

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

May 19, 2022

PPPO-02-10021112-22B

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Ms. Jamie Nielsen Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-S&T LANDFILLS FIRST QUARTER CALENDAR YEAR 2022 (JANUARY–MARCH) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0246/V1, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the first quarter calendar year (CY) 2022 has been uploaded to the KY eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). This report includes groundwater analytical data, surface water analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses of the first quarter CY 2022 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Monitoring Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical increase notification for the first quarter CY 2022, in accordance with Monitoring Condition GSTR0003, Standard Requirement 5, of the Permit. A statistically significant exceedance for dissolved solids was indicated for monitoring well MW372. Evaluation of the release through future quarterly monitoring events is recommended.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely, **Tracey L. Duncan** Tracey Duncan Date: 2022.05.19 12:54:54 -05'00' Tracey Duncan

Acting Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills First Quarter Calendar Year 2022 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0246/V1

cc w/enclosure: abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.woodard@pppo.gov, PPPO joel.bradburne@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov stephaniec.brock@ky.gov, KYRHB tracey.duncan@pppo.gov, PPPO

cc via KY eForms portal: jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP

FRNP-RPT-0246/V1

C-746-S&T Landfills First Quarter Calendar Year 2022 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:	
FRN Classification Support	<u>5 - 17 - 2022</u> Date

FRNP-RPT-0246/V1

C-746-S&T Landfills First Quarter Calendar Year 2022 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—May 2022

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

FIC	GURE	S		v
TA	BLES			v
AC	RON	YMS		vii
1.	INTF 1.1 1.2	BACK MONIT 1.2.1 1.2.2 1.2.3	ΓΙΟΝ GROUND ΓΟRING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring	
	1.3	KEY R	ESULTS	5
2.	DAT 2.1	STATI: 2.1.1 2.1.2 2.1.3	LUATION/STATISTICAL SYNOPSIS STICAL ANALYSIS OF GROUNDWATER DATA Upper Continental Recharge System Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer	10 10 10 11
	2.2	DATA	VERIFICATION AND VALIDATION	11
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	
4.	REFI	ERENCH	ES	15
AP	PENC	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
AP	PENC	OIX B:	FACILITY INFORMATION SHEET	B-1
AP	PENC	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
AP	PENC	OIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AP	PEND	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AP	PEND	OIX F:	NOTIFICATIONS	F-1
AP	PENC	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AP	PEND	OIX H:	METHANE MONITORING DATA	H-1
AP	PENC	OIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
AP	PEND	DIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

CONTENTS

APPENDIX K:	LABORATORY ANALYTICAL METHODS	-1
APPENDIX L:	MICROPURGING STABILITY PARAMETERSL	-1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	. 2
2.	C-746-S&T Landfills Surface Water Monitoring Locations	.4

TABLES

1.	Summary of MCL Exceedances	5
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	6
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	8
6.	Monitoring Wells Included in Statistical Analysis	. 10

ACRONYMS

CFR	Code of Federal Regulations
COD	chemical oxygen demand
KAR	<i>Kentucky Administrative Regulations</i>
KDWM	Kentucky Division of Waste Management
KRS	<i>Kentucky Revised Statutes</i>
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
LTL	lower tolerance limit
MCL	maximum contaminant level
MW	monitoring well
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit
URGA	upper Regional Gravel Aquifer
UTL	upper tolerance limit
VOA	volatile organic analytes

1. INTRODUCTION

This report, C-746-S&T Landfills First Quarter Calendar Year 2022 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND

The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter,



Figure 1. C-746-S&T Landfills Groundwater Monitoring Well Network

except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a sample.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2022 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the first quarter 2022 was conducted in January 2022. The laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 26, 2022, in MWs of the C-746-S&T Landfills (see Appendix E, Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Appendix E, Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During January, RGA groundwater flow was directed inward and then northeast towards the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in January was 2.30×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was approximately 1.43×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills ranged from 0.237 to 0.405 ft/day (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the Solid Waste Landfill Permit. Industrial Hygiene staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on March 2, 2022. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Monitoring Report provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills: (1) upstream location, L135; (2) instream location, L154; and (3) L136, instream location.

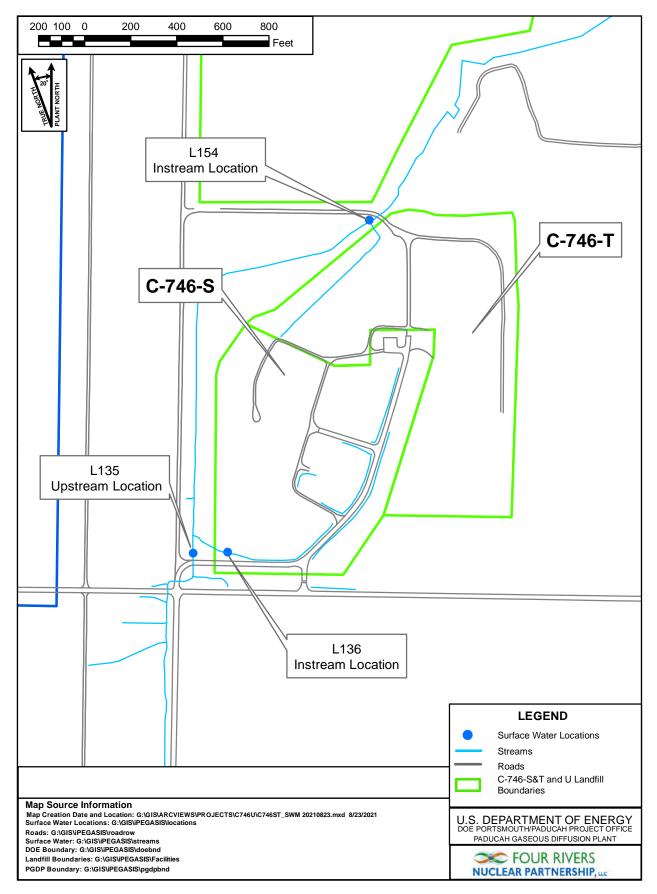


Figure 2. C-746-S&T Landfill Surface Water Monitoring Locations

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059 (FRNP 2021), which is Technical Application, Attachment 24, of the Solid Waste Landfill Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters that exceeded their MCL and also exceeded their historical background UTL, as well as other parameters that do not have MCLs but have concentrations that exceeded the statistically derived historical background UTL¹ during the first quarter 2022. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells designated as background wells (Table 3).

UCRS	URGA	LRGA
None	MW387: Beta activity	MW373: Trichloroethene
	MW391: Trichloroethene	MW392: Trichloroethene
	MW394: Trichloroethene	

Table 2. Exceedances of Statistically	Derived Historical	Background Concentrations

UCRS*	URGA	LRGA
MW386: Manganese, oxidation-	MW220: Chemical oxygen demand	MW370: Oxidation-reduction
reduction potential	(COD), oxidation-reduction	potential, sulfate
	potential, sulfate	
MW390: Oxidation-reduction	MW221: Chemical oxygen demand	MW373: Calcium, conductivity,
potential, technetium-99	(COD), oxidation-reduction	dissolved solids, magnesium,
	potential	oxidation-reduction potential,
		sulfate
MW393: Oxidation-reduction	MW223: Chemical oxygen demand	MW385: Oxidation-reduction
potential	(COD)	potential, sulfate, technetium-99
MW396: Oxidation-reduction	MW224: Chemical oxygen demand	MW388: Chemical oxygen demand
potential	(COD)	(COD), oxidation-reduction
		potential, sulfate
	MW369: Technetium-99	MW392: Chemical oxygen demand
		(COD), oxidation-reduction
		potential
	MW372: Calcium, conductivity,	MW395: Oxidation-reduction
	dissolved solids, magnesium,	potential
	sodium, sulfate, technetium-99	
	MW384: Oxidation-reduction	MW397: Oxidation-reduction
	potential, sulfate, technetium-99	potential

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL.

UCRS*	URGA	LRGA
	MW387: Beta activity, calcium,	
	dissolved solids, magnesium,	
	oxidation-reduction potential,	
	sodium, sulfate, technetium-99	
	MW391: Chemical oxygen demand	
	(COD), oxidation-reduction	
	potential	

 Table 2. Exceedances of Statistically Derived Historical Background Concentrations (Continued)

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Background wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Bac	kground UTL in Downgradient Wells
-------------------------------------	-----------------------------------

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate
MW372: Calcium, conductivity, dissolved	MW373: Calcium, conductivity, dissolved
solids, magnesium, sodium, sulfate,	solids, magnesium, sulfate
technetium-99	
MW387: Beta activity, calcium, dissolved	MW388: Chemical oxygen demand (COD),
solids, magnesium, sodium, sulfate,	Sulfate
technetium-99	
	MW392: Chemical oxygen demand (COD)

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), the MCL exceedances for TCE in MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedance for beta activity in MW387 (downgradient well) was shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily this exceedance was considered to be a Type 2 exceedance. To evaluate this preliminary Type 2 exceedance further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. The MW387 beta activity did not show an increasing Mann-Kendall trend and is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Decision ⁴
C-746- S&T	MW369	Technetium-99	8	0.05	0.089	12	No Trend
Landfill	MW370	Sulfate	8	0.05	0.548	1	No Trend

 Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary

 Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
		Calcium	8	0.05	0.274	7	No Trend
		Conductivity	8	0.05	0.360	-4	No Trend
		Dissolved Solids	8	0.05	0.016	18	Increasing
	MW372	Magnesium	8	0.05	0.360	4	No Trend
		Sodium	8	0.05	0.138	10	No Trend
		Sulfate	8	0.05	0.138	11	No Trend
		Technetium-99	8	0.05	0.360	-4	No Trend
		Calcium	8	0.05	0.007	-20	Decreasing
		Conductivity	8	0.05	0.031	-16	Decreasing
	MW373	Dissolved Solids	8	0.05	0.452	3	No Trend
C-746-		Magnesium	8	0.05	0.054	-14	No Trend
S&T		Sulfate	8	0.05	0.360	-5	No Trend
Landfill		Beta activity	8	0.05	0.031	-16	Decreasing
Landini		Calcium	8	0.05	0.274	7	No Trend
		Dissolved Solids	8	0.05	0.274	6	No Trend
	MW387	Magnesium	8	0.05	0.274	7	No Trend
		Sodium	8	0.05	0.119	-8	No Trend
		Sulfate	8	0.05	0.452	3	No Trend
		Technetium-99	8	0.05	0.360	-4	No Trend
	MW388	Chemical Oxygen Demand	8	0.05	0.054	14	No Trend
		Sulfate	8	0.05	0.452	2	No Trend
	MW392	Chemical Oxygen Demand	8	0.05	0.138	11	No Trend

 Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary

 Utilizing the Previous Eight Quarters (Continued)

¹ An alpha of 0.05 represents a 95% confidence interval.

 2 The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 4 The Mann-Kendall decision operates on two hypotheses; the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

Note: Statistics generated using ProUCL.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL to identify if the current downgradient well concentrations are consistent with current background values. The current background UTL was developed using the most recent eight quarters of data from wells identified as background wells. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-S&T Landfills source; therefore, they are a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL and do not have an identified source are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan (LATA Kentucky 2014). To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. Twenty-three of the 24 preliminary Type 2 exceedances in downgradient wells do not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

One of the 24 preliminary Type 2 exceedances in downgradient wells had an increasing trend. Specifically, the Mann-Kendall statistical test indicates an increasing trend for dissolved solids in MW372 over the past eight quarters. Similar to the increasing trend for dissolved solids in MW372, increasing concentration trends for constituents such as calcium, conductivity, sodium, and sulfate noted in previous quarters are indicators of high ionic strength of the area groundwater in the vicinity of MW372. The observed trend of this indicator parameter should be considered a Type 2 exceedance—source unknown.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 39:090.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS well MW390 with a technetium-99 value that exceeded both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS	
MW390: Technetium-99	
*In the same direction (relative to the landfill) as RGA wells.	

All MCL and UTL exceedances reported for this quarter, except for dissolved solids in MW372, were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2022 groundwater data collected from the C-746-S&T Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as downgradient wells) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient well concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance—could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

To calculate the UTL, the data were divided into censored (non-detects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs historically included in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW386	MW220 (background)	MW370
MW389 ^b	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396 ^c	MW224	MW392
	MW369	MW395 (background)
	MW372	MW397 (background)
	MW384	
	MW387	
	MW391	
	MW394 (background)	

^a Map showing the MW locations is shown on Figure 1.

^b Well had insufficient water to permit a water sample for laboratory analysis.

^c In the same direction (relative to the landfill) as RGA wells considered to be background.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient well concentrations are consistent with current background values. Table 3 summarizes the constituents that have exceeded both the historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, manganese, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL in downgradient well MW390 and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, beta activity, calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, and sulfate exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills First Quarter Calendar Year 2022 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0246/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

PG113921

Kenneth R. Davis

PG113927

<u>Mary 11, 2022</u> Date

4. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2021. Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 24, Four Rivers Nuclear Partnership, LLC, Paducah, KY, March.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah	Gaseous Diffusion Plant	Activity:	C-746-S&T Landfills
	(As officially shown	on DWM Permit Face)		
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	1st Qtr. CY 2022
Please check the	following as applicable	:		
Character	ization <u>X</u> Qua	rterly Semiannual	Annual	Assessment
Please check app	licable submittal(s):	X Groundwater	<u> </u>	Surface Water
	_	Leachate	<u> </u>	Methane Monitoring

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 *KAR* 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna E. Redfield

Myrna E. Redfield, Program Manager Four Rivers Nuclear Partnership, LLC

Tracey L. Duncan

Tracey Duncan, Acting Paducah Site Lead U.S. Department of Energy Digitally signed by Myrna E. Redfield Date: 2022.05.19 11:54:18 -05'00'

Date

Digitally signed by Tracey L. Duncan Date: 2022.05.19 12:52:40 -05'00'

Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY	INFORMATION	SHEET
----------	--------------------	-------

Sampling Date:	Groundwater: January 2022 Methane: March 2022 Surface Water: February 2022	County: McCracken	SW07300014, SW07300015, Permit Nos. SW07300045
Facility Name:	U.S. DOE—Paducah Gaseous D		
-	(As officially sh	own on DWM Permit Face)	
Site Address:	5600 Hobbs Road	Kevil, Kentucky	42053
	Street	City/State	Zip
Phone No:	(270) 441-6800 Latitud	de: <u>N 37° 07' 37.70"</u>	Longitude: <u>W 88° 47' 55.41"</u>
		OWNER INFORMATION	
Facility Owner:	U.S. DOE, Joel Bradburne, Man	ager, Portsmouth/Paducah Project Office	Phone No: (859) 219-4000
Contact Person:	Bruce Ford		Phone No: (270) 441-5357
Contact Person Ti	tle: Director, Environmental S	Services, Four Rivers Nuclear Partnership, I	LC
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky	42053
	Street	City/State	Zip
Company:	(IF OTHER GEO Consultants Corporation	SAMPLING PERSONNEL THAN LANDFILL OR LABORATORY)	DI N. (270) 016 0445
Contact Person:	Jason Boulton		Phone No: (270) 816-3415
Mailing Address:	199 Kentucky Avenue Street	Kevil, Kentucky City/State	42053 Zip
	L	ABORATORY RECORD #1	*
Laboratory:	GEL Laboratories, LLC	Lab ID No: _ H	XY90129
Contact Person:	Valerie Davis		Phone No: (843) 769-7391
Mailing Address:	2040 Savage Road	Charleston, South Carolina	29407
	Street	City/State	Zip
	I	ABORATORY RECORD #2	
Laboratory:	N/A	Lab ID No:	N/A
Contact Person:			Phone No: N/A
Mailing Address:	N/A		
C	Street	City/State	Zip
	I	ABORATORY RECORD #3	
Laboratory:	N/A	Lab ID No:	N/A
Contact Person:	N/A		Phone No: N/A
Mailing Address:	N/A		
-	Street	City/State	Zip

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: <u>None</u>

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	43
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	:.)	220		221		222		223	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/19/2022 0	9:48	1/19/2022	07:00	1/19/2022	08:24	1/19/2022 ()7:42
Duplicate ("Y	' or "N") ²				Ν		N		N		Ν	
Split ("Y" or	"N") ³				Ν		N		Ν		Ν	
Facility Sampl	le ID Number (if applicable)				MW220SG2	2-22	MW221S	G2-22	MW222S0	G2-22	MW223SG	2-22
Laboratory Sam	mple ID Number (if applicable)		56795400)1	567954	003	567954	005	5679540	07		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					2	1/24/20	22	1/24/20	22	1/24/202	22
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	UP		SIDE	1	SIDE	E	SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.186	J	0.474		0.401		0.401	
16887-00-6	Chloride(s)	т	mg/L	9056	17	*J	37.5	*J	30.3	*J	30.4	*J
16984-48-8	Fluoride	т	mg/L	9056	0.223	J	0.244	J	0.285	J	0.283	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.907	J	0.977	J	0.85	J	0.821	J
14808-79-8	Sulfate	т	mg/L	9056	19.2	*	14.9	*	13.2	*	13.5	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.02		29.99		30		29.99	
S0145	Specific Conductance	т	µMH0/cm	Field	376		420		407		404	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Loo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	324.2		324.2		324.4		324.49	
N238	Dissolved Oxygen	т	mg/L	Field	5.48		5.55		4.1		5.17	
S0266	Total Dissolved Solids	т	mg/L	160.1	179	В	193	В	197	В	213	В
S0296	PH	т	Units	Field	6.12		6.1		6.11		6.15	
NS215	Eh	т	mV	Field	406		404		363		391	
S0907	Temperature	т	°c	Field	16.33		14.83		15.89		15.83	
7429-90-5	Aluminum	т	mg/L	6020	0.021	J	<0.05		0.0314	J	0.0248	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.203		0.215		0.345		0.345	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00762	J	0.0186		0.0107	J	0.0101	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22		21		20.8		21.1	
7440-47-3	Chromium	т	mg/L	6020	0.0168		<0.01		0.00315	J	0.00329	J
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00304		0.000962	J	0.00126	J	0.00101	J
7439-89-6	Iron	т	mg/L	6020	0.16		<0.1		0.0533	J	0.0364	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	9.2		9.31		9.24		9.4	
7439-96-5	Manganese	т	mg/L	6020	0.00201	J	<0.005		0.00508		0.00548	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-520	01	8000-52	02	8000-52	42	8000-52	43
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.000895	BJ	0.00199	В	0.00557	В	0.00623	В
7440-02-0	Nickel	т	mg/L	6020	0.00704		0.00466		0.0431		0.0445	
7440-09-7	Potassium	т	mg/L	6020	5.33		2.64		0.667		0.671	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	41.6		48.6		48.9		49	
7440-25-7	Tantalum	т	mg/L	6020	0.00145	J	<0.005		0.00222	J	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00337	J	<0.02		0.00334	J	0.00346	J
7440-66-6	Zinc	т	mg/L	6020	0.00664	J	<0.02		0.00336	J	<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-52	243
Facility's Loo	cal Well or Spring Number (e.g., M	MW -1	1, MW-2, et		220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00042	J	0.00089	J	0.00041	J	0.00071	J

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	42	8000-52	43
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00051	J	0.00056	J	<0.005		0.00056	J
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.000019		<0.0000188		<0.0000191		<0.000019	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et		220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	1.27	*	1.43	*	-0.809	*	2.49	*
12587-47-2	Gross Beta	т	pCi/L	9310	11.8	*	0.877	*	-6.41	*	-2.24	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.125	*	0.437	*	0.523	*	0.251	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.683	*	1.69	*	-1.27	*	2.67	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	17.4	*	6.67	*	4.33	*	12.5	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.651	*	0.634	*	2.04	*	0.718	*
10028-17-8	Tritium	т	pCi/L	906.0	24.2	*	26.4	*	5.91	*	120	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	41.7		70.3		<20		77.4	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.963	J	0.738	J	0.734	J	0.86	J
S0586	Total Organic Halides	Т	mg/L	9020	0.0055	J	0.0131		0.00858	J	0.0086	J

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: <u>None</u>

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	., MW-2, etc	.)	224		369		370		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/19/2022 09	9:06	1/12/2022	10:11	1/12/2022	10:53	1/13/2022 ()7:24
Duplicate ("Y	' or "N") ²				Ν		N		Ν		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW224SG2	2-22	MW369U	G2-22	MW370U0	G2-22	MW372UG	2-22
Laboratory Sam	mple ID Number (if applicable)		56795400	19	567245	009	567245	011	5675680	01		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					2	1/14/20)22	1/14/20	22	1/19/202	22
Gradient with	respect to Monitored Unit (UP, DC) WN	SIDE, UNKN	OWN)	SIDE		DOW	N	DOW	N	DOWN	I
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.344		0.35		0.523		0.491	
16887-00-6	Chloride(s)	т	mg/L	9056	27.2	*J	28	J	36.5	J	38.2	*J
16984-48-8	Fluoride	т	mg/L	9056	0.312	J	0.197	J	0.164	J	0.166	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.7	J	0.804	J	0.91	J	1.03	*J
14808-79-8	Sulfate	т	mg/L	9056	15.9	*	7.8		20.5		145	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.02		30.23		30.19		29.95	
S0145	Specific Conductance	т	µMH0/cm	Field	435		359		459		752	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴₂Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	324.48		324.06		324.04		324.45	
N238	Dissolved Oxygen	т	mg/L	Field	4.12		2.64		4.36		3.1	
S0266	Total Dissolved Solids	т	mg/L	160.1	220	В	200		240		506	
S0296	рH	т	Units	Field	6.16		6.1		6.06		6.09	
NS215	Eh	т	mV	Field	397		392		402		376	
S0907	Temperature	т	°c	Field	16.39		15.67		16.39		14.56	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0277	J	<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.216		0.365		0.238		0.0552	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0262		0.0161		0.634		1.36	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.2		16.3		30		67	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.004		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000622	J	0.00122	J	0.000478	J	0.00182	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0692	J	<0.1		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	9.88		6.84		12.9		22.8	
7439-96-5	Manganese	т	mg/L	6020	0.0012	J	0.00494	J	0.00117	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	0.000069	J	<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.00071	BJ	<0.001		<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.0145		0.00331		0.000792	J	0.00357	
7440-09-7	Potassium	т	mg/L	6020	0.972		0.587		2.87		2.22	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.0026	J	<0.005		0.00187	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	56.2		53.5		48.6		64.3	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		0.00406	J	<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		0.00973	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g., M	MW -1	1, MW-2, et		224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00074	J	0.0013		0.00149		0.00425	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	1	8004-4820)	8004-48	18	8004-48	08
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, et)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		0.00071	BJ
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000189		<0.0000185		<0.0000184		<0.0000191	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.1		<0.098		<0.1	
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.1		<0.098		<0.1	
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.1		<0.098		<0.1	
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.1		<0.098		<0.1	
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.1		<0.098		<0.1	
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.1		<0.098		<0.1	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1	, Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.1		<0.098		<0.1	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.1		<0.098		<0.1	
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.1		<0.098		<0.1	
12587-46-1	Gross Alpha	т	pCi/L	9310	-2.54	*	0.939	*	0.233	*	0.604	*
12587-47-2	Gross Beta	т	pCi/L	9310	8.62	*	40.6	*	15.5	*	42.2	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	-0.0855	*	0.59	*	0.342	*	0.398	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.19	*	1.97	*	4.97	*	3.41	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	6.45	*	52.8	*	25.6	*	47.6	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	2.21	*	0.823	*	-0.303	*	3.09	*
10028-17-8	Tritium	т	pCi/L	906.0	55.1	*	36.7	*	31.8	*	1.28	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	174		16.7	J	16.7	J	13.1	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5	*	<0.5	*	<0.5	*
S0268	Total Organic Carbon	т	mg/L	9060	0.708	J	0.953	J	0.952	J	0.846	J
s0586	Total Organic Halides	т	mg/L	9020	0.0112		0.0212		0.00632	J	0.00598	J

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: <u>None</u>

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	Facility Well/Spring Number				8004-479	2	8004-48	309	8004-48	310	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	.)	373		384		385		386	
Sample Sequend	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)q	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		1/13/2022 0	8:06	1/18/2022	09:26	1/18/2022	10:21	1/18/2022 1	0:56
Duplicate ("Y	" or "N") ²				N		N		N		Ν	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Samp	le ID Number (if applicable)				MW373UG2	2-22	MW384S0	G2-22	MW385S0	G2-22	MW386SG	2-22
Laboratory Sam	poratory Sample ID Number (if applicable))3	567805	003	567805	005	5678050	07
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysi					2	1/21/20	22	1/21/20	22	1/21/202	22
Gradient with	respect to Monitored Unit (UP, DC) WN ,	SIDE, UNKN	OWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.509		0.273		0.262		0.123	J
16887-00-6	Chloride(s)	т	mg/L	9056	37.1	*J	23.5	J	23.2	J	10.6	J
16984-48-8	Fluoride	т	mg/L	9056	0.171	J	0.132	J	0.17	J	0.773	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.843	*J	0.958	J	0.821	J	<10	
14808-79-8	Sulfate	т	mg/L	9056	155	*	19.3		20.6		35.1	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.95		30.1		30.1		30.09	
S0145	Specific Conductance	т	µMH0/cm	Field	777		383		462		635	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	ocal Well or Spring Number (e.g., MW	7-1, I	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	324.43		324.03		324.07		347.21	
N238	Dissolved Oxygen	т	mg/L	Field	2.72		5.68		2.41		2.55	
S0266	Total Dissolved Solids	т	mg/L	160.1	469		209		234		393	
S0296	рH	т	Units	Field	6.08		6.05		6.37		6.73	
NS215	Eh	т	mV	Field	376		434		432		180	
S0907	Temperature	т	°c	Field	15.39		15.89		15.94		16.33	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0391	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00295	J
7440-39-3	Barium	т	mg/L	6020	0.029		0.204		0.234		0.254	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	2.01		0.0345		0.057		0.0232	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	67.2		22		29.8		21	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.0185		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.000709	J	0.0152	
7440-50-8	Copper	т	mg/L	6020	0.00132	J	0.00109	J	0.00111	J	0.000383	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.228		0.0539	J	1.83	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	25.4		9.41		11.9		8.94	
7439-96-5	Manganese	т	mg/L	6020	0.00959		0.00282	J	0.0102		2.09	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000524	BJ	0.000415	BJ	0.000913	BJ
7440-02-0	Nickel	т	mg/L	6020	0.00248		0.00151	J	0.0012	J	0.00402	
7440-09-7	Potassium	т	mg/L	6020	2.86		1.44		1.78		0.332	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	60.9		43.2		44.8		129	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		0.00104	J	<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.000168	J	0.000068	J
7440-62-2	Vanadium	т	mg/L	6020	<0.02		0.00338	J	<0.02		0.00377	J
7440-66-6	Zinc	т	mg/L	6020	0.00408	J	<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4793	2	8004-480)9	8004-48	310	8004-48	304
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	1, MW-2, et		373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00537		0.00142		0.00155		0.00053	J

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-480	9	8004-48	10	8004-48	04
Facility's Loo	cal Well or Spring Number (e.g., M	4W-1	L, MW-2, et)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00068	BJ	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191		<0.000019		<0.0000188		<0.0000191	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0988			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0988			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0988			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0988			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0988			*		*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.0988			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-4809		8004-481	0	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et		373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0988			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0988			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0988			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	6.01	*	-0.522	*	-2.89	*	2.03	*
12587-47-2	Gross Beta	т	pCi/L	9310	10.5	*	8.38	*	17.9	*	-0.394	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.251	*	0.476	*	0.697	*	0.0755	*
10098-97-2	Strontium-90	т	pCi/L	905.0	3.55	*	2.01	*	2.63	*	-1.7	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	11.2	*	19.8	*	34.6	*	1.92	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	3.4	*	2.12	*	1.97	*	1.86	*
10028-17-8	Tritium	Т	pCi/L	906.0	-101	*	-63.6	*	-13.6	*	-63.2	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	20.3		9.57	J	13.1	J	16.7	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	т	mg/L	9060	0.999	J	0.98	J	1.08	J	11.6	
s0586	Total Organic Halides	т	mg/L	9020	0.0123		0.0042	J	0.00876	J	0.304	

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-4	312	8004-4811	
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	., MW-2, etc	.)	387		388		389		390	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/18/2022 0	7:58	1/18/2022	08:49	NA		1/18/2022 07	':22
Duplicate ("Y	" or "N") ²				Ν		N		N		N	
Split ("Y" or	"N") ³				Ν		N		N		N	
Facility Samp	le ID Number (if applicable)				MW387SG2	2-22	MW388S	G2-22	NA		MW390SG2	-22
Laboratory Sar	mple ID Number (if applicable)		56780500	9	567805	011	NA		567805013	3		
Date of Analys	ce of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					2	1/21/20)22	NA		1/21/2022	
Gradient with	respect to Monitored Unit (UP, DC) WN	SIDE, UNKN	OWN)	DOWN		DOW	'N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.564		0.448			*	0.295	
16887-00-6	Chloride (s)	т	mg/L	9056	42	J	37.3	J		*	26.6	J
16984-48-8	Fluoride	т	mg/L	9056	0.496	J	0.176	J		*	0.3	J
s0595	Nitrate & Nitrite	т	mg/L	9056	1.35	J	1.07	J		*	1.62	J
14808-79-8	Sulfate	т	mg/L	9056	35.7		19			*	35	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.1		30.1			*	30.09	
S0145	Specific Conductance	т	µMH0/cm	Field	610		423			*	642	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Loo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.14		324.03			*	324.26	
N238	Dissolved Oxygen	т	mg/L	Field	4.5		5.6			*	4.2	
s0266	Total Dissolved Solids	т	mg/L	160.1	326		214			*	376	
s0296	рH	т	Units	Field	6.18		6.05			*	6.25	
NS215	Eh	т	mV	Field	430		431			*	459	
s0907	Temperature	т	°c	Field	14.67		15.83			*	12.06	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.043	J		*	0.294	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00347	J	<0.005			*	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.171		0.199			*	0.254	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.029		0.0322			*	0.0203	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	44.2		24.4			*	29.1	
7440-47-3	Chromium	т	mg/L	6020	0.0104		<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*	0.000397	J
7440-50-8	Copper	т	mg/L	6020	0.00129	J	0.00105	J		*	0.00241	
7439-89-6	Iron	т	mg/L	6020	0.0539	J	0.159			*	0.172	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	18.8		10.6			*	13	
7439-96-5	Manganese	т	mg/L	6020	0.00203	J	0.00111	J		*	0.00306	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-4811	
Facility's I	local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.00021	BJ	0.000298	BJ		*	0.000229	BJ
7440-02-0	Nickel	т	mg/L	6020	0.00172	J	0.00108	J		*	0.00253	
7440-09-7	Potassium	т	mg/L	6020	1.92		1.84			*	0.4	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	62.6		44.3			*	104	
7440-25-7	Tantalum	т	mg/L	6020	0.00137	J	0.00172	J		*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002			*	0.000244	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6	Zinc	т	mg/L	6020	0.00413	J	<0.02			*	0.00676	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-4	812	8004-481	1
Facility's Lo	ocal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00241		0.00192			*	0.00139	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-481	6	8004-48	12	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.000019			*	<0.0000193	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4815		8004-4816	6	8004-481	2	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g.,)	MW-1	L, MW-2, et)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.0911	*	-0.0357	*		*	5.44	*
12587-47-2	Gross Beta	т	pCi/L	9310	172	*	2.85	*		*	49	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.131	*	0.0899	*		*	0.166	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.52	*	-0.27	*		*	1.21	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	345	*	12.4	*		*	78.2	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	2.62	*	1.95	*		*	1.07	*
10028-17-8	Tritium	Т	pCi/L	906.0	-49.5	*	-34.3	*		*	12.4	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		152			*	<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*		*	<0.5	*
s0268	Total Organic Carbon	т	mg/L	9060	0.954	J	0.946	J		*	2.05	
s0586	Total Organic Halides	т	mg/L	9020	0.00702	J	0.0135			*	0.0204	
		Π										

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)					5	8004-48	306	8004-48	307	8004-480)2
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	., MW-2, etc	:.)	391		392		393		394	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)						1/19/2022 11:14		1/19/2022	11:46	1/13/2022 1	10:40
Duplicate ("Y	Duplicate ("Y" or "N") ²					Ν		Ν			Ν	
Split ("Y" or "N") ³					Ν		N		N		Ν	
Facility Sampl	le ID Number (if applicable)				MW391SG2	2-22	MW392SG2-22		MW393S	G2-22	MW394SG	2-22
Laboratory Sam	mple ID Number (if applicable)				567954011		567954	013	567954	015	5674610	01
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	1/24/2022		1/24/2022		1/24/2022		1/18/202	22	
Gradient with	respect to Monitored Unit (UP, DC) WN	SIDE, UNKN	OWN)	DOWN		DOWN		DOWN		UP	
CAS RN⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.53		0.55		0.151	J	0.53	
16887-00-6	Chloride (s)	т	mg/L	9056	41.4	*J	44.9	*J	10.9	*J	43.6	*J
16984-48-8	Fluoride	т	mg/L	9056	0.187	J	0.214	J	0.216	J	0.149	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.991	J	0.66	J	<10		1.15	*J
14808-79-8	Sulfate	т	mg/L	9056	13.1	*	8.59	*	19.7	*	11.7	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		30.03		30.03		29.95	
S0145	Specific Conductance	т	µMH0/cm	Field	390		358		458		401	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-480	5	8004-480	6	8004-4807	7	8004-4802			
Facility's Lo	ocal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	324.31		324.24		339.35		324.39	
N238	Dissolved Oxygen	т	mg/L	Field	5		2.5		1.9		5.65	
S0266	Total Dissolved Solids	т	mg/L	160.1	180	В	159	В	269	В	230	
S0296	рН	т	Units	Field	6.12		6.1		6.25		6	
NS215	Eh	т	mV	Field	407		400		260		393	
S0907	Temperature	т	°c	Field	15.94		15.56		16.17		15.72	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0264	J	<0.05		0.027	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00342	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.22		0.265		0.149		0.233	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0252		0.0227		0.0202		0.0189	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	25		25.1		15.8		25.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000438	J	0.000578	J	<0.002		0.000545	J
7439-89-6	Iron	т	mg/L	6020	0.0731	J	0.074	J	1.73		0.11	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.5		11.1		4.21		10.5	
7439-96-5	Manganese	т	mg/L	6020	0.00108	J	0.0134		0.0573		0.00293	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	05	8004-48	06	8004-48	07	8004-48	02
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.00023	BJ	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	<0.002		0.00142	J	<0.002		0.00314	
7440-09-7	Potassium	т	mg/L	6020	1.6		2.16		0.521		1.1	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	35.9		26.8		91		31.6	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		0.00345	J	0.00521	J	<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1,	Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	307	8004-48	302
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		0.00051	J	<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00855		0.0132		0.00035	J	0.00583	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	GWA NUMBER ¹ , Facility Well/Spring Number						8004-480	6	8004-480)7	8004-48	02
Facility's Lo	cal Well or Spring Number (e.g., M	4W-1	L, MW-2, et)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00052	J	<0.005		0.00052	J	0.00064	BJ
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000188		<0.0000188		<0.0000191		<0.000019	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						8004-4806		8004-480	7	8004-480)2
Facility's Loo							392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	2.19	*	-1.78	*	-2.65	*	0.616	*
12587-47-2	Gross Beta	т	pCi/L	9310	-0.906	*	0.664	*	-2.25	*	2.54	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.276	*	0.207	*	0.507	*	-0.00479	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.57	*	0.61	*	0.167	*	-2.21	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	8.05	*	2.32	*	4.37	*	5.46	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.479	*	2.33	*	0.556	*	5.53	*
10028-17-8	Tritium	т	pCi/L	906.0	-21.3	*	-21.4	*	5.77	*	-20.4	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	38.1		260		13.1	J	31	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	*
S0268	Total Organic Carbon	т	mg/L	9060	0.635	J	0.582	J	2.56		0.546	J
S0586	Total Organic Halides	т	mg/L	9020	0.0289		0.0283		0.0204		0.00648	J

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

Permit Number: SW07300014, SW07300015, SW07300045 FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-48	303	8004-48	317	0000-0000)
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	., MW-2, etc	.)	395		396		397		E. BLANK	(
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		E	
Sample Date ar		1/13/2022 1	1:18	1/13/2022	11:53	1/13/2022	09:51	1/18/2022 0	3:20			
Duplicate ("Y'	Duplicate ("Y" or "N") ²						N	Ν			N	
Split ("Y" or	Split ("Y" or "N") ³						Ν		N		N	
Facility Sampl	Facility Sample ID Number (if applicable)					2-22	MW396SG2-22		MW397SG2-22		RI1SG2-22	
Laboratory Sam	nple ID Number (if applicable)				56746100)3	567461005		567461007		567805016	3
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Organics Analysis			1/18/2022	1/18/2022		1/18/2022		22	1/21/2022	2
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.534		0.9		0.416			*
16887-00-6	Chloride (s)	т	mg/L	9056	45.5	*J	61	*J	35	*J		*
16984-48-8	Fluoride	т	mg/L	9056	0.127	J	0.52	J	0.141	J		*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.4	*J	<10	*	1.08	*J		*
14808-79-8	Sulfate	т	mg/L	9056	11.6	*	25.7	*	11.7	*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.95		29.94		29.96			*
S0145	Specific Conductance	т	µMH0/cm	Field	376		714		340			*

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	,	0000-0000	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	W-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.73		370.66		324.37			*
N238	Dissolved Oxygen	т	mg/L	Field	5.31		1.09		6.96			*
s0266	Total Dissolved Solids	т	mg/L	160.1	201		397		141			*
s0296	pH	т	Units	Field	6.02		6.41		6.08			*
NS215	Eh	т	mV	Field	395		191		352			*
s0907	Temperature	т	°c	Field	15.56		15.94		15.89			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0295	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00221	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.26		0.416		0.13		<0.004	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0198		0.00741	J	0.00804	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	25.5		34.4		18.2		<0.2	
7440-47-3	Chromium	т	mg/L	6020	0.00986	J	<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00355		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000708	J	0.000389	J	0.00062	J	0.000314	J
7439-89-6	Iron	т	mg/L	6020	0.137		2.56		0.0693	J	<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.6		14.7		7.53		<0.03	
7439-96-5	Manganese	т	mg/L	6020	0.00108	J	0.492		0.00308	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	1K
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.00158		0.000399	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.000897	J	0.0025		0.000741	J	0.000653	J
7440-09-7	Potassium	т	mg/L	6020	1.6		0.783		1.85		<0.3	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	30.2		104		32.8		<0.25	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		0.0264	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		0.00234	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-480	1	8004-480)3	8004-48	817	0000-0	000		
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	1, MW-2, et		395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		0.003	J
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		0.00057	J
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		0.00398	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00409		0.00037	J	0.00047	J	0.00061	J

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480	3	8004-48	17	0000-00	00
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	395		396		397		E. BLAN	١K
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00071	BJ	0.00071	BJ	0.0007	BJ	0.00102	J
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.000019		<0.000019		<0.0000192		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4801		8004-4803	;	8004-481	7	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et		395		396		397		E. BLAN	К
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	4.86	*	-1.12	*	1.2	*	-0.907	*
12587-47-2	Gross Beta	т	pCi/L	9310	-2.3	*	-4.74	*	9.29	*	-4.73	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.253	*	0.189	*	0.38	*	0.47	*
10098-97-2	Strontium-90	т	pCi/L	905.0	2.55	*	6.27	*	3.47	*	0.174	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	5.03	*	-1.23	*	18.1	*	1.56	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	5.92	*	4.8	*	6.31	*	1.37	*
10028-17-8	Tritium	т	pCi/L	906.0	-61.8	*	-68.7	*	27.6	*	166	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	23.9		34.6		16.7	J		*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	0.74	*	<0.5	*	<0.5	*
S0268	Total Organic Carbon	т	mg/L	9060	0.628	J	4.47		0.455	J		*
S0586	Total Organic Halides	т	mg/L	9020	0.00608	J	0.0345		0.00368	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: <u>KY8-890-008-982</u>/1 LAB ID: None

0000-0000 0000-0000 AKGWA NUMBER¹, Facility Well/Spring Number 0000-0000 0000-0000 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) F. BLANK T. BLANK 1 T. BLANK 2 T. BLANK 3 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment F Т т Т Sample Date and Time (Month/Day/Year hour: minutes) 1/18/2022 09:28 1/13/2022 06:20 1/18/2022 06.15 1/19/2022 05:45 Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ Ν Ν Ν Ν FB1SG2-22 TB1SG2-22 TB2SG2-22 TB3SG2-22 Facility Sample ID Number (if applicable) 567805015 567461009 567805017 567954017 Laboratory Sample ID Number (if applicable) Date of Analysis (Month/Day/Year) For Volatile Organics Analysis 1/21/2022 1/18/2022 1/21/2022 1/24/2022 Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) NA NA NA NA CAS RN⁴ DETECTED CONSTITUENT т Unit METHOD DETECTED F F DETECTED F DETECTED F D OF VALUE L VALUE L VALUE L VALUE L 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ G POL⁶ G G G S^7 s s s * * * 24959-67-9 Bromide т 9056 ma/L * т * * 16887-00-6 Chloride(s) mq/L 9056 * * * 16984-48-8 Fluoride т * mg/L 9056 * * * S0595- -Nitrate & Nitrite т ma/L 9056 * * * 14808-79-8 т * Sulfate 9056 mq/L * * * NS1894 Barometric Pressure Reading T Inches/Hg Field * * * S0145- т Specific Conductance uMH0/cm Field

GROUNDWATER SAMPLE ANALYSIS (S)

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	F. BLAN	K	T. BLANK	1	T. BLANK	2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
S0907	Temperature	т	°c	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.004			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	0.0129	J		*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	0.005			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	т	mg/L	6020	0.00196	J		*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER	, Facility Well/Spring Number				000-000	00	0000-00	00	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	К 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	0.00603	J		*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.02			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	0.0128		0.0237		0.031		0.0138	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		0.00216		0.00266	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	00	0000-00	000	0000-00	000
Facility's Lo	ocal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et		F. BLAN	<	T. BLAN	٢1	T. BLAN	IK 2	T. BLAN	IK 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001		<0.001	*	<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	0.00256	J	0.0225		0.00454	J	0.00175	J
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	0.00106		<0.001		0.00055	J	0.00068	J
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		0.00407		0.00194	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER1,	. Facility Well/Spring Number				0000-0000)	0000-000	0	000-000	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g., M	4 W-1	1, MW-2, et)	F. BLANK	(T. BLANK	1	T. BLANK	< 2	T. BLANI	< 3
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		0.00336	J	<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00056	J	0.00077	BJ	0.00099	J	0.00084	J
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193		<0.000019		<0.0000193		<0.0000185	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-0000		0000-0000		0000-0000		0000-0000)
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et		F. BLANK		T. BLANK 1		T. BLANK 2		T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.201	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	0.429	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.0432	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	3.83	*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	6.46	*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.954	*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0	104	*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*		*		*		*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste ManagementRESIDENTIAL/INERT-QUARTERLYSolid Waste BranchFacility: US DOE - Paducah Gaseous Diffusion Plant14 Reilly RoadPermit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4809 384 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) Sample Sequence # 2 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA 1/18/2022 09:26 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Υ Split ("Y" or "N")³ Ν MW384DSG2-22 Facility Sample ID Number (if applicable) 567805001 Laboratory Sample ID Number (if applicable) 1/20/2022 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis SIDE Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) METHOD DETECTED DETECTED DETECTED CAS RN⁴ CONSTITUENT т Unit DETECTED F F F F VALUE D OF VALUE L VALUE L L VALUE L 5 MEASURE *δ*R OR OR А OR А X А POL⁶ POL⁶ G POL⁶ G G POL⁶ G S^7 s s s т 24959-67-9 Bromide mg/L 9056 0.27 т 16887-00-6 234 J Chloride(s) mg/L 9056 16984-48-8 т 9056 0.173 J Fluoride mg/L т S0595- -Nitrate & Nitrite mq/L 9056 0.959 J 14808-79-8 Sulfate т 9056 193 mg/L NS1894 Barometric Pressure Reading T Inches/Ha Field т S0145- -Specific Conductance Field µMH0/cm

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480	9	Ν					/
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	384							
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*						
N238	Dissolved Oxygen	т	mg/L	Field		*		\setminus				
S0266	Total Dissolved Solids	т	mg/L	160.1	196							
S0296	на	т	Units	Field		*						
NS215	Eh	т	mV	Field		*			\backslash			
s0907	Temperature	т	°C	Field		*						
7429-90-5	Aluminum	т	mg/L	6020	<0.05					\vee		
7440-36-0	Antimony	т	mg/L	6020	<0.003							
7440-38-2	Arsenic	т	mg/L	6020	<0.005				Х			
7440-39-3	Barium	т	mg/L	6020	0.205							
7440-41-7	Beryllium	т	mg/L	6020	<0.0005							
7440-42-8	Boron	т	mg/L	6020	0.0338							
7440-43-9	Cadmium	т	mg/L	6020	<0.001				/			
7440-70-2	Calcium	т	mg/L	6020	22.1						\backslash	
7440-47-3	Chromium	т	mg/L	6020	<0.01							
7440-48-4	Cobalt	т	mg/L	6020	<0.001			/				
7440-50-8	Copper	т	mg/L	6020	0.00121	J						
7439-89-6	Iron	т	mg/L	6020	0.0822	J						
7439-92-1	Lead	т	mg/L	6020	<0.002							
7439-95-4	Magnesium	т	mg/L	6020	9.45							$\left \right\rangle$
7439-96-5	Manganese	т	mg/L	6020	0.00198	J						
7439-97-6	Mercury	т	mg/L	7470	<0.0002							

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-48	09	Ν					
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	384							
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000437	ВJ						
7440-02-0	Nickel	т	mg/L	6020	0.00104	J		\backslash				
7440-09-7	Potassium	т	mg/L	6020	1.45							
7440-16-6	Rhodium	т	mg/L	6020	<0.005						/	
7782-49-2	Selenium	т	mg/L	6020	<0.005				\backslash			
7440-22-4	Silver	т	mg/L	6020	<0.001							
7440-23-5	Sodium	т	mg/L	6020	43.6					/		
7440-25-7	Tantalum	т	mg/L	6020	0.00136	J			$ \rangle /$			
7440-28-0	Thallium	т	mg/L	6020	<0.002				X			
7440-61-1	Uranium	т	mg/L	6020	<0.0002							
7440-62-2	Vanadium	т	mg/L	6020	<0.02					\backslash		
7440-66-6	Zinc	т	mg/L	6020	<0.02							
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005							
67-64-1	Acetone	т	mg/L	8260	<0.005						\backslash	
107-02-8	Acrolein	т	mg/L	8260	<0.005							
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005							
71-43-2	Benzene	т	mg/L	8260	<0.001							
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001							
1330-20-7	Xylenes	т	mg/L	8260	<0.003							
100-42-5	Styrene	т	mg/L	8260	<0.001							\square
108-88-3	Toluene	т	mg/L	8260	<0.001							
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	9	Ν					/
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	384							
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	т	mg/L	8260	<0.001							
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*		$\left \right\rangle$				
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005						/	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005				\backslash			
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005							
75-00-3	Chloroethane	т	mg/L	8260	<0.001							
67-66-3	Chloroform	т	mg/L	8260	<0.001				$ \rangle /$	1		
74-87-3	Methyl chloride	т	mg/L	8260	<0.001				I X			
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001							
74-95-3	Methylene bromide	т	mg/L	8260	<0.001					\square		
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001				/			
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001				ſ		\backslash	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001			/				
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		7					
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001							
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001							\backslash
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00234							

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number: SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4809)	\backslash					/
Facility's Loca	al Well or Spring Number (e.g., M	W-1	, MW-2, et	.c.)	384							
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	т	mg/L	8260	<0.005							
74-88-4	Iodomethane	т	mg/L	8260	<0.005			\backslash				
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001				\land		1	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005							
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193					<u> </u>		
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				<u> </u>			
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001					\square		
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001					$ \setminus$		
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001				/			
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001						\backslash	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001			ſ				
1336-36-3	PCB,Total	т	ug/L	8082		*	<u> </u>					
12674-11-2	PCB-1016	т	ug/L	8082		*						
11104-28-2	PCB-1221	т	ug/L	8082		*						
11141-16-5	PCB-1232	т	ug/L	8082		*						\backslash
53469-21-9	PCB-1242	т	ug/L	8082		*						
12672-29-6	PCB-1248	т	ug/L	8082		*						

Facility: US DOE - Paducah Gaseous Diffusion PlantFINDS/UNIT: KY8-890-008-982 / 1Permit Number:SW07300014, SW07300015, SW07300045LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4809		Ν					
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et)	384							
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DERECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR FQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*						
11096-82-5	PCB-1260	т	ug/L	8082		*						
11100-14-4	PCB-1268	т	ug/L	8082		*						
12587-46-1	Gross Alpha	т	pCi/L	9310	3.81	*						
12587-47-2	Gross Beta	т	pCi/L	9310	15.3	*			\backslash			
10043-66-0	Iodine-131	Т	pCi/L			*						
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.438	*				ł		
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.934	*						
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	37.4	*						
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.7	*				k		
10028-17-8	Tritium	т	pCi/L	906.0	-62.5	*				$\left \right\rangle$		
s0130	Chemical Oxygen Demand	т	mg/L	410.4	9.57	J				$ \rangle$		
57-12-5	Cyanide	Т	mg/L	9012	<0.2			/	ſ		\setminus	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*						
s0268	Total Organic Carbon	т	mg/L	9060	0.786	J						
s0586	Total Organic Halides	т	mg/L	9020	0.0156							
											\backslash	
												\backslash
												\backslash

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW22	20 MW220SG2-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Methyl bromide	L	LCS or LCSD recovery outside of control limits.
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
	PCB-1248		Analysis of constituent not required and not performed.	
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.32. Rad error is 3.32.
		Gross beta		TPU is 6.69. Rad error is 6.41.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.544. Rad error is 0.543.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.16. Rad error is 2.16.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.4. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.34. Rad error is 1.33.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 105. Rad error is 105.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221SG2-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Methyl bromide	L	LCS or LCSD recovery outside of control limits.
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 5.61. Rad error is 5.6.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 4.95. Rad error is 4.94.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.943. Rad error is 0.943.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.24. Rad error is 2.23.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 12. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.4. Rad error is 1.39.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 109. Rad error is 109.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5242 MW22	22 MW222SG2-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Methyl bromide	L	LCS or LCSD recovery outside of control limits.
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.58. Rad error is 2.58.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.32. Rad error is 6.32.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.763. Rad error is 0.762.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.55. Rad error is 2.55.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.79.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 107. Rad error is 107.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5243 MW22	23 MW223SG2-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Methyl bromide	L	LCS or LCSD recovery outside of control limits.
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 3.97. Rad error is 3.95.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 6.21. Rad error is 6.21.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.343. Rad error is 0.343.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 2.58. Rad error is 2.55.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 12.1. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 1.34. Rad error is 1.33.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 122. Rad error is 120.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5244 MW224 N	MW224SG2-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Methyl bromide	L	LCS or LCSD recovery outside of control limits.
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. Ti is 2.83. Rad error is 2.83.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.79. Rad error is 6.64.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.273. Rad error is 0.273.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.33. Rad error is 2.33.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.3. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.06. Rad error is 2.03.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 113. Rad error is 112.
004-4820 MW369 N	MW369UG2-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.43. Rad error is 5.43.
		Gross beta		TPU is 12.7. Rad error is 10.8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.573. Rad error is 0.57.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.68. Rad error is 1.65.
		Technetium-99		TPU is 13.4. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.35. Rad error is 1.34.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 107. Rad error is 106.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4818 MW37	0 MW370UG2-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.7. Rad error is 5.69.
		Gross beta		TPU is 9.4. Rad error is 9.03.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.486. Rad error is 0.485.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.56. Rad error is 3.47.
		Technetium-99		TPU is 12.4. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.747. Rad error is 0.747.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 104. Rad error is 104.
		lodide	W	Post-digestion spike recovery out of control limits.
8004-4808 MW37	2 MW372UG2-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.2. Rad error is 5.19.
		Gross beta		TPU is 13.7. Rad error is 11.8.
	lodine-131		Analysis of constituent not required and not performed.	
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.371. Rad error is 0.371.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.3. Rad error is 2.24.
		Technetium-99		TPU is 13.4. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.03. Rad error is 5.98.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 121. Rad error is 121.
		lodide	W	Post-digestion spike recovery out of control limits.
8004-4792 MW37	3 MW373UG2-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.56. Rad error is 5.47.
		Gross beta		TPU is 6.18. Rad error is 5.92.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.463. Rad error is 0.463.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.42. Rad error is 2.36.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.9. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.54. Rad error is 5.49.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 102. Rad error is 102.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4809 MW3	84 MW384SG2-22	Methyl bromide	Y2	MS/MSD RPD outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.91. Rad error is 3.91.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.27. Rad error is 6.12.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.696. Rad error is 0.696.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.48. Rad error is 2.46.
		Technetium-99		TPU is 11.4. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.59. Rad error is 2.56.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 112. Rad error is 112.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4810 MW38	85 MW385SG2-22	Methyl bromide	Y2	MS/MSD RPD outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
	PCB-1260		Analysis of constituent not required and not performed.	
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.65. Rad error is 3.65.
		Gross beta		TPU is 9.5. Rad error is 9.05.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.725. Rad error is 0.725.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.47. Rad error is 2.44.
		Technetium-99		TPU is 12.2. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.9. Rad error is 1.87.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 118. Rad error is 118.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4804 MW386 MW386SG2-22		Methyl bromide	Y2	MS/MSD RPD outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.05. Rad error is 4.04.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.95. Rad error is 4.95.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.41. Rad error is 0.41.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.28. Rad error is 2.28.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.87. Rad error is 1.84.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 111. Rad error is 111.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW38	87 MW387SG2-22	Methyl bromide	Y2	MS/MSD RPD outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.52. Rad error is 3.52.
		Gross beta		TPU is 32.7. Rad error is 17.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.284. Rad error is 0.284.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.39. Rad error is 2.38.
		Technetium-99		TPU is 42.9. Rad error is 19.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.23. Rad error is 2.19.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 115. Rad error is 115.
		lodide	W	Post-digestion spike recovery out of control limits.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4816 MW388 MW388SG2-22		Methyl bromide	Y2	MS/MSD RPD outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.66. Rad error is 3.66.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.17. Rad error is 5.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.562. Rad error is 0.562.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.43. Rad error is 2.42.
	Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.4. Rad error is 11.3.	
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.8.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 114. Rad error is 114.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample was collected.
		Chloride		During sampling, the well was dry; therefore, no sample was collected.
		Fluoride		During sampling, the well was dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample was collected.
		Sulfate		During sampling, the well was dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample was collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample was collected.
		Temperature		During sampling, the well was dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well was dry; therefore, no sample wa collected.
		Antimony		During sampling, the well was dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well was dry; therefore, no sample wa collected.
		Barium		During sampling, the well was dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.
		Boron		During sampling, the well was dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well was dry; therefore, no sample wa collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample was collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample wa collected.
		Mercury		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample was collected.
		Nickel		During sampling, the well was dry; therefore, no sample was collected.
		Potassium		During sampling, the well was dry; therefore, no sample was collected.
		Rhodium		During sampling, the well was dry; therefore, no sample was collected.
		Selenium		During sampling, the well was dry; therefore, no sample was collected.
		Silver		During sampling, the well was dry; therefore, no sample was collected.
		Sodium		During sampling, the well was dry; therefore, no sample was collected.
		Tantalum		During sampling, the well was dry; therefore, no sample was collected.
		Thallium		During sampling, the well was dry; therefore, no sample was collected.
		Uranium		During sampling, the well was dry; therefore, no sample was collected.
		Vanadium		During sampling, the well was dry; therefore, no sample was collected.
		Zinc		During sampling, the well was dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample was collected.
		Acetone		During sampling, the well was dry; therefore, no sample was collected.
		Acrolein		During sampling, the well was dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample was collected.
		Benzene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		Xylenes		During sampling, the well was dry; therefore, no sample was collected.
		Styrene		During sampling, the well was dry; therefore, no sample was collected.
		Toluene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4811 MW3	90 MW390SG2-22	Methyl bromide	Y2	MS/MSD RPD outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.01. Rad error is 5.94.
		Gross beta		TPU is 13. Rad error is 10.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.671. Rad error is 0.671.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.54. Rad error is 2.54.
		Technetium-99		TPU is 16.1. Rad error is 13.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.74. Rad error is 1.72.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 112. Rad error is 112.
		lodide	W	Post-digestion spike recovery out of control limits.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4805 MW391	MW391SG2-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Methyl bromide	L	LCS or LCSD recovery outside of control limits.
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 5.44. Rad error is 5.43.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 4.06. Rad error is 4.06.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.413. Rad error is 0.413.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 2.46. Rad error is 2.44.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 1.34. Rad error is 1.34.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 101. Rad error is 101.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4806 MW39	92 MW392SG2-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Methyl bromide	L	LCS or LCSD recovery outside of control limits.
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 5.99. Rad error is 5.98.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 5.25. Rad error is 5.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.382. Rad error is 0.382.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 2.25. Rad error is 2.25.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 2.15. Rad error is 2.12.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 97.7. Rad error is 97.7.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4807 MW39	3 MW393SG2-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Methyl bromide	L	LCS or LCSD recovery outside of control limits.
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.93. Rad error is 5.93.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.96. Rad error is 5.96.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.502. Rad error is 0.502.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.14. Rad error is 2.14.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.8. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.78. Rad error is 1.77.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 107. Rad error is 107.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
		Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.86. Rad error is 4.86.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.2. Rad error is 5.18.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.288. Rad error is 0.288.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.81. Rad error is 3.81.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.71. Rad error is 5.62.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 106. Rad error is 106.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
		Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. ⁻ is 5.46. Rad error is 5.4.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 5.6. Rad error is 5.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.335. Rad error is 0.335.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.82. Rad error is 1.77.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.5. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.91. Rad error is 5.81.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 107. Rad error is 107.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
		Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 5.14. Rad error is 5.13.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.44. Rad error is 5.44.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.395. Rad error is 0.394.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.56. Rad error is 4.46.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.08. Rad error is 6.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. ⁻ is 108. Rad error is 108.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW39	97 MW397SG2-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 6.11. Rad error is 6.11.
		Gross beta		TPU is 6.23. Rad error is 6.03.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.342. Rad error is 0.341.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. This 4.35. Rad error is 4.32.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 11.7. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 7.16. Rad error is 7.04.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. Ti is 117. Rad error is 117.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG2-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Methyl bromide	Y2	MS/MSD RPD outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.32. Rad error is 4.31.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.66. Rad error is 6.66.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.66. Rad error is 0.66.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.95. Rad error is 1.95.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.76. Rad error is 1.74.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 138. Rad error is 134.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide	W	Post-digestion spike recovery out of control limits.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1SG2-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Methyl bromide	Y2	MS/MSD RPD outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3. Rad error is 2.99.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.64. Rad error is 5.64.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.438. Rad error is 0.438.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.88. Rad error is 2.8.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.65. Rad error is 1.64.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 129. Rad error is 127.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide	W	Post-digestion spike recovery out of control limits.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG2-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG2-22	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG2-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG2-22	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Methyl bromide	Y2	MS/MSD RPD outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG2-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG2-22	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Methyl bromide	L	LCS or LCSD recovery outside of control limits.
		Vinyl chloride	L	LCS or LCSD recovery outside of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4809 MW38	34 MW384DSG2-22	Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Methyl bromide	Y2	MS/MSD RPD outside acceptance criteria.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.3. Rad error is 5.26.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 10.3. Rad error is 9.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.667. Rad error is 0.667.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.03. Rad error is 2.03.
		Technetium-99		TPU is 12.6. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.86. Rad error is 1.84.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 109. Rad error is 109.
		lodide	W	Post-digestion spike recovery out of control limits.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2022 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-980-008-982/1</u> Lab ID: <u>None</u> For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2022 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The first quarter 2022 data used to conduct the statistical analyses were collected in January 2022. The statistical analyses for this report first used data from the initial eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one compliance well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
MW390 ¹	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

¹**NOTE:** The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient. **BG:** upgradient or background wells **TW:** compliance or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

 $TL = X + (K \times S)$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the background wells (identified as "BG"), the compliance or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2022. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations. upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Parameters
Aluminum
Beta Activity
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
cis-1,2-Dichloroethene
Cobalt
Conductivity
Copper
Dissolved Oxygen
Dissolved Solids
Iodide
Iron
Magnesium
Manganese
Methylene Chloride
Molybdenum
Nickel
Oxidation-Reduction Potential
pH*
Potassium
Sodium
Sulfate
Tantalum
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Vanadium
 Zinc

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	3	1	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	0	4	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	1	3	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	1	3	Yes
Conductivity	4	0	4	Yes
	4	1	3	Yes
Copper Cyanide	4	4	3 0	
Dibromochloromethane	4	4	0	No No
Dibromoethane	4	4 4	0	No
Dimethylbenzene, Total	4	4	0	No
	4	0	4	Yes
Dissolved Oxygen Dissolved Solids	4	0	4	Yes
	4	0 4	4	
Ethylbenzene				No
Iodide	4	3	1	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	0	4	Yes
Methylene chloride	4	3	1	Yes
Molybdenum	4	3	1	Yes
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	2	2	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	3	1	Yes

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	6	5	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	7	4	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	2	9	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
<i>cis</i> -1,2-Dichloroethene	11	11	0	No
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	10	1	Yes
Conductivity	<u> </u>	0	11 11	Yes Yes
Copper Cyanide	<u> </u>	U 11	0	No
Dibromochloromethane	11			
Dibromochloromethane		11	0	No
	11	11	0	No
Dimethylbenzene, Total	11	11	_	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	3	8	Yes
Magnesium	11	0	11	Yes
Manganese	11	2	9	Yes
Methylene chloride	11	7	4	Yes
Molybdenum	11	11	0	No
Nickel	11	1	10	Yes
Oxidation-Reduction Potential	11	0	11	Yes
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	7	4	Yes
Technetium-99	11	7	4	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	0	11	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	0	11	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	7	4	Yes
Vinyl Acetate	11	11	0	No
Zinc	11	7	4	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	3	4	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	0	7	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	6	1	Yes
Conductivity	7	0	1 7	Yes
Copper	7	0	7	Yes
Cyanide	7	0 7	0	No
Dibromochloromethane	7	7	0	No
Dibromochloromethane	7	7	0	No
Diporomomethane Dimethylbenzene, Total	7	7	0	No
Dimethylbenzene, Total Dissolved Oxygen	7	0	0 7	Yes
Dissolved Oxygen Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	0 7	0	No
Iodide	7	7	0	No
	7	7		
Iodomethane			0	No
Iron	7	2	5	Yes
Magnesium	7	0	7	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Manganese	7	0	7	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	6	1	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	6	1	Yes
Technetium-99	7	5	2	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	0	7	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	6	1	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	6	1	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. For the UCRS, URGA, and LRGA, the test was applied to 28, 29, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which include those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background upper tolerance limit (UTL) for manganese, oxidation-reduction potential, and technetium-99.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified exceedances of historical background UTL for calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW386: Manganese, oxidation- reduction potential	MW220: Chemical oxygen demand (COD), oxidation-reduction potential, sulfate	MW370: Oxidation-reduction potential, sulfate
MW390: Oxidation-reduction potential, technetium-99	MW221: Chemical oxygen demand (COD), oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW223: Chemical oxygen demand (COD)	MW385: Oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW224: Chemical oxygen demand (COD)	MW388: Chemical oxygen demand (COD), oxidation-reduction potential sulfate
	MW369: Technetium-99	MW392: Chemical oxygen demand (COD), oxidation-reduction potential
	MW372: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW395: Oxidation-reduction potential
	MW384 : Oxidation-reduction potential, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW387: Beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99	
	MW391: Chemical oxygen demand (COD), oxidation-reduction potential	

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historica background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historica background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historica background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historica background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historica background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historica background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historica background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historica background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historica background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historica background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historica background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historica background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historica background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historica background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	Current results exceed statistically derived historical background concentration in MW386.
Methylene Chloride	Tolerance Interval	0.56	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
pН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentrations in MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372 and MW387.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentrations in MW220, MW221, MW223, MW224, and MW391.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Methylene Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW384, MW387, and MW391.
pH	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW372, MW384, and MW387.
Tantalum	Tolerance Interval	2.27	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	Current results exceed statistically derived historical background concentration in MW388 and MW392.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
pН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Tantalum	Tolerance Interval	1.62	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW385.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. For the UCRS, URGA, and LRGA, the test was applied to 3, 10, and 8 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate
MW372: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, calcium, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW388: Chemical oxygen demand (COD), sulfate
	MW392: Chemical oxygen demand (COD)

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

<u>UCRS</u>

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the technetium-99 concentration in UCRS well (MW390) exceeded the current TL this quarter.

<u>URGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified current background exceedances in downgradient wells for calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, and sulfate.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.83	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW386 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.49	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-8067.73	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

 $\label{eq:cv:coefficient} \begin{array}{l} \text{CV: coefficient of variation} \\ * \text{If CV} > 1.0, \text{ used log-transformed data.} \end{array}$

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.57	MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.11	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand	Tolerance Interval	0.81	MW224 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.09	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.16	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.12	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.11	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.14	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.27	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.51	MW369, MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation

*If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.15	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand	Tolerance Interval	0.33	MW388 and MW392 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.07	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.31	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.15	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.20	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.04	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.56	MW385 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation * If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.320	S = 0.182	CV(1)= 0.567	K factor**= 3.188	TL(1)= 0.900	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.259	S = 0.503	CV(2) =-0.400	K factor**= 3.188	TL(2)= 0.345	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Partially Dry Wells		
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A
MW390	Downgradien	t Yes	0.294	NO	-1.224	N/A
MW393	Downgradien	t No	0.05	N/A	-2.996	N/A
MW396	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S = 0.833	CV(1)=1.282	K factor**= 3.188	TL(1)= 3.306	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.034	S = 1.066	CV(2) =-1.031	K factor**= 3.188	TL(2)= 2.364	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result
Upgradient wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells			
Well No.	Gradient		

MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0232	N/A	-3.764	NO
MW390	Downgradien	t Yes	0.0203	N/A	-3.897	NO
MW393	Downgradien	t Yes	0.0202	N/A	-3.902	NO
MW396	Upgradient	Yes	0.00741	N/A	-4.905	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.388	S = 0.327	CV(1)= 0.236	K factor**= 3.188	TL(1)= 2.430	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.301	S = 0.252	CV(2)= 0.838	K factor**= 3.188	TL(2)= 1.105	LL(2)= N/A

opgraatent wens with Transformed Result	Historical Background Data from Upgradient Wells with Transformed Result
---	---

MW396	
Result	LN(Result)
1.5	0.405
1.6	0.470
1.6	0.470
1	0.000
1	0.000
1	0.000
1.7	0.531
1.7	0.531
	Result 1.5 1.6 1.6 1 1 1 1.7

Dry/Partially Dry Wells					
Well No. Gra	dient				

	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.123	NO	-2.096	N/A	
MW390	Downgradien	t Yes	0.295	NO	-1.221	N/A	
MW393	Downgradien	t Yes	0.151	NO	-1.890	N/A	
MW396	Upgradient	Yes	0.9	NO	-0.105	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =41.825	S= 8.445	CV(1)= 0.202	K factor**= 3.188	TL(1)= 68.748	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.711	S= 0.241	CV(2) =0.065	K factor**= 3.188	TL(2)= 4.479	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
W/-11 NIh	MW206					

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells						
Well No.	Gradient					

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	21	NO	3.045	N/A	
MW390	Downgradien	t Yes	29.1	NO	3.371	N/A	
MW393	Downgradien	t Yes	15.8	NO	2.760	N/A	
MW396	Upgradient	Yes	34.4	NO	3.538	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.375 S = 0.7	44 CV(1)= 0.021	K factor**= 3.188	TL(1)= 37.747	LL(1)=N/A
Statistics-Transformed Background Data	X =3.566 S = 0.0	21 CV(2)=0.006	K factor**= 3.188	TL(2)= 3.632	LL(2)=N/A

Historical Bac Upgradient W		ata from ansformed Result
Well Number:	MW396	
Data Callastad	Degult	IN(Decult)

Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Par	tially Dry Wells	
Well No.	Gradient	

	oraaronii
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	16.7	NO	2.815	N/A
MW390	Downgradient	t No	20	N/A	2.996	N/A
MW393	Downgradient	t Yes	13.1	NO	2.573	N/A
MW396	Upgradient	Yes	34.6	NO	3.544	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 101.725 S= 5.245
 CV(1)=0.052
 K factor**= 3.188
 TL(1)= 118.447
 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.621
 S= 0.053
 CV(2)=0.011
 K factor**= 3.188
 TL(2)= 4.789
 LL(2)=N/A

Upgradient Wells with Transformed Result
--

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Par	tially Dry Wells	
Well No.	Gradient	

Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	10.6	NO	2.361	N/A
MW390	Downgradien	t Yes	26.6	NO	3.281	N/A
MW393	Downgradien	t Yes	10.9	NO	2.389	N/A
MW396	Upgradient	Yes	61	NO	4.111	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.008	S = 0.011	CV(1)= 1.340	K factor**= 3.188	TL(1)= 0.042	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.645	S = 1.339	CV(2) =-0.237	K factor**= 3.188	TL(2)= -1.377	LL(2)=N/A

Upgradient Wells with Transformed Result
--

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells	
Well No. Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0152	N/A	-4.186	NO
MW390	Downgradien	t Yes	0.00039	7 N/A	-7.832	NO
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.00355	N/A	-5.641	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 922.500 S= 107.616 CV(1)=0.117
 K factor**= 3.188
 TL(1)= 1265.579 LL(1)=N/A

Statistics-Transformed Background X=6.822 S= 0.111 CV(2)=0.016 Data

Historical Background Data from Upgradient Wells with Transformed Result				
W7-11 NI	MW206			

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Par	tially Dry	Wells
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 7.175

LL(2)=N/A

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	635	NO	6.454	N/A
MW390	Downgradien	t Yes	642	NO	6.465	N/A
MW393	Downgradien	t Yes	458	NO	6.127	N/A
MW396	Upgradient	Yes	714	NO	6.571	N/A

K factor=** 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.028
 S= 0.014
 CV(1)=0.481
 K factor**= 3.188
 TL(1)= 0.072
 LL(1)=N/A

 Statistics-Transformed Background
 X= -3.650
 S= 0.414
 CV(2)=-0.113
 K factor**= 3.188
 TL(2)= -2.331
 LL(2)=N/A

 Data
 Data
 CV(2)=-0.113
 K factor**= 3.188
 TL(2)= -2.331
 LL(2)=N/A

Upgradient Wells with Transformed Result
--

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00038	3 NO	-7.867	N/A
MW390	Downgradien	t Yes	0.00241	NO	-6.028	N/A
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A
MW396	Upgradient	Yes	0.00038	9 NO	-7.852	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.395	S= 1.677	CV(1)= 1.202	K factor**= 3.188	TL(1)= 6.743	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.043	S = 0.814	CV(2) =-18.867	K factor**= 3.188	TL(2)= 2.553	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				
Date Collected 8/13/2002	Result 5.45	LN(Result) 1.696			

9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	2.55	N/A	0.936	NO
MW390	Downgradien	t Yes	4.2	N/A	1.435	NO
MW393	Downgradien	t Yes	1.9	N/A	0.642	NO
MW396	Upgradient	Yes	1.09	N/A	0.086	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 550.375 S= 104.330 CV(1)=0.190 K factor**= 3.188 TL(1)= 882.980 LL(1)=N/A

Statistics-Transformed Background X=6.298 S= 0.162 CV(2)=0.026 Data

Historical Background Data from Upgradient Wells with Transformed Result			
Well Number:	MW396		

wen rumber.	11111370	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 6.815

LL(2)=N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	393	NO	5.974	N/A
MW390	Downgradien	t Yes	376	NO	5.930	N/A
MW393	Downgradien	t Yes	269	NO	5.595	N/A
MW396	Upgradient	Yes	397	NO	5.984	N/A

K factor=** 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.150	S= 0.283	CV(1)= 0.132	K factor**= 3.188	TL(1)= 3.052	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.759	S= 0.123	CV(2)= 0.162	K factor**= 3.188	TL(2)= 1.150	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Partially Dry Wells	
Well No. Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A	
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW396	Upgradient	Yes	0.74	NO	-0.301	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.796	S= 3.723	CV(1)= 0.478	K factor**= 3.188	TL(1)= 19.666	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.880	S = 0.723	CV(2) =0.384	K factor**= 3.188	TL(2)= 4.184	LL(2)=N/A

Upgradient Wells with Transformed Result
--

MW396	
Result	LN(Result)
1.8	0.588
9.53	2.254
7.43	2.006
9.93	2.296
10.2	2.322
9.16	2.215
11.9	2.477
2.42	0.884
	Result 1.8 9.53 7.43 9.93 10.2 9.16 11.9

Dry/Partially Dry Wells							
Well No	Gradient						

wen no.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	1.83	NO	0.604	N/A	
MW390	Downgradien	t Yes	0.172	NO	-1.760	N/A	
MW393	Downgradien	t Yes	1.73	NO	0.548	N/A	
MW396	Upgradient	Yes	2.56	NO	0.940	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 16.876	S = 3.313	CV(1)= 0.196	K factor**= 3.188	TL(1)= 27.438	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.804	S= 0.240	CV(2) =0.086	K factor**= 3.188	TL(2)= 3.569	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					

wen rumber.	101 00 5 7 0	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Par	tially Dry	Wells
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	8.94	NO	2.191	N/A	
MW390	Downgradien	t Yes	13	NO	2.565	N/A	
MW393	Downgradien	t Yes	4.21	NO	1.437	N/A	
MW396	Upgradient	Yes	14.7	NO	2.688	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	,	,	0			
Statistics-Background Data	X= 0.774	S = 0.353	CV(1)= 0.456	K factor**= 3.188	TL(1)= 1.900	LL(1)= N/A
Statistics-Transformed Background	X =-0.566	S= 1.192	CV(2) =-2.105	K factor**= 3.188	TL(2)= 3.235	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					

Data

Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells					
Well No. Gradient					

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	2.09	YES	0.737	N/A	
MW390	Downgradien	t Yes	0.00306	NO	-5.789	N/A	
MW393	Downgradien	t Yes	0.0573	NO	-2.859	N/A	
MW396	Upgradient	Yes	0.492	NO	-0.709	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.625	S = 3.159	CV(1)= 0.562	K factor**= 3.188	TL(1)= 15.697	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.614	S = 0.500	CV(2)= 0.310	K factor**= 3.188	TL(2)= 3.209	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	13	2.565
9/30/2002	2	0.693
10/16/2002	5	1.609
1/13/2003	5	1.609
4/8/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/14/2004	5	1.609

Dry/Partially Dry Wells					
Well No.	Gradient				

	oraaronii
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	5	N/A	1.609	N/A	
MW390	Downgradient	t No	5	N/A	1.609	N/A	
MW393	Downgradient	t Yes	0.52	NO	-0.654	N/A	
MW396	Upgradient	No	0.71	N/A	-0.342	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.007	S= 0.011	CV(1)= 1.507	K factor**= 3.188	TL(1)= 0.042	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.928	S= 1.420	CV(2) =-0.240	K factor**= 3.188	TL(2)= -1.400	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result
19

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Par	tially Dry Wells	
Well No	Gradient	

MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.00091	3 N/A	-6.999	N/A
MW390	Downgradien	t No	0.00022	9 N/A	-8.382	N/A
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.00039	9 N/A	-7.827	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.016	S = 0.021	CV(1)= 1.272	K factor**= 3.188	TL(1)= 0.083	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.706	S= 1.057	CV(2) =-0.225	K factor**= 3.188	TL(2)= -1.338	LL(2)= N/A

Upgradient Wells with Transformed Result	Historical Background Data from Upgradient Wells with Transformed Result
--	---

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00402	N/A	-5.516	NO
MW390	Downgradien	t Yes	0.00253	N/A	-5.980	NO
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A
MW396	Upgradient	Yes	0.0025	N/A	-5.991	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis **Historical Background Comparison** UCRS **Oxidation-Reduction Potential UNITS: mV**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=13.000 S= 61.952 CV(1)=4.766 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 210.502 LL(1)=N/A K factor**= 3.188 TL(2)= 4.736 LL(2)=N/A

Statistics-Transformed Background X= 4.364 S= 0.333 CV(2)=0.076 Data

Historical Bac Upgradient W	kground Da ells with Tr	ita from ansformed Result
Well Number:	MW396	
Date Collected	Result	I N(Result)

Date Collected	Result	LIN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells			
Well No.			

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	180	N/A	5.193	YES
MW390	Downgradien	t Yes	459	N/A	6.129	YES
MW393	Downgradien	t Yes	260	N/A	5.561	YES
MW396	Upgradient	Yes	191	N/A	5.252	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW386 MW390 MW393 MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.460	S = 0.350	CV(1)= 0.054	K factor**= 3.736	TL(1)= 7.766	LL(1)= 5.1541
Statistics-Transformed Background Data	X= 1.864	S = 0.054	CV(2) =0.029	K factor**= 3.736	TL(2)= 2.067	LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result

1 111200

XX7 11 XT

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells			
Wall Na Cardiant			

well no.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.73	NO	1.907	N/A
MW390	Downgradien	t Yes	6.25	NO	1.833	N/A
MW393	Downgradien	t Yes	6.25	NO	1.833	N/A
MW396	Upgradient	Yes	6.41	NO	1.858	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.411	S = 0.399	CV(1)= 0.282	K factor**= 3.188	TL(1)= 2.682	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.311	S = 0.271	CV(2)= 0.870	K factor**= 3.188	TL(2)= 1.175	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result
opgradient wens with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells			
Well No.	Gradient		

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.332	NO	-1.103	N/A
MW390	Downgradien	t Yes	0.4	NO	-0.916	N/A
MW393	Downgradien	t Yes	0.521	NO	-0.652	N/A
MW396	Upgradient	Yes	0.783	NO	-0.245	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

Historical Background Comparison C-746-S/T First Quarter 2022 Statistical Analysis Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=106.825 S= 32.041 CV(1)=0.300 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 208.973 LL(1)=N/A **K factor**=** 3.188 TL(2)= 6.163 LL(2)=N/A

Statistics-Transformed Background X = 4.595 S = 0.492 CV(2) = 0.107Data

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	129	NO	4.860	N/A
MW390	Downgradien	t Yes	104	NO	4.644	N/A
MW393	Downgradien	t Yes	91	NO	4.511	N/A
MW396	Upgradient	Yes	104	NO	4.644	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 22.463
 S= 8.876
 CV(1)=0.395
 K factor**= 3.188
 TL(1)= 50.759
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.054
 S= 0.351
 CV(2)=0.115
 K factor**= 3.188
 TL(2)= 4.173
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				

Data

Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	35.1	NO	3.558	N/A
MW390	Downgradien	t Yes	35	NO	3.555	N/A
MW393	Downgradien	t Yes	19.7	NO	2.981	N/A
MW396	Upgradient	Yes	25.7	NO	3.246	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.624	S = 6.558	CV(1)= 0.860	K factor**= 3.188	TL(1)= 28.531	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.498	S= 1.321	CV(2)= 0.882	K factor**= 3.188	TL(2)= 5.710	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Cells with Transformed Result
Well Number:	MW396

wen Number.	IVI VV 390	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Par	tially Dry Wells	5
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	1.92	N/A	0.652	N/A
MW390	Downgradien	t Yes	78.2	YES	4.359	N/A
MW393	Downgradien	t No	4.37	N/A	1.475	N/A
MW396	Upgradient	No	-1.23	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 9.988	S = 4.696	CV(1)= 0.470	K factor**= 3.188	TL(1)= 24.959	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.210	S = 0.454	CV(2) =0.205	K factor**= 3.188	TL(2)= 3.657	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW396	
Result	LN(Result)
19	2.944
14.6	2.681
10.4	2.342
4.4	1.482
7	1.946
7.3	1.988
9.1	2.208
8.1	2.092
	Result 19 14.6 10.4 4.4 7 7.3 9.1

Dry/Par	tially Dry Wells	
Well No.	Gradient	

	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	11.6	NO	2.451	N/A
MW390	Downgradien	t Yes	2.05	NO	0.718	N/A
MW393	Downgradien	t Yes	2.56	NO	0.940	N/A
MW396	Upgradient	Yes	4.47	NO	1.497	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=142.650 S= 53.533 CV(1)=0.375 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 313.314 LL(1)=N/A **Statistics-Transformed Background K factor**=** 3.188 TL(2)= 6.138 LL(2)=N/A

X= 4.896 **S**= 0.390 CV(2)=0.080 Data

	Historical Background Data from Upgradient Wells with Transformed Result
--	---

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	304	NO	5.717	N/A
MW390	Downgradien	t Yes	20.4	NO	3.016	N/A
MW393	Downgradien	t Yes	20.4	NO	3.016	N/A
MW396	Upgradient	Yes	34.5	NO	3.541	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.021	S = 0.002	CV(1)= 0.109	K factor**= 3.188	TL(1)= 0.029	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.856	S = 0.103	CV(2) =-0.027	K factor**= 3.188	TL(2)= -3.527	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number: MW396						
Date Collected	Result	LN(Result)				
8/13/2002 0.025 -3.689						

9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00377	NO	-5.581	N/A	
MW390	Downgradien	t No	0.02	N/A	-3.912	N/A	
MW393	Downgradien	t Yes	0.00521	NO	-5.257	N/A	
MW396	Upgradient	No	0.02	N/A	-3.912	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.044	S = 0.035	CV(1)= 0.786	K factor**= 3.188	TL(1)= 0.156	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.342	S = 0.682	CV(2) =-0.204	K factor**= 3.188	TL(2)= -1.168	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					
Date Collected	Result	LN(Result)				

Date Concelled	Result	LIN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Par	tially Dry Wells
Well No.	Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.02	N/A	-3.912	N/A	
MW390	Downgradien	t Yes	0.00676	NO	-4.997	N/A	
MW393	Downgradien	t No	0.02	N/A	-3.912	N/A	
MW396	Upgradient	No	0.02	N/A	-3.912	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.221	S= 0.061	CV(1)= 0.277	K factor**= 2.523	TL(1)= 0.376	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.534	S = 0.212	CV(2) =-0.138	K factor**= 2.523	TL(2)= -0.999	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW220

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.427	-0.851
1/13/2004	0.309	-1.174
4/13/2004	0.2	-1.609
7/21/2004	0.202	-1.599
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.021	NO	-3.863	N/A
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A
MW222	Sidegradient	Yes	0.0314	NO	-3.461	N/A
MW223	Sidegradient	Yes	0.0248	NO	-3.697	N/A
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A
MW369	Downgradien	t Yes	0.0277	NO	-3.586	N/A
MW372	Downgradien	t No	0.05	N/A	-2.996	N/A
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A
MW387	Downgradien	t No	0.05	N/A	-2.996	N/A
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A
MW394	Upgradient	Yes	0.027	NO	-3.612	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 14.273	S= 13.883	CV(1)= 0.973	K factor**= 2.523	TL(1)= 49.300	LL(1)=N/A
Statistics-Transformed Background Data	X = 2.213	S = 1.033	CV(2)= 0.467	K factor**= 2.523	TL(2)= 4.819	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Date Collected	Result	LN(Result)		
10/14/2002	15.2	2.721		

3.750

3.816

2.144

2.460

2.603

3.512

2.617

1.615

1.717

2.549

1.459

2.253

1.366

0.058

0.761

LN(Result)

42.5

45.4

8.53

11.7

13.5

33.5

13.7

MW394

Result

5.03

5.57

12.8

4.3

9.52

3.92

1.06

2.14

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	11.8	N/A	2.468	N/A
MW221	Sidegradient	No	0.877	N/A	-0.131	N/A
MW222	Sidegradient	No	-6.41	N/A	#Error	N/A
MW223	Sidegradient	No	-2.24	N/A	#Error	N/A
MW224	Sidegradient	No	8.62	N/A	2.154	N/A
MW369	Downgradien	t Yes	40.6	N/A	3.704	N/A
MW372	Downgradien	t Yes	42.2	N/A	3.742	N/A
MW384	Sidegradient	No	15.3	N/A	2.728	N/A
MW387	Downgradien	t Yes	172	YES	5.147	N/A
MW391	Downgradien	t No	-0.906	N/A	#Error	N/A
MW394	Upgradient	No	2.54	N/A	0.932	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.425	S= 0.615	CV(1)= 1.447	K factor**= 2.523	TL(1)= 1.976	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.322	S= 0.786	CV(2) =-0.595	K factor**= 2.523	TL(2)= 0.663	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW220

Wall Mumber

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2. 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Gradient					
	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	0.00762	N/A	-4.877	NO
Sidegradient	Yes	0.0186	N/A	-3.985	NO
Sidegradient	Yes	0.0107	N/A	-4.538	NO
Sidegradient	Yes	0.0101	N/A	-4.595	NO
Sidegradient	Yes	0.0262	N/A	-3.642	NO
Downgradient	t Yes	0.0161	N/A	-4.129	NO
Downgradient	t Yes	1.36	N/A	0.307	NO
Sidegradient	Yes	0.0345	N/A	-3.367	NO
Downgradient	t Yes	0.029	N/A	-3.540	NO
Downgradient	t Yes	0.0252	N/A	-3.681	NO
Upgradient	Yes	0.0189	N/A	-3.969	NO
	Sidegradient Sidegradient Sidegradient Sidegradient Downgradient Sidegradient Downgradient Downgradient Upgradient	SidegradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYes	SidegradientYes0.0186SidegradientYes0.0107SidegradientYes0.0101SidegradientYes0.0262DowngradientYes0.0161DowngradientYes1.36SidegradientYes0.0345DowngradientYes0.029DowngradientYes0.0252UpgradientYes0.0189	SidegradientYes0.0186N/ASidegradientYes0.0107N/ASidegradientYes0.0101N/ASidegradientYes0.0262N/ADowngradientYes0.0161N/ADowngradientYes1.36N/ASidegradientYes0.0345N/ADowngradientYes0.029N/ADowngradientYes0.029N/ADowngradientYes0.0252N/AUpgradientYes0.0189N/A	SidegradientYes 0.0186 N/A -3.985 SidegradientYes 0.0107 N/A -4.538 SidegradientYes 0.0101 N/A -4.595 SidegradientYes 0.0262 N/A -3.642 DowngradientYes 0.0161 N/A -4.129 DowngradientYes 1.36 N/A 0.307 SidegradientYes 0.0345 N/A -3.367 DowngradientYes 0.029 N/A -3.540 DowngradientYes 0.0252 N/A -3.681

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)=N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				

Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
X 7 11 X 7 1		
Well Number:	MW394	
Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	0.186	NO	-1.682	N/A
Sidegradient	Yes	0.474	NO	-0.747	N/A
Sidegradient	Yes	0.401	NO	-0.914	N/A
Sidegradient	Yes	0.401	NO	-0.914	N/A
Sidegradient	Yes	0.344	NO	-1.067	N/A
Downgradien	t Yes	0.35	NO	-1.050	N/A
Downgradien	t Yes	0.491	NO	-0.711	N/A
Sidegradient	Yes	0.273	NO	-1.298	N/A
Downgradien	t Yes	0.564	NO	-0.573	N/A
Downgradien	t Yes	0.53	NO	-0.635	N/A
Upgradient	Yes	0.53	NO	-0.635	N/A
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	GradientDetected?ResultUpgradientYes0.186SidegradientYes0.474SidegradientYes0.401SidegradientYes0.401SidegradientYes0.344DowngradientYes0.35DowngradientYes0.491SidegradientYes0.273DowngradientYes0.564DowngradientYes0.53	GradientDetected?ResultResult >TL(1)?UpgradientYes0.186NOSidegradientYes0.474NOSidegradientYes0.401NOSidegradientYes0.401NOSidegradientYes0.344NODowngradientYes0.35NODowngradientYes0.273NOSidegradientYes0.564NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.186 NO -1.682 Sidegradient Yes 0.474 NO -0.747 Sidegradient Yes 0.401 NO -0.914 Sidegradient Yes 0.401 NO -0.914 Sidegradient Yes 0.344 NO -1.067 Downgradient Yes 0.35 NO -1.050 Downgradient Yes 0.491 NO -0.711 Sidegradient Yes 0.273 NO -1.298 Downgradient Yes 0.564 NO -0.573 Downgradient Yes 0.53 NO -0.635

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 27.638	S= 4.743	CV(1)= 0.172	K factor**= 2.523	TL(1)= 39.604	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.304	S= 0.183	CV(2) =0.055	K factor**= 2.523	TL(2)= 3.765	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	23.6	3.161			
1/15/2003	25.9	3.254			
4/10/2003	30.4	3.414			
7/14/2003	33.9	3.523			
10/13/2003	21.3	3.059			
1/13/2004	20.3	3.011			
4/13/2004	23.8	3.170			
7/21/2004	19	2.944			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	29.5	3.384			
9/16/2002	29.9	3.398			
10/16/2002	31.2	3.440			
1/13/2003	30.7	3.424			
4/10/2003	34.4	3.538			
7/16/2003	29.6	3.388			

30.3

28.4

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	22	NO	3.091	N/A
MW221	Sidegradient	Yes	21	NO	3.045	N/A
MW222	Sidegradient	Yes	20.8	NO	3.035	N/A
MW223	Sidegradient	Yes	21.1	NO	3.049	N/A
MW224	Sidegradient	Yes	22.2	NO	3.100	N/A
MW369	Downgradien	t Yes	16.3	NO	2.791	N/A
MW372	Downgradien	t Yes	67	YES	4.205	N/A
MW384	Sidegradient	Yes	22.1	NO	3.096	N/A
MW387	Downgradien	t Yes	44.2	YES	3.789	N/A
MW391	Downgradien	t Yes	25	NO	3.219	N/A
MW394	Upgradient	Yes	25.4	NO	3.235	N/A
N/A Decu	Its identified as N	Jon Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.411

3.346

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 35.000	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.555	S = 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= 3.555	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	35	3.555			
1/15/2003	35	3.555			
4/10/2003	35	3.555			
7/14/2003	35	3.555			
10/13/2003	35	3.555			
1/13/2004	35	3.555			
4/13/2004	35	3.555			
7/21/2004	35	3.555			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	35	3.555			
9/16/2002	35	3.555			
10/16/2002	35	3.555			

35

35

35

35

35

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	41.7	YES	3.731	N/A
MW221	Sidegradient	Yes	70.3	YES	4.253	N/A
MW222	Sidegradient	No	20	N/A	2.996	N/A
MW223	Sidegradient	Yes	77.4	YES	4.349	N/A
MW224	Sidegradient	Yes	174	YES	5.159	N/A
MW369	Downgradien	t Yes	16.7	NO	2.815	N/A
MW372	Downgradien	t Yes	13.1	NO	2.573	N/A
MW384	Sidegradient	Yes	9.57	NO	2.259	N/A
MW387	Downgradien	t No	20	N/A	2.996	N/A
MW391	Downgradien	t Yes	38.1	YES	3.640	N/A
MW394	Upgradient	Yes	31	NO	3.434	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

3.555

3.555

3.555

3.555

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW220 MW221 MW223 MW224 MW391
MW223 MW224
MW224
MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 49.044	S= 11.278	CV(1)= 0.230	K factor**= 2.523	TL(1)= 77.499	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.866	S = 0.244	CV(2) =0.063	K factor**= 2.523	TL(2)= 4.482	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	44.6	3.798			
1/15/2003	43.2	3.766			
4/10/2003	31.5	3.450			
7/14/2003	30.8	3.428			
10/13/2003	40.9	3.711			
1/13/2004	40.8	3.709			
4/13/2004	37.5	3.624			
7/21/2004	40.8	3.709			

	Result	LN(Result)
		Lin(incount)
10/14/2002 4	14.6	3.798
1/15/2003 4	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003 4	40.9	3.711
1/13/2004 4	40.8	3.709
4/13/2004 3	37.5	3.624
7/21/2004 4	40.8	3.709
Well Number: N	MW394	
Date Collected H	Result	LN(Result)
8/13/2002	50.4	4.101
9/16/2002 6	50.3	4.099
10/16/2002 5	58	4.060
1/13/2003	50.7	4.106
4/10/2003	52.9	4.142
7/16/2003 5	58.1	4.062
10/14/2003 5	58.2	4.064
1/13/2004 5	56	4.025

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	17	NO	2.833	N/A
MW221	Sidegradient	Yes	37.5	NO	3.624	N/A
MW222	Sidegradient	Yes	30.3	NO	3.411	N/A
MW223	Sidegradient	Yes	30.4	NO	3.414	N/A
MW224	Sidegradient	Yes	27.2	NO	3.303	N/A
MW369	Downgradien	t Yes	28	NO	3.332	N/A
MW372	Downgradien	t Yes	38.2	NO	3.643	N/A
MW384	Sidegradient	Yes	23.5	NO	3.157	N/A
MW387	Downgradien	t Yes	42	NO	3.738	N/A
MW391	Downgradien	t Yes	41.4	NO	3.723	N/A
MW394	Upgradient	Yes	43.6	NO	3.775	N/A
N/A Devela identified as New Detecto device laboratorio enclusio en detecto identification en devene net						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.016	S= 0.040	CV(1)= 2.440	K factor**= 2.523	TL(1)= 0.116	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.582	S= 1.573	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.613	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW220

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0041	-5.497
1/15/2003	0.00496	-5.306
4/10/2003	0.00289	-5.846
7/14/2003	0.161	-1.826
10/13/2003	0.0226	-3.790
1/13/2004	0.00464	-5.373
4/13/2004	0.001	-6.908
7/21/2004	0.00264	-5.937
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.001	N/A	-6.908	N/A
MW221	Sidegradient	No	0.001	N/A	-6.908	N/A
MW222	Sidegradient	No	0.001	N/A	-6.908	N/A
MW223	Sidegradient	No	0.001	N/A	-6.908	N/A
MW224	Sidegradient	No	0.001	N/A	-6.908	N/A
MW369	Downgradien	t Yes	0.004	N/A	-5.521	NO
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	No	0.001	N/A	-6.908	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 382.132 S = 107.134 CV(1) =0.280	K factor**= 2.523	TL(1)= 652.432 LL(1)=N/A
Statistics-Transformed Background	X = 5.716 S = 1.164 CV(2) =0.204	K factor**= 2.523	TL(2)= 8.652 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	368	5.908				
1/15/2003	433.2	6.071				
4/10/2003	489	6.192				
7/14/2003	430	6.064				
10/13/2003	346	5.846				
1/13/2004	365	5.900				
4/13/2004	416	6.031				
7/21/2004	353	5.866				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	406	6.006				

Date Collected	Result	LN(Result)
8/13/2002	406	6.006
9/16/2002	418	6.035
10/16/2002	411	6.019
1/13/2003	422	6.045
4/10/2003	420	6.040
7/16/2003	438	6.082
10/14/2003	3.91	1.364
1/13/2004	395	5.979

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	376	NO	5.930	N/A
MW221	Sidegradient	Yes	420	NO	6.040	N/A
MW222	Sidegradient	Yes	407	NO	6.009	N/A
MW223	Sidegradient	Yes	404	NO	6.001	N/A
MW224	Sidegradient	Yes	435	NO	6.075	N/A
MW369	Downgradien	t Yes	359	NO	5.883	N/A
MW372	Downgradien	t Yes	752	YES	6.623	N/A
MW384	Sidegradient	Yes	383	NO	5.948	N/A
MW387	Downgradien	t Yes	610	NO	6.413	N/A
MW391	Downgradien	t Yes	390	NO	5.966	N/A
MW394	Upgradient	Yes	401	NO	5.994	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.010	CV(1)= 0.429	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.794	S = 0.312	CV(2) =-0.082	K factor**= 2.523	TL(2)= -3.007	LL(2)=N/A

-		
Historical Bac Upgradient W		a from insformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0211	-3.858
1/15/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/14/2003	0.02	-3.912
10/13/2003	0.02	-3.912
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	-3.912
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00304	NO	-5.796	N/A
MW221	Sidegradient	Yes	0.000962	2 NO	-6.946	N/A
MW222	Sidegradient	Yes	0.00126	NO	-6.677	N/A
MW223	Sidegradient	Yes	0.00101	NO	-6.898	N/A
MW224	Sidegradient	Yes	0.000622	2 NO	-7.383	N/A
MW369	Downgradien	t Yes	0.00122	NO	-6.709	N/A
MW372	Downgradien	t Yes	0.00182	NO	-6.309	N/A
MW384	Sidegradient	Yes	0.00121	NO	-6.717	N/A
MW387	Downgradien	t Yes	0.00129	NO	-6.653	N/A
MW391	Downgradien	t Yes	0.00043	8 NO	-7.733	N/A
MW394	Upgradient	Yes	0.00054	5 NO	-7.515	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.784	S= 1.887	CV(1)= 0.499	K factor**= 2.523	TL(1)= 8.545	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.182	S = 0.612	CV(2)= 0.518	K factor**= 2.523	TL(2)= 2.727	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	6.79	1.915			
1/15/2003	7.25	1.981			
4/10/2003	3.6	1.281			
7/14/2003	0.94	-0.062			
10/13/2003	1.65	0.501			
1/13/2004	3.48	1.247			
4/13/2004	1.05	0.049			
7/21/2004	4.46	1.495			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	6.09	1.807			
9/16/2002	3.85	1.348			
10/16/2002	5.11	1.631			
1/13/2003	3.83	1.343			
4/10/2003	4.15	1.423			
7/16/2003	1.83	0.604			
10/14/2003	3.33	1.203			

3.14

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	5.48	NO	1.701	N/A
MW221	Sidegradient	Yes	5.55	NO	1.714	N/A
MW222	Sidegradient	Yes	4.1	NO	1.411	N/A
MW223	Sidegradient	Yes	5.17	NO	1.643	N/A
MW224	Sidegradient	Yes	4.12	NO	1.416	N/A
MW369	Downgradien	t Yes	2.64	NO	0.971	N/A
MW372	Downgradien	t Yes	3.1	NO	1.131	N/A
MW384	Sidegradient	Yes	5.68	NO	1.737	N/A
MW387	Downgradien	t Yes	4.5	NO	1.504	N/A
MW391	Downgradien	t Yes	5	NO	1.609	N/A
MW394	Upgradient	Yes	5.65	NO	1.732	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.144

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 232.68	8 S = 27.490	CV(1)= 0.118	K factor**= 2.523	TL(1)= 302.045	LL(1)=N/A
Statistics-Transformed Background	X= 5.443	S= 0.118	CV(2)= 0.022	K factor**= 2.523	TL(2)= 5.740	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				

Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 247 259 201 228 249 240	5.509 5.557 5.303 5.429 5.517 5.481

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
Upgradient	Yes	179	NO	5.187	N/A	
Sidegradient	Yes	193	NO	5.263	N/A	
Sidegradient	Yes	197	NO	5.283	N/A	
Sidegradient	Yes	213	NO	5.361	N/A	
Sidegradient	Yes	220	NO	5.394	N/A	
Downgradien	t Yes	200	NO	5.298	N/A	
Downgradien	t Yes	506	YES	6.227	N/A	
Sidegradient	Yes	209	NO	5.342	N/A	
Downgradien	t Yes	326	YES	5.787	N/A	
Downgradien	t Yes	180	NO	5.193	N/A	
Upgradient	Yes	230	NO	5.438	N/A	
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradient Downgradien Downgradien	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	GradientDetected?ResultUpgradientYes179SidegradientYes193SidegradientYes197SidegradientYes213SidegradientYes220DowngradientYes200DowngradientYes506SidegradientYes209DowngradientYes326DowngradientYes180	GradientDetected?ResultResult >TL(1)?UpgradientYes179NOSidegradientYes193NOSidegradientYes197NOSidegradientYes213NOSidegradientYes220NODowngradientYes200NODowngradientYes506YESSidegradientYes209NODowngradientYes209NODowngradientYes180NO	GradientDetected?ResultResult >TL(1)?LN(Result)UpgradientYes179NO 5.187 SidegradientYes193NO 5.263 SidegradientYes197NO 5.283 SidegradientYes213NO 5.361 SidegradientYes220NO 5.394 DowngradientYes200NO 5.298 DowngradientYes209NO 5.342 DowngradientYes326YES 5.787 DowngradientYes180NO 5.193	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.897	S= 1.050	CV(1)= 1.170	K factor**= 2.523	TL(1)= 3.545	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.565	S = 0.951	CV(2) =-1.683	K factor**= 2.523	TL(2)= 1.834	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW220

Wall Number

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.429	-0.846
7/14/2003	4.33	1.466
10/13/2003	1.81	0.593
1/13/2004	0.793	-0.232
4/13/2004	0.13	-2.040
7/21/2004	0.382	-0.962
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.293
Date Collected	Result	
Date Collected 8/13/2002	Result 1.34	0.293
Date Collected 8/13/2002 9/16/2002	Result 1.34 0.328	0.293 -1.115
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.34 0.328 1.38	0.293 -1.115 0.322
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.34 0.328 1.38 1.3	0.293 -1.115 0.322 0.262
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.34 0.328 1.38 1.3 0.494	0.293 -1.115 0.322 0.262 -0.705
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.34 0.328 1.38 1.3 0.494 0.62	0.293 -1.115 0.322 0.262 -0.705 -0.478

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.16	N/A	-1.833	NO
MW221	Sidegradient	No	0.1	N/A	-2.303	N/A
MW222	Sidegradient	Yes	0.0533	N/A	-2.932	NO
MW223	Sidegradient	Yes	0.0364	N/A	-3.313	NO
MW224	Sidegradient	No	0.1	N/A	-2.303	N/A
MW369	Downgradien	t Yes	0.0692	N/A	-2.671	NO
MW372	Downgradien	t No	0.1	N/A	-2.303	N/A
MW384	Sidegradient	Yes	0.228	N/A	-1.478	NO
MW387	Downgradien	t Yes	0.0539	N/A	-2.921	NO
MW391	Downgradien	t Yes	0.0731	N/A	-2.616	NO
MW394	Upgradient	Yes	0.11	N/A	-2.207	NO
N/A Pasu	Its identified as N	Ion Dotooto	during lab	oratory analysis or	data validatio	n and wara not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.796	S= 1.703	CV(1)= 0.158	K factor**= 2.523	TL(1)= 15.092	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.368	S= 0.158	CV(2)= 0.067	K factor**= 2.523	TL(2)= 2.766	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Date Collected	Result	LN(Result)		
10/14/2002	9.16	2.215		
1/15/2003	10	2.303		
4/10/2003	10.8	2.380		
7/14/2003	14.7	2.688		
10/13/2003	9.03	2.201		
1/13/2004	8.49	2.139		
4/13/2004	9.7	2.272		
7/21/2004	8.06	2.087		
Well Number:	MW394			
Date Collected	Result	LN(Result)		
8/13/2002	11.8	2.468		
9/16/2002	12.1	2.493		
10/16/2002	11.3	2.425		
1/13/2003	10.3	2.332		
4/10/2003	11.7	2.460		

12

12.2

11.4

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

esult Result>TL 2 NO 31 NO	(1)? LN(Result) 2.219 2.231	LN(Result) >TL(2) N/A
NO NO	2 2 3 1	/ .
	2.231	N/A
24 NO	2.224	N/A
NO	2.241	N/A
88 NO	2.291	N/A
84 NO	1.923	N/A
.8 YES	3.127	N/A
5 NO	2.246	N/A
.8 YES	2.934	N/A
.5 NO	2.351	N/A
.5 NO	2.351	N/A
	NO 8 NO 4 NO 8 YES 5 NO 8 YES 5 NO 5 NO 5 NO 5 NO	NO 2.241 8 NO 2.291 4 NO 1.923 8 YES 3.127 5 NO 2.246 8 YES 2.934 5 NO 2.351

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.485

2.501

2.434

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.287	S= 0.619	CV(1)= 2.156	K factor**= 2.523	TL(1)= 1.848	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.455	S= 1.619	CV(2) =-0.659	K factor**= 2.523	TL(2)= 1.630	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Date Collected	Result	LN(Result)		
10/14/2002	0.0306	-3.487		
1/15/2003	0.0291	-3.537		
4/10/2003	0.0137	-4.290		
7/14/2003	2.54	0.932		
10/13/2003	0.378	-0.973		
1/13/2004	0.159	-1.839		
4/13/2004	0.00707	-4.952		
7/21/2004	0.0841	-2.476		
Well Number:	MW394			
Date Collected	Result	LN(Result)		
8/13/2002	0.542	-0.612		
9/16/2002	0.155	-1.864		
10/16/2002	0.103	-2.273		
1/13/2003	0.128	-2.056		
4/10/2003	0.005	-5.298		
7/16/2003	0.272	-1.302		

0.0795

0.0658

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00201	N/A	-6.210	NO	
MW221	Sidegradient	No	0.005	N/A	-5.298	N/A	
MW222	Sidegradient	Yes	0.00508	N/A	-5.282	NO	
MW223	Sidegradient	Yes	0.00548	N/A	-5.207	NO	
MW224	Sidegradient	Yes	0.0012	N/A	-6.725	NO	
MW369	Downgradien	t Yes	0.00494	N/A	-5.310	NO	
MW372	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW384	Sidegradient	Yes	0.00282	N/A	-5.871	NO	
MW387	Downgradien	t Yes	0.00203	N/A	-6.200	NO	
MW391	Downgradien	t Yes	0.00108	N/A	-6.831	NO	
MW394	Upgradient	Yes	0.00293	N/A	-5.833	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.532

-2.721

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.813	S= 0.750	CV(1)= 0.156	K factor**= 2.523	TL(1)= 6.705	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.552	S = 0.229	CV(2)= 0.148	K factor**= 2.523	TL(2)= 2.130	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1 111/000

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	5	1.609
1/15/2003	5	1.609
4/10/2003	5	1.609
7/14/2003	5	1.609
10/13/2003	5	1.609
1/13/2004	5	1.609
4/13/2004	5	1.609
7/21/2004	5	1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 2	1.609 0.693
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5 2 5	1.609 0.693 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5 2 5 5 5	1.609 0.693 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5 2 5 5 5 5	1.609 0.693 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5 2 5 5 5 5 5 5	1.609 0.693 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.51	NO	-0.673	N/A
MW221	Sidegradient	Yes	0.56	NO	-0.580	N/A
MW222	Sidegradient	No	5	N/A	1.609	N/A
MW223	Sidegradient	Yes	0.56	NO	-0.580	N/A
MW224	Sidegradient	No	5	N/A	1.609	N/A
MW369	Downgradien	t No	5	N/A	1.609	N/A
MW372	Downgradien	t No	0.71	N/A	-0.342	N/A
MW384	Sidegradient	No	5	N/A	1.609	N/A
MW387	Downgradien	t No	5	N/A	1.609	N/A
MW391	Downgradien	t Yes	0.52	NO	-0.654	N/A
MW394	Upgradient	No	0.64	N/A	-0.446	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.127	S= 0.228	CV(1)= 1.790	K factor**= 2.523	TL(1)= 0.701	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.617	S= 1.837	CV(2) =-0.508	K factor**= 2.523	TL(2)= 1.019	LL(2)=N/A

Historical Bac Upgradient W	kground Da ells with Tra	ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)

-0.872

-0.304

-0.609

-2.244

-2.939

-3.868

-5.298

-3.953

-2.996

-2.996

-5.298

-5.298

-5.298

-5.298

-5.298

-5.298

LN(Result)

0.418

0.738

0.544

0.106

0.0529

0.0209

0.005

0.0192

MW394

Result

0.05

0.05

0.005

0.005

0.005

0.005

0.005

0.005

10/14/2002

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00704	N/A	-4.956	NO
MW221	Sidegradient	Yes	0.00466	N/A	-5.369	NO
MW222	Sidegradient	Yes	0.0431	N/A	-3.144	NO
MW223	Sidegradient	Yes	0.0445	N/A	-3.112	NO
MW224	Sidegradient	Yes	0.0145	N/A	-4.234	NO
MW369	Downgradien	t Yes	0.00331	N/A	-5.711	NO
MW372	Downgradien	t Yes	0.00357	N/A	-5.635	NO
MW384	Sidegradient	Yes	0.00151	N/A	-6.496	NO
MW387	Downgradien	t Yes	0.00172	N/A	-6.365	NO
MW391	Downgradien	t No	0.002	N/A	-6.215	N/A
MW394	Upgradient	Yes	0.00314	N/A	-5.764	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =179.872	S = 86.318	CV(1)= 0.480	K factor**= 2.523	TL(1)= 397.652	LL(1)=N/A
Statistics-Transformed Background Data	X = 4.861	S= 1.252	CV(2) =0.258	K factor**= 2.523	TL(2)= 8.021	LL(2)= N/A

Historical Bac Upgradient W	0		l Result
Well Number:	MW220		
		(

Result	LN(Result)
205	5.323
1.95	0.668
203	5.313
30	3.401
107	4.673
295	5.687
190	5.247
319	5.765
MW394	
Result	LN(Result)
Result 90	LN(Result) 4.500
1000000	()
90	4.500
90 240	4.500 5.481
90 240 185	4.500 5.481 5.220
90 240 185 220	4.500 5.481 5.220 5.394
90 240 185 220 196	4.500 5.481 5.220 5.394 5.278
	205 1.95 203 30 107 295 190 319

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	406	YES	6.006	N/A
MW221	Sidegradient	Yes	404	YES	6.001	N/A
MW222	Sidegradient	Yes	363	NO	5.894	N/A
MW223	Sidegradient	Yes	391	NO	5.969	N/A
MW224	Sidegradient	Yes	397	NO	5.984	N/A
MW369	Downgradien	t Yes	392	NO	5.971	N/A
MW372	Downgradien	t Yes	376	NO	5.930	N/A
MW384	Sidegradient	Yes	434	YES	6.073	N/A
MW387	Downgradien	t Yes	430	YES	6.064	N/A
MW391	Downgradien	t Yes	407	YES	6.009	N/A
MW394	Upgradient	Yes	393	NO	5.974	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells wit	h Exceedances
MW220	
MW221	
MW384	
MW387	
MW391	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.138	S= 0.282	CV(1)= 0.046	K factor**= 2.904	TL(1)= 6.957	LL(1)=5.3179
Statistics-Transformed Background Data	X= 1.813	S = 0.047	CV(2)= 0.026	K factor**= 2.904	TL(2)= 1.950	LL(2)=1.6765

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.04	1.798
1/15/2003	6.31	1.842
4/10/2003	6.5	1.872
7/14/2003	6.3	1.841
10/13/2003	6.34	1.847
1/13/2004	6.33	1.845
4/13/2004	6.3	1.841
7/21/2004	5.9	1.775
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	5.8	1.758
9/30/2002	5.93	1.780
10/16/2002	5.42	1.690
1/13/2003	6	1.792
4/10/2003	6.04	1.798
7/16/2003	6.2	1.825
10/14/2003	6.4	1.856
1/13/2004	6.39	1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
Upgradient	Yes	6.12	NO	1.812	N/A	
Sidegradient	Yes	6.1	NO	1.808	N/A	
Sidegradient	Yes	6.11	NO	1.810	N/A	
Sidegradient	Yes	6.15	NO	1.816	N/A	
Sidegradient	Yes	6.16	NO	1.818	N/A	
Downgradien	t Yes	6.1	NO	1.808	N/A	
Downgradien	t Yes	6.09	NO	1.807	N/A	
Sidegradient	Yes	6.05	NO	1.800	N/A	
Downgradien	t Yes	6.18	NO	1.821	N/A	
Downgradien	t Yes	6.12	NO	1.812	N/A	
Upgradient	Yes	6	NO	1.792	N/A	
	Upgradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient	UpgradientYesSidegradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	UpgradientYes6.12SidegradientYes6.1SidegradientYes6.11SidegradientYes6.15SidegradientYes6.16DowngradientYes6.1DowngradientYes6.09SidegradientYes6.05DowngradientYes6.18DowngradientYes6.12	Result <ll(1)?< th="">UpgradientYes6.12NOSidegradientYes6.1NOSidegradientYes6.15NOSidegradientYes6.16NOSidegradientYes6.16NODowngradientYes6.09NOSidegradientYes6.05NODowngradientYes6.18NODowngradientYes6.18NO</ll(1)?<>	Result <ll(1)?< th=""> Upgradient Yes 6.12 NO 1.812 Sidegradient Yes 6.1 NO 1.808 Sidegradient Yes 6.11 NO 1.810 Sidegradient Yes 6.15 NO 1.816 Sidegradient Yes 6.16 NO 1.818 Downgradient Yes 6.16 NO 1.808 Downgradient Yes 6.10 NO 1.808 Downgradient Yes 6.09 NO 1.807 Sidegradient Yes 6.05 NO 1.800 Downgradient Yes 6.18 NO 1.821 Downgradient Yes 6.12 NO 1.812</ll(1)?<>	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.654	S= 9.310	CV(1)= 1.399	K factor**= 2.523	TL(1)= 30.144	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.130	S= 1.208	CV(2)= 1.069	K factor**= 2.523	TL(2)= 4.178	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	6.7	1.902			
1/15/2003	29.7	3.391			
4/10/2003	24.9	3.215			
7/14/2003	1.13	0.122			
10/13/2003	3.43	1.233			
1/13/2004	6.71	1.904			
4/13/2004	19.3	2.960			
7/21/2004	3.97	1.379			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	2	0.693			
9/16/2002	2	0.693			
10/16/2002	1.03	0.030			
1/13/2003	1.1	0.095			

1.24

1.14

1.05

1.07

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	5.33	N/A	1.673	NO
MW221	Sidegradient	Yes	2.64	N/A	0.971	NO
MW222	Sidegradient	Yes	0.667	N/A	-0.405	NO
MW223	Sidegradient	Yes	0.671	N/A	-0.399	NO
MW224	Sidegradient	Yes	0.972	N/A	-0.028	NO
MW369	Downgradien	t Yes	0.587	N/A	-0.533	NO
MW372	Downgradien	t Yes	2.22	N/A	0.798	NO
MW384	Sidegradient	Yes	1.45	N/A	0.372	NO
MW387	Downgradien	t Yes	1.92	N/A	0.652	NO
MW391	Downgradien	t Yes	1.6	N/A	0.470	NO
MW394	Upgradient	Yes	1.1	N/A	0.095	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.215

0.131

0.049

0.068

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 36.363	S= 8.666	CV(1)= 0.238	K factor**= 2.523	TL(1)= 58.227	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.570	S= 0.222	CV(2)= 0.062	K factor**= 2.523	TL(2)= 4.129	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	35.4	3.567			
1/15/2003	40.6	3.704			
4/10/2003	51	3.932			
7/14/2003	58.2	4.064			
10/13/2003	38.1	3.640			
1/13/2004	37	3.611			
4/13/2004	43.2	3.766			
7/21/2004	33.8	3 520			

7/21/2004	33.8	3.520
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	32.9	3.493
9/16/2002	29.9	3.398
10/16/2002	29	3.367
1/13/2003	27.1	3.300
4/10/2003	24.8	3.211
7/16/2003	35.6	3.572
10/14/2003	33.9	3.523
1/13/2004	31.3	3.444

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	41.6	NO	3.728	N/A
Sidegradient	Yes	48.6	NO	3.884	N/A
Sidegradient	Yes	48.9	NO	3.890	N/A
Sidegradient	Yes	49	NO	3.892	N/A
Sidegradient	Yes	56.2	NO	4.029	N/A
Downgradien	t Yes	53.5	NO	3.980	N/A
Downgradien	t Yes	64.3	YES	4.164	N/A
Sidegradient	Yes	43.6	NO	3.775	N/A
Downgradien	t Yes	62.6	YES	4.137	N/A
Downgradien	t Yes	35.9	NO	3.581	N/A
Upgradient	Yes	31.6	NO	3.453	N/A
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient Upgradient	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYes	GradientDetected?ResultUpgradientYes41.6SidegradientYes48.6SidegradientYes48.9SidegradientYes49SidegradientYes56.2DowngradientYes53.5DowngradientYes64.3SidegradientYes43.6DowngradientYes35.9UpgradientYes31.6	GradientDetected?ResultResult >TL(1)?UpgradientYes41.6NOSidegradientYes48.6NOSidegradientYes48.9NOSidegradientYes49NOSidegradientYes56.2NODowngradientYes53.5NODowngradientYes64.3YESSidegradientYes62.6YESDowngradientYes35.9NOUpgradientYes31.6NO	GradientDetected?ResultResult >TL(1)?LN(Result)UpgradientYes41.6NO 3.728 SidegradientYes48.6NO 3.884 SidegradientYes48.9NO 3.890 SidegradientYes49NO 3.892 SidegradientYes56.2NO 4.029 DowngradientYes53.5NO 3.980 DowngradientYes64.3YES 4.164 SidegradientYes62.6YES 4.137 DowngradientYes35.9NO 3.581

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.481	S= 2.648	CV(1)= 0.253	K factor**= 2.523	TL(1)= 17.161	LL(1)=N/A
Statistics-Transformed Background	X= 2.322	S= 0.239	CV(2)= 0.103	K factor**= 2.523	TL(2)= 2.925	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	10.4	2.342			
1/15/2003	9.8	2.282			
4/10/2003	15.4	2.734			
7/14/2003	14.9	2.701			

13.5

10.3

14.3

10.5

MW394

Result

11.2

8.3

8.5

7.9

8.4

8.2

8.1

8

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	19.2	YES	2.955	N/A
MW221	Sidegradient	Yes	14.9	NO	2.701	N/A
MW222	Sidegradient	Yes	13.2	NO	2.580	N/A
MW223	Sidegradient	Yes	13.5	NO	2.603	N/A
MW224	Sidegradient	Yes	15.9	NO	2.766	N/A
MW369	Downgradien	t Yes	7.8	NO	2.054	N/A
MW372	Downgradien	t Yes	145	YES	4.977	N/A
MW384	Sidegradient	Yes	19.3	YES	2.960	N/A
MW387	Downgradien	t Yes	35.7	YES	3.575	N/A
MW391	Downgradien	t Yes	13.1	NO	2.573	N/A
MW394	Upgradient	Yes	11.7	NO	2.460	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.603

2.332

2.660

2.351

2.416

2.116 2.079

2.140

2.067

2.128

2.104

2.092

LN(Result)

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW220	
MW372	
MW384	
MW387	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Tantalum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.029	S= 0.067	CV(1)= 2.267	K factor**= 2.523	TL(1)= 0.197	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.837	S = 1.260	CV(2) =-0.260	K factor**= 2.523	TL(2)= -1.658	LL(2)=N/A

Historical Bac Upgradient W	kground Da ells with Tr	ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.005	-5.298
1/15/2003	0.005	-5.298

0.005

0.005

0.005

0.005

0.005

0.005

MW394

Result

0.2

0.2

0.005

0.005

0.005

0.005

0.005

0.005

-5.298

-5.298

-5.298

-5.298

-5.298

-5.298

-1.609

-1.609

-5.298

-5.298

-5.298

-5.298

-5.298

-5.298

LN(Result)

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00145	N/A	-6.536	NO
MW221	Sidegradient	No	0.005	N/A	-5.298	N/A
MW222	Sidegradient	Yes	0.00222	N/A	-6.110	NO
MW223	Sidegradient	No	0.005	N/A	-5.298	N/A
MW224	Sidegradient	No	0.005	N/A	-5.298	N/A
MW369	Downgradient	t No	0.005	N/A	-5.298	N/A
MW372	Downgradient	t No	0.005	N/A	-5.298	N/A
MW384	Sidegradient	Yes	0.00136	N/A	-6.600	NO
MW387	Downgradient	t Yes	0.00137	N/A	-6.593	NO
MW391	Downgradient	t No	0.005	N/A	-5.298	N/A
MW394	Upgradient	No	0.005	N/A	-5.298	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.354	S= 9.280	CV(1)= 0.992	K factor**= 2.523	TL(1)= 32.768	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.270	S = 0.849	CV(2)= 0.374	K factor**= 2.523	TL(2)= 3.262	LL(2)=N/A

Historical Bac Upgradient W		ta from insformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	19.7	2.981
1/15/2003	26.1	3.262
4/10/2003	3.56	1.270
7/14/2003	0	#Func!
10/13/2003	21	3.045
1/13/2004	6.32	1.844
4/13/2004	3	1.099
7/21/2004	14.6	2.681
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	14	2.639
9/16/2002	5.45	1.696
10/16/2002	2.49	0.912
1/13/2003	18.3	2.907
4/10/2003	-1.45	#Func!
7/16/2003	-1.71	#Func!
10/14/2003	18.3	2.907

1/13/2004

0

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	17.4	N/A	2.856	N/A
MW221	Sidegradient	No	6.67	N/A	1.898	N/A
MW222	Sidegradient	No	4.33	N/A	1.466	N/A
MW223	Sidegradient	No	12.5	N/A	2.526	N/A
MW224	Sidegradient	No	6.45	N/A	1.864	N/A
MW369	Downgradient	t Yes	52.8	YES	3.967	N/A
MW372	Downgradient	t Yes	47.6	YES	3.863	N/A
MW384	Sidegradient	Yes	37.4	YES	3.622	N/A
MW387	Downgradient	t Yes	345	YES	5.844	N/A
MW391	Downgradient	t No	8.05	N/A	2.086	N/A
MW394	Upgradient	No	5.46	N/A	1.697	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

#Func!

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW369	
MW372	
MW384	
MW387	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.494	S = 0.737	CV(1)= 0.493	K factor**= 2.523	TL(1)= 3.353	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.315	S = 0.402	CV(2)= 1.279	K factor**= 2.523	TL(2)= 1.330	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW220

Well Number

well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.262
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 1.3	0.262
Date Collected 8/13/2002 9/16/2002	Result 1.3 1	0.262 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.3 1 1	0.262 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.3 1 1.6	0.262 0.000 0.000 0.470
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.3 1 1 1.6 1	0.262 0.000 0.000 0.470 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.3 1 1.6 1 1.4	0.262 0.000 0.000 0.470 0.000 0.336

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.963	NO	-0.038	N/A	
MW221	Sidegradient	Yes	0.738	NO	-0.304	N/A	
MW222	Sidegradient	Yes	0.734	NO	-0.309	N/A	
MW223	Sidegradient	Yes	0.86	NO	-0.151	N/A	
MW224	Sidegradient	Yes	0.708	NO	-0.345	N/A	
MW369	Downgradien	t Yes	0.953	NO	-0.048	N/A	
MW372	Downgradien	t Yes	0.846	NO	-0.167	N/A	
MW384	Sidegradient	Yes	0.98	NO	-0.020	N/A	
MW387	Downgradien	t Yes	0.954	NO	-0.047	N/A	
MW391	Downgradien	t Yes	0.635	NO	-0.454	N/A	
MW394	Upgradient	Yes	0.546	NO	-0.605	N/A	
	10			oratory analyzia or			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 63.475	S= 163.135	5 CV(1)=2.570	K factor**= 2.523	TL(1)= 475.063	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.103	S= 1.145	CV(2)= 0.369	K factor**= 2.523	TL(2)= 5.992	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	50	3.912			
1/15/2003	10	2.303			
4/10/2003	10	2.303			
7/14/2003	10	2.303			
10/13/2003	10	2.303			
1/13/2004	10	2.303			
4/13/2004	10	2.303			
7/21/2004	10	2.303			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	50	3.912			
9/16/2002	672	6.510			
10/16/2002	50	3.912			
1/13/2003	36.1	3.586			

10

42.7

12.8

22

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Upgradient	Yes	5.5	N/A	1.705	NO		
Sidegradient	Yes	13.1	N/A	2.573	NO		
Sidegradient	Yes	8.58	N/A	2.149	NO		
Sidegradient	Yes	8.6	N/A	2.152	NO		
Sidegradient	Yes	11.2	N/A	2.416	NO		
Downgradien	t Yes	21.2	N/A	3.054	NO		
Downgradien	t Yes	5.98	N/A	1.788	NO		
Sidegradient	Yes	15.6	N/A	2.747	NO		
Downgradien	t Yes	7.02	N/A	1.949	NO		
Downgradien	t Yes	28.9	N/A	3.364	NO		
Upgradient	Yes	6.48	N/A	1.869	NO		
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradient Downgradien Downgradien	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	GradientDetected?ResultUpgradientYes5.5SidegradientYes13.1SidegradientYes8.58SidegradientYes8.6SidegradientYes11.2DowngradientYes21.2DowngradientYes5.98SidegradientYes15.6DowngradientYes28.9	GradientDetected?ResultResult >TL(1)?UpgradientYes5.5N/ASidegradientYes13.1N/ASidegradientYes8.58N/ASidegradientYes8.6N/ASidegradientYes11.2N/ADowngradientYes21.2N/ADowngradientYes5.98N/ASidegradientYes15.6N/ADowngradientYes28.9N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 5.5 N/A 1.705 Sidegradient Yes 13.1 N/A 2.573 Sidegradient Yes 8.58 N/A 2.149 Sidegradient Yes 8.6 N/A 2.152 Sidegradient Yes 11.2 N/A 2.416 Downgradient Yes 5.98 N/A 1.788 Sidegradient Yes 5.98 N/A 1.788 Sidegradient Yes 15.6 N/A 2.747 Downgradient Yes 7.02 N/A 1.949 Downgradient Yes 28.9 N/A 3.364		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.303

3.754

3.091

2.549

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 8.813	S= 8.376	CV(1)= 0.951	K factor**= 2.523	TL(1)= 29.946	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.395	S= 1.449	CV(2)= 1.039	K factor**= 2.523	TL(2)= 5.052	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MUNDO

W7-11 NT-----1-----

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.773
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 16	2.773
Date Collected 8/13/2002 9/30/2002	Result 16 20	2.773 2.996
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 16 20 17	2.773 2.996 2.833
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 16 20 17 15	2.773 2.996 2.833 2.708
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 16 20 17 15 10	2.773 2.996 2.833 2.708 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 16 20 17 15 10 19	2.773 2.996 2.833 2.708 2.303 2.944

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.42	N/A	-0.868	N/A	
MW221	Sidegradient	Yes	0.89	N/A	-0.117	N/A	
MW222	Sidegradient	Yes	0.41	N/A	-0.892	N/A	
MW223	Sidegradient	Yes	0.71	N/A	-0.342	N/A	
MW224	Sidegradient	Yes	0.74	N/A	-0.301	N/A	
MW369	Downgradien	t Yes	1.3	N/A	0.262	N/A	
MW372	Downgradien	t Yes	4.25	N/A	1.447	N/A	
MW384	Sidegradient	Yes	2.34	N/A	0.850	N/A	
MW387	Downgradien	t Yes	2.41	N/A	0.880	N/A	
MW391	Downgradien	t Yes	8.55	NO	2.146	N/A	
MW394	Upgradient	Yes	5.83	NO	1.763	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.021	S= 0.002	CV(1)= 0.083	K factor**= 2.523	TL(1)= 0.025	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.884	S= 0.076	CV(2) =-0.020	K factor**= 2.523	TL(2)= -3.692	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.02	-3.912
1/15/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/14/2003	0.02	-3.912
10/13/2003	0.02	-3.912
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	-3.912
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00337	NO	-5.693	N/A	
MW221	Sidegradient	No	0.02	N/A	-3.912	N/A	
MW222	Sidegradient	Yes	0.00334	NO	-5.702	N/A	
MW223	Sidegradient	Yes	0.00346	NO	-5.666	N/A	
MW224	Sidegradient	No	0.02	N/A	-3.912	N/A	
MW369	Downgradien	t Yes	0.00406	NO	-5.507	N/A	
MW372	Downgradien	t No	0.02	N/A	-3.912	N/A	
MW384	Sidegradient	No	0.02	N/A	-3.912	N/A	
MW387	Downgradien	t No	0.02	N/A	-3.912	N/A	
MW391	Downgradien	t No	0.02	N/A	-3.912	N/A	
MW394	Upgradient	No	0.02	N/A	-3.912	N/A	
	10			oratory analysis or			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.036	S= 0.026	CV(1)= 0.722	K factor**= 2.523	TL(1)= 0.101	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.485	S = 0.525	CV(2)=- 0.151	K factor**= 2.523	TL(2)= -2.162	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	0.025	-3.689			
1/15/2003	0.035	-3.352			
4/10/2003	0.035	-3.352			
7/14/2003	0.0389	-3.247			
10/13/2003	0.026	-3.650			
1/13/2004	0.02	-3.912			
4/13/2004	0.02	-3.912			
7/21/2004	0.02	-3.912			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	0.1	-2.303			
9/16/2002	0.1	-2.303			
10/16/2002	0.025	-3.689			

0.035

0.035

0.02

0.02

0.02

Г

1/13/2003

4/10/2003 7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	0.00664	NO	-5.015	N/A
Sidegradient	No	0.02	N/A	-3.912	N/A
Sidegradient	Yes	0.00336	NO	-5.696	N/A
Sidegradient	No	0.02	N/A	-3.912	N/A
Sidegradient	No	0.02	N/A	-3.912	N/A
Downgradien	t No	0.02	N/A	-3.912	N/A
Downgradien	t Yes	0.00973	NO	-4.633	N/A
Sidegradient	No	0.02	N/A	-3.912	N/A
Downgradien	t Yes	0.00413	NO	-5.489	N/A
Downgradien	t No	0.02	N/A	-3.912	N/A
Upgradient	No	0.02	N/A	-3.912	N/A
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradient Downgradien Downgradien	GradientDetected?UpgradientYesSidegradientNoSidegradientYesSidegradientNoDowngradientNoDowngradientYesSidegradientNoDowngradientYesSidegradientNoDowngradientYesSidegradientNoDowngradientYesDowngradientYesDowngradientNo	GradientDetected?ResultUpgradientYes0.00664SidegradientNo0.02SidegradientYes0.00336SidegradientNo0.02SidegradientNo0.02DowngradientNo0.02DowngradientYes0.00973SidegradientNo0.02DowngradientYes0.00413DowngradientNo0.02	GradientDetected?ResultResult >TL(1)?UpgradientYes0.00664NOSidegradientNo0.02N/ASidegradientYes0.00336NOSidegradientNo0.02N/ASidegradientNo0.02N/ADowngradientNo0.02N/ADowngradientYes0.00973NOSidegradientNo0.02N/ADowngradientYes0.00413NODowngradientNo0.02N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.00664 NO -5.015 Sidegradient No 0.02 N/A -3.912 Sidegradient Yes 0.00336 NO -5.696 Sidegradient No 0.02 N/A -3.912 Sidegradient No 0.02 N/A -3.912 Sidegradient No 0.02 N/A -3.912 Downgradient No 0.02 N/A -3.912 Downgradient No 0.02 N/A -3.912 Downgradient Yes 0.00973 NO -4.633 Sidegradient No 0.02 N/A -3.912 Downgradient Yes 0.00413 NO -5.489 Downgradient No 0.02 N/A -3.912

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.352

-3.352

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.258	S= 0.221	CV(1)= 0.856	K factor**= 2.523	TL(1)= 0.815	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.266	S= 2.485	CV(2) =-1.097	K factor**= 2.523	TL(2)= 4.003	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	0.2	-1.609			
9/16/2002	0.2	-1.609			
10/16/2002	0.0002	-8.517			
1/13/2003	0.737	-0.305			
4/10/2003	0.2	-1.609			

0.2

0.2

0.2

MW397

Result

0.824

0.0002

0.363

0.2

0.2

0.2

0.2

0.2

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.05	N/A	-2.996	N/A
MW373	Downgradient	No	0.05	N/A	-2.996	N/A
MW385	Sidegradient	Yes	0.0391	NO	-3.242	N/A
MW388	Downgradient	Yes	0.043	NO	-3.147	N/A
MW392	Downgradient	Yes	0.0264	NO	-3.634	N/A
MW395	Upgradient	No	0.05	N/A	-2.996	N/A
MW397	Upgradient	Yes	0.0295	NO	-3.523	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

-1.609

-1.609

-0.194

-1.609

-8.517

-1.013

-1.609

-1.609

-1.609

-1.609

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.034	S = 1.030	CV(2) =-0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Bac	kground Data from
Upgradient We	ells with Transformed Result
Well Number:	MW395

Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 2. 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 2 2. 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.634	N/A	-0.456	NO
MW373	Downgradien	t Yes	2.01	N/A	0.698	NO
MW385	Sidegradient	Yes	0.057	N/A	-2.865	NO
MW388	Downgradien	t Yes	0.0322	N/A	-3.436	NO
MW392	Downgradien	t Yes	0.0227	N/A	-3.785	NO
MW395	Upgradient	Yes	0.0198	N/A	-3.922	NO
MW397	Upgradient	Yes	0.00804	N/A	-4.823	NO
N/A Decul	Ita idantified on N	Ion Detecto	ما ما م	anatamy analyzaia an	data validatio	n and man nat

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	0.523	NO	-0.648	N/A	
MW373	Downgradient	t Yes	0.509	NO	-0.675	N/A	
MW385	Sidegradient	Yes	0.262	NO	-1.339	N/A	
MW388	Downgradient	t Yes	0.448	NO	-0.803	N/A	
MW392	Downgradient	t Yes	0.55	NO	-0.598	N/A	
MW395	Upgradient	Yes	0.534	NO	-0.627	N/A	
MW397	Upgradient	Yes	0.416	NO	-0.877	N/A	
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 23.103	S= 11.538	CV(1)= 0.499	K factor**= 2.523	TL(1)= 52.213	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.357	S= 2.411	CV(2)= 1.023	K factor**= 2.523	TL(2)= 8.439	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	32.2	3.472						
9/16/2002	33	3.497						
10/16/2002	0.0295	-3.523						
1/13/2003	32.1	3.469						
4/10/2003	40.2	3.694						
7/16/2003	32.4	3.478						
10/14/2003	33.9	3.523						
1/13/2004	31.2	3.440						
Well Number:	MW397							

Result

0.0179

17.8

20.3

19.4

19.9

18.8

19.4

19

Date Collected

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	30	NO	3.401	N/A	
MW373	Downgradien	t Yes	67.2	YES	4.208	N/A	
MW385	Sidegradient	Yes	29.8	NO	3.395	N/A	
MW388	Downgradien	t Yes	24.4	NO	3.195	N/A	
MW392	Downgradien	t Yes	25.1	NO	3.223	N/A	
MW395	Upgradient	Yes	25.5	NO	3.239	N/A	
MW397	Upgradient	Yes	18.2	NO	2.901	N/A	
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

LN(Result)

2.965

2.944

-4.023

2.879

3.011

2.965

2.991

2.934

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.313	S = 1.250	CV(1)= 0.035	K factor**= 2.523	TL(1)= 38.466	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.564	S = 0.033	CV(2) =0.009	K factor**= 2.523	TL(2)= 3.648	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	35	3.555						
9/16/2002	35	3.555						
10/16/2002	35	3.555						
1/13/2003	35	3.555						
4/10/2003	35	3.555						
7/16/2003	35	3.555						

35

35

40

35

35

35

35

35

35

35

MW397

Result

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	16.7	NO	2.815	N/A	
MW373	Downgradien	t Yes	20.3	NO	3.011	N/A	
MW385	Sidegradient	Yes	13.1	NO	2.573	N/A	
MW388	Downgradien	t Yes	152	YES	5.024	N/A	
MW392	Downgradien	t Yes	260	YES	5.561	N/A	
MW395	Upgradient	Yes	23.9	NO	3.174	N/A	
MW397	Upgradient	Yes	16.7	NO	2.815	N/A	
N/A Door	Its identified as N	Ion Dotoota	during lab	oratory analysis or	data validatio	n and wara not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

3.555

3.689

3.555

3.555

3.555

3.555

3.555

3.555

3.555

LN(Result)

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW388 MW392

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 51.844	S= 11.652	CV(1)= 0.225	K factor**= 2.523	TL(1)= 81.242	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.924	S= 0.229	CV(2)= 0.058	K factor**= 2.523	TL(2)= 4.501	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	62.2	4.130						
9/16/2002	64.7	4.170						
10/16/2002	62.2	4.130						
1/13/2003	63.5	4.151						
4/10/2003	64.1	4.160						
7/16/2003	64	4.159						
10/14/2003	63.2	4.146						
1/13/2004	60.6	4.104						
Well Number:	MW397							
Date Collected	Result	LN(Result)						
8/13/2002	38.9	3.661						
9/16/2002	39.8	3.684						
10/17/2002	39.3	3.671						
1/13/2003	40.5	3.701						
4/8/2003	42.1	3.740						
7/16/2003	42	3.738						
10/14/2003	40.8	3.709						

41.6

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	36.5	NO	3.597	N/A	
MW373	Downgradien	t Yes	37.1	NO	3.614	N/A	
MW385	Sidegradient	Yes	23.2	NO	3.144	N/A	
MW388	Downgradien	t Yes	37.3	NO	3.619	N/A	
MW392	Downgradien	t Yes	44.9	NO	3.804	N/A	
MW395	Upgradient	Yes	45.5	NO	3.818	N/A	
MW397	Upgradient	Yes	35	NO	3.555	N/A	
N/A Dagui	Ita idantified on N	Iam Dataata	اما م	anatamy analyzaia an	data validatio	n and man nat	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.728

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

1			0			
Statistics-Background Data	X= 5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2)=0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					

Date Collected	Result	LN(Result)
8/13/2002	5	1.609
9/30/2002	5	1.609
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	()
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	1	N/A	0.000	N/A
MW373	Downgradient	No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	No	1	N/A	0.000	N/A
MW392	Downgradient	Yes	0.51	NO	-0.673	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.007	S= 0.011	CV(1)=1.515	K factor**= 2.523	TL(1)= 0.034	LL(1)=N/A
Statistics-Transformed Background	X= -6.053	S= 1.416	CV(2) =-0.234	K factor**= 2.523	TL(2)= -2.480	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					

wen runnber.	11110375	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.001	N/A	-6.908	N/A
MW373	Downgradien	t No	0.001	N/A	-6.908	N/A
MW385	Sidegradient	Yes	0.00070	9 N/A	-7.252	NO
MW388	Downgradien	t No	0.001	N/A	-6.908	N/A
MW392	Downgradien	t No	0.001	N/A	-6.908	N/A
MW395	Upgradient	No	0.001	N/A	-6.908	N/A
MW397	Upgradient	No	0.001	N/A	-6.908	N/A
	10					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 377.875 S = 52.10	l CV(1)=0.138	K factor**= 2.523	TL(1)= 509.326 LL	.(1)=N/A
Statistics-Transformed Background Data	X = 5.926 S = 0.136	CV(2) =0.023	K factor**= 2.523	TL(2)= 6.270 LL	.(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	I N(Result)				

Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
X7 11 X7 1	100007	
Well Number:	MW397	
Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.775
Date Collected	Result	()
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	459	NO	6.129	N/A
MW373	Downgradient	t Yes	777	YES	6.655	N/A
MW385	Sidegradient	Yes	462	NO	6.136	N/A
MW388	Downgradient	t Yes	423	NO	6.047	N/A
MW392	Downgradient	t Yes	358	NO	5.881	N/A
MW395	Upgradient	Yes	376	NO	5.930	N/A
MW397	Upgradient	Yes	340	NO	5.829	N/A
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.028	S= 0.013	CV(1)= 0.474	K factor**= 2.523	TL(1)= 0.061	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.662	S = 0.406	CV(2) =-0.111	K factor**= 2.523	TL(2)= -2.638	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	0.05	-2.996				
9/16/2002	0.05	-2.996				
10/16/2002	0.0281	-3.572				
1/13/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/16/2003	0.02	-3.912				
10/14/2003	0.02	-3.912				
1/13/2004	0.02	-3.912				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	0.05	-2.996				
9/16/2002	0.05	-2.996				

0.02

0.02

0.02

0.02

0.02

0.02

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	0.00047	8 NO	-7.646	N/A	
MW373	Downgradient	Yes	0.00132	NO	-6.630	N/A	
MW385	Sidegradient	Yes	0.00111	NO	-6.803	N/A	
MW388	Downgradient	Yes	0.00105	NO	-6.859	N/A	
MW392	Downgradient	Yes	0.00057	8 NO	-7.456	N/A	
MW395	Upgradient	Yes	0.00070	8 NO	-7.253	N/A	
MW397	Upgradient	Yes	0.00062	NO	-7.386	N/A	
N/A - Resu			0	oratory analysis or		n and were not	

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-3.912

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.678	S= 2.431	CV(1)= 0.520	K factor**= 2.523	TL(1)= 10.812	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.414	S = 0.550	CV(2) =0.389	K factor**= 2.523	TL(2)= 2.802	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	7.29	1.987				
9/30/2002	4.03	1.394				
10/16/2002	3.85	1.348				
1/13/2003	2.36	0.859				
4/10/2003	1.14	0.131				
7/16/2003	1.76	0.565				
10/14/2003	4.05	1.399				
1/13/2004	4.26	1.449				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	11.56	2.448				
9/16/2002	5.86	1.768				
10/17/2002	5.94	1.782				
1/13/2003	4.66	1.539				

3.77

3.47

5.34

5.51

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	4.36	NO	1.472	N/A
MW373	Downgradien	t Yes	2.72	NO	1.001	N/A
MW385	Sidegradient	Yes	2.41	NO	0.880	N/A
MW388	Downgradien	t Yes	5.6	NO	1.723	N/A
MW392	Downgradien	t Yes	2.5	NO	0.916	N/A
MW395	Upgradient	Yes	5.31	NO	1.670	N/A
MW397	Upgradient	Yes	6.96	NO	1.940	N/A
	10 1 20 1 1				1 . 1.1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.327

1.244

1.675

1.707

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =219.25	0 S= 34.107	CV(1)= 0.156	K factor**= 2.523	TL(1)= 305.301	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.379	S= 0.152	CV(2)= 0.028	K factor**= 2.523	TL(2)= 5.762	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				

Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	()
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	240	NO	5.481	N/A
MW373	Downgradient	t Yes	469	YES	6.151	N/A
MW385	Sidegradient	Yes	234	NO	5.455	N/A
MW388	Downgradient	t Yes	214	NO	5.366	N/A
MW392	Downgradient	t Yes	159	NO	5.069	N/A
MW395	Upgradient	Yes	201	NO	5.303	N/A
MW397	Upgradient	Yes	141	NO	4.949	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.400	S= 0.514	CV(1)= 1.286	K factor**= 2.523	TL(1)= 1.698	LL(1)=N/A
Statistics-Transformed Background	X= -2.197	S= 2.634	CV(2) =-1.199	K factor**= 2.523	TL(2)= 4.449	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	0.294	-1.224			
9/16/2002	0.2	-1.609			
10/16/2002	0.0002	-8.517			
1/13/2003	1.33	0.285			
4/10/2003	1.31	0.270			
7/16/2003	0.2	-1.609			
10/14/2003	0.1	-2.303			
1/13/2004	0.1	-2.303			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	1.58	0.457			
9/16/2002	0.232	-1.461			
10/17/2002	0.0002	-8.517			
1/13/2003	0.453	-0.792			

0.2

0.2

0.1

0.1

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.1	N/A	-2.303	N/A
MW373	Downgradient	t No	0.1	N/A	-2.303	N/A
MW385	Sidegradient	Yes	0.0539	N/A	-2.921	NO
MW388	Downgradient	t Yes	0.159	N/A	-1.839	NO
MW392	Downgradient	t Yes	0.074	N/A	-2.604	NO
MW395	Upgradient	Yes	0.137	N/A	-1.988	NO
MW397	Upgradient	Yes	0.0693	N/A	-2.669	NO
N/A - Resul	ts identified as N	on-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

-1.609

-2.303

-2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.102	S= 4.685	CV(1)= 0.515	K factor**= 2.523	TL(1)= 20.922	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.423	S = 2.408	CV(2)= 1.692	K factor**= 2.523	TL(2)= 7.500	LL(2)=N/A

	listorical Background Data from pgradient Wells with Transformed Result fell Number: MW395				
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	12.5	2.526			
9/16/2002	13	2.565			
10/16/2002	0.0127	-4.366			
1/13/2003	11.2	2.416			
4/10/2003	17.5	2.862			
7/16/2003	12.9	2.557			
10/14/2003	13.4	2.595			
1/13/2004	12.4	2.518			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	7.83	2.058			
9/16/2002	7.64	2.033			
10/17/2002	0.00658	-5.024			
1/13/2003	6.69	1.901			
4/8/2003	7.28	1.985			
7/16/2003	7.82	2.057			

7.94

7.51

10/14/2003 1/13/2004 Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	12.9	NO	2.557	N/A
MW373	Downgradien	t Yes	25.4	YES	3.235	N/A
MW385	Sidegradient	Yes	11.9	NO	2.477	N/A
MW388	Downgradien	t Yes	10.6	NO	2.361	N/A
MW392	Downgradien	t Yes	11.1	NO	2.407	N/A
MW395	Upgradient	Yes	10.6	NO	2.361	N/A
MW397	Upgradient	Yes	7.53	NO	2.019	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.072

2.016

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.131	S = 0.195	CV(1)= 1.487	K factor**= 2.523	TL(1)= 0.624	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.104	S= 1.529	CV(2) =-0.493	K factor**= 2.523	TL(2)= 0.755	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	0.361	-1.019			
9/16/2002	0.028	-3.576			
10/16/2002	0.026	-3.650			
1/13/2003	0.0713	-2.641			
4/10/2003	0.629	-0.464			
7/16/2003	0.297	-1.214			
10/14/2003	0.0198	-3.922			
1/13/2004	0.0126	-4.374			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	0.466	-0.764			
9/16/2002	0.077	-2.564			
10/17/2002	0.028	-3.576			
1/13/2003	0.0164	-4.110			

0.0407

0.0167

0.00555

0.005

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.00117	N/A	-6.751	NO
MW373	Downgradient	Yes	0.00959	N/A	-4.647	NO
MW385	Sidegradient	Yes	0.0102	N/A	-4.585	NO
MW388	Downgradient	Yes	0.00111	N/A	-6.803	NO
MW392	Downgradient	Yes	0.0134	N/A	-4.313	NO
MW395	Upgradient	Yes	0.00108	N/A	-6.831	NO
MW397	Upgradient	Yes	0.00308	N/A	-5.783	NO
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.202

-4.092

-5.194

-5.298

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.007	S= 0.011	CV(1)= 1.451	K factor**= 2.523	TL(1)= 0.034	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.990	S= 1.443	CV(2) =-0.241	K factor**= 2.523	TL(2)= -2.349	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	М	W395			
D . <i>G</i> 11 . 1	n	1	T 3 7/D	1.5	

Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00609	-5.101
4/10/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	<pre> /</pre>
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.001	N/A	-6.908	N/A
MW373	Downgradient	t No	0.001	N/A	-6.908	N/A
MW385	Sidegradient	No	0.00041	5 N/A	-7.787	N/A
MW388	Downgradient	t No	0.00029	8 N/A	-8.118	N/A
MW392	Downgradient	t No	0.00023	N/A	-8.377	N/A
MW395	Upgradient	Yes	0.00158	N/A	-6.450	NO
MW397	Upgradient	No	0.001	N/A	-6.908	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.018	S= 0.020	CV(1)= 1.089	K factor**= 2.523	TL(1)= 0.068	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.540	S = 1.020	CV(2) =-0.225	K factor**= 2.523	TL(2)= -1.965	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

NAN2205

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.00502	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.00502 0.00502	-2.996 -2.996 -5.298 -5.294 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.05 0.05 0.005 0.00502 0.005 0.005	-2.996 -2.996 -5.298 -5.294 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	0.00079	2 N/A	-7.141	NO
MW373	Downgradient	t Yes	0.00248	N/A	-5.999	NO
MW385	Sidegradient	Yes	0.0012	N/A	-6.725	NO
MW388	Downgradient	t Yes	0.00108	N/A	-6.831	NO
MW392	Downgradient	t Yes	0.00142	N/A	-6.557	NO
MW395	Upgradient	Yes	0.00089	7 N/A	-7.016	NO
MW397	Upgradient	Yes	0.00074	1 N/A	-7.208	NO
N/A - Resul	lts identified as N	lon-Detects of	during labo	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 157.25	0 S = 52.376	CV(1)= 0.333	K factor**= 2.523	TL(1)= 289.395	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.003	S = 0.348	CV(2) =0.069	K factor**= 2.523	TL(2)= 5.880	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	80	4.382			
9/16/2002	145	4.977			
10/16/2002	125	4.828			
1/13/2003	85	4.443			
4/10/2003	159	5.069			
7/16/2003	98	4.585			

138

233

MW397

Result

115

140

185

230

155

188

187

253

10/14/2003

1/13/2004

8/13/2002

9/30/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

4.927

5.451

4.745

4.942

5.220

5.438

5.043

5.236

5.231

5.533

LN(Result)

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	402	YES	5.996	N/A
MW373	Downgradient	Yes	376	YES	5.930	N/A
MW385	Sidegradient	Yes	432	YES	6.068	N/A
MW388	Downgradient	Yes	431	YES	6.066	N/A
MW392	Downgradient	Yes	400	YES	5.991	N/A
MW395	Upgradient	Yes	395	YES	5.979	N/A
MW397	Upgradient	Yes	352	YES	5.864	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW370 MW373
concentration with respect to historical background data.	MW385
	MW388
	MW392
	MW395
	MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.048	S= 0.248	CV(1)= 0.041	K factor**= 2.904	TL(1)= 6.767	LL(1)=5.3289
Statistics-Transformed Background Data	X= 1.799	S= 0.042	CV(2)= 0.023	K factor**= 2.904	TL(2)= 1.920	LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result						
Upgradient W	ells with Tra	ansformed Result				
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	5.8	1.758				
9/16/2002	6	1.792				
10/16/2002	5.47	1.699				
1/13/2003	6	1.792				
4/10/2003	6.18	1.821				
7/16/2003	6	1.792				
10/14/2003	6.31	1.842				
1/13/2004	6.24	1.831				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	5.84	1.765				
9/30/2002	6	1.792				
10/17/2002	5.75	1.749				
1/13/2003	6	1.792				
4/8/2003	6.3	1.841				
7/16/2003	6.2	1.825				
10/14/2003	6.36	1.850				
1/13/2004	6.32	1.844				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradient	Yes	6.06	NO	1.802	N/A
MW373	Downgradient	Yes	6.08	NO	1.805	N/A
MW385	Sidegradient	Yes	6.37	NO	1.852	N/A
MW388	Downgradient	Yes	6.05	NO	1.800	N/A
MW392	Downgradient	Yes	6.1	NO	1.808	N/A
MW395	Upgradient	Yes	6.02	NO	1.795	N/A
MW397	Upgradient	Yes	6.08	NO	1.805	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.590	S= 0.642	CV(1)= 0.404	K factor**= 2.523	TL(1)= 3.208	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.306	S= 2.457	CV(2) =-8.028	K factor**= 2.523	TL(2)= 5.892	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	2	0.693			
9/16/2002	2	0.693			
10/16/2002	0.00129	-6.653			
1/13/2003	1.51	0.412			
4/10/2003	1.67	0.513			
7/16/2003	1.73	0.548			
10/14/2003	1.7	0.531			
1/13/2004	1.58	0.457			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	2.03	0.708			
9/16/2002	2	0.693			
10/17/2002	0.00145	-6.536			
1/13/2003	1.69	0.525			
4/8/2003	1.73	0.548			
7/16/2003	2	0.693			
10/14/2003	1.92	0.652			

1.87

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	2.87	NO	1.054	N/A
MW373	Downgradien	t Yes	2.86	NO	1.051	N/A
MW385	Sidegradient	Yes	1.78	NO	0.577	N/A
MW388	Downgradien	t Yes	1.84	NO	0.610	N/A
MW392	Downgradien	t Yes	2.16	NO	0.770	N/A
MW395	Upgradient	Yes	1.6	NO	0.470	N/A
MW397	Upgradient	Yes	1.85	NO	0.615	N/A
N/A - Resul	ts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.626

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 29.560	S= 13.894	CV(1)= 0.470	K factor**= 2.523	TL(1)= 64.616	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.615	S = 2.411	CV(2) =0.922	K factor**= 2.523	TL(2)= 8.699	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			

Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	· /
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 35.2 34.3 0.0336 31.3 46.1 38.4	3.561 3.535 -3.393 3.444 3.831 3.648

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	48.6	NO	3.884	N/A
MW373	Downgradien	t Yes	60.9	NO	4.109	N/A
MW385	Sidegradient	Yes	44.8	NO	3.802	N/A
MW388	Downgradien	t Yes	44.3	NO	3.791	N/A
MW392	Downgradien	t Yes	26.8	NO	3.288	N/A
MW395	Upgradient	Yes	30.2	NO	3.408	N/A
MW397	Upgradient	Yes	32.8	NO	3.490	N/A
N/A - Resul	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.756 S = 2.147	CV(1)= 0.200	K factor**= 2.523	TL(1)= 16.173	LL(1)= N/A
Statistics-Transformed Background Data	X =2.356 S = 0.203	CV(2) =0.086	K factor**= 2.523	TL(2)= 2.869	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	10.3	2.332			
9/16/2002	9.1	2.208			
10/16/2002	8.8	2.175			
1/13/2003	9	2.197			
4/10/2003	8.3	2.116			
7/16/2003	8.2	2.104			
10/14/2003	8.3	2.116			
1/13/2004	8.2	2.104			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	14	2.639			
9/16/2002	12.8	2.549			
10/17/2002	12.3	2.510			
1/13/2003	12.7	2.542			
4/8/2003	12.8	2.549			
7/16/2003	13.1	2.573			

12.1

12.1

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	20.5	YES	3.020	N/A
MW373	Downgradient	t Yes	155	YES	5.043	N/A
MW385	Sidegradient	Yes	20.6	YES	3.025	N/A
MW388	Downgradient	t Yes	19	YES	2.944	N/A
MW392	Downgradient	t Yes	8.59	NO	2.151	N/A
MW395	Upgradient	Yes	11.6	NO	2.451	N/A
MW397	Upgradient	Yes	11.7	NO	2.460	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.493

2.493

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW370	
MW373	
MW385	
MW388	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis **Historical Background Comparison** Tantalum UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.054	S= 0.087	CV(1)= 1.622	K factor**= 2.523	TL(1)= 0.274	LL(1)= N/A
Statistics-Transformed Background	X= -4.376	S= 1.650	CV(2) =-0.377	K factor**= 2.523	TL(2)= -0.214	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/10/2003	0.005	-5.298
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	()
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.2 0.2 0.005	-1.609 -1.609 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.2 0.005 0.005	-1.609 -1.609 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.2 0.005 0.005 0.005	-1.609 -1.609 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.005	N/A	-5.298	N/A
MW373	Downgradien	t No	0.005	N/A	-5.298	N/A
MW385	Sidegradient	No	0.005	N/A	-5.298	N/A
MW388	Downgradien	t Yes	0.00172	N/A	-6.365	NO
MW392	Downgradien	t No	0.005	N/A	-5.298	N/A
MW395	Upgradient	No	0.005	N/A	-5.298	N/A
MW397	Upgradient	No	0.005	N/A	-5.298	N/A
N/A Dagu	Ita idantified on N	Ion Detecto	dumin a lah	anatamy analyzaia an	data validatia	n and man nat

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =11.359 S = 9.138	CV(1)= 0.805	K factor**= 2.523	TL(1)= 34.414	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.398 S = 0.859	CV(2)= 0.358	K factor**= 2.523	TL(2)= 3.246	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	6.06	1.802
9/16/2002	17.3	2.851
10/17/2002	25.7	3.246
1/13/2003	20.9	3.040
4/8/2003	20.1	3.001
7/16/2003	9.2	2.219
10/14/2003	10.1	2.313
1/13/2004	8.54	2.145

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	25.6	NO	3.243	N/A
MW373	Downgradient	t No	11.2	N/A	2.416	N/A
MW385	Sidegradient	Yes	34.6	YES	3.544	N/A
MW388	Downgradient	t No	12.4	N/A	2.518	N/A
MW392	Downgradient	t No	2.32	N/A	0.842	N/A
MW395	Upgradient	No	5.03	N/A	1.615	N/A
MW397	Upgradient	No	18.1	N/A	2.896	N/A
NI/A D	1. 1. C.C. 1. N		1 . 11	, <u>1</u> ·	1 . 1.1	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW385

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.544	S= 0.856	CV(1)= 0.554	K factor**= 2.523	TL(1)= 3.702	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.325	S = 0.452	CV(2)= 1.393	K factor**= 2.523	TL(2)= 1.465	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW395

wen runnoer.	11110375	
Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1 1 3.6 1.9 1.1	0.000 0.000 0.000 1.281 0.642 0.095

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	0.952	NO	-0.049	N/A	
MW373	Downgradien	t Yes	0.999	NO	-0.001	N/A	
MW385	Sidegradient	Yes	1.08	NO	0.077	N/A	
MW388	Downgradien	t Yes	0.946	NO	-0.056	N/A	
MW392	Downgradien	t Yes	0.582	NO	-0.541	N/A	
MW395	Upgradient	Yes	0.628	NO	-0.465	N/A	
MW397	Upgradient	Yes	0.455	NO	-0.787	N/A	
N/A - Resu	lts identified as N	Jon-Detects	turing lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical AnalysisHistorical Background ComparisonTotal Organic Halides (TOX)UNITS: ug/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 31.513	S= 18.609	CV(1)= 0.591	K factor**= 2.523	TL(1)= 78.462	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.240	S = 0.707	CV(2)= 0.218	K factor**= 2.523	TL(2)= 5.024	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	50	3.912						
9/16/2002	50	3.912						
10/16/2002	50	3.912						
1/13/2003	18.3	2.907						
4/10/2003	51.2	3.936						
7/16/2003	42.6	3.752						
10/14/2003	12.3	2.510						
1/13/2004	10	2.303						
Well Number:	MW397							
Date Collected	Result	LN(Result)						
8/13/2002	50	3.912						
9/16/2002	50	3.912						
10/17/2002	50	3.912						

12

19.9

17.9

10

10

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	6.32	NO	1.844	N/A		
MW373	Downgradient	Yes	12.3	NO	2.510	N/A		
MW385	Sidegradient	Yes	8.76	NO	2.170	N/A		
MW388	Downgradient	Yes	13.5	NO	2.603	N/A		
MW392	Downgradient	Yes	28.3	NO	3.343	N/A		
MW395	Upgradient	Yes	6.08	NO	1.805	N/A		
MW397	Upgradient	Yes	3.68	NO	1.303	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.485

2.991

2.885

2.303

2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.313	S= 5.701	CV(1)= 0.780	K factor**= 2.523	TL(1)= 21.695	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.467	S= 1.213	CV(2)= 0.827	K factor**= 2.523	TL(2)= 4.528	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					

Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
X7 11 X7 1		
Well Number:	MW397	
Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	()
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1	1.609 1.609 0.000 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 1 1 1 1 1	1.609 1.609 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradien	t Yes	1.49	N/A	0.399	N/A		
MW373	Downgradien	t Yes	5.37	NO	1.681	N/A		
MW385	Sidegradient	Yes	1.55	N/A	0.438	N/A		
MW388	Downgradien	t Yes	1.92	N/A	0.652	N/A		
MW392	Downgradien	t Yes	13.2	NO	2.580	N/A		
MW395	Upgradient	Yes	4.09	N/A	1.409	N/A		
MW397	Upgradient	Yes	0.47	N/A	-0.755	N/A		
N/A Docul	Its identified as N	Ion Dotoota	turing lab	oratory analysis or	data validatio	n and wara not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.021	S= 0.002	CV(1)= 0.105	K factor**= 2.523	TL(1)= 0.027	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.856	S = 0.100	CV(2) =-0.026	K factor**= 2.523	TL(2)= -3.604	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	0.025	-3.689						
9/16/2002	0.025	-3.689						
10/16/2002	0.02	-3.912						
1/13/2003	0.02	-3.912						
7/16/2003	0.02	-3.912						
10/14/2003	0.02	-3.912						
1/13/2004	0.02	-3.912						
4/12/2004	0.02	-3.912						
Well Number:	MW397							
Date Collected	Result	LN(Result)						
8/13/2002	0.025	-3.689						
9/16/2002	0.025	-3.689						
10/17/2002	0.02	-3.912						
1/13/2003	0.02	-3.912						
4/8/2003	0.02	-3.912						
7/16/2003	0.02	-3.912						
10/14/2003	0.02	-3.912						

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	No	0.02	N/A	-3.912	N/A		
MW373	Downgradient	No	0.02	N/A	-3.912	N/A		
MW385	Sidegradient	No	0.02	N/A	-3.912	N/A		
MW388	Downgradient	No	0.02	N/A	-3.912	N/A		
MW392	Downgradient	Yes	0.00345	NO	-5.669	N/A		
MW395	Upgradient	No	0.02	N/A	-3.912	N/A		
MW397	Upgradient	No	0.02	N/A	-3.912	N/A		
N/A - Resu	lts identified as N	on-Detects	during lab	oratorv analysis or	data validation	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.044	S = 0.034	CV(1)= 0.760	K factor**= 2.523	TL(1)= 0.129	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.342	S= 0.659	CV(2)= -0.197	K factor**= 2.523	TL(2)= -1.679	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	0.1	-2.303				
9/16/2002	0.1	-2.303				
10/16/2002	0.025	-3.689				
1/13/2003	0.035	-3.352				
4/10/2003	0.035	-3.352				

0.02

0.02

0.02

MW397

Result

0.1

0.1

0.025

0.035

0.035

0.02

0.02

0.02

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.02	N/A	-3.912	N/A
MW373	Downgradient	Yes	0.00408	NO	-5.502	N/A
MW385	Sidegradient	No	0.02	N/A	-3.912	N/A
MW388	Downgradient	No	0.02	N/A	-3.912	N/A
MW392	Downgradient	No	0.02	N/A	-3.912	N/A
MW395	Upgradient	No	0.02	N/A	-3.912	N/A
MW397	Upgradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-3.912

-2.303

-2.303

-3.689

-3.352

-3.352

-3.912

-3.912 -3.912

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

Manganese UNITS:	mg/L UCRS
The CV is calculated to determine if background data are normally distribu TL. If not, a transformation is performed on the background and test well r he transformed TL. If the test well result exceeds the TL, that is statistical For pH only, the current test well results are compared to the TL and LL. I LL, that is statistically significant evidence of elevated or lowered concentr	results, then each transformed test well result is compared to ly significant evidence of elevated concentration in that well. f the test well result for pH exceeds the TL or is less than the
tatistics-Background Data $X=0.297$ S= 0.246 CV(1)=	
tatistics-Transformed Background X=-1.838 S= 1.472 CV(2)=	-0.801 K factor**= 3.188 TL(2)= 2.856 LL(2)=N/A
Current Background Data from Upgradient Wells with Transformed Result	Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).
Date Collected Result LN(Result)	
1/27/2020 0.521 -0.652	
4/22/2020 0.029 -3.540	
7/29/2020 0.144 -1.938	
10/22/2020 0.601 -0.509	
1/26/2021 0.46 -0.777 Current Quarter Da	ata
4/14/2021 0.0124 -4.390	
7/21/2021 0.11 -2.207 Well No. Gradient	Detected? Result >TL(1)? LN(Result) >TL(
10/18/2021 0.502 -0.689 MW386 Sidegradier	nt Yes 2.09 YES 0.737 N/A

Conclusion of Statistical Analysis on Current Data

C-746-S/T First Quarter 2022 Statistical Analysis

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW386

Current Background Comparison

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =258.875 S = 126.218	S CV(1)=0.488	K factor**= 3.188	TL(1)= 661.258	LL(1)= N/A
Statistics-Transformed Background Data	X= 5.422 S= 0.592	CV(2)= 0.109	K factor**= 3.188	TL(2)= 7.310	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW396	
Date Collected	Result	LN(Result)
3/18/2020	127	4.844
4/22/2020	401	5.994
7/29/2020	346	5.846
10/22/2020	204	5.318
1/26/2021	80	4.382
4/14/2021	332	5.805
7/21/2021	400	5.991
10/18/2021	181	5.198

Current Background Data from Upgradient

Wells with Transformed Result

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	180	NO	5.193	N/A	
MW390	Downgradient	Yes	459	NO	6.129	N/A	
MW393	Downgradient	Yes	260	NO	5.561	N/A	
MW396	Upgradient	Yes	191	NO	5.252	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X=- 0.001	S = 7.059	CV(1)= -8067.73	K factor**= 3.188	TL(1)= 22.504	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.770	S= 0.604	CV(2)= 0.341	K factor**= 3.188	TL(2)= 2.389	LL(2)=N/A
				Pagauga C	V(1) is loss than	or oqual to

Current Background Data from Upgradient Wells with Transformed Result			1, as	1, assume normal distribution and continue with statistical analysis		
Well Number:	MW396			zing TL(1).		
Date Collected	Result	LN(Result)	#Bee	cause the natural log was not		
1/27/2020	3.26	1.182		bile for all background values, the		
4/22/2020	5.69	1.739		was considered equal to the		
7/29/2020	-0.35	#Func!		imum background value.		
10/22/2020	-12.9	#Func!				
1/26/2021	10.9	2.389	Current Quarter Data			
4/14/2021	-0.297	#Func!				
7/21/2021	-2.66	#Func!	Well No. Gradient Detected? Result Res	sult >TL(1)? LN(Result) LN(Result) >TL(2)		
10/18/2021	-3.65	#Func!	MW390 Downgradient Yes 78.2	YES 4.359 N/A		

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical AnalysisCurrent Background ComparisonBeta activityUNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.078	S= 5.190	CV(1)= 0.572	K factor**= 2.523	TL(1)= 22.173	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.170	S= 0.509	CV(2) =0.234	K factor**= 2.523	TL(2)= 2.939	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
1/22/2020	8.34	2.121				
4/21/2020	16.5	2.803				
7/28/2020	18.9	2.939				
10/14/2020	13.7	2.617				
1/25/2021	5.57	1.717				
4/15/2021	9.12	2.210				
7/19/2021	12	2.485				
10/27/2021	11.4	2.434				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
1/27/2020	4.69	1.545				
4/22/2020	5.27	1.662				
7/29/2020	12	2.485				
10/22/2020	10.9	2.389				
1/26/2021	3.05	1.115				
4/14/2021	9.32	2.232				
7/21/2021	6.04	1.798				
10/18/2021	-1.56	#Func!				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1). #Because the natural log was not

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW387	Downgradient	t Yes	172	YES	5.147	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW387

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis **Current Background Comparison URGA** Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =24.569 S = 2.765	CV(1)= 0.113	K factor**= 2.523	TL(1)= 31.545	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.195 S= 0.116	CV(2)= 0.036	K factor**= 2.523	TL(2)= 3.488	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW372	Downgradient	t Yes	67	YES	4.205	N/A	
MW387	Downgradient	t Yes	44.2	YES	3.789	N/A	

Conclusion of Sta

Current Background Data from Upgradient

LN(Result)

3.270

3.360

3.025

2.991

3.040

3.321

3.100

3.059

3.231

3.215

3.258

3.311

3.239

3.288

3.215

3.203

LN(Result)

MW220

Result

26.3

28.8

20.6

19.9

20.9

27.7

22.2

21.3

MW394

Result

25.3

24.9

27.4

25.5

26.8

24.9

24.6

26

Wells with Transformed Result

Well Number:

Date Collected

1/22/2020

4/21/2020

7/28/2020

10/14/2020

1/25/2021

4/15/2021

7/19/2021

10/27/2021

1/27/2020

4/22/2020

7/29/2020

10/22/2020

1/26/2021

4/14/2021

7/21/2021

10/18/2021

Well Number: Date Collected

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-7

Wells with Exceedances MW372

MW387

C-746-S/T First Quarter 2022 Statistical AnalysisCurrent Background ComparisonChemical Oxygen Demand (COD)UNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 29.738	S= 23.996	CV(1)= 0.807	K factor**= 2.523	TL(1)= 90.279	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.230	S = 0.515	CV(2)= 0.159	K factor**= 2.523	TL(2)= 4.528	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected LN(Result) Result 1/22/2020 20 2.996 4/21/2020 114 4.736 7/28/2020 20 2.996 10/14/2020 12 2.485 1/25/2021 22.7 3.122 4/15/2021 37.1 3.614 7/19/2021 20 2.996 10/27/2021 20 2.996 MW394 Well Number: Date Collected Result LN(Result) 1/27/2020 29.2 3.374 4/22/2020 31.1 3.437 7/29/2020 16 2.773 10/22/2020 46.4 3.837 1/26/2021 21.8 3.082 4/14/2021 20 2.996 7/21/2021 20 2.996 10/18/2021 25.5 3.239

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	41.7	NO	3.731	N/A		
MW221	Sidegradient	Yes	70.3	NO	4.253	N/A		
MW223	Sidegradient	Yes	77.4	NO	4.349	N/A		
MW224	Sidegradient	Yes	174	YES	5.159	N/A		
MW391	Downgradient	t Yes	38.1	NO	3.640	N/A		

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW224

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical AnalysisCurrent Background ComparisonConductivityUNITS: umho/cmURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =382.313 S = 33.524	CV(1)= 0.088	K factor**= 2.523	TL(1)= 466.892	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.943 S = 0.086	CV(2)= 0.015	K factor**= 2.523	TL(2)= 6.161	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
3/18/2020	441	6.089					
4/21/2020	435	6.075					
7/28/2020	354	5.869					
10/14/2020	338	5.823					
1/25/2021	344	5.841					
4/15/2021	438	6.082					
7/19/2021	359	5.883					
10/27/2021	341	5.832					
Well Number:	MW394						
Date Collected	Result	LN(Result)					
1/27/2020	370	5.914					
4/22/2020	367	5.905					
7/29/2020	379	5.938					
10/22/2020	375	5.927					
1/26/2021	390	5.966					
4/14/2021	392	5.971					
7/21/2021	400	5.991					
10/18/2021	394	5.976					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW372	Downgradient	Yes	752	YES	6.623	N/A	

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison C-746-S/T First Quarter 2022 Statistical Analysis **Dissolved Solids URGA** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =208.188 S = 33.985	CV(1)= 0.163	K factor**= 2.523	TL(1)= 293.931	LL(1)= N/A
Statistics-Transformed Background Data	X =5.326 S = 0.158	CV(2) =0.030	K factor**= 2.523	TL(2)= 5.726	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result LN(Result) 5.545 5.366 5.252 5.247 5.081 5.521 5.278 5.268

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW372	Downgradient	t Yes	506	YES	6.227	N/A	
MW387	Downgradient	t Yes	326	YES	5.787	N/A	

Conclusion of Statistical Analysis on Current Data

LN(Result)

5.298

5.298

5.361

5.037

5.278

5.333

5.670

5.389

Well Number:

Date Collected

1/22/2020

4/21/2020

7/28/2020

10/14/2020

1/25/2021

4/15/2021

7/19/2021

10/27/2021

1/27/2020

4/22/2020

7/29/2020

10/22/2020

1/26/2021

4/14/2021

7/21/2021

10/18/2021

Well Number: Date Collected MW220

Result

256

214

191

190

161

250

196

194

MW394

Result

200

200

213

154 196

207

290

219

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-10

Wells with Exceedances MW372 MW387

C-746-S/T First Quarter 2022 Statistical Analysis **Current Background Comparison URGA** Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.298 S = 1.245	CV(1)= 0.121	K factor**= 2.523	TL(1)= 13.439	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.325 S= 0.126	CV(2)= 0.054	K factor**= 2.523	TL(2)= 2.642	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW372	Downgradient	Yes	22.8	YES	3.127	N/A	
MW387	Downgradient	Yes	18.8	YES	2.934	N/A	

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.389

2.477

2.109

2.164

2.166

2.460

2.229

2.117

2.361

2.370

2.416

2.468

2.370

2.398 2.370

2.332

LN(Result)

MW220

Result

10.9

11.9

8.24

8.71

8.72

11.7

9.29

8.31 MW394

Result

10.6

10.7

11.2

11.8

10.7

10.7

10.3

11

Wells with Transformed Result

Well Number:

Date Collected

1/22/2020

4/21/2020

7/28/2020

10/14/2020

1/25/2021

4/15/2021

7/19/2021

10/27/2021

1/27/2020

4/22/2020

7/29/2020

10/22/2020

1/26/2021

4/14/2021

7/21/2021

10/18/2021

Well Number: Date Collected

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-11

Wells with Exceedances MW372

MW387

C-746-S/T First Quarter 2022 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =402.000 S = 42.869	CV(1)= 0.107	K factor**= 2.523	TL(1)= 510.158	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.991 S = 0.108	CV(2)= 0.018	K factor**= 2.523	TL(2)= 6.264	LL(2)=N/A

	ground Data from Upgradien ansformed Result			
Well Number:	MW220			
Date Collected	Result	LN(Result)		
3/18/2020	378	5.935		
4/21/2020	435	6.075		
7/28/2020	375	5.927		
10/14/2020	385	5.953		
1/25/2021	496	6.207		
4/15/2021	410	6.016		
7/19/2021	406	6.006		
10/27/2021	443	6.094		
Well Number:	MW394			
Date Collected	Result	LN(Result)		
1/27/2020	440	6.087		
4/22/2020	432	6.068		
7/29/2020	356	5.875		
10/22/2020	396	5.981		
1/26/2021	309	5.733		
4/14/2021	393	5.974		
7/21/2021	408	6.011		
10/18/2021	370	5.914		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	406	NO	6.006	N/A			
MW221	Sidegradient	Yes	404	NO	6.001	N/A			
MW384	Sidegradient	Yes	434	NO	6.073	N/A			
MW387	Downgradien	t Yes	430	NO	6.064	N/A			
MW391	Downgradien	t Yes	407	NO	6.009	N/A			

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis **Current Background Comparison URGA** Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =37.163 S = 3	5.174	CV(1)= 0.139	K factor**= 2.523	TL(1)= 50.216	LL(1)= N/A
Statistics-Transformed Background Data	X =3.607 S = (0.134	CV(2) =0.037	K factor**= 2.523	TL(2)= 3.944	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	nt Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW372	Downgradient	t Yes	64.3	YES	4.164	N/A			
MW387	Downgradient	t Yes	62.6	YES	4.137	N/A			

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

3.863

3.784

3.645

3.645

3.586

3.839

3.681

3.669

3.529

3.509

3.517

3.567

3.431

3.493

3.469

3.478

LN(Result)

MW220

Result

47.6

44

38.3

38.3

36.1

46.5

39.7

39.2

MW394

Result

34.1

33.4

33.7

35.4

30.9

32.9

32.1

32.4

Wells with Transformed Result

Well Number:

Date Collected

1/22/2020

4/21/2020

7/28/2020

10/14/2020

1/25/2021

4/15/2021

7/19/2021

10/27/2021

1/27/2020

4/22/2020

7/29/2020

10/22/2020

1/26/2021

4/14/2021

7/21/2021

10/18/2021

Well Number: Date Collected

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-13

Wells with Exceedances MW372 MW387

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW372	Downgradient	Yes	64.3	YES	4.164	N/A
MW387	Downgradient	Yes	62.6	YES	4.137	N/A

C-746-S/T First Quarter 2022 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =15.069 S = 4.108	CV(1)= 0.273	K factor**= 2.523	TL(1)= 25.434	LL(1)=N/A
Statistics-Transformed Background Data	X =2.682 S = 0.250	CV(2)= 0.093	K factor**= 2.523	TL(2)= 3.313	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected LN(Result) Result 1/22/2020 20.13.001 4/21/2020 22.2 3.100 7/28/2020 15.3 2.728 10/14/2020 13.9 2.632 1/25/2021 15.9 2.766 4/15/2021 24.4 3.195 7/19/2021 17 2.833 10/27/2021 16.9 2.827 MW394 Well Number: Date Collected LN(Result) Result 1/27/2020 12.1 2.493 4/22/2020 12.7 2.542 7/29/2020 11.7 2.460 10/22/2020 11.3 2.425 1/26/2021 11.4 2.434 4/14/2021 12.5 2.526 7/21/2021 11.8 2.468 10/18/2021 11.9 2.477

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	19.2	NO	2.955	N/A
MW372	Downgradient	t Yes	145	YES	4.977	N/A
MW384	Sidegradient	Yes	19.3	NO	2.960	N/A
MW387	Downgradient	t Yes	35.7	YES	3.575	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-14

Wells with Exceedances MW372 MW387

C-746-S/T First Quarter 2022 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.578 S = 5.354	CV(1)= 0.506	K factor**= 2.523	TL(1)= 24.087	LL(1)=N/A
Statistics-Transformed Background Data	X = 1.944 S = 1.507	CV(2)= 0.775	K factor**= 2.523	TL(2)= 5.745	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 1/22/2020 12 2.485 4/21/2020 18.7 2.929 7/28/2020 19 2.944 10/14/2020 16.7 2.815 1/25/2021 10.3 2.332 4/15/2021 12.1 2.493 7/19/2021 13.3 2.588 10/27/2021 12.7 2.542 MW394 Well Number: Date Collected LN(Result) Result 1/27/2020 10.2 2.322 4/22/2020 6.29 1.839 7/29/2020 9.21 2.220 10/22/2020 0.247 1.28 1/26/2021 11.4 2.434 4/14/2021 0.0414 -3.1849.97 2.300 7/21/2021 10/18/2021 6.06 1.802

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	Yes	52.8	YES	3.967	N/A
MW372	Downgradient	Yes	47.6	YES	3.863	N/A
MW384	Sidegradient	Yes	37.4	YES	3.622	N/A
MW387	Downgradient	Yes	345	YES	5.844	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances
MW369
MW372
MW384
MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Current Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 21.644 S=	3.161	CV(1)= 0.146	K factor**= 2.523	TL(1)= 29.620	LL(1)= N/A
Statistics-Transformed Background Data	X =3.065 S =	0.147	CV(2)= 0.048	K factor**= 2.523	TL(2)= 3.436	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW373	Downgradient	Yes	67.2	YES	4.208	N/A	

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

3.195

3.178

3.207

3.246

3.211

3.195

3.219

3.190

2.923

2.896

2.939

2.986

2.934

2.912 2.907

2.896

LN(Result)

MW395

Result

24.4

24.7

25.7

24.8

24.4

25

24.3 MW397

Result

18.6

18.1

18.9

19.8 18.8

18.4

18.3

18.1

24

Wells with Transformed Result

Well Number:

Date Collected

1/27/2020

4/22/2020

7/29/2020

10/22/2020

1/26/2021

4/14/2021

7/21/2021

10/18/2021

1/27/2020

4/22/2020

7/27/2020

10/22/2020

1/25/2021

4/14/2021

7/19/2021

10/14/2021

Well Number: Date Collected

> Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical AnalysisCurrent Background ComparisonChemical Oxygen Demand (COD)UNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =22.475 S = 7.319	CV(1)= 0.326	K factor**= 2.523	TL(1)= 40.940	LL(1)=N/A
Statistics-Transformed Background Data	X =3.068 S = 0.302	CV(2)= 0.099	K factor**= 2.523	TL(2)= 3.830	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW388	Downgradient	t Yes	152	YES	5.024	N/A
MW392	Downgradient	t Yes	260	YES	5.561	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.996

3.186

2.965

3.030

3.186

2.996

2.595

3.131

2.996

3.638

2.695

3.586

2.728

2.996

2.856

3.503

LN(Result)

MW395

Result

20

24.2

19.4

20.7

24.2

13.4

22.9

MW397

Result

20

38

14.8

36.1

15.3

17.4

33.2

20

20

Wells with Transformed Result

Well Number:

Date Collected

1/27/2020

4/22/2020

7/29/2020

10/22/2020

1/26/2021

4/14/2021

7/21/2021

10/18/2021

1/27/2020

4/22/2020

7/27/2020

10/22/2020

1/25/2021

4/14/2021

7/19/2021

10/14/2021

Well Number: Date Collected

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-17

Wells with Exceedances MW388 MW392

C-746-S/T First Quarter 2022 Statistical AnalysisCurrent Background ComparisonConductivityUNITS: umho/cmLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =338.875 S = 23.933	CV(1)= 0.071	K factor**= 2.523	TL(1)= 399.258	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.823 S= 0.071	CV(2)= 0.012	K factor**= 2.523	TL(2)= 6.002	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
1/27/2020	348	5.852
4/22/2020	350	5.858
7/29/2020	354	5.869
10/22/2020	358	5.881
1/26/2021	358	5.881
4/14/2021	366	5.903
7/21/2021	372	5.919
10/18/2021	375	5.927
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.771
Date Collected	Result	()
Date Collected 3/18/2020	Result 321	5.771
Date Collected 3/18/2020 4/22/2020	Result 321 319	5.771 5.765
Date Collected 3/18/2020 4/22/2020 7/27/2020	Result 321 319 322	5.771 5.765 5.775
Date Collected 3/18/2020 4/22/2020 7/27/2020 10/22/2020	Result 321 319 322 324	5.771 5.765 5.775 5.781
Date Collected 3/18/2020 4/22/2020 7/27/2020 10/22/2020 1/25/2021	Result 321 319 322 324 320	5.771 5.765 5.775 5.781 5.768

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW395

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	t Yes	777	YES	6.655	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis **Current Background Comparison Dissolved Solids** LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =166.598 S = 50.843	CV(1)= 0.305	K factor**= 2.523	TL(1)= 294.876	LL(1)=N/A
Statistics-Transformed Background Data	X =4.976 S = 0.769	CV(2)= 0.155	K factor**= 2.523	TL(2)= 6.917	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
1/27/2020	257	5.549
4/22/2020	199	5.293
7/29/2020	173	5.153
10/22/2020	150	5.011
1/26/2021	8.57	2.148
4/14/2021	184	5.215
7/21/2021	204	5.318
10/18/2021	194	5.268
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.176
Date Collected	Result	· · · · ·
Date Collected 1/27/2020	Result 177	5.176
Date Collected 1/27/2020 4/22/2020	Result 177 160	5.176 5.075
Date Collected 1/27/2020 4/22/2020 7/27/2020	Result 177 160 179	5.176 5.075 5.187
Date Collected 1/27/2020 4/22/2020 7/27/2020 10/22/2020	Result 177 160 179 133	5.176 5.075 5.187 4.890
Date Collected 1/27/2020 4/22/2020 7/27/2020 10/22/2020 1/25/2021	Result 177 160 179 133 151	5.176 5.075 5.187 4.890 5.017

Current Background Data from Upgradient

MW395

Wells with Transformed Result

Well Number:

C 11

Current	Quarter Data	a			
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)

wen no.	Oraclent	Delected	Result	$\operatorname{Kesun} > \operatorname{IL}(1)$	LIN(Result)	LIN(Result) > IL(2)
MW373	Downgradient	Yes	469	YES	6.151	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical AnalysisCurrent Background ComparisonMagnesiumUNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.140	S= 1.374	CV(1)=0.150	K factor**= 2.523	TL(1)= 12.607	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.202	S= 0.152	CV(2) =0.069	K factor**= 2.523	TL(2)= 2.585	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1/27/2020	10.3	2.332
4/22/2020	10.2	2.322
7/29/2020	10.4	2.342
10/22/2020	11.1	2.407
1/26/2021	10.4	2.342
4/14/2021	10.2	2.322
7/21/2021	10.6	2.361
10/18/2021	10.3	2.332
Well Number:	MW397	
Date Collected	Result	LN(Result)
Date Collected 1/27/2020	Result 7.81	LN(Result) 2.055
		. ,
1/27/2020	7.81	2.055
1/27/2020 4/22/2020	7.81 7.81	2.055 2.055
1/27/2020 4/22/2020 7/27/2020	7.81 7.81 7.7	2.055 2.055 2.041
1/27/2020 4/22/2020 7/27/2020 10/22/2020	7.81 7.81 7.7 8.61	2.055 2.055 2.041 2.153
1/27/2020 4/22/2020 7/27/2020 10/22/2020 1/25/2021	7.81 7.81 7.7 8.61 7.94	2.055 2.055 2.041 2.153 2.072

LN(Result)

Current Background Data from Upgradient

MW395

Result

Wells with Transformed Result

Well Number: Date Collected

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW373	Downgradien	t Yes	25.4	YES	3.235	N/A	

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =370.563 S = 73.993	CV(1)= 0.200	K factor**= 2.523	TL(1)= 557.246	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.892 S = 0.234	CV(2)= 0.040	K factor**= 2.523	TL(2)= 6.482	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected LN(Result) Result 1/27/2020 457 6.125 4/22/2020 419 6.038 7/29/2020 5.903 366 10/22/2020 354 5.869 1/26/2021 334 5.811 4/14/2021 372 5.919 7/21/2021 414 6.026 10/18/2021 391 5.969 MW397 Well Number: Date Collected Result LN(Result) 3/18/2020 246 5.505 4/22/2020 420 6.040 7/27/2020 360 5.886 10/22/2020 190 5.247 1/25/2021 478 6.170 4/14/2021 391 5.969 7/19/2021 422 6.045 10/14/2021 315 5.753

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	402	NO	5.996	N/A	
MW373	Downgradient	Yes	376	NO	5.930	N/A	
MW385	Sidegradient	Yes	432	NO	6.068	N/A	
MW388	Downgradient	Yes	431	NO	6.066	N/A	
MW392	Downgradient	Yes	400	NO	5.991	N/A	
MW395	Upgradient	Yes	395	NO	5.979	N/A	
MW397	Upgradient	Yes	352	NO	5.864	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =11.644 S = 0.449	CV(1)= 0.039	K factor**= 2.523	TL(1)= 12.776	LL(1)=N/A
Statistics-Transformed Background Data	X = 2.454 S = 0.039	CV(2)= 0.016	K factor**= 2.523	TL(2)= 2.551	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected LN(Result) Result 1/27/2020 11.7 2.460 4/22/2020 12.4 2.518 7/29/2020 12 2.485 10/22/2020 11.7 2.460 1/26/2021 11.6 2.451 4/14/2021 12.4 2.518 7/21/2021 11.8 2.468 10/18/2021 11.9 2.477 MW397 Well Number: Date Collected Result LN(Result) 1/27/2020 10.9 2.389 4/22/2020 11 2.398 7/27/2020 11.7 2.460 10/22/2020 2.407 11.1 1/25/2021 11.5 2.442 4/14/2021 11.3 2.425 2.425 7/19/2021 11.3 10/14/2021 12 2.485

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	20.5	YES	3.020	N/A
MW373	Downgradient	Yes	155	YES	5.043	N/A
MW385	Sidegradient	Yes	20.6	YES	3.025	N/A
MW388	Downgradient	Yes	19	YES	2.944	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW370 MW373 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2022 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.058	S= 5.636	CV(1)= 0.560	K factor**= 2.523	TL(1)= 24.276	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.242	S= 0.597	CV(2) =0.266	K factor**= 2.523	TL(2)= 3.001	LL(2)=N/A

Current Back	round Data	from Upgradient
Wells with Tra		
Well Number:	MW395	
Date Collected	Result	LN(Result)
1/27/2020	3.14	1.144
4/22/2020	8.44	2.133
7/29/2020	12.2	2.501
10/22/2020	-1.04	#Func!
1/26/2021	14	2.639
4/14/2021	3.78	1.330
7/21/2021	9.45	2.246
10/18/2021	8.55	2.146
Well Number:	MW397	
Date Collected	Result	LN(Result)
1/27/2020	3.04	1.112
4/22/2020	15	2.708
7/27/2020	20.1	3.001
10/22/2020	8.46	2.135
1/25/2021	15.2	2.721
4/14/2021	14	2.639
7/19/2021	13.8	2.625
10/14/2021	12.8	2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data	l				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW385	Sidegradient	Yes	34.6	YES	3.544	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW385

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-23

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

April 7, 2022

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the first quarter 2022 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Byz St

Bryan Smith

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2022 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 *KAR* 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2022 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on January 26, 2022. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had sufficient water for a water level measurement.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters.¹ During January, RGA groundwater flow was directed inward and then northeast towards the Ohio River. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 1.43×10^{-4} ft/ft. Additional water level measurements in January (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 2.30×10^{-4} ft/ft, northward. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for January 2022, RGA groundwater flow from the landfill area was directed to the northeast.

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

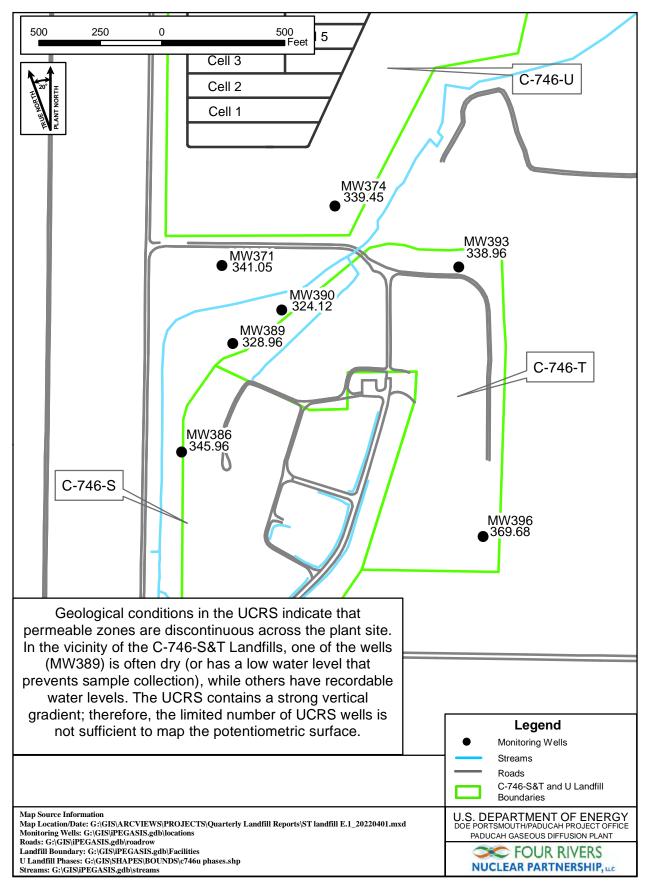


Figure E.1. Potentiometric Measurements of the Upper Continental Recharge System at the C-746-S&T Landfills, January 26, 2022

			C-746-S&	۲ Landfills (Ja	anuary 202	2) Water L	evels			
						,		w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/26/2022	9:03	MW220	URGA	382.01	30.56	0.00	57.76	324.25	57.76	324.25
1/26/2022	8:54	MW221	URGA	391.38	30.56	0.00	67.31	324.07	67.31	324.07
1/26/2022	8:59	MW222	URGA	395.27	30.56	0.00	71.11	324.16	71.11	324.16
1/26/2022	8:57	MW223	URGA	394.38	30.56	0.00	70.22	324.16	70.22	324.16
1/26/2022	9:00	MW224	URGA	395.69	30.56	0.00	71.56	324.13	71.56	324.13
1/26/2022	9:09	MW225	URGA	385.73	30.56	0.00	61.56	324.17	61.56	324.17
1/26/2022	7:43	MW353	LRGA	375.05	30.53	0.03	50.65	324.40	50.68	324.37
1/26/2022	8:48	MW369	URGA	364.23	30.55	0.01	40.03	324.20	40.04	324.19
1/26/2022	8:49	MW370	LRGA	365.12	30.55	0.01	40.92	324.20	40.93	324.19
1/26/2022	8:50	MW371	UCRS	364.64	30.55	0.01	23.58	341.06	23.59	341.05
1/26/2022	8:44	MW372	URGA	359.42	30.55	0.01	35.18	324.24	35.19	324.23
1/26/2022	8:45	MW373	LRGA	359.73	30.55	0.01	35.49	324.24	35.50	324.23
1/26/2022	8:46	MW374	UCRS	359.44	30.55	0.01	19.98	339.46	19.99	339.45
1/26/2022	9:21	MW384	URGA	365.29	30.56	0.00	41.10	324.19	41.10	324.19
1/26/2022	9:22	MW385	LRGA	365.74	30.56	0.00	41.51	324.23	41.51	324.23
1/26/2022	9:23	MW386	UCRS	365.32	30.56	0.00	19.36	345.96	19.36	345.96
1/26/2022	9:18	MW387	URGA	363.48	30.56	0.00	39.34	324.14	39.34	324.14
1/26/2022	9:19	MW388	LRGA	363.45	30.56	0.00	39.29	324.16	39.29	324.16
1/26/2022	9:15	MW389	UCRS	364.11	30.56	0.00	35.15	328.96	35.15	328.96
1/26/2022	9:14	MW390	UCRS	360.39	30.56	0.00	36.27	324.12	36.27	324.12
1/26/2022	9:35	MW391	URGA	366.67	30.56	0.00	42.50	324.17	42.50	324.17
1/26/2022	9:36	MW392	LRGA	365.85	30.56	0.00	41.70	324.15	41.70	324.15
1/26/2022	9:37	MW393	UCRS	366.62	30.56	0.00	27.66	338.96	27.66	338.96
1/26/2022	9:29	MW394	URGA	378.46	30.56	0.00	54.08	324.38	54.08	324.38
1/26/2022	9:30	MW395	LRGA	379.12	30.56	0.00	54.76	324.36	54.76	324.36
1/26/2022	9:31	MW396	UCRS	378.75	30.56	0.00	9.07	369.68	9.07	369.68
1/26/2022	9:25	MW397	LRGA	387.00	30.56	0.00	62.70	324.30	62.70	324.30
1/26/2022	9:33	MW418	URGA	367.21	30.56	0.00	42.92	324.29	42.92	324.29
1/26/2022	9:34	MW419	LRGA	367.05	30.56	0.00	42.77	324.28	42.77	324.28
Reference Ba	arometri	c Pressure			30.56					
Elev = elevat	tion									
amsl = above	e mean s	ea level								
BP = barome	-									
DTW = dept										
URGA = Up			-							
LRGA = Lov										
			harge System							
*Assumes a	baromet	ric efficiend	cy of 1.0							

Table E.1. C-746-S&T Landfills First Quarter 2022 (January) Water Levels

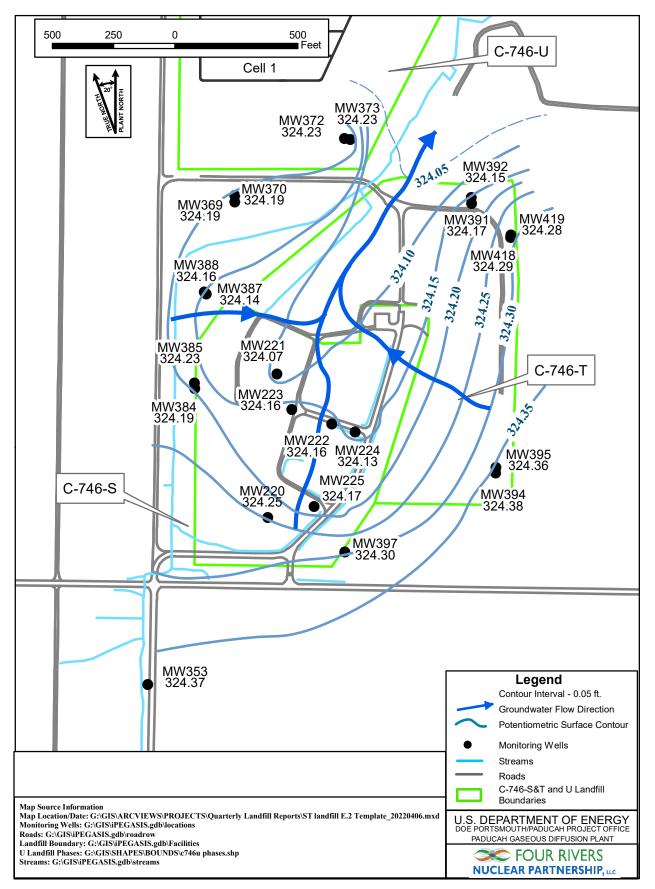


Figure E.2. Composite Potentiometric Surface of the Regional Gravel Aquifer at the C-746-S&T Landfills, January 26, 2022

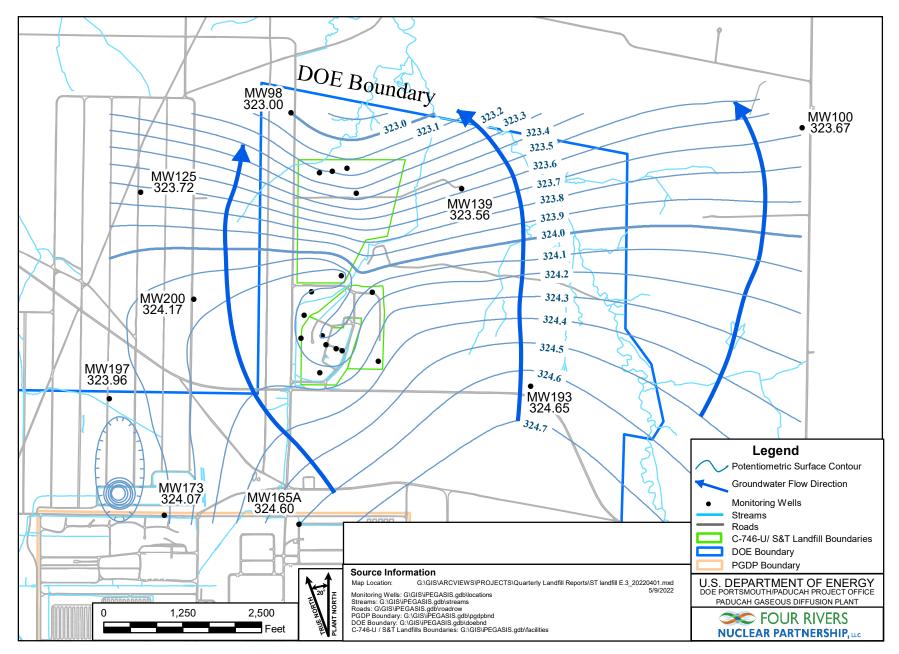


Figure E.3. Vicinity Potentiometric Surface of the Regional Gravel Aquifer, January 26, 2022

Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	1.43×10^{-4}
Vicinity	2.30×10^{-4}

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific 1	Discharge (q)	Average Linear Velocity (v					
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s				
Beneath Landfill	Mound								
725	0.256	0.101	3.66×10^{-5}	0.414	1.46×10^{-4}				
425	0.150	0.059	2.14×10^{-5}	0.243	8.57×10^{-5}				
Vicinity									
725	0.256	0.166	5.88×10^{-5}	0.666	2.35×10^{-4}				
425	0.150	0.098	3.44×10^{-5}	0.390	1.38×10^{-4}				

APPENDIX F

NOTIFICATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the first quarter 2022 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW372, MW387 MW369, MW372, MW384 MW387
Lower Regional Gravel Aquifer	Technetium-99	MW385

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

2/21/2022

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4792	MW373	Trichloroethene	8260D	5.37	ug/L	5
8004-4815	MW387	Beta activity	9310	172	pCi/L	50
8004-4805	MW391	Trichloroethene	8260D	8.55	ug/L	5
8004-4806	MW392	Trichloroethene	8260D	13.2	ug/L	5
8004-4802	MW394	Trichloroethene	8260D	5.83	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

THIS PAGE INTENTIONALLY LEFT BLANK

Gradient S D <thd< th=""> D<!--</th--><th>Groundwater Flow System</th><th>T</th><th></th><th>UCRS</th><th>5</th><th></th><th></th><th></th><th></th><th></th><th>1</th><th>URG</th><th>4</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>LRGA</th><th>4</th><th></th><th></th></thd<>	Groundwater Flow System	T		UCRS	5						1	URG	4								LRGA	4		
Number 360 399 390 291 222 224 384 99 385 392 </th <th>-</th> <th>S</th> <th></th> <th></th> <th></th> <th>U</th> <th>S</th> <th>S</th> <th>S</th> <th>S</th> <th></th> <th></th> <th></th> <th>D</th> <th>D</th> <th>U</th> <th>U</th> <th>S</th> <th>D</th> <th></th> <th>-</th> <th></th> <th>U</th> <th>U</th>	-	S				U	S	S	S	S				D	D	U	U	S	D		-		U	U
ACETONE Image: August 2, 2003 Image: August 2, 2004		386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Ounder J. 2003 Image: Autor Auto	-																							
Ounder 1, 2005 Image A, 2005 Image A	Quarter 3, 2003							*					*											
Ounder 4, 2019 Image: Applie App	Quarter 4, 2003											*								*				
NPERAACTIVITY No	Quarter 1, 2005									*														
Ounter 4, 2002 Image 4, 2003 Image 4, 2004 Image 4	Quarter 4, 2019																*							
Owner 4, 2008 O <	ALPHA ACTIVITY																							
Oussier 4, 2010 Image: Construct 1, 2003 Image: Construct	Quarter 4, 2002																							
ALUMINUM Image: state in the state in	Quarter 4, 2008																							
Quarter 1, 2003 Image: Construct of the second	Quarter 4, 2010																							
Quarter 2.2003 Image: Constraint of the second	ALUMINUM																							
Quarter 3. 2003 *	Quarter 1, 2003			*				*					*	*	*									
Quarter 1, 2004 *	Quarter 2, 2003			*				*						*	*									
Ounter 1. 2004 *	Quarter 3, 2003			*				*	*					*	*									
Quarter 2, 2004 * <li< td=""><td>Quarter 4, 2003</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td>*</td><td></td><td></td><td>*</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></li<>	Quarter 4, 2003							*	*			*			*									
Quarter 3, 2004 *	Quarter 1, 2004			*				*	*			*												
Quarter 1, 2005 * <td< td=""><td>Quarter 2, 2004</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 2, 2004							*							*									
Quarter 1, 2005 *								*							*									
Quarter 2, 2005 *	Quarter 4, 2004			*																				
Quarter 3, 2005 *	Quarter 1, 2005		1	*														Ī						
Quarter 3, 2005 *	Quarter 2, 2005		1	*				*																
Quarter 1, 2005 *			1	*				*			*											*		
Quarter 1, 2006 *			1	*				*				*												
Quarter 2, 2006 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								*						*										
Quarter 3, 2006 * * * <				*				*																
Quarter 4, 2006 * * * * * * * * * *	< ,							*																
Quarter 1, 2007 *				*				*																-
Quarter 2, 2007 * * * * *	· · ·																	*						-
Quarter 3, 2007 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>																								-
Quarter 4, 2007 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>																		-						-
Quarter 1, 2008 * * * <																								-
Quarter 2, 2008 * <td< td=""><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>	· · ·														*									-
Quarter 4, 2008 *	· · ·	_										*												
Quarter 1, 2009 * * * * *	· · ·							*				Ŧ												<u> </u>
Quarter 1, 2010 * * * * *	· · ·	_		*								*												<u> </u>
Quarter 3, 2010 * * * <																								<u> </u>
Quarter 3, 2010 *								*																
Quarter 1, 2011 * * * <		_													÷			<u>т</u>			÷		<u> </u>	i
Quarter 2, 2011 * <td< td=""><td>· · ·</td><td>_</td><td></td><td>*</td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td>*</td><td></td><td></td><td>*</td><td></td><td><u> </u></td><td>i</td></td<>	· · ·	_		*				4							*			*			*		<u> </u>	i
Quarter 2, 2012 * <td< td=""><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	· · ·							*																
Quarter 1, 2012 *												*												
Quarter 1, 2013 * * * <	· · ·	_	<u> </u>	*				L									<u> </u>						<u> </u>	
Quarter 3, 2013 * <td< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		_																<u> </u>						
Quarter 1, 2014 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								*				*												
Quarter 4, 2014 * * <t< td=""><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				*																				
Quarter 4, 2014 * <td< td=""><td>< ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	< ,							*																
Quarter 1, 2016 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												*												
Quarter 2, 2016	Quarter 4, 2014			*																				
Quarter 1, 2017 * <	Quarter 1, 2016							*																
Quarter 4, 2017 Image: Constraint of the constraint of t															*									
Quarter 1, 2018 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								*																
Quarter 1, 2020 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td></t<>																								*
BARIUM Image: Constraint of the cons								*																
Quarter 3, 2003 Image: Constraint of the second secon														*										
Quarter 4, 2003 Image: Constraint of the constraint of																								
BETA ACTIVITY Image: Constraint of the second sec																								
Quarter 4, 2002	\$ /																							
Quarter 1, 2003	•																							
	Quarter 1, 2003																							

Monitoring Well 386 33 BETA ACTIVITY Image: Construct and a construct and construct and a construct and a construct and a const	D	CRS D 1 900 39 0 0 0 0 0 0 0 0 0 0 0 0 0	396	S 221	S 222	S 223	S 224	S 384	JRGA D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373	LRGA D 388	D 392	U 395	U 397
Monitoring Well 386 33 BETA ACTIVITY					222	223	224		369			391	220	394		370			392	395	397
BETA ACTIVITY Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2009 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2010 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012										_											
Quarter 3, 2003										_											
Quarter 4, 2003 Quarter 1, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2013										_											-
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2013										_								-			i i
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 1, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2013										_								_			
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013										_											
Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2013																	. =				
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013												1]									
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013																					
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 1, 2012 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2013 Quarter 3, 2012 Quarter 3, 2013																					
Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 2, 2010 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2013 Quarter 3, 2013		•																			
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2011 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2011		•																			
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2011		•			1																
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2013		•																			
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2012			_																		
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2013																					
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2013				1	I			_													
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 1, 2011 Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2012 Quarter 1, 2012 Quarter 4, 2013 Quarter 2, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 3, 2013			_		ļ			_													L
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2013 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 3, 2012 Quarter 3, 2013			_		ļ			-													L
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012			_		ļ			-									L				L
Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2012			_		ļ			-													L
Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 7, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2013			_	1	<u> </u>			_									└──				L
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 5, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2013																					
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2010 Quarter 3, 2011 Quarter 5, 2011 Quarter 4, 2011 Quarter 6, 2012 Quarter 1, 2012 Quarter 7, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013																					
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 5, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2013		_						_									<u> </u>				
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 1, 2013 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013																					
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013								_									<u> </u>	_			
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2013								_									<u> </u>				
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 7, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013																	<u> </u>				
Quarter 3, 2010	\rightarrow	_											L		_		└──				
Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013								-													
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013								-		_											
Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013								-									 				
Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013		_						_													
Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013								<u> </u>									 	_			
Quarter 1, 2012								-									 				
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013		_						-									 	_			
Quarter 3, 2012								-			-						 				
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013		-						-			-						 	-			
Quarter 1, 2013		_						-		-	-					\vdash					
Quarter 2, 2013 Quarter 3, 2013		_						-		-	-				-	\vdash					
Quarter 3, 2013		_	_					-		-	-						-				
	_							-			-										
Quarter 4, 2013	_							-		-	-						-				
Quarter 1, 2013								-		_	-							-			
Quarter 2, 2014		-						-		-	-										
Quarter 3, 2014		_	_		-			÷			-										
Quarter 4, 2014		+	+	1	+							⊢−−				┥	├──				<u> </u>
Quarter 1, 2014 Quarter 1, 2015	-+			1				-		-	-	\vdash					├				
Quarter 2, 2015	\mp		+	1	1			-		_	-						<u>├</u>				<u> </u>
Quarter 3, 2015	\mp		_	1				-				\vdash					├				
Quarter 4, 2015			+	1	1												<u> </u>				
Quarter 1, 2016			+	1	1					_							<u>├</u>				<u> </u>
Quarter 2, 2016			+	1	1												<u> </u>				
Quarter 3, 2016				1	1												<u> </u>				
Quarter 4, 2016		_	+	1	1												<u> </u>				
Quarter 1, 2010			_	1	1												<u> </u>				
Quarter 2, 2017			1	4	+	<u> </u>			-				I				<u> </u>				
Quarter 3, 2017			_		1								1								
								-										-			

Groundwater Flow System	L		UCRS	5				_		1	URGA	4					L			LRGA	1	_	
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2017										-													
Quarter 1, 2018										-													
Quarter 2, 2018 Quarter 3, 2018																							<u> </u>
Quarter 4, 2018			-														-						<u> </u>
Quarter 1, 2019										-		_	-										
Quarter 2, 2019																							-
Quarter 3, 2019																							
Quarter 4, 2019																							
Quarter 1, 2020																							
Quarter 2, 2020																							
Quarter 3, 2020																							
Quarter 4, 2020																							
Quarter 1, 2021 Quarter 2, 2021																							
Quarter 3, 2021										-			-										<u> </u>
Quarter 4, 2021																							
Quarter 1, 2021																							
BROMIDE																							
Quarter 1, 2003			*																				1
Quarter 4, 2003	1		*																				
Quarter 1, 2004	L		*								L			L	L					L			L
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				Ľ
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*									4											
Quarter 2, 2003			*									*											
Quarter 3, 2003			*							-		*							*				<u> </u>
Quarter 4, 2003 Quarter 1, 2004			*									* *		*					*				
Quarter 1, 2004 Quarter 2, 2004			*									*		-1-					*				<u> </u>
Quarter 3, 2004			*									*							*				-
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				1
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007	L											*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008	1	L	L								L	*		L	L				*	<u> </u>			L
Quarter 4, 2008	1											* 3							* *				\vdash
Quarter 1, 2009	<u> </u>											*							*	<u> </u>			⊢
Quarter 2, 2009	I	ļ	ļ									* *							*	<u> </u>			⊢
Quarter 3, 2009												* *							*				┣—
Quarter 4, 2009	<u> </u>											* *							*	<u> </u>			⊢
Quarter 1, 2010 Quarter 2, 2010	1	<u> </u>	<u> </u>									*							*	-			⊢
Quarter 2, 2010 Quarter 3, 2010	┣──											* *							*				├
Quarter 3, 2010 Quarter 4, 2010	_			-	-							*							*	-	-		⊢
Quarter 4, 2010 Quarter 1, 2011	1											* *							*	-			├
Quarter 1, 2011 Quarter 2, 2011	_			-	-							*	*						*	-	-		⊢
Quarter 2, 2011 Quarter 3, 2011	1	-	-		\vdash			\vdash			-	*	*	-	-	\vdash			*	-		\vdash	⊢
Quarter 4, 2011 Quarter 4, 2011												*							*	-			┢──
Quarter 4, 2011	I											*							*	-			┢──
Quarter 1 2012												· T		1	1				· *	1			L
Quarter 1, 2012 Quarter 2, 2012												*							*				
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012												* *							*				

Groundwater Flow System		1	UCRS	3						1	URGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017	I						1					*	1	1				1	*	1			1
Quarter 3, 2017	1											*							*				
Quarter 4, 2017												*							*				
Quarter 1, 2018												*							*				
Quarter 2, 2018												*							*				
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*							*				
Quarter 4, 2019												*	*						*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*							*				
Quarter 3, 2020												*	*						*				
Quarter 4, 2020												*	*						*				
Quarter 1, 2021												*	*						*				
Quarter 2, 2021												*							*				
Quarter 3, 2021												*	*						*				
Quarter 4, 2021												*	*						*				
Quarter 1, 2022												*	*						*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2010											-	*									*		
Quarter 2, 2017												*	*						*				
CHEMICAL OXYGEN DEMAN	D																						
Quarter 1, 2003				*	_	_		_							_		_						
Quarter 2, 2003				*			-			-		-	-	-				-	-	-			-
Quarter 3, 2003				*		-	*			*									-				-
Quarter 4, 2003				*		-	-			Ļ.									-				-
Quarter 1, 2005	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*					-	-			*			-						-				-
Quarter 1, 2005	*	-	-	-						-	-										-	-	
Quarter 2, 2006	*			-		-	-			-			-						-				-
Quarter 3, 2006	*	-	-	-						-	-										-	-	
Quarter 4, 2006		-	-	-						-	-						*				-	-	
Quarter 1, 2000	*	-	-	-						*	-						<u> </u>				-	-	
Quarter 2, 2007	*									<u> </u>													
Quarter 3, 2007	*	-	-	-						-	-									<u> </u>	-	-	
Quarter 4, 2007	*																						
	*																			<u> </u>			
Quarter 1, 2008 Quarter 2, 2008	*																			<u> </u>			
	*					<u> </u>						<u> </u>		<u> </u>			<u> </u>	<u> </u>		<u> </u>			
Quarter 3, 2008	*	<u> </u>	<u> </u>	<u> </u>		<u> </u>				<u> </u>	<u> </u>	ļ		ļ				ļ		<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2008	*																			<u> </u>			
Quarter 1, 2009		<u> </u>	<u> </u>	<u> </u>		<u> </u>				<u> </u>	<u> </u>	<u> </u>		<u> </u>				<u> </u>		*	<u> </u>	<u> </u>	<u> </u>
Quarter 2, 2009	*																L			*			

Groundwater Flow System	Γ	1	UCRS	S						I	URGA	4]	LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHEMICAL OXYGEN DEMAN																							
Quarter 3, 2009	*																						
Quarter 4, 2009 Quarter 1, 2010	*																						
Quarter 1, 2010 Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014							*									L.							
Quarter 2, 2015															*	*							
Quarter 3, 2015			*								*				*								
Quarter 3, 2016 Quarter 4, 2016			*								Ŧ						*						
Quarter 2, 2017							*																
Quarter 3, 2017 Quarter 3, 2017	*						<u> </u>			-					*								-
Quarter 4, 2017					-	*									Ļ.								
Quarter 2, 2018														*								*	
Quarter 3, 2018												*											
Quarter 4, 2018																							*
Quarter 2, 2019					*							*		*					*				
Quarter 3, 2019												*	*						*			*	*
Quarter 4, 2019	*			*				*			*	*				*							
Quarter 1, 2020					*				*												*		
Quarter 2, 2020															*								
Quarter 4, 2020												L.				*							
Quarter 1, 2021						*						*			÷								
Quarter 2, 2021 Quarter 4, 2021	*					*									*								
Quarter 1, 2022	Ŧ					*		*	*					*	*					*	*		-
CHLORIDE								-						-						-			
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			f.			-																	
Quarter 3, 2004			* *																				
Number 4 7004			*																				
Quarter 4, 2004 Ouarter 1, 2005			*																				
Quarter 1, 2005			*																				
			* *																				
Quarter 1, 2005 Quarter 2, 2005			* * *																				
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005			* * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006			* * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006			* * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006			* * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007			* * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007			* * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007			* * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007			* * * * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008			* * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007			* * * * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 7, 2006 Quarter 7, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008			* * * * * * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 7, 2006 Quarter 7, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2007			* * * * * * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 2, 2008 Quarter 3, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2007			* * * * * * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009			* * * * * * * * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009			* * * * * * * * * * * * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009			* * * * * * * * * * * * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010			* * * * * * * * * * * * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010			* * * * * * * * * * * * * * * * * * *															*					
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 4, 2009 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2010			* * * * * * * * * * * * * * * * * * * *																				

Groundwater Flow System			UCRS							_	URGA									LRGA			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE																							
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				
Quarter 3, 2013			*																				
Quarter 4, 2013			*																				
Quarter 4, 2014			*																				
Quarter 2, 2019																					*		1
CHROMIUM																							
Quarter 4, 2002		1						-															1
Quarter 1, 2003																							1
Quarter 2, 2003																							-
Quarter 3, 2009																							1
Quarter 1, 2019						-																	-
COBALT																							
Quarter 3, 2003		1					*																T
CONDUCTIVITY																							
Quarter 4, 2002		T						r –		*	r –	r –	1	1	1	[*	1	[1	Т
Quarter 1, 2003		1	*							*									*				\square
Quarter 2, 2003			*							*			-	-	-	-			*	-	-		+
Quarter 3, 2003		1	*					*		*									*				1
Quarter 4, 2003			*							*									*				-
Quarter 1, 2004		-																	*				-
Quarter 2, 2004										*									*				-
Quarter 3, 2004		-								*									*				-
Quarter 4, 2004		-	*							*									*				-
Quarter 1, 2005										*		*							*				-
Quarter 2, 2005		-										*							*				-
Quarter 3, 2005		-																	*				-
Quarter 4, 2005										*		*							*				-
Quarter 1, 2006		-										*							*				-
Quarter 2, 2006		-										*							*				-
Quarter 3, 2006												*							*				-
Quarter 4, 2006																	*		*				-
Quarter 1, 2007		-										*							*				-
Quarter 2, 2007		-															*		*				-
Quarter 3, 2007																	*		*				-
Quarter 4, 2007										-		*	-	-		-	*		*		-		+
Quarter 1, 2007		1				-			-	-		*					<u> </u>	-	*			-	+
Quarter 2, 2008		1				-				-		*							*			<u> </u>	\vdash
Quarter 3, 2008		1				-				-		*					*		*			<u> </u>	\vdash
Quarter 4, 2008		1				-			-	-		*					<u> </u>	-	*			-	+
Quarter 1, 2009		1				-				-		*							*			<u> </u>	\vdash
Quarter 2, 2009		1				-				-		*							*			<u> </u>	\vdash
Quarter 3, 2009		1				-			-	-		*						-	*			-	+
Quarter 4, 2009		1				-				-		*					*		*			\vdash	\vdash
Quarter 1, 2010	-	<u> </u>								-		*					<u> </u>		*			<u> </u>	+
Quarter 2, 2010	-	<u> </u>	<u> </u>	<u> </u>			<u> </u>			-		*				-			*		-	<u> </u>	+
Quarter 3, 2010	-	<u> </u>	<u> </u>	<u> </u>			<u> </u>			-		*				-			*		-	<u> </u>	+
Quarter 4, 2010	-	-										*							*				\vdash
Quarter 1, 2010										*		*							*				+
Quarter 2, 2011	-	<u> </u>	<u> </u>	<u> </u>			<u> </u>			<u> </u>		*							*			<u> </u>	+
Quarter 3, 2011	-	<u> </u>	<u> </u>	<u> </u>			<u> </u>			-		*							*			 	+
Quarter 4, 2011	-	<u> </u>								-		*							*			 	+
Quarter 1, 2012	-	<u> </u>								-	*	*							*			 	+
Quarter 1, 2012 Quarter 2, 2012	-										*	*							*				+
Quarter 2, 2012 Quarter 3, 2012	_											*							*				\vdash
		1	1	1			1					· •							-			1	1

Groundwater Flow System	1		UCRS	3						1	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												* *							* *				
Quarter 2, 2013												* *							* *				
Quarter 3, 2013 Quarter 4, 2013												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015										-		*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*							*				
Quarter 3, 2016										-		*							*				
Quarter 4, 2016 Quarter 1, 2017	-			-															*				
Quarter 2, 2017 Quarter 2, 2017													-						*				
Quarter 3, 2017	1	-											-	-					*	-			-
Quarter 4, 2017	1											-	-				-	-	*		-		
Quarter 1, 2018	1																		*				
Quarter 2, 2018	1																		*				
Quarter 3, 2018	1	1											1	1					*	1		1	
Quarter 4, 2018	1																		*				
Quarter 1, 2019																			*				
Quarter 2, 2019																			*				
Quarter 3, 2019																			*				
Quarter 4, 2019												*							*				
Quarter 1, 2020												*							*				
Quarter 2, 2020												*							*	*			
Quarter 3, 2020												* 3							* *				
Quarter 4, 2020												* *							* *				
Quarter 1, 2021												*							*				
Quarter 2, 2021 Quarter 3, 2021										-		*							*				
Quarter 4, 2021																			*				
Quarter 1, 2022												*							*				
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004	1		*							J.		* *	<u> </u>				<u> </u>		* *				<u> </u>
Quarter 2, 2004										* *		* *					<u> </u>		* *				<u> </u>
Quarter 3, 2004 Quarter 4, 2004										*		* *							*				
Quarter 4, 2004 Quarter 1, 2005										·P		*							*				
Quarter 2, 2005												Ť	-						*				
Quarter 3, 2005													-				*	*	*	*	*		
Quarter 4, 2005	<u> </u>			-													*	*	*	*	*		
Quarter 1, 2005												-					*	*	*	*	*		-
Quarter 2, 2006	1	-			-								-	-			*	*	*	*	*	-	-
Quarter 3, 2006	1	-											-	-			*	*	*	*	*		-
Quarter 4, 2006	1									*		*	-				*	-	*	-	-		
Quarter 1, 2007	1	-										-	-	-			-	-	*	-	-		
Quarter 2, 2007	1									*		*	-				-		*				-
Quarter 3, 2007	1									*		*					-		*		-		
Quarter 4, 2007												*							*				
Quarter 1, 2008	1											*					-		*		-		
Quarter 2, 2008	1											*							*				
Quarter 3, 2008	1											*							*				-
Quarter 4, 2008	1									*		*							*				
Quarter 1, 2009	1											*							*				
	1	1	1									*	*	1					*	1		1	1
Quarter 2, 2009																			-				

Groundwater Flow System	1		UCRS	5						1	URGA	A								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396		222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							1
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010	_									*		*							*				
Quarter 4, 2010										* *		*							* *				
Quarter 1, 2011										*		*	*						* *				
Quarter 2, 2011 Quarter 3, 2011												*	*						*				
Quarter 4, 2011	-											*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*	*						*				
Quarter 2, 2014												*							*				
Quarter 3, 2014									*			*	*						*				
Quarter 4, 2014												*	*				L		* =				\vdash
Quarter 1, 2015	1											*							*				<u> </u>
Quarter 2, 2015	1											*							* *				⊢
Quarter 3, 2015	_											*							*				
Quarter 4, 2015									*			*						*	*				<u> </u>
Quarter 1, 2016												* *	J.	J.					* ,				
Quarter 2, 2016												*	*	*					* *				
Quarter 3, 2016 Quarter 4, 2016												*							*				
Quarter 4, 2016 Quarter 1, 2017	-											*							*				
Quarter 2, 2017												*							*				
Quarter 3, 2017												*		*	*				*				
Quarter 4, 2017	-											*							*				
Quarter 1, 2018	-											*							*				
Quarter 2, 2018	-											*							*				
Quarter 3, 2018												*		*					*				
Quarter 4, 2018												*							*				
Quarter 1, 2019		1										*							*				
Quarter 2, 2019												*							*				1
Quarter 3, 2019												*	*						*				1
Quarter 4, 2019												*							*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*	*						*				
Quarter 3, 2020										*		*	*				*		*				
Quarter 4, 2020												*	*						*				
Quarter 1, 2021												*							*				
Quarter 2, 2021	1	<u> </u>										*	*						*				<u> </u>
Quarter 3, 2021	<u> </u>											*	*						* *				<u> </u>
Quarter 4, 2021	1	<u> </u>					<u> </u>					*	*				<u> </u>		* *	<u> </u>			<u> </u>
Quarter 1, 2022						_						*	*						*				
IODIDE																					*		
Quarter 4, 2002 Quarter 2, 2003						*															*		-
	1	<u> </u>				*							*										
Quarter 3, 2003 Quarter 1, 2004	1	-	-	*	\vdash		-	-				-	*	-	-	\vdash	—	-		-			├
Quarter 3, 2010	1			·P		-				-	-								-		*	-	-
Quarter 2, 2013	1	-								*													├──
IRON	1																						
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003	1									*	*	*	*										
Quarter 3, 2003	1	1					*	*	*	*	*	*											t
Quarter 4, 2003	1										*												t
Quarter 1, 2004	1	1	1				1	1			*	1	1	1	1			1		1			
Quarter 2, 2004	1									*	*												t
	4	1	1		1		1	1		*		1	1	1	1	1		1		1			1
Quarter 3, 2004																							
Quarter 3, 2004 Quarter 4, 2004										*													

Groundwater Flow System	I		UCRS	5						1	URG	4					1		1	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390		396	221	222	223	224	384	369	372		391	220	394	385	370	373	388	392	395	397
IRON								-															
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												-
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2007 Quarter 2, 2008											-1-	*											
Quarter 3, 2008												*											
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											-
Quarter 4, 2003			*									*							*				-
Quarter 1, 2003			*									*		*					*				
Quarter 2, 2004		-	*									*		-					*				
Quarter 3, 2004		-	*									*							*				
Quarter 4, 2004		-	*									*							*				
Quarter 1, 2005		-	-									*							*				
Quarter 2, 2005						-		<u> </u>				*	<u> </u>					-	*	-		-	
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007																							
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							* *				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010												*							*				
Quarter 4, 2010	<u> </u>											*							*				
Quarter 1, 2011	I	<u> </u>										*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014	I																	*	*				
	-					-																	

Groundwater Flow System		1	UCRS	3						ι	JRG	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
MAGNESIUM																							
Quarter 2, 2014												*	*						*				
Quarter 3, 2014												*	J.						* *				
Quarter 4, 2014												* *	*						* *				
Quarter 1, 2015 Quarter 2, 2015												*	Ť						*				
Quarter 3, 2015												*							*				-
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*		*					*				
Quarter 1, 2017												*		*					*				
Quarter 2, 2017												*											
Quarter 3, 2017												*		*					*				
Quarter 4, 2017 Quarter 1, 2018												*	*						*				
Quarter 1, 2018 Quarter 2, 2018												*	Ŧ						Ŧ				
Quarter 3, 2018												*											
Quarter 4, 2018												*	*	*					*				-
Quarter 1, 2019												*		*					*				ŀ
Quarter 2, 2019												*							*				1
Quarter 3, 2019							1	1				*	*	1					*	1	1	1	İ –
Quarter 4, 2019												*	*						*				L
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*	*						*				
Quarter 3, 2020												*	*						*				
Quarter 4, 2020												*	*						*				
Quarter 1, 2021				-								*	*						*				
Quarter 2, 2021												*	*						* *				
Quarter 3, 2021												*	*						*				
Quarter 4, 2021												*	*						*				
Quarter 1, 2022 MANGANESE												Ť	Ť						Ť				_
Quarter 4, 2002						-											-				*		1
Quarter 3, 2003							*	*															-
Quarter 4, 2003							*	*															
Quarter 1, 2004							*										-						
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
Quarter 1, 2022	*																						
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*											<u> </u>									L
Quarter 3, 2004			* *															*					<u> </u>
Quarter 4, 2004			*			*								-				*					
Quarter 1, 2005 Quarter 2, 2005	*		*			<u> </u>												*					<u> </u>
Quarter 2, 2005 Quarter 3, 2005	*		*																				-
Quarter 3, 2005 Quarter 4, 2005	4		*																				-
Quarter 2, 2005			*											-									┢
Quarter 3, 2006			*				-											*		-		-	\vdash
Quarter 4, 2006			*															<u> </u>	-				\vdash
Quarter 1, 2007			*																				t
Quarter 2, 2007			*				*	1				1	1	1						1	1	1	İ –
Quarter 3, 2007			*				*																1
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			L
Quarter 1, 2009			*	46		-	*	*	*				*	*			-	* *	-	*		ļ	<u> </u>
			*	*		*		1						1			*	*	*	*	1	1	1
Quarter 3, 2009						ىر			J.									ىبر		سر			
Quarter 3, 2009 Quarter 4, 2009	*		*			*			*									*		*			
Quarter 3, 2009	*			*		*			*				*				*	*		* *			

Monitoring Well 3 OXIDATION-REDUCTION POTI Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013	S 386 ENT * * * * * * *	D 389	UCRS D 390 * * *	D 393 * *	U 396	s 221 *	S 222	S 223	S 224	S 384	URG/ D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373	LRGA D 388	D 392	U 395	U 397
OXIDATION-REDUCTION POT Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 7, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 2, 2013	ENT * * * * * * *		* * *	*	396		222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013	* * * * * *		* * *	*		*																	
Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013	* * * * * *		* * *	*		*																	1
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2013	* * * *		*				1										*	*	*	*			
Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013	* * * *		*					*			*			*			*	*	*	*			
Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013	* * *		*	*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013	* *						*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013	*		ملو	*			*	*		*			*		*		*	*	*	*			
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013	*		*	*			*				*						*	*		*			
Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013			*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 1, 2013 Quarter 2, 2013			*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2013				*		*		*	*	*	*		*	*			*	*	*	*	*		
x				*		*		*	*		*		*	*				*		*	*		
Quarter 3, 2013	*			*			*		*		*		*				*	*	*	*	*		
- · ·	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		<u> </u>
	* *		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	f *		*	*		*	*		*		*		*				*	• *	* *	*	*		<u> </u>
Quarter 3, 2014	*		*	*		*					4		ل ە				*	* *	* *	*	ىك		<u> </u>
Quarter 4, 2014	*		*	*	*	*	*	*	*		* *	*	*	*	*	*	*	*	* *	*	* *	*	*
x	*		*	*	*	*	* *	*	*		* *	*	*	*	*	*	*	* *	* *	*	* *	* *	*
Quarter 2, 2015 Quarter 3, 2015	* *		*	*	*	*	* *	*	*	*	* *		*	* *	* *	*	*	* *	*	*	* *	* *	*
	* *		*	*	*	*	*	* *	* *	* *	Ť		*	Ψ,	* *	*	*	* *	*	*	* *	* *	*
Quarter 4, 2015 Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*	*	*	*	*	*	*	*	*
	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*	-	*	*		*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
Quarter 2, 2017	*		*	*	*			-									*	-		*	*	-	-
Quarter 3, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 1, 2018	*		*	*	*	*												*	*	*	*		*
	*		*	*	*												*	*	*	*	*	*	*
Quarter 3, 2018	*		*	*	*	*	*	*	*								*	*	*	*	*	*	*
Quarter 4, 2018	*		*	*	*	*				*			*		*		*	*	*	*	*		*
Quarter 1, 2019	*		*	*	*	*	*	*			*						*	*	*	*	*	*	*
Quarter 2, 2019	*		*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2019	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2019	*		*	*	*				*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2020	*		*	*	*	*	*	*	*				*			*	*	*	*	*	*	*	
Quarter 2, 2020	*		*	*	*	*	*	*	*	*			*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2020	*		*	*	*	*											*	*	*	*	*	*	*
Quarter 4, 2020	*		*	*	*	*		*						*			*	*	*	*	*	*	
Quarter 1, 2021	*		*	*		*	*	*	*	*			*		*		*	*	*	*		*	*
Quarter 2, 2021	*		*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*
Quarter 3, 2021	*		*	*	*	*	*	*	*				*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2021	*		*	*	*	*	*	*	*						*		*	*	*	*	*	*	*
Quarter 1, 2022	*		*	*	*	*				*			*	*	*		*	*	*	*	*	*	*
PCB-1016							54.	<i>.</i>	J .									.					
Quarter 4, 2003				L			*	*	*		* *							*					┣—
Quarter 3, 2004						l	ىلو				* *												⊢
Quarter 3, 2005						—	*				*												⊢
Quarter 1, 2006			<u> </u>				<u> </u>				* *								<u> </u>	<u> </u>	<u> </u>	<u> </u>	┣—
Quarter 2, 2006											*												┣—
Quarter 4, 2006			<u> </u>				<u> </u>				*	*							<u> </u>	<u> </u>	<u> </u>	<u> </u>	┣—
Quarter 1, 2007 Quarter 2, 2007											*	*											┣—
Quarter 3, 2007 Quarter 3, 2007											*	*											┣─
Quarter 2, 2007											*	*											┣─
Quarter 3, 2008			<u> </u>			—					*									<u> </u>			┣──
Quarter 4, 2008											*												┣─
Quarter 1, 2008			<u> </u>			<u> </u>					*									<u> </u>			┣──
											*												┣—
Quarter 2, 2009			<u> </u>				<u> </u>				* *								<u> </u>	<u> </u>	<u> </u>	<u> </u>	_
Quarter 3, 2009				-																			┣—
Quarter 4, 2009						—					*												┣—
Quarter 1, 2010				<u> </u>							* *												⊢
Quarter 2, 2010											*												⊢
Quarter 3, 2010											* 3												⊢
Quarter 4, 2010											*												

Groundwater Flow System	T		UCRS	5						1	URG	4								LRG	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396		222	223	224	384	369	372		391		394	385	370	373	388	392		397
PCB-1232			070																		<i></i>		
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											-
PCB-1260	_											-											
Quarter 2, 2006	-																-	*					-
pH																		-					
Quarter 4, 2002	-																*						-
Quarter 2, 2003	-																*						
Quarter 3, 2003	_																*						
Quarter 4, 2003	-						*										*						-
Quarter 1, 2003	_						*										*						
Quarter 2, 2004	_						-										*						
Quarter 3, 2004	-																*						-
Quarter 4, 2004	_																*						
Quarter 3, 2005	-									*							*				*		-
Quarter 4, 2005	_	<u> </u>		-	-	-	<u> </u>			*	-	-			<u> </u>		*						-
Quarter 1, 2005		<u> </u>		-	-		<u> </u>								<u> </u>		*						-
Quarter 2, 2006	-																*						
Quarter 3, 2006				-	-												*						-
Quarter 3, 2000 Quarter 3, 2007	-																*						
Quarter 4, 2007	-																*						
Quarter 4, 2007 Quarter 4, 2008	_																*						
Quarter 1, 2009	-																*						
Quarter 1, 2009	-																*						
Quarter 2, 2011	_										*						Ŧ						
Quarter 3, 2011	-										*												
Quarter 1, 2012	_										*			*									
Quarter 1, 2012 Quarter 1, 2013	-									*			*				*						
Quarter 4, 2013	-									Ŧ			Ŧ				Ŧ				*		
Quarter 2, 2016	_																	*	*		Ť		
POTASSIUM	_																						_
Quarter 4, 2002	-					_												*	*				
Quarter 3, 2002	-																		*				
Quarter 2, 2004 Quarter 2, 2005	-																		*				
Quarter 3, 2005	-																		*				
Quarter 4, 2005	_																		*				
Quarter 2, 2005	-																		*				
Quarter 3, 2006	-																		*				
Quarter 4, 2006	-																		*				
Quarter 4, 2008	-																		*				
Quarter 3, 2012	-																		*				
Quarter 1, 2012 Quarter 1, 2013				-	-														*				-
Quarter 2, 2013		<u> </u>		-	-	-	<u> </u>				-	-			<u> </u>				*				-
Quarter 2, 2013 Quarter 3, 2013	_																		*				┣—
RADIUM-226						-													Ŧ				
Quarter 4, 2002			*										*	*							*		-
Quarter 4, 2002 Quarter 2, 2004	_		-											*					*		*		┢──
Quarter 2, 2004 Quarter 2, 2005		<u> </u>		-	-		<u> </u>		*								-		*				-
Quarter 1, 2009				-	-						*												-
Quarter 1, 2009 Quarter 3, 2014	_								*		Ŧ	*											┣—
Quarter 3, 2014 Quarter 4, 2014	_		*						*		*	-						*					┣—
Quarter 4, 2014 Quarter 1, 2015	_	<u> </u>	*			<u> </u>	*			*	*	*			<u> </u>			* *					-
Quarter 1, 2015 Quarter 2, 2015		<u> </u>	*				*	<u> </u>	<u> </u>	*		* *	<u> </u>		<u> </u>		-	*				<u> </u>	┣
	_	<u> </u>	*				-							l	I	L							
Quarter 3, 2015																							

Groundwater Flow System			UCRS							_	URG									LRGA			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
RADIUM-226																							
Quarter 4, 2015					*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016																		*					
Quarter 4, 2016	*		*			*			*				*		*			- 14		*		*	
Quarter 1, 2017			*							*	*							*					
Quarter 2, 2017	_				<u>ب</u> د				ч г	4	<u>ب</u> د						*	*		*	*		
Quarter 3, 2017	_				*				*	*	*							÷		*			
Quarter 4, 2017	_											J.						* 3		*			
Quarter 1, 2018												*	*				*	*		*			
Quarter 4, 2018													*				*						
Quarter 1, 2020 Quarter 2, 2020	_														*		÷						
RADIUM-228	_														Ť								_
Quarter 2, 2005	-					-																	-
Quarter 3, 2005	_						-				-												
Quarter 4, 2005	-		-	<u> </u>						-				-				-	-		-	-	-
Quarter 1, 2005 Quarter 1, 2006	-			<u> </u>			-		-	-				-				-	-		-	-	-
SELENIUM														-				-	-				
Quarter 4, 2002																	-						
Quarter 1, 2002	+	1	-				-			-				-				-	-		-		-
Quarter 2, 2003	+	1			<u> </u>					-	-			-	-			-	-	-			\vdash
Quarter 3, 2003	_																						
Quarter 4, 2003																							
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												1
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													1
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														1
Quarter 3, 2006									*	*		*							*				1
Quarter 4, 2006									*	*							*						1
Quarter 1, 2007									*			*											
Quarter 2, 2007									*	*													
Quarter 3, 2007									*														
Quarter 4, 2007									*														t
Quarter 1, 2008		1							*														t
Quarter 3, 2008		1										*											t
Quarter 4, 2008		1							*	*													1
Quarter 1, 2009		1							*			*							*				1
Quarter 3, 2009		1										*											1
Quarter 4, 2009		1							*			*											1
Quarter 1, 2010	+	1	-		-					-	-	*		-	-			-	-	-			\vdash
Quarter 2, 2010	-	1					-			*		*		-				-	-		-	-	-
Quarter 3, 2010	-	1					-			*				-				-	-		-	-	-
Quarter 4, 2010	-	-							*	*													┢──
Quarter 1, 2010	-			<u> </u>			-		-	*				-				-	-		-	-	-
Quarter 2, 2011	-			<u> </u>			-		*	-				-				-	-		-	-	-
Quarter 4, 2011 Quarter 4, 2011	_	<u> </u>																	*				┣—
Zum 101 7, 2011	1	1		1		I	1	1	1										·P				

Service S D <	Groundwater Flow System			UCRS	5						1	URG	A							1	LRGA	4		
SOPULY Source 1. 2012 Source 1. 2013 Source 1. 2014 Source 1. 2014<		S				U	S	S	S	S	_			D	D	U	U	S	D		D	D	U	U
Quarter 1. 2012 Quarter 1. 2013 Quarter 1. 2014 Quarter 1. 2015 Quarter 1.	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Damer 4, 2012 Damer 4, 2013 Damer 4, 2014 Damer 4, 2015 Damer 4,	SODIUM																							
Daurer 4: 2012 Daurer 2: 2013 Daurer 2: 2014 Daurer 2: 2015 Daurer 2: 2016 Daurer												*												
Numer 1, 2013 Image: Solution of the s																				*				
Sunter 3, 2013 Image: Sunter 3, 2013 Image: Sunter 3, 2013 Image: Sunter 3, 2014 Image: Sunter 3, 2015 Image: Sunter 3, 2015 Image: Sunter 3, 2015 Image: Sunter 4, 2015 Im																								
Numer 3. 2013 Numer 4. 2014 Numer 4.											*									*				
Numer 4, 2013 Image 1																				*				
Numer 2014 Numer																								-
Damer 2, 2014 Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>																				Ŧ				-
Quarter 3.2014 Quarter 4.2014 Quarter										*		*								*				
Ounter 4, 2014 Outer 1, 2015 Outer 1, 2016 Outer 1, 2017 Outer 1, 2019 Outer 1																								-
Ounter 1, 2015 Ounter 2, 2015 Ounter 3, 2016 Ounter 3, 2017 Ounter 3, 2017 Ounter 3, 2018 Ounter										*	*			*										
Ounster 3. 2015 Ounster 3. 2015 Ounster 3. 2015 Ounster 3. 2015 Ounster 3. 2016 Ounster 3. 2017 Ounster 3. 2018 Ounster 3. 2019 Ounster 3. 2019 Ounster 3. 2010 Ounster 3. 2020 Ounster 3.														*										
Quarter 4, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2020 Quarter 4, 2021 Quarter 4,													*											
Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2020 QUARTER 4, 2021 QUARTER 4,											*		*											
Quarter 1, 2017 ** * * * * * Quarter 1, 2017 ** * * * * * Quarter 2, 2018 * * * * * * Quarter 2, 2018 * * * * * * * Quarter 1, 2019 * <	Quarter 4, 2015									*	*		*											
Quarter 1, 2017 Image: Constraint of the second secon	Quarter 2, 2016																							
Ouster 2, 2017 Image: Solution 2, 2018 Image: Solution 2, 2019																								*
Quarter 2, 2018 *** *** Quarter 3, 2018 *** *** Quarter 2, 2019 *** *** Quarter 2, 2019 *** *** Quarter 2, 2020 *** *** Quarter 4, 2020 *** *** Quarter 2, 2021 *** *** Quarter 1, 2022 *** *** STRONTIUM-90 *** *** Quarter 2, 2003 *** *** Quarter 4, 2002 *** **** Quarter 4, 2003 **** **** Quarter 4, 2004 ***** **** Quarter 4, 2004 ***** *****		_	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	-				*					*					<u> </u>
Quarter 1, 2019		_	<u> </u>							*	*	*		*										├
Quarter 1, 2019		+												*	*									├
Quarter 2, 2019 * * * * * * * * * * * * <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>Ŧ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>		_					-							*	Ŧ									-
Quarter 4, 2019 Image: Constraint of the second		+	1																					<u> </u>
Quarter 2, 2020 Image: Constraint of the second													*	-										
Quarter 3, 2020	Quarter 1, 2020											*	*							*				
Quarter 4, 2020	Quarter 2, 2020											*		*						*				
Quarter 1, 2021 Image: Constraint of the second	Quarter 3, 2020											*												
Quarter 2, 2021																								
Quarter 3, 2021 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														*										
Quarter 4, 2021 Image: Constraint of the second		_																						
Quarter 1, 2022 Image: Constraint of the second		_																						
STRONTUM-90 Image: Constraint of the second sec		_					-							*										-
Quarter 2, 2003 Image: Constraint of the constraint of t																								
Quarter 1, 2004 Image: Constraint of the constraint of t																								
Quarter 4, 2002																								
Quarter 1, 2003 Image: Constraint of the constraint of t	SULFATE																							
Quarter 2, 2003 *	Quarter 4, 2002																			*				
Quarter 3, 2003																		*						
Quarter 4, 2003 *																			*					
Quarter 1, 2004 *																								
Quarter 2, 2004 *																			*					
Quarter 3, 2004 **** **** **** **** **** Quarter 4, 2004 **** **** **** **** **** **** Quarter 1, 2005 **** **** **** **** **** **** **** Quarter 3, 2005 **** ***** **** ***** ***** ***** Quarter 4, 2005 ***** ***** ***** ****** ****** ****** Quarter 4, 2005 ****** ****** ******* ******* ********* ************************************																		*			*			
Quarter 4, 2004 *		_					-			*								Ť			Ŧ			-
Quarter 1, 2005 *																								-
Quarter 2, 2005 *																		*						
Quarter 4, 2005 *											*		*	*					*	*				
Quarter 1, 2006 *											*		*	*				*	*	*				
Quarter 2, 2006 *	Quarter 4, 2005										*		*	*					*	*	*			
Quarter 3, 2006 *	Quarter 1, 2006	1									*		*	*				*	*	*	*			
Quarter 4, 2006 *** *** *																			*		*			
Quarter 1, 2007 *																					*			
Quarter 2, 2007 *** ** <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																								
Quarter 3, 2007 ***** **** **** **** **** **** **** **** **** ***** **** **** **** **** **** **** **** **** **** ***** ***** ****** ***** ***** *****																					*			
Quarter 4, 2007 * <		_	<u> </u>		L	<u> </u>		<u> </u>				<u> </u>			<u> </u>	<u> </u>					*	<u> </u>	<u> </u>	
Quarter 1, 2008 Image: Constraint of the constraint of t		_	 							*											* *			<u> </u>
Quarter 2, 2008 *		_	_	-				-	-												* *			┣──
Quarter 3, 2008 Image: Constraint of the system of the		-	<u> </u>			<u> </u>		<u> </u>	*	<u> </u>		*			*	<u> </u>					* *	<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2008 * * * * * * Quarter 1, 2009 * * * * * * * Quarter 2, 2009 * * * * * * * *			<u> </u>						*			*			*						*			_
Quarter 1, 2009 * <td></td> <td>+</td> <td>-</td> <td></td> <td></td> <td> </td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td> </td> <td> </td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td> </td> <td> </td> <td>├</td>		+	-																*		*			├
Quarter 2, 2009 *		+	-	-				-	-										¥		-			─
		+								¥											*			├
10uarter 3, 2009 IIIIIIIIIIXIXIIIIXIXIIIIXIXIIIIXIXI	Quarter 3, 2009	+	+				-			*	*		*	*				*	*	*	*			<u> </u>
Quarter 4, 2009 *		*	\vdash		-	-	-	-		<u> </u>		-			-	-					<u> </u>	-	-	
Quarter 1, 2010 *			\vdash		-	-	-	-		*		-			-	-			-			-	-	
		<u> </u>		-				-	-									<u> </u>						

Groundwater Flow System		1	UCRS	3						1	URG	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SULFATE																							
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*			
Quarter 4, 2013										*		*	*				*	*	*	*			
Quarter 1, 2014								*		*		*	*				*	*	*	*			
Quarter 2, 2014										*		*	*	*			*	*	*	*			
Quarter 3, 2014	1									*		*	*	*			*	*	*	*			
Quarter 4, 2014	1									*		*	*	1			*	*	*	*			
Quarter 1, 2015										*	1	*	*				*	*	*	*			
Quarter 2, 2015										*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2015										*		*	*	*			*		*	*			
Quarter 1, 2016								*		*		*	*	*			*	*	*	*			
Quarter 2, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2016										*		*	*	*	*		*	*	*	*			
Quarter 1, 2017										*		*	*	*	*		*	*	*	*			
Quarter 2, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2017										*		*	*	*	*		*	*	*	*			
Quarter 1, 2018										*		*	*	*			*	*	*	*			
Quarter 2, 2018								*		*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2018								*		*		*		*	*		*	*	*	*			
Quarter 4, 2018										*		*	*	*			*	*	*	*			
Quarter 1, 2019								*		*		*	*	*	*		*	*	*	*			<u> </u>
Quarter 2, 2019								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2019			*					*		*		*	*	*	*		*	*	*	*	*		<u> </u>
Quarter 4, 2019			*							*		*	*	*			*	*	*	*	*		<u> </u>
Quarter 1, 2020								*		*		*	*	*	*		*	*	* *	*	*		i
Quarter 2, 2020			÷					*		*		*	*	*	*		*	*	*	*	*		
Quarter 3, 2020			*							* *		*	*				*	*	*	*	*		
Quarter 4, 2020										* *		*	*				*	*	*	*			
Quarter 1, 2021	<u> </u>	<u> </u>						*		*	<u> </u>	*	*	-	*		*	*	*	*	*		\vdash
Quarter 2, 2021 Quarter 3, 2021	<u> </u>	<u> </u>						*		*	<u> </u>	*	*	-	*		*	*	* *	*	*		\vdash
Quarter 3, 2021 Quarter 4, 2021										* *		*	*				*	*	* *	*			
Quarter 4, 2021 Quarter 1, 2022										*		*	*		*		*	*	*	*			\vdash
TECHNETIUM-99						-				*		*	-					-1+					
Quarter 4, 2002						_													*				
Quarter 1, 2002							-		-	-			*				*		*		-		\vdash
Quarter 2, 2003	*		*				-		-	*			*				*		-		-		<u> </u>
Quarter 3, 2003	<u> </u>		*							Ļ.			*	-			*			*			
Quarter 4, 2003			*							*		*	*	-			*		*	*			\vdash
Quarter 1, 2003	<u> </u>		*				-		-	<u> </u>		*	*	<u> </u>			*		*	-	-		⊢⊢
Quarter 2, 2004			*				-		-	-		*	*	1			*		*	*	-		<u> </u>
Quarter 3, 2004			*				-		-	-		*	+-	1			*		*	· ·	-		<u> </u>
Quarter 4, 2004			*							*	-	*	*	1			*	*	*				
Quarter 1, 2005			*							*	-	*	*	1			*		-	*			
Quarter 2, 2005		-	*					-		*	-	-	*				*	*	*	*			
Quarter 3, 2005			*				-		-	*			*	\vdash			*	*	*	*	-		┢──┥
Quarter 4, 2005			*				-		-	*		*	*				*		*	*	-		<u> </u>
Quarter 1, 2005										*		*	*						*	*			<u> </u>
Quarter 2, 2006	-	-	*					-		*	-		*	-			*	*	*	*			<u> </u>
Quarter 3, 2006	-	-	*					-		*	-	-	*	-			*	*	*	*			<u> </u>
Quarter 4, 2006	*	<u> </u>	-			—		<u> </u>		*		*	*				-	·P	*	*			⊢
Quarter 1, 2006 Quarter 1, 2007	- ⁻	<u> </u>	*			—		<u> </u>		*		-	*				*		*	*			\vdash
Quarter 1, 2007			*			_	_		_	*			*				*		*	-	_		

Groundwater Flow System	r		UCRS	S						1	URGA	4								LRGA			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	* *				*						
Quarter 1, 2010			*							*		*	* *				*	J.		J.			
Quarter 2, 2010 Quarter 3, 2010			*							*	*	*	* *				*	*		*			
Quarter 4, 2010			*							*	Ŧ	*	*				*						
Quarter 1, 2010			~							*		Ť	*				*						
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011			*							*	*	*	*				*			-			<u> </u>
Quarter 1, 2012	1	-	*	-		-	-	-		*		-	*	-	-		*	-	-	*	-		-
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012	İ -									*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			
Quarter 1, 2015			*							*	*	*	*				*			*			
Quarter 2, 2015			*							*	*		*				*			*			
Quarter 3, 2015			*							* *	*	*	* *				*	* *	*	*			
Quarter 4, 2015			*							* *	*	*	* *				*	*	*	*			
Quarter 1, 2016			*			*				*	*		* *					*	*	*			
Quarter 2, 2016			*			*				*		*	*				*	* *		*			
Quarter 3, 2016 Quarter 4, 2016			*							*	*	Ŧ	*				*	Ŧ		*			
Quarter 1, 2017			*							*			*				*	*		*			
Quarter 2, 2017			*							*			*				*	*		*			
Quarter 3, 2017			*							*	*		*				*	*		*			
Quarter 4, 2017			*							*		*	*				*	*		*			-
Quarter 1, 2018			*							*	*	-	*				*	*		*			-
Quarter 2, 2018			*							*	*	*	*				*	*		*			
Quarter 3, 2018			*							*		*	*				*	*		*			
Quarter 4, 2018	l		*							*	*	*	*				*	*		*			
Quarter 1, 2019	Í –		*							*	*	*	*				*	*		*			
Quarter 2, 2019	L		*							*	*	*	*				*	*		*			
Quarter 3, 2019			*							*	*	*	*				*	*		*			
Quarter 4, 2019			*							*		*	*				*	*	*	*			
Quarter 1, 2020			*							*		*	*				*	*		*			
Quarter 2, 2020			*							*		*	*				*	*		*			
Quarter 3, 2020			*							*		*	*				*	*		*			
Quarter 4, 2020	<u> </u>		*	L						*		*	*				*	*		L			
Quarter 1, 2021	 		*							*	*	* *	* *				*	* *					┣
Quarter 2, 2021	ļ		*	ļ		L					*	* *	* *					* *		L			⊢
Quarter 3, 2021	<u> </u>	<u> </u>	*			<u> </u>				* *	*	* *	* *				*	* *					┣—
Quarter 4, 2021			*							*	*	*	* *				ىبر	*					┣—
Quarter 1, 2022			*			-				*	*	*	*				*						
THORIUM-230 Quarter 1, 2012	*					-			*					*			-						
Quarter 1, 2012 Quarter 4, 2014	*		*						**	-				- P					-				<u> </u>
Quarter 3, 2015	*		-				-	-	*	*		-	*	-	*			-	-		-		
Quarter 1, 2017	1		*						-	*							*			-			<u> </u>
Quarter 1, 2017																							

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient S D D D D U U S S S S S D D D D </th <th>oundwater Flow System</th> <th></th> <th></th> <th>UCRS</th> <th>5</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th>URGA</th> <th>A</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>LRGA</th> <th>1</th> <th></th> <th></th>	oundwater Flow System			UCRS	5						1	URGA	A								LRGA	1		
Noninoring Well 366 389 390 391 222 222 324 347 371 381 370 373 388 392 Cuarter 4, 2007 Image 4, 2007 I	-	S	-		-	U	S	S	S	S				D	D	U	U	S	D				U	U
THORE NN-324 Image																							395	397
Quarter 1, 2007 Quarter 2, 2014 Quarter 4, 2004 Quarter 4,	-																							
TOLUEN: Image: Control of the second se	arter 2, 2003						*			*					*									
Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 QUARTER 4, 2006 QUARTER 4,	arter 4, 2007									*														
TOTALORGANIC CARBON Image: Constraint of the second seco	DLUENE																							
Ounder 4, 2002 Image: Construct 1, 2003 Image: Construct 1, 2004 Image: Construct 1, 2005 Image: Construct	arter 2, 2014										*	*		*										
Quarter 1. 2003 Image: Constraint of the second secon	OTAL ORGANIC CARBON																							
Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 4,																						*		
Quarter 3, 2003 Image: Constraint of the second of the	arter 1, 2003				*						*	*							*	*		*		
Ouster 1, 2004 Image: Constraint of the cons	arter 2, 2003										*	*		*								*		
Quarter 1, 2004 Image: Constraint of the con	arter 3, 2003							*	*	*	*	*	*											
Quarter 2, 2004	arter 4, 2003							*		*	*													
Quarter 3, 2004 * <td< td=""><td>arter 1, 2004</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	arter 1, 2004										*													
Quarter 1, 2005 * * * * * * * * * * * * * * * * * * <t< td=""><td>arter 2, 2004</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	arter 2, 2004										*	*												
Quarter 1, 2005	arter 3, 2004										*													
Quarter 2, 2005	arter 4, 2004										*													
Quarter 3, 2005 Image: Constraint of the second	arter 1, 2005										*													
Quarter 4, 2005 * * Quarter 1, 2006 * * *	arter 2, 2005										*											*		
Quarter 1, 2006 * * * * *	arter 3, 2005										*		*									*		
Quarter 1, 2006											*											*		
Quarter 1, 2006 *	arter 1, 2006										*													
Quarter 1, 2006 *	,										*		*											
Quarter 1, 2007 *																		*						
Quarter 3, 2007 *		*									*													
Quarter 2, 2011 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td>*</td><td>*</td><td>*</td><td></td><td></td><td></td><td>*</td><td>*</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>							*	*	*	*				*	*			*						-
Quarter 3, 2012 * * * * * * * * *		-					-	-		-	-	*		-	-			-						-
Quarter 3, 2016 *		*										-												-
TOTAL ORGANIC HALIDES Image: Constraint of the second																				*				-
Quarter 4, 2002																				*				<u> </u>
Quarter 1, 2003 *																			*	*		*		
Quarter 3, 2003 * * * * Quarter 3, 2004 * * Quarter 3, 2004 * * Quarter 1, 2005 * <					*																			-
Quarter 3, 2004 *																								
Quarter 3, 2004 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																								
Quarter 1, 2005 * <td< td=""><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td>-</td></td<>		*																				4		-
Quarter 2, 2005 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																								
Quarter 3, 2005 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>																								-
Quarter 4, 2005 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																								
Quarter 1, 2006 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>																								-
Quarter 2, 2006 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>																								-
Quarter 3, 2006 * <td< td=""><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></td<>			<u> </u>					<u> </u>		-										-				
Quarter 4, 2006 * * Quarter 1, 2007 * * Quarter 2, 2007 *			-				-			-								-		-	-			
Quarter 1, 2007 * <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td></td<>			-				-			-								*		-	-			
Quarter 2, 2007 * Image: Constraint of the second sec	-	*			-	-					-				-			Ļ.						
Quarter 3, 2007 * <td< td=""><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																								
Quarter 4, 2007 * * Quarter 1, 2008 *					-						-													
Quarter 1, 2008 * Image: Constraint of the constraint of th																						*		
Quarter 4, 2008 * Image: Constraint of the constraint of th					-	-				-	-				-					-				
Quarter 4, 2008 * Image: Constraint of the constraint of th					-	-				-	-				-					-				
Quarter 1, 2009 * Image: Constraint of the constraint of th																								
Quarter 2, 2009 * * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 4, 2010 *	,				-	-					-				-									
Quarter 3, 2009 * <					-	-					-				-							*		
Quarter 4, 2009 * <																								
Quarter 1, 2010 * Image: Constraint of the second			\vdash				-			-								-		-				\vdash
Quarter 2, 2010 *			<u> </u>				-			-								-		-				-
Quarter 3, 2010 *					-	-					-				-									
Quarter 4, 2010 *					-	-					-				-									
			<u> </u>				-			-								-		-				\vdash
Quarter 1, 2011 $\mathbf{\pi}$	arter 1, 2011	*																						
Quarter 3, 2013																						*		
	- ,					1				-		1	1	1	1	1			1	-				-

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	5						1	URG/	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							1
Quarter 2, 2004																							
Quarter 3, 2004	-																						
Quarter 4, 2004	-																						
Quarter 1, 2005	-																						-
	-																						
Quarter 2, 2005	-																	-					
Quarter 3, 2005	_																						
Quarter 4, 2005	_																						
Quarter 1, 2006	_																						
Quarter 2, 2006		L																					
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008		Γ					Γ								Γ		I			Γ			Γ
Quarter 2, 2008																							
Quarter 3, 2008																	1						İ –
Quarter 4, 2008																							1
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009	-													-									-
	_										_								-				
Quarter 1, 2010	-																						
Quarter 2, 2010	_																					_	
Quarter 3, 2010	_																						
Quarter 4, 2010	_																						
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							1
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013	-																						
Quarter 1, 2013	-																						-
Quarter 1, 2014 Quarter 2, 2014	_	<u> </u>				<u> </u>	<u> </u>								<u> </u>	-			-	<u> </u>			-
•	_	<u> </u>					<u> </u>								<u> </u>					<u> </u>			┣──
Quarter 3, 2014	_	<u> </u>					<u> </u>								<u> </u>					<u> </u>			<u> </u>
Quarter 4, 2014	_																						L
Quarter 1, 2015																							⊢
Quarter 2, 2015		L					L													L			L
Quarter 3, 2015																L							
Quarter 4, 2015																							
Quarter 1, 2016																							
Quarter 2, 2016																							
Quarter 3, 2016		1					1								1					1			1
Quarter 4, 2016																	1						
Quarter 1, 2017																							H
Quarter 2, 2017																<u> </u>							+
Quarter 3, 2017	-													-					-				+
Quarter 4, 2017 Quarter 4, 2017	_	<u> </u>				I	<u> </u>								<u> </u>	<u> </u>				<u> </u>			┣—
Quarter 4, 2017		1	1				1		1		-		1	-	1				-	1	-		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		1	UCRS	5						1	URGA	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019																							
Quarter 3, 2019																							
Quarter 4, 2019																							
Quarter 1, 2020																							
Quarter 2, 2020																							
Quarter 3, 2020																							
Quarter 4, 2020																							
Quarter 1, 2021																							
Quarter 2, 2021																							
Quarter 3, 2021																							
Quarter 4, 2021																							
Quarter 1, 2022																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
* Statistical test results indicate an	ı eleva	ited c	oncer	tratio	on (i.e	a st	atisti	ally s	ignifi	cant i	ncrea	se).											
MCL Exceedance								-	0														
Previously reported as an MO	CL exc	eeda	nce; h	owev	er, re	sult v	vas ec	ual to	MCI	L.													
UCRS = Upper Continental Rechar			,		,																		
URGA = Upper Regional Gravel A																							
LRGA = Lower Regional Gravel A																							
S = Sidegradient; D = Downgradie	nt; U =	= Upg	radie	nt																			

APPENDIX H

METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	March	2, 2	022				Tin	ne:	09	900				Mo	onito	r:	1	Rol	bert	Kirby	
Weather Co	ondition	s: Sı	unny	, 60 ⁰	⁹ F, s	ligh	t wii	nd, ł	numi	dity:	37%)									
Monitoring	Equipm	ent:	:Mul	ti RA	\E	Seri	al #	449	4												
					N	loni	torir	ng L	ocati	on										Readin (% LEL	
Ogden Landi Road Entran		Che	ecked	l at g	round	d leve	el													0	-/
North Landfi		Che	ecked	l at g	rounc	d leve	el													0	
West Side of Landfill: North 37° West 88°	07.652'	Che	ecked	l at g	rounc	d leve	el													0	
East Side of Landfill: North 37° West 88°	07.628'	Che	ecked	l at g	rounc	d leve	el													0	
Cell 1 Gas Ve	ent (17)	1 0	2 0	3 0	4 0	5 0	6 0	7 0	8 0	9 .0	10 0	11 0	12 0	13 0	14 0	15 0	16 0		17 0	0	
Cell 2 Gas V	'ent (3)	1 0	2 0	3 0																0	
Cell 3 Gas V	'ent (7)	1 0	2 0	3 0	4 0	5 0	6 0	7 0												0	
	I Office	Che	eckec	l at flo	oor le	evel														0	
Suspect or P	roblem Areas	Nor	ne no	ted																N/A	
Remarks:																					
All gas ven	ts checl	ked	1" fr	om d	pen	ing.															
Performed I	<u></u>			4	<i> </i>		/)		
i enormeu i	Jy.		Ih	K	1/		2_	-									Ì	13	5/10	Date	
					Si	gnat	ure											7		Date	

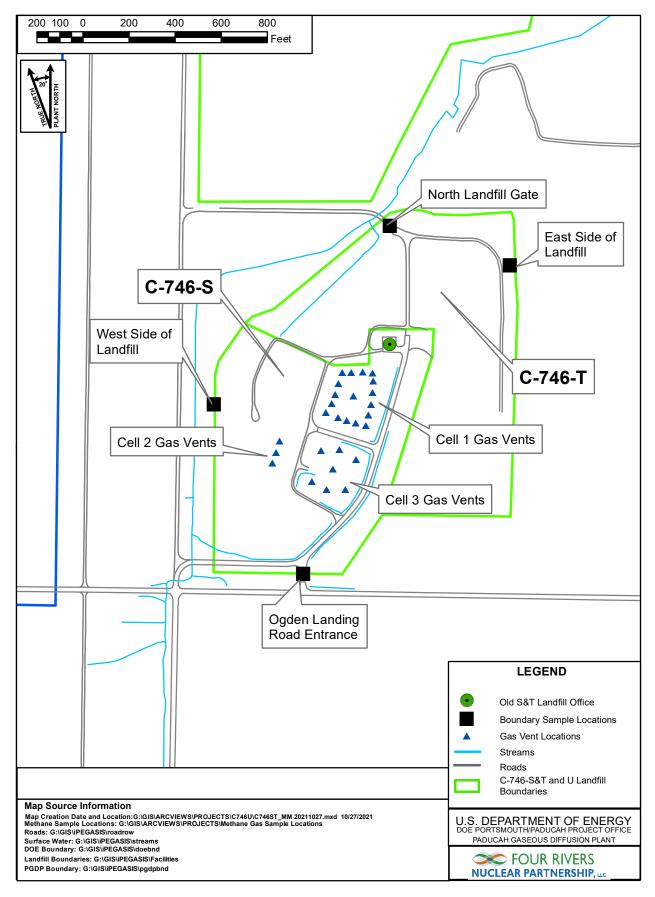


Figure H.1. C-746-S&T Landfill Methane Monitoring Locations

APPENDIX I

SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number: SW07300014, SW07300015, SW07300045 Frankfort, KY 40601 (502)564-6716 FINDS/UNIT: KY8-890-008-982 / 1

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po:	int	(KPDES Discharge Number, or "U	JPSI	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM	L154 INSTRE	AM	L136 INSTRE	EAM		
Sample Sequer	ce	#				1		1		1		$ \rangle$	/
If sample is a	a B]	ank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		2/2/2022 09:1	15	2/2/2022 10:	53	2/17/2022 09	9:59		
Duplicate ("Y	" c	or "N") ¹				Ν		N		Ν			/
Split ('Y' or	: "N	I") ²				Ν		N		Ν			/
Facility Samp	le	ID Number (if applicable)				L135SS2-22	2	L154US2-2	2	L136SS2-2	22		/
Laboratory Sa	mpl	e ID Number (if applicable)				569287001		569288002	2	57081600	1		
Date of Analy	sis	(Month/Day/Year)				2/16/2022		2/16/2022		3/8/2022			
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷
A200-00-0	0	Flow	т	MGD	Field		*		*		*		
16887-00-6	2	Chloride(s)	т	MG/L	300.0	21.5		28.9		1.14			
14808-79-8	0	Sulfate	т	MG/L	300.0	11.6		12.5		4.1			Ň
7439-89-6	0	Iron	т	MG/L	200.8	2.29		1.71		0.704			$\left \right\rangle$
7440-23-5	0	Sodium	т	MG/L	200.8	10		12.4		0.585			$\left \right\rangle$
S0268	0	Organic Carbon ⁶	т	MG/L	9060	12.9		14.9		7.96			$ \rangle$
S0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*	/	
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	95.4		67.3		42.9	*	V	

 1 Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page. STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID

LAB ID: <u>None</u> For Official Use Only

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant
Permit Number: SW07300015, SW07300015, SW07300045

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	: (KPDES Discharge Number, or	יינ	IPSTREAM" or	"DOWNSTREAM")	L135 UPSTRI	EAM	L154 INSTREA	M	L136 INST	REAM		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR FQL ⁵	G S
S0145	1	Specific Conductance	т	µHMS/CM	Field	248		266		361			
s0270	0	Total Suspended Solids	т	MG/L	160.2	28.4		22.8	*	31.4			
S0266	0	Total Dissolved Solids	т	MG/L	160.1	177		203	*	72.9			
S0269	0	Total Solids	т	MG/L	SM-2540 B 17	225		250		129	*		
S0296	0	рН	т	Units	Field	7.41		7.53		7.72			
7440-61-1		Uranium	т	MG/L	200.8	0.00838		0.00549		0.000867			
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	11.6	*	3.66	*	-1.24	*		
12587-47-2		Gross Beta (β)	т	pCi/L	9310	25.5	*	10.7	*	2.47	*	I X	
													Λ
													\square
												/	\square
												/	\square
												//	
												Y	

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>

RESIDENTIAL/INERT – QUARTERLY

Finds/Unit: <u>KY8-890-008-982 / 1</u>

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID: None

SURFACE WATER WRITTEN COMMENTS

Monitorin Point	ig Facility Sample ID	Constituent	Flag	Description
L135	L135SS2-22	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 6.15. Rad error is 5.82.
		Beta activity		TPU is 8.36. Rad error is 7.19.
L154	L154US2-22	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.08. Rad error is 4.03.
		Beta activity		TPU is 6.32. Rad error is 6.07.
L136	L136SS2-22	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	Ν	Sample spike (MS/MSD) recovery not within control limits.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.13. Rad error is 2.12.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.61. Rad error is 5.6.

APPENDIX J

ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 and 2016 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 16th day of June 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2023

APPENDIX K

LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and 1,2,3-
		Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L

MICROPURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-S&T Landfills

			<u> </u>		,	~					
			of the state of th	5111	d of the state		8 / /	8 / /	× / / /		NW221
		sure cr	Unite	6	Jeon	/	[\$		No. Company Company Company Company	TI S Level	BERT CONTRACTOR C
		ature /	in the second	Unit	dot.	3	de la companya de la comp		to the state of th	the state state	to the state state the state
	Compo	ondu	oprill Contract	1501	, io	8	E ANV21	st cont	St. STATE STATE	St. Star Star 1150	St Const Star Here Star
1W220						ſ	MW221	MW221	MW221	MW221	MW221
Date Collected: 1/19/2022							Date Collected: 1/19/2022	Date Collected: 1/19/2022	Date Collected: 1/19/2022	Date Collected: 1/19/2022	
0941	61.3	401	6.14	5.71	2.84		0653				
0944	61.4	375	6.12	5.51	2.70		0656				
)947	61.4	376	6.12	5.48	2.74		0659				
MW222 Date Collected: 1/19/2022							MW223 Date Collected: 1/19/2022				
0817	60.8	405	6.13	4.39	2.34		0735				
0820	60.5	405	6.12	4.17	2.38		0738				
0823	60.6	407	6.11	4.10	2.31		0741				
MW224							MW369	MW369	MW369	MW369	MW369
Date Collected: 1/19/2022							Date Collected: 1/12/2022				
1859	61.6	434	6.19	4.74	2.37	l	1004				
0902	61.6	435	6.17	4.16	2.28		1007				
0905	61.5	435	6.16	4.12	2.40		1010				
MW370 Date Collected: 1/12/2022							MW372 Date Collected: 1/13/2022				
1046	61.2	455	6.07	5.21	4.51		0717				
1040	61.4	455	6.06	4.40	4.31		0720				
1052	61.5	459	6.06	4.36	4.48		0723				
MW373							MW384				
Date Collected: 1/13/2022							Date Collected: 1/18/2022				
0759	59.8	779	6.11	2.97	1.93		0919				
0802	59.6	779	6.08	2.78	1.11		0922				
0805	59.7	777	6.08	2.72	0.97	l	0925				
MW385							MW386				
Date Collected: 1/18/2022	61.0	459	6.44	3.00	8.15		Date Collected: 1/18/2022 1049				
1014 1017	61.0 60.9	459 461	6.44 6.38	3.00	8.15 8.60		1049 1052				
1017	60.9	461	6.38	2.47	8.60		1052				
MW387	00.7	402	0.37	2.41	0.00		1055 MW388				
Date Collected: 1/18/2022							Date Collected: 1/18/2022				
0751	58.2	612	6.19	4.88	2.82		0842				
0754	58.0	611	6.18	4.55	2.90		0845				
0757	58.4	610	6.18	4.50	2.83		0848				
MW390							MW391				
Date Collected: 1/18/2022							Date Collected: 1/19/2022				
0715	53.3	641	6.29	4.77	15.79		1017				
0718	53.4	640	6.25	4.24	16.75		1020				
0721 MW392	53.7	642	6.25	4.20	17.00		1023 MW393				
MW392 Date Collected: 1/19/2022							MW393 Date Collected: 1/19/2022				
1107	60.4	362	6.17	2.97	2.54		1139				
1110	60.4	360	6.11	2.57	2.54		1139				
1113	60.0	358	6.10	2.50	2.50		1142				
MW394	00.0	550	0.10	2.50	2.50		MW395				
Date Collected: 1/13/2022							Date Collected: 1/13/2022				
1033	61.0	398	6.02	5.87	6.42		1111				
1036	60.7	400	6.00	5.71	6.03		1114				
1039	60.3	401	6.00	5.65	5.89		1117	1117 60.0	1117 60.0 376	1117 60.0 376 6.02	1117 60.0 376 6.02 5.31
MW396							MW397				
Date Collected: 1/13/2022							Date Collected: 1/13/2022				
1146	60.5	711	6.45	1.55	1.30		0944				
	60.6	713	6.40	1.16	1.11		0947	0947 60.6	0947 60.6 343	0947 60.6 343 6.09	60.6 343 6.09 7.00
1149 1152	60.7	714	6.41	1.09	1.04		0950	0950 60.6			