quarter 4, 2019 * * * Quarter 2, 2020 * * * Quarter 3, 2020 * * * Quarter 4, 2020 * * * Quarter 4, 2021 * * *					*				
Quarter 2, 2016 * * * Quarter 3, 2016 * * * Quarter 4, 2016 * * * Quarter 1, 2017 * * * Quarter 2, 2017 * * * Quarter 3, 2017 * * * Quarter 4, 2018 * * * Quarter 2, 2018 * * * Quarter 2, 2018 * * * Quarter 3, 2019 * * * Quarter 2, 2019 * * * Quarter 4, 2019 * * * Quarter 4, 2019 * * * Quarter 4, 2019 * * * Quarter 3, 2020 * * * Quarter 4, 2020 * * * Quarter 4, 2021 * * * Quarter 4, 2021 * * * Quarter 4, 2022 * *					*				
Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2021 Quarter 4, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2021 Quarter 5, 2021 Quarter 6, 2022 Quarter 7, 2021 Quarter 7, 2022 Quarter 7, 2022 Quarter 1, 2010 Quarter 1, 2011 Quarter 2, 2003 W ** CHEMICAL OXYGEN DEMAND Quarter 1, 2003 Quarter 3, 2003 W ** ** ** ** ** ** ** ** **					*				
Quarter 3, 2016 ** ** Quarter 4, 2016 ** ** Quarter 1, 2017 ** ** Quarter 2, 2017 ** ** Quarter 3, 2017 ** ** Quarter 4, 2017 ** ** Quarter 1, 2018 ** ** Quarter 2, 2018 ** ** Quarter 3, 2019 ** ** Quarter 1, 2019 ** ** Quarter 3, 2019 ** ** Quarter 4, 2019 ** ** Quarter 1, 2020 ** ** Quarter 2, 2020 ** ** Quarter 3, 2020 ** ** Quarter 4, 2020 ** ** Quarter 4, 2020 ** ** Quarter 2, 2021 ** ** Quarter 3, 2021 ** ** Quarter 4, 2021 ** ** Quarter 4, 2022 ** ** Quarter 4, 2022 ** ** Quarter 4, 2010 ** ** Quarter 2, 2017 ** <td></td> <td></td> <td></td> <td>1</td> <td>*</td> <td>1</td> <td>1</td> <td>1</td> <td>t</td>				1	*	1	1	1	t
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 3, 2022 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2022 Quarter 4, 2020 Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 5, 2022 Quarter 6, 2022 Quarter 7, 2021 Quarter 7, 2021 Quarter 7, 2021 Quarter 7, 2021 Quarter 8, 2021 Quarter 9, 2022 Quarter 9, 2020 Quarter 9, 2010 Quarter 1, 2011 Quarter 1, 2010 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *				1	*	1	1	\vdash	t
Quarter 1, 2017 * * * Quarter 2, 2017 * * * Quarter 3, 2017 * * * Quarter 1, 2018 * * * Quarter 2, 2018 * * * Quarter 3, 2019 * * * Quarter 3, 2019 * * * Quarter 4, 2019 * * * Quarter 4, 2019 * * * Quarter 1, 2020 * * * Quarter 2, 2020 * * * Quarter 3, 2020 * * * Quarter 4, 2020 * * * Quarter 1, 2021 * * * Quarter 2, 2021 * * * Quarter 3, 2021 * * * Quarter 4, 2022 * * * CARBON DISULFIDE * * Quarter 2, 2017 * * * Quarter 2, 2001 * * * Quarter 2,			\vdash	+	*	+	+	\vdash	+
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2022 Quarter 5, 2022 Quarter 6, 2021 Quarter 7, 2022 Quarter 7, 2022 Quarter 7, 2022 Quarter 8, 2022 Quarter 9, 2022 Quarter 9, 2020 Quarter 9, 202	1		\vdash	+-	*	+-	+-	 	+-
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 1, 2021 Quarter 3, 2021 Quarter 4, 2022 Quarter 5, 2021 Quarter 6, 2021 Quarter 7, 2022 Quarter 7, 2022 Quarter 8, 2022 Quarter 9, 2022 Quarter 9, 2022 Quarter 1, 2021 Quarter 1, 2022 Quarter 1, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2021 Quarter 2, 2021 Quarter 3, 2022 Quarter 4, 2020 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *			1	1	*	1	1-	₩	+
Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2021 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 CARBON DISULFIDE Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2022 CARBON DISULFIDE Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** **				1		1	1	₩	₩
Quarter 1, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 3, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2021 Quarter 2, 2019 Quarter 3, 2022 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2022 CARBON DISULFIDE Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 * * * * * * * * * * * * * * * * * * *			<u> </u>	<u> </u>	*	<u> </u>	1	Щ	₩
Quarter 2, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 3, 2022 Quarter 4, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 2, 2022 Quarter 4, 2022 Quarter 2, 2022 Quarter 4, 2021 Quarter 2, 2022 Quarter 4, 2022 Quarter 4, 2022 CARBON DISULFIDE Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *	_			1	*	1	1	<u> </u>	Щ
Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 1, 2022 Quarter 1, 2022 Quarter 2, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 2, 2022 Quarter 2, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2022 CARBON DISULFIDE Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** **					*			Щ.	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2021 Quarter 1, 2022 Quarter 3, 2022 Quarter 4, 2021 Quarter 2, 2022 Quarter 3, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2020 Quarter 4, 2020 CARBON DISULFIDE Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** **			L	\perp	*	\perp		L^{-}	L
Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2022 Quarter 4, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 3, 2021 Quarter 1, 2022 Quarter 4, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2020 CARBON DISULFIDE Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** **					*				
Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2022 Quarter 4, 2022 Quarter 2, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2020 Quarter 4, 2021 Quarter 4, 2021 Quarter 4, 2021 Quarter 5, 2022 Quarter 6, 2022 Quarter 7, 2022 Quarter 7, 2022 Quarter 8, 2022 Quarter 9, 2020 Quarter 9, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** **					*				
Quarter 3, 2019 * * Quarter 4, 2019 * * Quarter 1, 2020 * * Quarter 2, 2020 * * Quarter 3, 2020 * * Quarter 4, 2020 * * Quarter 1, 2021 * * Quarter 2, 2021 * * Quarter 3, 2021 * * Quarter 4, 2021 * * Quarter 1, 2022 * * Quarter 2, 2022 * * Quarter 3, 2022 * * Quarter 4, 2022 * * CARBON DISULFIDE * * Quarter 2, 2010 * * Quarter 1, 2011 * * Quarter 2, 2017 * * CHEMICAL OXYGEN DEMAND * * Quarter 3, 2003 * * Quarter 3, 2003 * *					*				
Quarter 4, 2019 * * Quarter 1, 2020 * * Quarter 2, 2020 * * Quarter 3, 2020 * * Quarter 4, 2020 * * * Quarter 1, 2021 * * * Quarter 2, 2021 * * * Quarter 3, 2021 * * * Quarter 4, 2021 * * * Quarter 1, 2022 * * * Quarter 2, 2022 * * * Quarter 4, 2022 * * * CARBON DISULFIDE * * Quarter 2, 2017 * * CHEMICAL OXYGEN DEMAND * * Quarter 2, 2003 * * * Quarter 3, 2003 * * * *				1	*	1		†	t
Quarter 1, 2020 * * Quarter 2, 2020 * * Quarter 3, 2020 * * Quarter 4, 2020 * * Quarter 1, 2021 * * Quarter 2, 2021 * * Quarter 3, 2021 * * Quarter 4, 2021 * * Quarter 1, 2022 * * Quarter 2, 2022 * * Quarter 3, 2022 * * Quarter 4, 2022 * * CARBON DISULFIDE * Quarter 2, 2010 * * Quarter 2, 2011 * * CHEMICAL OXYGEN DEMAND * Quarter 3, 2003 * * Quarter 3, 2003 * *				1	*	1	1	-	+
Quarter 2, 2020 * * * Quarter 3, 2020 * * * Quarter 4, 2020 * * * Quarter 1, 2021 * * * Quarter 3, 2021 * * * Quarter 4, 2021 * * * Quarter 1, 2022 * * * Quarter 2, 2022 * * * Quarter 3, 2022 * * * Quarter 4, 2022 * * * CARBON DISULFIDE * * * Quarter 4, 2010 * * * Quarter 2, 2017 * * * CHEMICAL OXYGEN DEMAND * * * Quarter 1, 2003 * * * Quarter 3, 2003 * * * *					*				+
Quarter 3, 2020				1	*	1	1	-	₩
Quarter 4, 2020			-	<u> </u>		<u> </u>		├	₩
Quarter 1, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 2, 2022 Quarter 3, 2022 Quarter 3, 2022 Quarter 4, 2022 Quarter 4, 2022 Quarter 4, 2020 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 2, 2003 Quarter 3, 2003 * * * Quarter 3, 2003				-	*	-	<u> </u>		<u> </u>
Quarter 2, 2021 Quarter 3, 2021 Quarter 4, 2021 Quarter 1, 2022 Quarter 4, 2020 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 2, 2017 CHEMICAL OXYGEN DEMAND Quarter 2, 2003 Quarter 3, 2003 * * * * * * * * * * * * *				<u> </u>	*	<u> </u>		<u> </u>	—
Quarter 3, 2021					*			<u> </u>	<u> </u>
Quarter 4, 2021					*				
Quarter 1, 2022					*				
Quarter 2, 2022 * * Quarter 3, 2022 * * Quarter 4, 2022 * * CARBON DISULFIDE Quarter 4, 2010 Quarter 1, 2011 * * Quarter 2, 2017 * * CHEMICAL OXYGEN DEMAND * * Quarter 1, 2003 * * Quarter 3, 2003 * * * * * * Quarter 3, 2003 * *					*				
Quarter 3, 2022 * * Quarter 4, 2022 * * CARBON DISULFIDE * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2017 * * CHEMICAL OXYGEN DEMAND * * Quarter 1, 2003 * * Quarter 2, 2003 * * Quarter 3, 2003 * *					*				
Quarter 4, 2022 * * CARBON DISULFIDE * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2017 * * CHEMICAL OXYGEN DEMAND * Quarter 1, 2003 * Quarter 2, 2003 * Quarter 3, 2003 * *					*				
Quarter 4, 2022 * * CARBON DISULFIDE * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2017 * * CHEMICAL OXYGEN DEMAND * * Quarter 1, 2003 * * Quarter 2, 2003 * * Quarter 3, 2003 * *				1	*	1		t	t
CARBON DISULFIDE # Quarter 4, 2010 * Quarter 1, 2011 * Quarter 2, 2017 * CHEMICAL OXYGEN DEMAND * Quarter 1, 2003 * Quarter 2, 2003 * Quarter 3, 2003 *				1	*	1		 	t
Quarter 4, 2010 * Quarter 1, 2011 * Quarter 2, 2017 * CHEMICAL OXYGEN DEMAND * Quarter 1, 2003 * Quarter 2, 2003 * Quarter 3, 2003 *									
Quarter 1, 2011 * Quarter 2, 2017 * CHEMICAL OXYGEN DEMAND * Quarter 1, 2003 * Quarter 2, 2003 * Quarter 3, 2003 *					_				+-
Quarter 2, 2017 * * CHEMICAL OXYGEN DEMAND Quarter 1, 2003 * Quarter 2, 2003 * Quarter 3, 2003 *	_		-	1 -	₩	1 -	*	 	┼
CHEMICAL OXYGEN DEMAND Quarter 1, 2003 Quarter 1, 2003 * Quarter 2, 2003 * Quarter 3, 2003 *	-		-	+	*	+	•	₩	₩
Quarter 1, 2003 * Quarter 2, 2003 * Quarter 3, 2003 *				_		_	_		₩
Quarter 2, 2003 * Quarter 3, 2003 * * *									-
Quarter 3, 2003 * * *	-		<u> </u>	_	₩	_	1	₩	₩
	-		<u> </u>	_	₩	_	1	₩	₩
Charter 4, 2002			<u> </u>	<u> </u>	₩	<u> </u>	1	Щ	₩
	_		<u> </u>	_	₩	_	1	Щ	₩
Quarter 1, 2004 * *	_		<u> </u>	_	₩	_	1	Щ	₩
Quarter 4, 2004 *				1	Ь.	1		<u> </u>	<u> </u>
Quarter 1, 2005 *					$oldsymbol{ol}}}}}}}}}}}}}}}}$				
Quarter 2, 2005 *	\perp		L				L^{-}	L^{-}	
Quarter 3, 2005 * * * *					T		*		
Quarter 4, 2005 * * *									
Quarter 1, 2006 *	1		Ī	1	1	1	T		
Quarter 2, 2006 *			t	1	t	1	t	†	T
Quarter 3, 2006 *	-		1	+	+	+	1	 	+
Quarter 4, 2006			*	+	+-	+	+	\vdash	+
			<u> </u>	+-	+	+-	+-	 	+-
			_	1	₩	1	1	₩	₩
Quarter 2, 2007 *				1	₩	1	<u> </u>	₩	₩
Quarter 3, 2007 *				<u> </u>		<u> </u>	1	<u> </u>	<u> </u>
Quarter 4, 2007 *					Ь.			<u> </u>	<u> </u>
Quarter 1, 2008 *			L	$oldsymbol{ol}}}}}}}}}}}}}}$	$oldsymbol{ol}}}}}}}}}}}}}} $	$oldsymbol{ol}}}}}}}}}}}}}}$	L	L	$oldsymbol{ol}}}}}}}}}}}}}} $
Quarter 2, 2008 *									
			L	1					

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	1		UCRS	S						1	URG	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHEMICAL OXYGEN DEMAN	_																						
Quarter 3, 2008	*	<u> </u>		<u> </u>																			
Quarter 4, 2008	*	<u> </u>		<u> </u>																			
Quarter 1, 2009	*	<u> </u>		<u> </u>																			<u> </u>
Quarter 2, 2009	*	<u> </u>	<u> </u>	<u> </u>									Ш	<u> </u>						*	<u> </u>		<u> </u>
Quarter 3, 2009	*	<u> </u>		<u> </u>																			<u> </u>
Quarter 4, 2009	*	<u> </u>	<u> </u>	<u> </u>									ш	<u> </u>	Ш					<u> </u>	<u> </u>		<u> </u>
Quarter 1, 2010	*	<u> </u>	—	<u> </u>									ш	-		-				-	-		<u> </u>
Quarter 2, 2010	*	<u> </u>	—	<u> </u>									ш	-		-				-	-		<u> </u>
Quarter 3, 2010	*	<u> </u>		₩																		<u> </u>	-
Quarter 4, 2010	*	<u> </u>	1	<u> </u>									\vdash	-	<u> </u>	\vdash				-	-		
Quarter 3, 2011	*	<u> </u>	1	<u> </u>									\vdash	-	<u> </u>	\vdash				-	-		
Quarter 4, 2011		<u> </u>	<u> </u>	<u> </u>										-						-	-	<u> </u>	<u> </u>
Quarter 1, 2012	*	<u> </u>	1	<u> </u>									\vdash	-	<u> </u>	\vdash				-	-		
Quarter 1, 2013		₩		₩																		<u> </u>	-
Quarter 3, 2013	*	₽	₩	₩	igspace				- NE				- VE	⊢	igspace	Щ	\vdash	<u>ж</u>		⊢	⊢	<u> </u>	\vdash
Quarter 3, 2014	*	₩	₩	₩	\vdash	-	طو		*	<u> </u>	<u> </u>	<u> </u>	*	₩	\vdash	Щ	\vdash	*		₩	<u> </u>	<u> </u>	\vdash
Quarter 4, 2014	-	₩	₩	<u> </u>	\vdash		*		<u> </u>	<u> </u>	<u> </u>	<u> </u>	igspace	<u> </u>	\vdash	<u>w</u>	\vdash			<u> </u>	<u> </u>	<u> </u>	₩
Quarter 2, 2015	<u> </u>	<u> </u>	<u> </u>	Щ	Щ	<u> </u>	ш	<u> </u>	<u></u>	*	\vdash			<u> </u>	<u> </u>	\vdash	Щ						
Quarter 3, 2015	-	₩	- JL	₩	\vdash				<u> </u>	<u> </u>	412		igspace	₩	*	$\vdash \vdash$	$ldsymbol{\sqcup}$			₩	₩	<u> </u>	₩
Quarter 3, 2016		₩	*	$ldsymbol{f eta}$	Щ						*		ш	<u> </u>	Щ	Щ	140			<u> </u>	<u> </u>	└	$ldsymbol{f eta}$
Quarter 4, 2016	<u> </u>	₩	<u> </u>	₩	Щ	<u> </u>	4-						igspace	<u> </u>	Щ	Щ	*			<u> </u>	<u> </u>	└	<u> </u>
Quarter 2, 2017	ļ.,.	Щ	<u> </u>	<u> </u>			*						Ш	<u> </u>	,1.	Щ				<u> </u>	<u> </u>	igsqcurl	<u> </u>
Quarter 3, 2017	*	Щ	Щ.	<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>	igsqcut	<u> </u>	*	Щ				<u> </u>	<u> </u>	<u> </u>	Щ
Quarter 4, 2017		<u> </u>		<u> </u>		*																	<u> </u>
Quarter 2, 2018		<u> </u>		<u> </u>										*								*	
Quarter 3, 2018		<u> </u>		<u> </u>								*		<u> </u>						<u> </u>	<u> </u>		<u> </u>
Quarter 4, 2018		<u> </u>		<u> </u>										<u> </u>						<u> </u>	<u> </u>		*
Quarter 2, 2019		<u> </u>		<u> </u>	*							*		*					*				<u> </u>
Quarter 3, 2019		<u> </u>		<u></u>								*	*	<u> </u>					*	<u> </u>	<u> </u>	*	*
Quarter 4, 2019	*	<u> </u>		*				*			*	*				*							<u> </u>
Quarter 1, 2020		<u> </u>		<u> </u>	*				*												*		
Quarter 2, 2020		<u> </u>		<u> </u>											*								
Quarter 4, 2020		<u> </u>		<u> </u>												*							
Quarter 1, 2021		<u> </u>		<u> </u>								*											
Quarter 2, 2021		<u> </u>		<u> </u>		*									*								
Quarter 4, 2021	*	<u> </u>		<u> </u>																			
Quarter 1, 2022		<u> </u>		<u> </u>		*		*	*					*	*					*	*		
Quarter 2, 2022		<u> </u>		<u> </u>		*								*									
Quarter 4, 2022	*	<u> </u>		<u> </u>																			
CHLORIDE																							
Quarter 1, 2003		<u> </u>	*	<u> </u>																			
Quarter 4, 2003		Щ	*	<u> </u>									$ldsymbol{ldsymbol{ldsymbol{eta}}}$										Щ
Quarter 3, 2003		Щ	*	<u> </u>									Ш	<u> </u>	igsquare	Ш				<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2003	<u> </u>	<u> </u>	*	Щ	Щ	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ш	<u> </u>	Щ	Щ	\vdash			<u> </u>	<u> </u>	\vdash	Щ
Quarter 1, 2004	<u> </u>	<u> </u>	*	Щ	Щ	<u> </u>	<u> </u>					<u> </u>	ш	<u> </u>	Щ	Щ	\vdash			<u> </u>	<u> </u>	\vdash	Щ
Quarter 2, 2004	1—	<u> </u>	*	₩					_	_	_		igspace	-		Н	\vdash			-	-	<u> </u>	<u> </u>
Quarter 3, 2004	-	₩	*	\vdash					<u> </u>	<u> </u>	<u> </u>			-		Н	H			-	-	\vdash	
Quarter 4, 2004	1	₩	*	\vdash					<u> </u>	<u> </u>	<u> </u>	<u> </u>	\vdash	 		Н	H			 	 	\vdash	\vdash
Quarter 1, 2005	1	₩	*	\vdash	\vdash				<u> </u>	<u> </u>	<u> </u>	<u> </u>	\vdash	 	\vdash	\vdash	\vdash			 	 	\vdash	\vdash
Quarter 2, 2005	1—	<u> </u>	*	₩					_	_	_		igspace	-		Н	\vdash			-	-	<u> </u>	<u> </u>
Quarter 3, 2005	-	₩	*	₩	₽₽	<u> </u>	-	-	<u> </u>	<u> </u>	<u> </u>		\vdash	-	\vdash	$\vdash \vdash$	\vdash		_	-	-	┝	₩
Quarter 1, 2005	-	₩	*	₩	₽₽	<u> </u>	-	-	<u> </u>	<u> </u>	<u> </u>		\vdash	-	\vdash	$\vdash \vdash$	\vdash	JŁ.	_	-	-	┝	₩
Quarter 1, 2006	-	₩	, ME	₩	₽₽	<u> </u>	-	-	<u> </u>	<u> </u>	<u> </u>		\vdash	-	\vdash	$\vdash \vdash$	\vdash	*	_	-	-	┝	₩
Quarter 2, 2006		₩	*	₩	ш						<u> </u>		igspace	<u> </u>	ш	Щ	\vdash			<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 3, 2006		₩		₩	ш				<u> </u>	<u> </u>	<u> </u>		igspace	<u> </u>	ш	Щ	\vdash			<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2006		₩	*	₩	ш				<u> </u>	<u> </u>	<u> </u>		igspace	<u> </u>	ш	Щ	\vdash			<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 1, 2007	-	₩	*	—	\vdash				<u> </u>	<u> </u>	<u> </u>		igspace	₩	\vdash	$\vdash \vdash$	$ldsymbol{\sqcup}$			₩	₩	<u> </u>	₩
Quarter 2, 2007	-	₩	*	₩	\vdash				<u> </u>	<u> </u>	<u> </u>		igspace	₩	\vdash	$\vdash \vdash$	$ldsymbol{\sqcup}$			₩	₩	<u> </u>	₩
Quarter 3, 2007	<u> </u>	₩	*	₩	Щ	<u> </u>	<u> </u>	<u> </u>				<u> </u>	ш	<u> </u>	Щ	Щ	<u> </u>			<u> </u>	<u> </u>	└	Щ
Quarter 4, 2007		Щ	*	<u> </u>									Ш	<u> </u>	igsquare	Ш				<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 1, 2008		Щ	*	Щ	Ш				<u> </u>	<u> </u>	<u> </u>		igsqcut	<u> </u>	Ш	Щ				<u> </u>	<u> </u>	<u> </u>	Щ
Quarter 2, 2008		Щ	*	Щ	Ш				<u> </u>	<u> </u>	<u> </u>		igsqcut	<u> </u>	Ш	Щ				<u> </u>	<u> </u>	<u> </u>	Щ
Quarter 3, 2008	I	<u> </u>	*	<u></u>									Ш	<u> </u>	Ш					<u> </u>	<u> </u>		Ц_
Quarter 4, 2008			*																				╙

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	Г	-	UCRS	S						1	JRG	4]	LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE			_																				
Quarter 1, 2009			*																			<u> </u>	<u> </u>
Quarter 2, 2009			*																				<u> </u>
Quarter 3, 2009			*																			<u> </u>	<u> </u>
Quarter 4, 2009			*																			├	<u> </u>
Quarter 1, 2010			*																			-	—
Quarter 2, 2010			*																				
Quarter 3, 2010 Quarter 4, 2010			*																			-	
Quarter 4, 2010 Quarter 2, 2011		-	*		-			-															-
Quarter 3, 2011			*																			-	├
Quarter 4, 2011			*																			-	-
Quarter 3, 2012			*																			-	-
Quarter 3, 2012			*																				-
Quarter 4, 2013			*																			-	
Quarter 4, 2014			*																			-	
Quarter 2, 2019			_																		*	-	
CHROMIUM																							
Quarter 4, 2002																							
Quarter 1, 2003								Ī														•	\vdash
Quarter 2, 2003																							T
Quarter 3, 2009																							
Quarter 1, 2019						•																	
COBALT																							
Quarter 3, 2003							*																
CONDUCTIVITY																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*			<u> </u>	
Quarter 3, 2003			*					*		*									*			<u> </u>	<u> </u>
Quarter 4, 2003			*							*									*				
Quarter 1, 2004										*									*			-	
Quarter 2, 2004 Quarter 3, 2004										*									*			-	├
Quarter 4, 2004			*							*									*				-
Quarter 1, 2005			-4-							*		*							*				-
Quarter 2, 2005										-		*							*			-	
Quarter 3, 2005																			*				
Quarter 4, 2005										*		*							*			1	
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007			<u> </u>	<u> </u>			<u> </u>		<u> </u>			L.	<u> </u>		<u> </u>		*		*				<u> </u>
Quarter 4, 2007	<u> </u>			*	<u> </u>		<u> </u>	Щ	*		*			<u> </u>	<u> </u>								
Quarter 1, 2008	_											*							*				<u> </u>
Quarter 2, 2008 Quarter 3, 2008	\vdash		-	-			-		-			*	-		-		*		*			-	
Quarter 3, 2008 Quarter 4, 2008	\vdash											*					*		*				\vdash
Quarter 1, 2009	\vdash		-	-			-		-			*	-		<u> </u>				*				
Quarter 2, 2009	┢											*							*			1	\vdash
Quarter 3, 2009	Н											*							*				\vdash
Quarter 4, 2009												*					*		*			\vdash	\vdash
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*							*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012			<u> </u>	<u> </u>			<u> </u>		<u> </u>		*	*	<u> </u>		<u> </u>				*				<u> </u>
Quarter 2, 2012			<u> </u>	<u> </u>			<u> </u>		<u> </u>			*	<u> </u>						*			<u> </u>	<u> </u>
Quarter 3, 2012	_		<u> </u>	_		<u> </u>	_		<u> </u>			*	<u> </u>		<u> </u>	Щ			*			Ц	Щ

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015	1											*							*				
Quarter 4, 2015												*							*				t
Quarter 1, 2016												*							*				t
Quarter 2, 2016																			*				t
Quarter 3, 2016												*							*				
Quarter 4, 2016																			*				
Quarter 1, 2017	1	1	 		 			 					 						*	 		 	\vdash
Quarter 2, 2017	1		1																*				\vdash
Quarter 3, 2017	1		1																*				\vdash
Quarter 4, 2017	1																		*				\vdash
Quarter 1, 2018	1		-	-			-												*				\vdash
Quarter 2, 2018	1	1	1		_			_	-				_	-	-				*	_		_	\vdash
Quarter 3, 2018	1																		*				\vdash
Quarter 4, 2018	1																		*				
Quarter 1, 2019	1																		*				
Quarter 2, 2019	1		-																*				-
Quarter 3, 2019	1		-																*				-
Quarter 4, 2019	1		-									*							*				-
Quarter 1, 2020	1											*							*				-
Quarter 2, 2020	1		-									*							*	*			-
	1											*							*	т-			-
Quarter 3, 2020	<u> </u>		-									*							*				-
Quarter 4, 2020 Quarter 1, 2021	<u> </u>		-									*							*				-
	<u> </u>		-									*							*				-
Quarter 2, 2021	1	-	-		-			-				*	-						*	-		-	-
Quarter 3, 2021	1	-	-		-			-				不	-						*	-		-	-
Quarter 4, 2021			<u> </u>									*							*				<u> </u>
Quarter 1, 2022			<u> </u>																				<u> </u>
Quarter 2, 2022			<u> </u>									*					*		*				<u> </u>
Quarter 3, 2022												*						46					
Quarter 4, 2022												*					*	*	*				
DISSOLVED OXYGEN			140					46															
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS										-11-									-11				<u> </u>
Quarter 4, 2002	ļ		L.,							*									*				<u> </u>
Quarter 1, 2003	<u> </u>		*							*									*				lacksquare
Quarter 2, 2003	<u> </u>		*				,1.	,		*		,1.							*				lacksquare
Quarter 3, 2003			*				*	*	<u> </u>	*		*							*				Щ
Quarter 4, 2003			*				*		*	*		*							*				Щ
Quarter 1, 2004			*									*							*				Щ
Quarter 2, 2004			<u> </u>							*		*							*				<u></u>
Quarter 3, 2004			<u> </u>							*		*							*				<u></u>
Quarter 4, 2004	1									*		*							*				<u> </u>
Quarter 1, 2005									\Box			*		\Box	\Box				*				$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}$
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006	Ī																*	*	*	*	*		
Quarter 2, 2006	Ī		t														*	*	*	*	*		Г
Quarter 3, 2006	t																*	*	*	*	*		\vdash
Quarter 4, 2006	1		1							*		*					*		*				\vdash
Quarter 1, 2007	1		 																*				\vdash
Quarter 1, 2007 Quarter 2, 2007	1	-	 	_	-	-	_	-		*		*	-						*	-	_	-	\vdash
	1	-	1	<u> </u>	-		<u> </u>	-	-	*		*	-	-	-				*	-		-	₩
M mortor 4 7001/	1	1			<u> </u>					*	<u> </u>		<u> </u>							<u> </u>		<u> </u>	<u> </u>
Quarter 3, 2007	1																						
Quarter 3, 2007 Quarter 4, 2007						ш						*					ш		*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S							URG	A								LRGA	Λ		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*			<u> </u>	
Quarter 1, 2009												*	L.						*			<u> </u>	
Quarter 2, 2009												*	*						*			<u> </u>	
Quarter 3, 2009												*	*						*			-	
Quarter 4, 2009												*	*						*			-	
Quarter 1, 2010 Quarter 2, 2010										*		*	*						*			-	
Quarter 3, 2010										*		*	т.						*			-	
Quarter 4, 2010										*		*							*			-	
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*	*						*				
Quarter 2, 2014												*							*				
Quarter 3, 2014									*			*	*						*				
Quarter 4, 2014												*	*						*			<u> </u>	
Quarter 1, 2015												*							*			<u> </u>	
Quarter 2, 2015												*							*			<u> </u>	
Quarter 3, 2015									46			*						44	*			₩	
Quarter 4, 2015									*			*						*	*			₩	
Quarter 1, 2016												*	- W	- ME					*			-	
Quarter 2, 2016 Quarter 3, 2016											-	*	*	*					*	-			
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*			-	
Quarter 2, 2017												*							*				
Quarter 3, 2017												*		*	*				*			-	
Quarter 4, 2017												*							*			1	
Quarter 1, 2018												*							*				
Quarter 2, 2018												*							*				
Quarter 3, 2018												*		*					*			1	
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*	*						*				П
Quarter 4, 2019												*							*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*	*						*				
Quarter 3, 2020										*		*	*				*		*				
Quarter 4, 2020												*	*						*				لط
Quarter 1, 2021												*							*				
Quarter 2, 2021	<u> </u>	<u> </u>		<u> </u>			<u> </u>			<u> </u>		*	*						*			<u> </u>	Ш
Quarter 3, 2021		<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>		<u> </u>		*	*						*			<u> </u>	Щ
Quarter 4, 2021												*	*						*			<u> </u>	\sqcup
Quarter 1, 2022												*	*						*			<u> </u>	\sqcup
Quarter 2, 2022	!	<u> </u>	<u> </u>	<u> </u>		-	<u> </u>	<u> </u>		<u> </u>		*	*						*			<u> </u>	Щ
Quarter 4, 2022	<u> </u>	<u> </u>		<u> </u>	_	<u> </u>	<u> </u>		_	<u> </u>	-	*	-	-	_		<u> </u>	_	*	-	_	-	$\vdash \vdash \mid$
Quarter 4, 2022												不							不				
Opertor 4, 2002																					*		
Quarter 4, 2002 Quarter 2, 2003	 	_		_		*	_			_	-	_	-	-			_		_	-	*	 	₩
		_	_	_		*	_	_				_	*										
Quarter 3, 2003 Quarter 1, 2004	 	_		*		-	_			_	-	_	Ψ.	-			_		_	-		 	\vdash
Quarter 1, 2004 Quarter 3, 2010	 	-	-	_			-	-		 	-	-					-			-	*	 	
Quarter 2, 2013	 	-	-	-			-	-		*		-									-		\vdash
Vaunter 2, 2013	_		_			_		_															

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	1		UCRS	S						1	URG	A							1	LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												ļ
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											<u> </u>
Quarter 2, 2005											*	*											ļ
Quarter 1, 2006							*																<u> </u>
Quarter 2, 2006												*											
Quarter 3, 2006											*	-1-											
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												ļ
Quarter 2, 2008												*											ļ
Quarter 3, 2008												*											<u> </u>
MAGNESIUM																							
Quarter 1, 2003			*									L.,											ļ
Quarter 2, 2003			*									*							*				ļ
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008	ĺ											*							*				Г
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010	1											*							*				-
Quarter 2, 2010	t											*	*						*				\vdash
Quarter 3, 2010	1											*							*				\vdash
Quarter 4, 2010	t											*							*				\vdash
Quarter 1, 2011	t											*							*				H
Quarter 2, 2011	t											*	*						*				\vdash
Quarter 3, 2011	t											*							*				H
Quarter 4, 2011	1											*					\vdash		*				\vdash
Quarter 1, 2012	1											*					H		*				\vdash
Quarter 2, 2012	1											*					Н		*				\vdash
Quarter 3, 2012	1	-	-		_	_		_	_	_	_	*	*	-			H		*				1
	1	-	-		_	_		_	_	_	_	*	*	-			Н		*				₽
Quarter 4, 2012	1-	-	-									*	*	-					*				<u> </u>
Quarter 1, 2013	1																						<u> </u>
Quarter 2, 2013	1								<u> </u>	<u> </u>	<u> </u>	*							*				<u> </u>
Quarter 3, 2013	1											*							*				<u> </u>
Quarter 4, 2013	<u> </u>				<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	*						, I,	*				<u> </u>
Quarter 1, 2014																		*	*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						1	URG	A								LRGA	Λ.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 2, 2014												*	*						*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*	*						*				<u> </u>
Quarter 1, 2015												*	*						*				<u> </u>
Quarter 2, 2015												*							*				<u> </u>
Quarter 3, 2015												*							*				
Quarter 4, 2015 Quarter 1, 2016												*							*				
Quarter 1, 2016 Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*		т					*				-
Quarter 4, 2016												*		*					*				-
Quarter 1, 2017												*		*					*				
Quarter 2, 2017												*											
Quarter 3, 2017												*		*									
Quarter 4, 2017												*							*				
Quarter 1, 2018												*	*						*				
Quarter 2, 2018												*											
Quarter 3, 2018												*											
Quarter 4, 2018												*	*	*					*				
Quarter 1, 2019												*		*					*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*	*						*				
Quarter 4, 2019												*	*						*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*	*						*				
Quarter 3, 2020												*	*						*				
Quarter 4, 2020												*	*						*				
Quarter 1, 2021												*	*						*				
Quarter 2, 2021												*	*						*				<u> </u>
Quarter 3, 2021												*	*						*				<u> </u>
Quarter 4, 2021												*	*						*				<u> </u>
Quarter 1, 2022												*	*						*				<u> </u>
Quarter 2, 2022												*	*						*				Ь—
Quarter 3, 2022												*	*						*				<u> </u>
Quarter 4, 2022												*	*						*				
MANGANESE																					*		
Quarter 4, 2002							*	*													*		
Quarter 3, 2003 Quarter 4, 2003							*	*															
Quarter 1, 2004							*	**															
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
Quarter 1, 2022	*																						-
OXIDATION-REDUCTION PO		TAI.																					
Quarter 4, 2003		1	*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				$oxedsymbol{oxedsymbol{oxed}}$
Quarter 1, 2008	ــــــــــــــــــــــــــــــــــــــ		*	لبل		*			*										لبا				
Quarter 2, 2008	*		*	*		*							*				*		*	*			Ш
Quarter 3, 2008			*	*		*	şt.	,u.	,u.				*				*		*	*			<u> </u>
Quarter 4, 2008	<u> </u>	<u> </u>	*	*	<u> </u>	*	*	*	*	_		_	*			Щ	*	*		*		<u> </u>	Щ

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		_	UCRS	3						-	URGA	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
OXIDATION-REDUCTION PO	TEN T	ΓIAL																					
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		<u> </u>
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*	*		*			*		*		*	*	*	*			<u>L</u>
Quarter 4, 2011	*		*	*			*				*						*	*		*			Щ.
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		Щ.
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		<u> </u>
Quarter 3, 2012	*		*	-1-		*	*	*	*	*			*	*			*	*	*	*	*		₽
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		₽
Quarter 1, 2013				*		*		*	*		*		*	*			-1-	*		*	*		₽
Quarter 2, 2013	*		JL.	*		ىد	*	٠	*	طو	*		*	<u> </u>			*	*	*	*	*		\vdash
Quarter 3, 2013	*		*	*		*	*	*	*	*	ىد	ىد	*	ىد		Щ	*	*	*	*	طو		₩
Quarter 4, 2013	ىد		*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		₩
Quarter 1, 2014	*	-	*	*		*	*		*	_	*	*	*	*		Н	*	*	*	*	*	_	₩
Quarter 2, 2014	*	-	*	*		*	木		*	_	*	_	*			Н	*	*	*	*	*	_	₩
Quarter 4, 2014	*		*	*		*	_	_			*		*	_			*	*	*	*	*		₩
Quarter 4, 2014 Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*	т.	т.		*	-	т.	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*	-4-	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*	-	*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*		*	*		*			*	-	*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*		_	*	*	-					*		-	*	_	*	_	*	*
Quarter 2, 2017	*		*	*	*												*			*	*		1
Quarter 3, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 1, 2018	*		*	*	*	*												*	*	*	*		*
Quarter 2, 2018	*		*	*	*												*	*	*	*	*	*	*
Quarter 3, 2018	*		*	*	*	*	*	*	*								*	*	*	*	*	*	*
Quarter 4, 2018	*		*	*	*	*				*			*		*		*	*	*	*	*		*
Quarter 1, 2019	*		*	*	*	*	*	*			*						*	*	*	*	*	*	*
Quarter 2, 2019	*		*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2019	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2019	*		*	*	*				*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2020	*		*	*	*	*	*	*	*				*			*	*	*	*	*	*	*	
Quarter 2, 2020	*		*	*	*	*	*	*	*	*			*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2020	*		*	*	*	*											*	*	*	*	*	*	*
Quarter 4, 2020	*		*	*	*	*		*						*			*	*	*	*	*	*	匚
Quarter 1, 2021	*		*	*		*	*	*	*	*			*		*		*	*	*	*		*	*
Quarter 2, 2021	*		*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*
Quarter 3, 2021	*		*	*	*	*	*	*	*				*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2021	*		*	*	*	*	*	*	*				ـــــــــــــــــــــــــــــــــــــــ	ـــــــــــــــــــــــــــــــــــــــ	*		*	*	*	*	*	*	*
Quarter 1, 2022	*		*	*	*	*				*			*	*	*	Ш	*	*	*	*	*	*	*
Quarter 2, 2022	*		*	*	*	L.	*	L_	*	*		*	*	L_	*	*	*	*	*	*	*	*	*
Quarter 3, 2022	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2022	*		*	*	*	*	*	*			*	*					*	*	*		*	*	*
PCB-1016							10	, JL	ų.		ų.							ų.					\blacksquare
Quarter 4, 2003						_	*	*	*		*					Щ	Ш	*	<u> </u>	<u> </u>			₩
Quarter 3, 2004						_	10				*					Щ			<u> </u>	<u> </u>			₩
Quarter 1, 2005						_	*				*					Н			_	_			₩
Quarter 1, 2006											*												₩
Quarter 2, 2006	<u> </u>	-	_			<u> </u>			_	_	*	_				Ш	Ш		<u> </u>	<u> </u>		_	₩
Quarter 4, 2006											*	<u> </u>											₩
Quarter 1, 2007	<u> </u>	-	_			<u> </u>			_	_	*	*				Ш	Ш		<u> </u>	<u> </u>		_	₩
Quarter 2, 2007	<u> </u>	-	_			<u> </u>			_	_		*				Н	$\vdash \vdash$		<u> </u>	<u> </u>		_	₩
Quarter 3, 2007		-	_			<u> </u>			_	_	*	*				Ш	Ш		<u> </u>	<u> </u>		_	₩
Overton 2 2009				1			ı	ı	i	1	*	*	ı	i		1	i l		i	i	l		1
Quarter 2, 2008											- 14												\Box
Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008											*												

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient S D D D U S S S S D D D U U S D<	Groundwater Flow System	П		UCRS	S						1	JRGA	A]	LRGA	Α.		
Monitoring Well Monitoring		S		_	_	U	S	S	S	S			_	D	D	U	U	S	D				U	U
CR-1016																								
Quarter 1,2009																								
Ounter 2, 2009 Ounter 4, 2009 Ounter 4, 2010 Ounter 2, 2006 Ounter 2, 2007 Ounter 2, 2006 Ounter 2, 2007 Ounter 2, 2006 Ounter												*												
Country 2, 2009 Country 2, 2009 Country 2, 2010 Country 2, 2008 Country 2, 2008 Country 2, 2008 Country 2, 2009 Country 2, 200		-																						\vdash
Coarter 4, 2009 Coarter 2, 2010 Coarter 2, 2008 Coarter 2, 2008 Coarter 2, 2008 Coarter 2, 2008 Coarter 2, 2009 Coarter 2, 200		-																						\vdash
Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2000 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 4,		-																						\vdash
Outret 7, 2010 Outret 2, 2008 PCB-1228 Outret 2, 2008 Outret 2, 2009 Outret 2, 2001 Outret 2, 2009 Outret 2, 20																								\vdash
Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2000 Quarter 4,																								ш
Outret 4, 2010 Outret 7, 2011 Outret 7, 2003 Outret 7, 2004 Outret 7, 2006 Outret 7, 2006																								ш
CEB-1232																								ш
Ounter 1, 2011 PCB-1248 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2001 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 20	Quarter 4, 2010											*												
PCB-1288	PCB-1232																							
Ounter 2, 2008 PCS-1266 Quarter 2, 2006 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2004 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2001 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 5, 2008 Quarter 6, 200	Quarter 1, 2011											*												1
Custre 7, 2006	PCB-1248																							
Owarter 2, 2006 PH Owarter 4, 2002 Owarter 2, 2003 Owarter 2, 2003 Owarter 3, 2003 Owarter 3, 2003 Owarter 4, 2003 Owarter 3, 2004 Owarter 2, 2004 Owarter 2, 2004 Owarter 2, 2004 Owarter 3, 2004 Owarter 3, 2004 Owarter 3, 2004 Owarter 3, 2004 Owarter 4, 2004 Owarter 4, 2004 Owarter 4, 2005 Owarter 3, 2006 Owarter 4, 2007 Owarter 3, 2006 Owarter 4, 2007 Owarter 3, 2006 Owarter 3, 2007 Owarter 4, 2007 Owarter 4, 2007 Owarter 4, 2007 Owarter 4, 2007 Owarter 3, 2006 Owarter 3, 2001 Owarter 4, 2007 Owarter 4, 2007 Owarter 4, 2007 Owarter 3, 2007 Owarter 4, 2008 Owarter 3, 2001 Owarter 3, 2004 Owarter 3, 2004 Owarter 4, 2006 Owarter 3, 2006 Owarter 4, 2006 Owarter 3, 2006 Owarter 4, 2006 Owarter 3, 2006 Owarter 4, 2006 Owarter 3, 2006 Owarter 3, 2006 Owarter 3, 2006 Owarter 4, 2006 Owarter 3, 2006 Owa	Quarter 2, 2008												*											
Owarter 2, 2006 PH Owarter 4, 2002 Owarter 2, 2003 Owarter 2, 2003 Owarter 3, 2003 Owarter 3, 2003 Owarter 4, 2003 Owarter 3, 2004 Owarter 2, 2004 Owarter 2, 2004 Owarter 2, 2004 Owarter 3, 2004 Owarter 3, 2004 Owarter 3, 2004 Owarter 3, 2004 Owarter 4, 2004 Owarter 4, 2004 Owarter 4, 2005 Owarter 3, 2006 Owarter 4, 2007 Owarter 3, 2006 Owarter 4, 2007 Owarter 3, 2006 Owarter 3, 2007 Owarter 4, 2007 Owarter 4, 2007 Owarter 4, 2007 Owarter 4, 2007 Owarter 3, 2006 Owarter 3, 2001 Owarter 4, 2007 Owarter 4, 2007 Owarter 4, 2007 Owarter 3, 2007 Owarter 4, 2008 Owarter 3, 2001 Owarter 3, 2004 Owarter 3, 2004 Owarter 4, 2006 Owarter 3, 2006 Owarter 4, 2006 Owarter 3, 2006 Owarter 4, 2006 Owarter 3, 2006 Owarter 4, 2006 Owarter 3, 2006 Owarter 3, 2006 Owarter 3, 2006 Owarter 4, 2006 Owarter 3, 2006 Owa	PCB-1260																							
Outer 4, 2002 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2016 POTASSIMIN Quarter 3, 2005 Quarter 2, 2016 POTASSIMIN Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2006 Quarter 4, 2014 Quarter 2, 2005 Quarter 3, 2006 Q																			*					
Quarter 4, 2002 Quarter 2, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2008 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2008 Quarter 1, 2012 Quarter 4, 2008 Quarter 3, 2011 Quarter 4, 2008 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 4, 2008 Quarter 3, 2014 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 200																								
Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2007 Quarter 3, 2007 Quarter 1, 2009 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 200	•																	*						
Quarter 3, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2016 Quarter 3, 2010 Quarter 4, 2016 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2010 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 200		 		 			-						 							 				\vdash
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2007 Quarter 4, 2008 Quarter 1, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2001 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 200		1		-									-							-				\vdash
Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2014 Quarter 4, 2008 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2006 Quarter 3, 2011 Quarter 4, 2008 Quarter 2, 2016 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2014 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 5, 2005 Quarter 6, 200	· /	 						*																\vdash
Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2001 Quarter 2, 2011 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2002 Quarter 4, 2005 Quarter 3, 2004 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2006 Quarter 5, 2005 Quarter 6, 200		1																						\vdash
Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2019 Quarter 1, 2010 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2006 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 5, 2018 Quarter 6, 2018 Quarter 6, 2018 Quarter 6, 2018 Quarter 7, 2018 Quarter 6, 2018 Quarter 6, 2018 Quarter 7, 2018 Quarter 6, 2018 Quarter 7, 2018 Quarter 7, 2018 Quarter 8, 2018 Quarter 8, 2018 Quarter 9, 2018 Quarter 9, 2018 Quarter 1, 2018 Quarter 2, 2016 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2019 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2019 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2019 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 5, 2018 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 8, 2009 Quarter 9, 200		₩	 	-	-	-		*		-			-		-	\vdash				-	-		-	$\vdash\vdash$
Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2001 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2016 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2016 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2016 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2016 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2016 Quarter 4, 2006 Quarter 5, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 7, 2006 Quarter 8, 2006 Quarter 9, 200		₩	-																					\vdash
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2011 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 5, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2016 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2006 Quarter 4, 2005 Quarter 5, 2005 Quarter 6, 200		—																						ш
Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2001 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2006 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2001 Quarter 2, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2001 Quarter 2, 2006 Quarter 3, 2012 Quarter 3, 2012 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2012 Quarter 2, 2006 Quarter 3, 2011 Quarter 3, 2014 ** ** ** ** ** ** ** ** **		—	-																			-t-		Щ
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2001 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2001 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2006 Quarter 5, 2013 Quarter 2, 2013 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2014 ** ** ** ** ** ** ** ** **		_																				*		ш
Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2016 POTASSIUM Quarter 2, 2016 POTASSIUM Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2016 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2015 RADIUM-226 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 5, 2015 ** ** ** ** ** ** ** ** **											*													Ш
Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 2, 2012 Quarter 2, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2001 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2010 Quarter 4, 2008 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2006 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2019 Quarter 4, 2009 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2001 Quarter 3, 2011 Quarter 4, 2001 Quarter 3, 2011 Quarter 4, 2001 Quarter 5, 2005 Quarter 6, 2015 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX																								Ш
Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2019 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2008 Quarter 3, 2010 Quarter 4, 2008 Quarter 3, 2013 Quarter 4, 2009 Quarter 3, 2013 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2009 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 5, 2015 ** ** ** ** ** ** ** ** **	Quarter 2, 2006																							
Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 4, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 3, 2012 Quarter 4, 2008 Quarter 3, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2006 Quarter 3, 2014 Quarter 4, 2002 Quarter 2, 2013 Quarter 2, 2006 Quarter 3, 2014 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2014 Quarter 4, 2009 Quarter 3, 2014 Quarter 4, 2009 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2015 ** ** ** ** ** ** ** ** **																								Ш
Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2013 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2009 Quarter 4, 2015 Quarter 4, 2015 ** ** ** ** ** ** ** ** **	Quarter 3, 2007																	*						
Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2016 POTASSIUM Quarter 2, 2006 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2010 Quarter 4, 2008 Quarter 3, 2010 Quarter 4, 2008 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2010 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2000 Quarter 3, 2010 Quarter 4, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2010 Quarter 9, 2010 Quar	Quarter 4, 2007																	*						
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2004 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2009 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2009 Quarter 4, 2014 W W W W W W W W W W W W W	Quarter 4, 2008																	*						
Quarter 2, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2006 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2008 Quarter 3, 2012 Quarter 4, 2008 Quarter 3, 2012 Quarter 4, 2008 Quarter 3, 2013 Quarter 4, 2008 Quarter 3, 2012 Quarter 4, 2008 Quarter 3, 2012 Quarter 1, 2013 Quarter 2, 2005 Quarter 3, 2013 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2013 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2011 Quarter 4, 2000 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2009 Quarter 3, 2014 Quarter 4, 2015 ** ** ** ** ** ** ** ** **	Quarter 1, 2009																	*						
Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2000 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2010 Quarter 2, 2009 Quarter 3, 2010 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2010 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 1, 2000 Quarter 1, 2015 W W W W W W W W W W W W W W W W W W W	Quarter 1, 2011																	*						
Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2006 Quarter 4, 2009 Quarter 3, 2019 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2000 Quarter 4, 2001	Quarter 2, 2011											*												
Quarter 1, 2012												*												
Quarter 1, 2013 *															*									
Quarter 4, 2014											*			*				*						Н
Quarter 2, 2016											-			-				-				*		\vdash
POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2008 Quarter 3, 2012 Quarter 3, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2001 Quar																			*	*				\vdash
Quarter 4, 2002 * * * Quarter 3, 2004 * * * Quarter 2, 2005 * * * Quarter 3, 2005 * * * Quarter 4, 2005 * * * Quarter 2, 2006 * * * Quarter 3, 2006 * * * Quarter 4, 2008 * * * Quarter 3, 2012 * * * Quarter 1, 2013 * * * Quarter 2, 2013 * * * Quarter 3, 2013 * * * RADIUM-226 * * * * Quarter 4, 2002 * * * * Quarter 2, 2004 * * * * Quarter 3, 2014 * * * * Quarter 4, 2014 * * * * Quarter 2, 2015 * * * * *																				-				
Quarter 3, 2004																			*	*				
Quarter 2, 2005																			•					\vdash
Quarter 3, 2005																								\vdash
Quarter 4, 2005		₩																						Н
Quarter 2, 2006		₩		<u> </u>	ļ	ļ							<u> </u>				Ш							ш
Quarter 3, 2006		Ь—																Ш						ш
Quarter 4, 2006	* /	<u> </u>	<u> </u>	<u> </u>			<u> </u>						<u> </u>											ш
Quarter 4, 2008		<u> </u>																						ш
Quarter 3, 2012	-	<u> </u>																						ш
Quarter 1, 2013 * Quarter 2, 2013 * Quarter 3, 2013 * RADIUM-226 * Quarter 4, 2002 * Quarter 2, 2004 * Quarter 2, 2005 * Quarter 1, 2009 * Quarter 3, 2014 * Quarter 4, 2014 * Quarter 2, 2015 *																								لــــا
Quarter 2, 2013 *	Quarter 3, 2012	L^{T}	L	L	L	L	L			L	L		L		L			LT			L	LĪ	L	∟ி
Quarter 3, 2013 *	Quarter 1, 2013																			*				
RADIUM-226 Quarter 4, 2002	Quarter 2, 2013																			*				П
Quarter 4, 2002 * * * * * Quarter 2, 2004 * * * * Quarter 2, 2005 * * * * Quarter 1, 2009 * * * * Quarter 3, 2014 * * * * Quarter 4, 2014 * * * * Quarter 1, 2015 * * * * Quarter 2, 2015 * * * *	Quarter 3, 2013																			*				\Box
Quarter 4, 2002 * * * * * Quarter 2, 2004 * * * * Quarter 2, 2005 * * * * Quarter 1, 2009 * * * * Quarter 3, 2014 * * * * Quarter 4, 2014 * * * * Quarter 1, 2015 * * * * Quarter 2, 2015 * * * *	RADIUM-226																							
Quarter 2, 2005 * * Quarter 1, 2009 * * Quarter 3, 2014 * * * Quarter 4, 2014 * * * Quarter 1, 2015 * * * Quarter 2, 2015 * * *				*										*	*							*		
Quarter 2, 2005 * *	Quarter 2, 2004																			*				П
Quarter 1, 2009 *		l								*														\Box
Quarter 3, 2014 * * * Quarter 4, 2014 * * * Quarter 1, 2015 * * * Quarter 2, 2015 * * *		 		<u> </u>								*	<u> </u>			H		H		<u> </u>				П
Quarter 4, 2014 * * * * Quarter 1, 2015 * * * * Quarter 2, 2015 * * * *		 		 			-			*			*					\vdash		 				\vdash
Quarter 1, 2015 * * * * Quarter 2, 2015 * * * *		 		*			-			Ė		*	Ė						*	 				\vdash
Quarter 2, 2015 * * * * *		 	1					*			*		*					\vdash						\vdash
<u> </u>		1	-				 											\vdash						\vdash
		1						*			*		*						*					$\vdash\vdash$
Value 2, 2012	Quarter 3, 2013			*			_			_	_		_		_			ш		_	_		_	-

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	Ī		UCRS	S						1	URG	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
RADIUM-226																							
Quarter 4, 2015					*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016																		*					
Quarter 4, 2016	*		*			*			*				*		*					*		*	
Quarter 1, 2017			*							*	*							*					
Quarter 2, 2017																	*	*		*	*		
Quarter 3, 2017					*				*	*	*									*			
Quarter 4, 2017																		*		*			
Quarter 1, 2018												*						*		*			
Quarter 4, 2018													*				*						
Quarter 1, 2020																	*						
Quarter 2, 2020															*								
RADIUM-228																							
Quarter 2, 2005							•																
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003	T																						
Quarter 2, 2003	T																						
Quarter 3, 2003	t	t																					
Quarter 4, 2003	t																		\vdash			t	t
SODIUM																							
Quarter 4, 2002																			*		*		_
Quarter 1, 2003				*					*	*	*								_		-		1
Quarter 2, 2003				*					-	*	*		*										1
Quarter 3, 2003				-			*	*		*	_		-										1
Quarter 4, 2003							*		*	*													1
Quarter 1, 2004	1	-							*	*				*								-	₩
Quarter 2, 2004	1	-							-	*												-	₩
Quarter 3, 2004	1									*													₩
Quarter 4, 2004	1								*	*												-	₩
	1	-	-		-				•	*			-	-					*	-		-	₩
Quarter 1, 2005	₽	<u> </u>																				-	₩
Quarter 2, 2005	<u> </u>	<u> </u>								*									*			<u> </u>	ـــــ
Quarter 3, 2005									*	*									*				Щ
Quarter 4, 2005									*	*													Щ
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						
Quarter 1, 2007									*			*											
Quarter 2, 2007	T								*	*													
Quarter 3, 2007	t								*														
Quarter 4, 2007	t								*										\vdash			t	t
Quarter 1, 2008	t	\vdash							*										 			 	\vdash
Quarter 3, 2008	t	1	_		1							*	_	_	-				\vdash	_		t	\vdash
Quarter 4, 2008	1	-	-	-			-	-	*	*	-	<u> </u>	-	-	-		-		 	-		 	\vdash
	├	-							*	*		*							*			 	—
Quarter 1, 2009	 	<u> </u>	-		-				*				-	-					*	-		₩	₩
Quarter 3, 2009	<u> </u>	<u> </u>	-		<u> </u>				120			*	-	-					<u> </u>	-		—	₩
Quarter 4, 2009	<u> </u>	<u> </u>							*			*										Ь—	₩
Quarter 1, 2010	<u> </u>	<u> </u>										*							<u> </u>			Ь—	₽
Quarter 2, 2010	<u> </u>	<u> </u>								*		*										<u> </u>	<u> </u>
Quarter 3, 2010	Ц_	<u></u>								*												<u> </u>	乚
Quarter 4, 2010									*	*													L
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011	1																		*				
Quarter 1, 2012	l	t									*												
		+	 	 	1		-					*		 			—		*	\vdash		 	
Quarter 3, 2012																			~	ı			
Quarter 3, 2012 Quarter 4, 2012	-											*							*				┢

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369	372		391		394	385	370	373	388	392	395	397
SODIUM																							
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014									*	*		*	*										
Quarter 1, 2015													*										
Quarter 2, 2015												*											
Quarter 3, 2015										*		*											
Quarter 4, 2015									*	*		*											
Quarter 2, 2016											*												
Quarter 3, 2016											*												*
Quarter 1, 2017										*	*		*					*					
Quarter 2, 2017									*	*	*												
Quarter 2, 2018													*										
Quarter 3, 2018														*									
Quarter 1, 2019													*										
Quarter 2, 2019													*										
Quarter 4, 2019												*											
Quarter 1, 2020											*	*							*				
Quarter 2, 2020											*		*						*				
Quarter 3, 2020											*	*											
Quarter 4, 2020												*											
Quarter 1, 2021												*	*										
Quarter 2, 2021												*											
Quarter 3, 2021												*											
Quarter 4, 2021												*											
Quarter 1, 2022												*	*										
Quarter 2, 2022													*										
Quarter 3, 2022												*	*										
Quarter 4, 2022												*											
STRONTIUM-90																							
Quarter 2, 2003										_													
Quarter 1, 2004										•													
SULFATE																			-11				
Quarter 4, 2002																			*				
Quarter 1, 2003										46		*	*				*	46	*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003												*	*										
Quarter 4, 2003										*		*	*					*	*				
Quarter 1, 2004										*			*				*		*	*			
Quarter 2, 2004									.			*					*	*		*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004																							
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*				4	*	*				
Quarter 3, 2005										*		*	*				*	*	*	4			
Quarter 4, 2005										*		*	*				4	*	*	*			
Quarter 1, 2006									-1-	*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008	L	L	L			L				*		*	*	L			*	*	*	*			L
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
	*									*		*	*				*	*	*				
Quarter 4, 2009																							-
Quarter 4, 2009 Quarter 1, 2010	*								*	*		*	*				*		*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	A								LRGA	A.		_
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
SULFATE																							
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			<u> </u>
Quarter 4, 2010	*									*		*	*				*	*	*				L.
Quarter 1, 2011	*									*		*	*				*	*	*				<u> </u>
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			L.
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			L
Quarter 4, 2011	*									*		*	*				*	*	*	*			<u> </u>
Quarter 1, 2012	*									*		*	*				*	*	*	*			<u> </u>
Quarter 2, 2012	*									*		*	*	<u> </u>			*	*	*	*			<u> </u>
Quarter 3, 2012	*									*		*	*				*	*	*	*			₽
Quarter 4, 2012										*		*	*	<u> </u>			*	*	*	*			<u> </u>
Quarter 1, 2013										*		*	*	4			*	*	*	*			▙
Quarter 2, 2013										*		*	*	*			*	*	*	*			ļ
Quarter 3, 2013										*		*	*	*			*	*	*	*			₽
Quarter 4, 2013								4		*		*	*	ļ			*	*	*	*			▙
Quarter 1, 2014								*		*		*	*	4			*	*	*	*			▙
Quarter 2, 2014	1									*		*	*	*		Щ	*	*	*	*			lacksquare
Quarter 3, 2014	<u> </u>									*		*	*	*			*	*	*	*			lacksquare
Quarter 4, 2014	1			<u> </u>						*	<u> </u>	*	*	<u> </u>			*	*	*	*	<u> </u>		▙
Quarter 1, 2015	1									*	4.	*	*	J.		Щ	*	*	*	*			lacksquare
Quarter 2, 2015	1			<u> </u>				.		*	*	*	*	*	*		*	*	*	*	<u> </u>		⊢
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			<u> </u>
Quarter 4, 2015	1			<u> </u>				*		*		*	*	*		Ш	*	*	*	*			\vdash
Quarter 1, 2016	!							*		*		*	*		*		*	*	*	*			₩
Quarter 2, 2016								*						*									<u> </u>
Quarter 3, 2016	!							不		*		*	*	*	*		*	*	*	*			₩
Quarter 4, 2016 Quarter 1, 2017	1									*		*	*	*	*		*	*	*	*			₩
Quarter 1, 2017 Quarter 2, 2017	1							*		*		*	*	*	*		*	*	*	*			₩
Quarter 3, 2017	1							*		*		*	*	*	*		*	*	*	*			├-
Quarter 4, 2017	1							т-		*		*	*	*	*		*	*	*	*			┢
Quarter 1, 2018	1									*		*	*	*			*	*	*	*			-
Quarter 2, 2018	1							*		*	*	*	*	*	*		*	*	*	*			-
Quarter 3, 2018	1							*		*	-	*	-	*	*		*	*	*	*			
Quarter 4, 2018	1									*		*	*	*			*	*	*	*			┢
Quarter 1, 2019								*		*		*	*	*	*		*	*	*	*			
Quarter 2, 2019								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2019			*					*		*		*	*	*	*		*	*	*	*	*		
Quarter 4, 2019			*							*		*	*	*			*	*	*	*	*		H
Quarter 1, 2020								*		*		*	*	*	*		*	*	*	*	*		H
Quarter 2, 2020								*		*		*	*	*	*		*	*	*	*	*		T
Quarter 3, 2020			*							*		*	*				*	*	*	*	*		T
Quarter 4, 2020										*		*	*				*	*	*	*			T
Quarter 1, 2021										*		*	*				*	*	*	*			
Quarter 2, 2021								*		*		*	*		*		*	*	*	*	*		Г
Quarter 3, 2021										*		*	*				*	*	*	*			Г
Quarter 4, 2021										*		*	*				*	*	*	*			
Quarter 1, 2022										*		*	*		*		*	*	*	*			
Quarter 2, 2022									*	*		*	*		*		*	*	*	*			
Quarter 3, 2022			*							*		*	*		*		*	*	*	*			L
Quarter 4, 2022										*		*	*				*	*	*	*			L
TECHNETIUM-99																							
Quarter 4, 2002																			*				L
Quarter 1, 2003													*				*		*				匚
Quarter 2, 2003	*		*							*			*	<u> </u>			*						L
Quarter 3, 2003	1		*										*	<u> </u>			*			*			L
Quarter 4, 2003	1		*	<u> </u>						*	<u> </u>	*	*	<u> </u>			*		*	*	<u> </u>		lacksquare
Quarter 1, 2004	<u> </u>		*									*	*	<u> </u>			*		*				lacksquare
Quarter 2, 2004	1		*	<u> </u>							<u> </u>	*	*	<u> </u>			*		*	*	<u> </u>		lacksquare
Quarter 3, 2004	1		*	<u> </u>							<u> </u>	*	<u> </u>	<u> </u>			*		*	<u> </u>	<u> </u>		lacksquare
Quarter 4, 2004	1		*	<u> </u>						*	<u> </u>	*	*	<u> </u>			*	*	*	<u> </u>	<u> </u>		lacksquare
Quarter 1, 2005	1		*							*		*	*	<u> </u>			*			*			L
	1	i	*	ı	1		1	1	1	*	l	l	*	1	1	1	*	*	*	*	l	l	
Quarter 2, 2005						_				_	_	_				_					_		_
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005			*							*		*	*				*	*	*	*			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	4							1	LRGA	A.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
TECHNETIUM-99										_													
Quarter 1, 2006										*		*	*						*	*			<u> </u>
Quarter 2, 2006			*							*			*				*	*	*	*			<u>L</u>
Quarter 3, 2006			*							*			*				*	*	*	*			<u> </u>
Quarter 4, 2006	*		4							*		*	*						*	*			┞
Quarter 1, 2007			*							*		4	*				*	J	*	*			<u> </u>
Quarter 2, 2007	_		*							*	4	*	*				*	*		*			₩
Quarter 3, 2007	1		*							*	*	*	*				*		*	*			₩
Quarter 4, 2007	1		*							*		*	*				*	*	*	*			₩
Quarter 1, 2008 Quarter 2, 2008	 	-	*							*	*	•	*			-	*	•	*	*			₩
Quarter 3, 2008	1		~							*	•	*	*				*		•	*			₩
Quarter 4, 2008	1		*							*		*	*				*	*	*	*			₩
Quarter 1, 2009	1		*							*		*	*				*	-	-				├
Quarter 2, 2009	1		*							*		*	*				*	*		*			
Quarter 3, 2009	1		*							*	*	*	*				*			*			
Quarter 4, 2009	1		*							*		*	*				*						
Quarter 1, 2010	t		*							*		*	*				*						t
Quarter 2, 2010	1		*							*			*				*	*		*			\vdash
Quarter 3, 2010	t		*							*	*	*	*				*						t
Quarter 4, 2010	t		*							*		*	*				*						T
Quarter 1, 2011	1									*			*				*						T
Quarter 2, 2011	i i		*							*			*				*			*			T
Quarter 3, 2011			*							*			*				*			*			Г
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			L
Quarter 4, 2013			*							*		*	*				*		*	*			L
Quarter 1, 2014			*							*	*		*				*		*	*			<u>L</u>
Quarter 2, 2014	<u> </u>		*							*	*		*	*			*		*	*			<u>L</u>
Quarter 3, 2014			*							*			*				*			*			<u> </u>
Quarter 4, 2014			*							*	*	*	*				*		*	*			<u> </u>
Quarter 1, 2015	<u> </u>		*							*	*	*	*				*			*			_
Quarter 2, 2015	1		*							*	*	*	*	-			*	*	*	*			
Quarter 3, 2015	1		*							*	*	*	*				*	*	不	*			_
Quarter 4, 2015 Quarter 1, 2016	 	-	*							*	*	不	*				*	不	*	*			₩
	1		*			*				*	-		*				*	*	*	*			├
Quarter 2, 2016 Quarter 3, 2016	1	-	*	_		_	<u> </u>	<u> </u>	_	*	_	*	*		<u> </u>	-	*	*	_	*	_	_	+-
Quarter 4, 2016	1		*				-	-		*	*	·*	*		<u> </u>		*	_		*			\vdash
Quarter 1, 2017	1		*	<u> </u>		-	_	_		*	-		*		_		*	*	<u> </u>	*	-	-	\vdash
Quarter 2, 2017	1		*				 	 		*			*		 		*	*		*			\vdash
Quarter 3, 2017	1		*							*	*		*				*	*		*			\vdash
Quarter 4, 2017	t		*							*		*	*				*	*		*			t
Quarter 1, 2018	t		*							*	*		*				*	*		*			t
Quarter 2, 2018	T		*							*	*	*	*				*	*		*			T
Quarter 3, 2018	1		*							*		*	*				*	*		*			T
Quarter 4, 2018	i i		*							*	*	*	*				*	*		*			T
Quarter 1, 2019	1		*							*	*	*	*				*	*		*			
Quarter 2, 2019	1		*							*	*	*	*				*	*		*			Г
Quarter 3, 2019			*							*	*	*	*				*	*		*			
Quarter 4, 2019			*							*		*	*				*	*	*	*			
Quarter 1, 2020			*							*		*	*				*	*		*			匚
Quarter 2, 2020			*							*		*	*				*	*		*			
Quarter 3, 2020			*							*		*	*				*	*		*			
Quarter 4, 2020			*							*		*	*				*	*					匚
Quarter 1, 2021			*							*	*	*	*				*	*					Ш
Quarter 2, 2021			*								*	*	*					*					匚
Quarter 3, 2021	1		*							*	*	*	*				*	*					丄
Quarter 4, 2021			*							*	*	*	*			1		*					

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	۸							1	LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 1, 2022			*							*	*	*	*				*						
Quarter 2, 2022			*							*	*	*	*				*			*			
Quarter 3, 2022			*								*	*	*										
Quarter 4, 2022			*							*	*	*					*			*			1
THORIUM-230																							
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*		*																				1
Quarter 3, 2015	*								*	*			*		*								1
Quarter 1, 2017			*							*							*						
THORIUM-234																							
Quarter 2, 2003						*			*					*									<u> </u>
Quarter 4, 2007									*														<u> </u>
TOLUENE																							
Quarter 2, 2014										*	*		*										Ь_
TOTAL ORGANIC CARBON																					4		
Quarter 4, 2002				4						4									40		*		<u> </u>
Quarter 1, 2003	!			*		-				*	*			<u> </u>	<u> </u>			*	*	<u> </u>	*	\vdash	₩
Quarter 2, 2003						_	· u	<u>.</u>	<u>.</u>	*	*	.	*			Щ					*	igspace	<u> </u>
Quarter 3, 2003	<u> </u>					<u> </u>	*	*	*	*	*	*		<u> </u>		Щ				<u> </u>	<u> </u>		₩
Quarter 4, 2003							*		*	*													
Quarter 1, 2004											4												<u> </u>
Quarter 2, 2004	<u> </u>	-	-	_		<u> </u>	_	_	_	*	*		_	<u> </u>		Н			_	<u> </u>	<u> </u>		
Quarter 3, 2004 Quarter 4, 2004	_					-				*	<u> </u>			<u> </u>	<u> </u>					<u> </u>	<u> </u>	\vdash	₩
, ,	-									*													<u> </u>
Quarter 1, 2005																					*		
Quarter 2, 2005	-									*		*									*		<u> </u>
Quarter 3, 2005										*		不									*		<u> </u>
Quarter 4, 2005																					不		<u> </u>
Quarter 1, 2006										*		4											<u> </u>
Quarter 2, 2006										*		*					4						<u> </u>
Quarter 4, 2006	- Ju									4							*						↓
Quarter 1, 2007	*					.	4	.	.	*			4	4			4						<u> </u>
Quarter 3, 2007	*					*	*	*	*	*	.		*	*			*						<u> </u>
Quarter 2, 2011	- Ju										*												↓
Quarter 3, 2012	*																		4				<u> </u>
Quarter 3, 2016																			*				
TOTAL ORGANIC HALIDES																		*	*		*		
Quarter 4, 2002 Quarter 1, 2003				*														*	*		*		-
Quarter 3, 2003				*														~			*		-
Quarter 2, 2004				т																	*		
Quarter 3, 2004	*																				т.		
Quarter 1, 2005	*			<u> </u>		\vdash				-	_			_	_	H	Н			_	_	H	<u> </u>
Quarter 2, 2005	*																					\vdash	1
Quarter 3, 2005	*																					H	
Quarter 4, 2005	*															H							
Quarter 1, 2006	*																						1
Quarter 2, 2006	*																						1
Quarter 3, 2006	*																						1
Quarter 4, 2006																	*						
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						<u> </u>
Quarter 3, 2007	*																						1
Quarter 4, 2007	*																				*	\Box	
Quarter 1, 2008	*																						
Quarter 4, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																				*		
Quarter 3, 2009	*																						t
Quarter 4, 2009	*																						
	*																						
Quarter 1, 2010	不																						
Quarter 1, 2010 Quarter 2, 2010	*																					, ,	

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System Gradient Monitoring Well TOTAL ORGANIC HALIDES Quarter 4, 2010 Quarter 1, 2011 Quarter 3, 2013	S 386 *	D 389	D 390	D 393	U 396	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
TOTAL ORGANIC HALIDES Quarter 4, 2010 Quarter 1, 2011	*	389	390	393	306	221												_					U
Quarter 4, 2010 Quarter 1, 2011					270	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2011																							
	*																						
Quarter 3, 2013	•																						
																					*		
TRICHLOROETHENE																							
Quarter 4, 2002																-							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005		-		\vdash								=		Ī				_	-				\vdash
Quarter 4, 2005		-		\vdash								Ŧ		ī		Ī		-	Ī			ī	\vdash
Ouarter 1, 2006		-		\vdash								=		ī		Ŧ		=	Ŧ			i	\vdash
Quarter 2, 2006						 						Ŧ		i		▔			i			i	\vdash
Quarter 2, 2007						-						=		Ŧ		Ŧ		_	Ī			ī	\vdash
Quarter 3, 2007				=								i		i		Ŧ			i			i	
Quarter 4, 2007						-								÷		Ŧ							\vdash
Quarter 1, 2008												i		i		Ŧ			i			-	-
Quarter 1, 2008 Quarter 2, 2008												i		i		=			i				-
` '														÷		Ŧ							-
Quarter 3, 2008																=							-
Quarter 4, 2008														-		=			-				-
Quarter 1, 2009														-		=							
Quarter 2, 2009																=							
Quarter 3, 2009														-		=			-				
Quarter 4, 2009											_			=		=							
Quarter 1, 2010														÷		=			-				
Quarter 2, 2010																						_	
Quarter 3, 2010														_		_			-			_	
Quarter 4, 2010												_		_		_			-		_	_	
Quarter 1, 2011														_					_		_	•	
Quarter 2, 2011												_		•					•		_		
Quarter 3, 2011												_		_					•		•		
Quarter 4, 2011														_		_			_		•	_	
Quarter 1, 2012												_		•					-		•		
Quarter 2, 2012														_					_		_		<u> </u>
Quarter 3, 2012												_		_		_			•		_		
Quarter 4, 2012											•			_		_			_		_		<u> </u>
Quarter 1, 2013														•		•			•		•		
Quarter 2, 2013														•					•		-		
Quarter 3, 2013														•					•		-		
Quarter 4, 2013																•			•				
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																			•				
Quarter 4, 2014																							
Quarter 1, 2015												•				•			•				
Quarter 2, 2015												•							•		-		
Quarter 3, 2015						L																	L
Quarter 4, 2015																							
Quarter 1, 2016														•		•			•				
Quarter 2, 2016																							
Quarter 3, 2016																							
Quarter 4, 2016														•		•			•				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR	S						1	URGA	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
TRICHLOROETHENE																							
Quarter 1, 2017														•		•			•				
Quarter 2, 2017																							
Quarter 3, 2017																							
Quarter 4, 2017																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019																							
Quarter 3, 2019																							
Quarter 4, 2019																							
Quarter 1, 2020																							
Quarter 2, 2020																							
Quarter 3, 2020																							
Quarter 4, 2020																							
Quarter 1, 2021																							
Quarter 2, 2021																							
Quarter 3, 2021																							
Quarter 4, 2021																							
Quarter 1, 2022																							
Quarter 2, 2022																							
Quarter 3, 2022																							
Quarter 4, 2022																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003	1						*		*			*											\vdash
Quarter 4, 2004	1						*																
Quarter 4, 2007	1						*	*	*						 					 			\vdash

^{*} Statistical test results indicate an elevated concentration (i.e., a statistically significant increase).

MCL Exceedance

Previously reported as an MCL exceedance; however, result was equal to MCL.

UCRS = Upper Continental Recharge System

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer
S = Sidegradient; D = Downgradient; U = Upgradient

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	Decem	ber	12, 2	2022			Tin	ne:	08	345				Mo	nito	r:	R	ober	t Kirby
Weather Co	nditions	s: Pa	ırtly	Clou	ıdy,	47° I	F, sl	ight	wine	d, hu	midi	ty: 6	55%						
Monitoring	Equipm	ent::	:Mul	ti RA	E –	Seri	al#	1190)5										
					N	lonit	torin	ıg Lo	ocati	on									Reading (% LEL)
Ogden Landi Road Entrand		Che	eckec	l at g	round	d leve	el .								•				0
North Landfil		Che	eckec	l at g	round	l leve	el												0
West Side of Landfill: North 37° West 88°	07.652	Che	eckec	l at g	round	d leve	e)										_	_	0
East Side of Landfill: North 37° West 88°		Che	eckec	l at g	round	d leve	el						,				•		0
Cell 1 Gas Ve		1	2 0	3 0	4 0	5 0	6 0	7 0	8	9,0	10 0	11 0	12	13 0	14 0	15 0	16 0	17 0	0
Cell 2 Gas V	'ent (3)	1 0	2 0	3 0														<u> </u>	0
Cell 3 Gas V	ent (7)	1 0	2 0	3 0	4 0	5 0	6	7 0											0
	II Office	Che	eckec	at fl	oor le	evel													0
Suspect or P	Problem Areas	Nor	ne no	ted															N/A
Remarks:																			
All gas ven	ts chec	ked	1" fr	om (oper	ning.													
Performed I	by:				6							2/	15/2	/ 2 2					
				_	Si	gnat	ure			*************		4//	2/6						Date

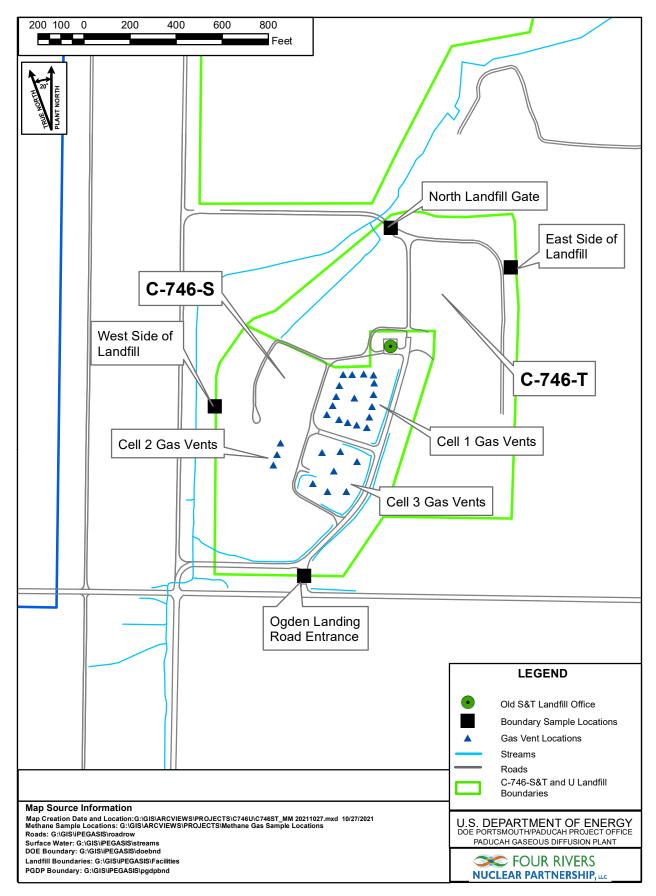


Figure H.1. C-746-S&T Landfill Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502)564-6716

Solid Waste Branch

14 Reilly Road

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

SURFACE WATER SAMPLE ANALYSIS(S)

Sample Sequence # If sample is a Blank, specify Type: (F)ield Sample Date and Time (Month/Day/Year hour Duplicate ("Y" or "N")² Split ('Y' or "N")² Facility Sample ID Number (if applicable) Laboratory Sample ID Number (if applicable) Date of Analysis (Month/Day/Year) CAS RN³ CAS RN³			,	L135 UPS I REAM	_	LIOT INSTRUM			
If sample is Sample Date Duplicate (" Split ('Y' o Facility Sam Laboratory S Date of Anal CAS RN ³				1		1	1	7	
Sample Date and Time Duplicate ("Y" or "N") Split ('Y' or "N") ² Facility Sample ID Nu Laboratory Sample ID Date of Analysis (Mon CAS RN ³	a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment	tip, (M) ethoc	l, or (E)quipment	NA		VΝ	NA	Ь	
	(Month/Day/Year hour: minutes)	utes)		12/8/2022 09:20		12/8/2022 09:07	12/8/2022 09:33	12/8/2022 09:22	1:22
				z		Z	z	z	
				z		z	z	z	
Laboratory Sample ID Numi Date of Analysis (Month//	(if applicable)			L135SS1-23		L154US1-23	L136SS1-23	FB1SS1-23	3
Date of Analysis (Month/)	r (if applicable)			603486002		603483001	603486003	603486004	4
CAS RN ³	y/Year)			12/27/2022		12/20/2022	12/27/2022	12/27/2022	2
	CONSTITUENT D	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁵	គ្រុង ប្ ₀ 0	DETECTED E VALUE OR A PQL ⁵ G	DETECTED F VALUE L OR A PQL ⁵ G	DETECTED VALUE OR PQL ⁵	Fi H K D'S
A200-00-0 0 Flow	H	MGD	Field		*	*	*		*
16887-00-6 2 Chloride(s)	E) T	mg/L	300.0	3.56		5.45	1.64	<0.2	
14808-79-8 0 Sulfate	T	mg/L	300.0	10.3		6.29	8.59	<0.4	
7439-89-6 0 Iron	Т	mg/L	200.8	0.549		2	0.0543	<0.1	
7440-23-5 0 Sodium	T	mg/L	200.8	4.26		4.66	1.6	<0.25	
S0268 0 Organic Carbon ⁶	arbon ⁶ T	mg/L	9060	19.7		29.3	15.6		*
80097 0 BOD ⁶	T	mg/L	not applicable	-	*	*	*		*
S0130 0 Chemical O	Chemical Oxygen Demand T	mg/L	410.4	74.8	$-\parallel$	108	74.8		*

Respond "Y" if the sample was a duplicate of another sample in this report

a secondary dilution factor

Respond "Y" if the sample was split and analyzed by separate laboratories. Themical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{4&}quot;T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit
⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

^{* =} See Comments

B = Analyte found in blank J = Estimated Value

⁼ Concentration from analysis of A = Average value N = Presumptive ID D = Concentration 3

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.

N, G 12 IT H F. BLANK DETECTED
VALUE
OR
PQL⁵ <0.0002 -1.58 4.2 _ S, G 12 L H L136 INSTREAM 0.000603 -0.579 DETECTED
VALUE
OR
PQL⁵ 7.43 9.11 212 2.3 133 150 о, G Ъ Г ч L154 INSTREAM DETECTED

VALUE

OR

PQL⁵ 0.000671 0.0249 36.3 7.12 109 126 166 3.6 L135 UPSTREAM ក្មុជΩ′Ω DETECTED
VALUE
OR
PQL⁵ 0.00274 0.485 30.5 7.35 15.6 199 149 186 Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM") SM-2540B METHOD 160.2 160.1 200.8 Field9310 9310 Unit OF MEASURE up/omdu pCi/L pCi/L Units mg/L mg/L mg/I mg/L T D H H H Total Suspended Solids Total Dissolved Solids Specific Conductance CONSTITUENT Gross Alpha (α) (β) Total Solids **Gross Beta** Uranium 펎 1 12587-47-2 RN^3 12587-46-1 7440-61-1 s0266- -S0270-S0269-S0296-S0145-CAS

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Solid Waste Branch

14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

SAMPLE ANALYSIS(S) WATER SURFACE

Monitoring Poir	Monitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")	PSTREAM	ď", or "DOW	NSTREAM")	L135 UPSTREAM						
Sample Sequence	# e				2						
If sample is a	a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment	')rip, ((M) ethod,	or (E) quipment	NA						
Sample Date and	d Time (Month/Day/Year hour: minutes)	inutes)			12/8/2022 09:20						
Duplicate ("Y" or "N") ¹	or "N") ¹				٨						
Split ('Y' or "N") ²	"N") ²				Z						
Facility Sample	e ID Number (if applicable)				L135DSS1-23						
Laboratory Sam	Sample ID Number (if applicable)				603486001					/	
Date of Analysis	is (Month/Day/Year)				12/27/2022						
Cas RN ³ I-2	CONSTITUENT	T Q 4	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁵	ន _្ ព្រះ	DETECTED VALUE OR PQL ⁵	ន _្ ព្ធម្នា	DETECTED E VALUE OF POLS	L VALUE OR G PQL ⁵	S O P L H
A200-00-0	0 Flow	H	MGD	Field		*					
16887-00-6	2 Chloride(s)	I	mg/L	300.0	3.54						
14808-79-8	0 Sulfate	T.	mg/L	300.0	10.3						
7439-89-6	0 Iron	T.	mg/L	200.8	0.578						
7440-23-5	0 Sodium	T T	mg/L	200.8	4.22						
s0268	0 Organic Carbon ⁶	T.	mg/L	0906	19.4						
L	0 Bop ⁶	H	mg/L	not applicable		*					
s0130	O Chemical Oxygen Demand	T	mg/L	410.4	8.66						

Respond "Y" if the sample was a duplicate of another sample in this report

STANDARD FLAGS:

- * = See Comments
- B = Analyte found in blank J = Estimated Value

 - A = Average value N = Presumptive ID D = Concentration 3
- = Concentration from analysis of a secondary dilution factor

Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories. Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{4&}quot;T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit
Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.

S,G b H DETECTED
VALUE
OR
PQL⁵ S, G 12 F F DETECTED
VALUE
OR
PQL⁵ М, СРГБ VELUE S,G b t H L135 UPSTREAM DETECTED
VALUE
OR
PQL⁵ 0.0028 1.03 22.2 148 190 30 Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM") SM-2540B METHOD 160.2 Field160.1 200.8 9310 9310 Unit OF MEASURE uthmo/cm pCi/L Units pCi/L mg/L mg/L mg/I mg/L ΗQ H H H Total Suspended Solids Total Dissolved Solids Specific Conductance CONSTITUENT Gross Alpha (α) (β) Total Solids **Gross Beta** Uranium Нd 1 12587-47-2 RN^3 12587-46-1 7440-61-1 s0266- -S0270-S0269-S0296-S0145-CAS

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135SS1-23	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.12. Rad error is 3.12.
		Beta activity		TPU is 7.1. Rad error is 6.63.
L154	L154US1-23	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.77. Rad error is 2.77.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.12. Rad error is 6.09.
L136	L136SS1-23	Flow Rate		Insufficient flow to collect a sample.
		Biochemical Oxygen Demand (BOD)		Insufficient flow to collect a sample.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.86. Rad error is 2.85.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.88. Rad error is 7.73.
QC	FB1SS1-23	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		pH		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.77. Rad error is 2.76.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.19. Rad error is 8.16.
L135	L135DSS1-23	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.39. Rad error is 3.38.
		Beta activity		TPU is 7.44. Rad error is 6.51.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC Charleston, SC

for technical competence in the field of

Environmental Testing

Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and compliance with ISO/IEC 17025:2017, the 2009 and 2016 TNI Environmental Testing Laboratory Standard, the requirements of the In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017)

Presented this 16th day of June 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2023

APPENDIX K LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260D		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and
		1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 8082A	SW846 3535A	Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020B	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056A		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0 Modified		904.0Mod, Ra228, Liquid
SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid
SW846 9020B		Total Organic Halogens (TOX)

APPENDIX L MICROPURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-S&T Landfills

		,						/		_	_
			att Ga	701	Turniti Turniti	8'///			St. St. St.	²⁰¹	
		Conduct Conduct	Strike Legal	<u> </u>	San Agencer Subjection		Tempé	/®	arited laterille	(<u>s</u>)	
		ature /	inter /	Jak /	907 / X	\$ /		giric /	ide / 2	Tital Tital	0
	2 SUND	Conditi	196	dissolt	Litita		T empe.	Condition	1800	dissol	
MW220		-				MW221					
Date Collected: 10-18-22						Date Collected: 10-12-22					
0817	60.8	334	5.93	6.64	5.68	0726	62.7	396	6.03	6.07	0.
0820	61.0	333	5.85	6.30	2.06	0729	62.8	396	6.03	5.92	0.
0823	61.3	332	5.84	6.27	2.01	0732	62.8	399	6.04	5.95	0.
MW222						MW223					
Date Collected: 10-12-22	62.8	331	6.25	2.80	0.00	Date Collected: 10-12-22 0829	63.0	377	6.19	4.83	0.0
0919	62.8	328	6.23	2.70	0.00	0832	62.5	375	6.19	4.83	0.0
0922	62.7	327	6.22	2.67	0.00	0835	62.5	376	6.15	4.43	0.0
MW224	02.7	521	0.22	2.07	0.00	MW369	02.5	570	0.13	1.73	0.0
Date Collected: 10-18-22						Date Collected: 10-11-22					
0728	60.3	399	6.06	3.20	2.12	0714	59.5	548	6.29	5.30	4.1
731	60.4	400	5.95	2.69	2.02	0717	59.7	490	6.05	3.52	3.9
734	60.3	402	5.94	2.67	2.00	0720	59.8	485	6.05	3.44	3.90
MW370						MW372					
Date Collected: 10-11-22	(0.5	53.4	625	(00	1.40	Date Collected: 10-11-22	(2.1	000	5.34	4.22	1.0
759 802	60.5	534	6.35	6.09	1.48	0935 0938	63.1	908 910	5.26	4.33	1.23
805	60.5	550 552	6.06	4.89	1.27	0938	62.7	910	6.01	2.60 2.55	1.22
IW373	00.0	332	0.07	4.00	1.01	MW384	02.7	714	0.04	2.33	1.10
ate Collected: 10-11-22						Date Collected: 10-13-22					
016	63.6	939	6.15	3.15	1.30	0923	61.0	433	5.94	5.28	1.28
)19	63.3	940	6.13	2.39	1.36	0926	61.3	432	5.95	4.97	0.95
022	63.0	939	6.12	2.31	1.31	0929	61.4	433	5.95	5.01	0.85
IW385						MW386					
ate Collected: 10-13-22						Date Collected: 10-20-22					L
005	61.4	510	6.42	1.93	1.61	0832 0835	57.2 57.0	595 595	6.67	2.25 1.98	10.6
008	61.6	511 511	6.40	1.56	1.47	0838	57.1	595	6.58	2.03	7.28
IW387	01./	311	0.41	1.36	1.40	MW388	3/.1	390	0.38	2.03	7.33
ate Collected: 10-13-22						Date Collected: 10-13-22					
800	60.0	588	6.17	5.22	0.00	0841	60.6	427	6.14	6.08	0.97
803	60.1	587	6.17	5.09	0.00	0844	60.6	421	6.00	5.65	0.60
306	60.0	586	6.19	5.03	0.00	0847	60.7	420	5.98	5.62	0.48
IW390						MW391					
ate Collected: 10-13-22	50.5	620	624	4.02	0.00	Date Collected: 10-17-22	60.2	400	5.05	4.00	2.02
717 720	58.5 58.4	639 640	6.24	4.03	0.00	0925 0928	60.3	400 399	5.97 5.94	4.99	3.92
720 723	58.4	640	6.23	3.61	0.00	0928	60.5	399	5.94	4.73 4.70	3.36
IW392	36.3	040	0.23	3.04	0.00	MW393	00.0	370	3.74	4.70	3.24
ate Collected: 10-17-22						Date Collected: 10-17-22					
010	60.7	363	5.94	2.94	2.76	1107	61.5	386	6.14	4.40	9.70
013	60.9	365	5.92	2.77	2.87	1110	61.1	390	6.08	1.42	9.53
016	60.8	366	5.91	2.72	2.80	1113	61.3	390	6.07	1.39	9.07
1W394						MW395					
ate Collected: 10-17-22						Date Collected: 10-17-22				L	<u> </u>
717	59.7	421	6.00	5.60	5.16	0800	60.2	389	5.99	5.60	2.66
720	59.9	418	5.92	5.46	3.09	0803	60.7	388	5.94	5.46	2.35
723 IW396	60.1	417	5.92	5.40	2.99	0806 MW397	61.2	388	5.94	5.48	2.30
						Date Collected: 10-18-22					
		1	1				1			1	├
Date Collected: 10-17-22	60,6	712	6.30	1.96	3,26	0903	60.9	324	5.80	6.99	3.05
Date Collected: 10-17-22 0842 0845	60.6	712 713	6.30 6.28	1.96	3.26 2.86	0903 0906	60.9 61.1	324 323	5.80 5.75	6.99	3.05 2.92

