

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

February 23, 2022

RECEIVED

PPPO-02-10020291-22B

By Terri.Drake at 3:33 pm, Feb 23, 2022

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Ms. Jamie Nielsen
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-S&T LANDFILLS FOURTH QUARTER CALENDAR YEAR 2021 (OCTOBER-DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0193/V4, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the fourth quarter calendar year (CY) 2021 has been uploaded to the KY eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). This report includes groundwater analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses of the fourth quarter CY 2021 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Monitoring Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical increase notification for the fourth quarter CY 2021, in accordance with Monitoring Condition GSTR0003, Standard Requirement 5, of the Permit.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Tracey L. Duncan

Digitally signed by Tracey L. Duncan Date: 2022.02.23 14:38:51 -06'00'

Tracey Duncan
Acting Paducah Site Lead
Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills Fourth Quarter Calendar Year 2021 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-193/V4

cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.woodard@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pppo.gov stephaniec.brock@ky.gov, KYRHB, KDEP tracey.duncan@pppo.gov, PPPO

cc via KY eForms portal: jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP

C-746-S&T Landfills Fourth Quarter Calendar Year 2021 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

David Hayden
FRNP Classification Support

02-17-2022


Date

C-746-S&T Landfills
Fourth Quarter Calendar Year 2021
(October—December)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—February 2022

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895


CONTENTS

FI	GURES		v
ΤÆ	ABLES		v
A(CRONYMS		vii
1.	1.1 BACK 1.2 MONI 1.2.1 1.2.2 1.2.3	CTION	1 1 3
2.	2.1 STAT 2.1.1 2.1.2 2.1.3	LUATION/STATISTICAL SYNOPSIS ISTICAL ANALYSIS OF GROUNDWATER DATA Upper Continental Recharge System Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer VERIFICATION AND VALIDATION	10 10 10
3.	PROFESSIO	ONAL GEOLOGIST AUTHORIZATION	13
4.	REFERENC	ES	15
ΑI	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑI	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
ΑI	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑI	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑI	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑI	PPENDIX F:	NOTIFICATIONS	F-1
ΑI	PPENDIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑI	PPENDIX H:	METHANE MONITORING DATA	H-1
ΑI	PPENDIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
ΑI	PPENDIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

APPENDIX K:	LABORATORY ANALYTICAL METHODS	.K-1
APPENDIX L:	MICROPURGING STABILITY PARAMETERS	. L-1

FIGURES

	C-746-S&T Landfills Groundwater Monitoring Well Network. C-746-S&T Landfills Surface Water Monitoring Locations	
	TABLES	
1.	Summary of MCL Exceedances	4
	Exceedances of Statistically Derived Historical Background Concentrations	
	Exceedances of Current Background UTL in Downgradient Wells	
	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	6
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations
COD chemical oxygen demand

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit


MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit VOA volatile organic analytes

1. INTRODUCTION

This report, C-746-S&T Landfills Fourth Quarter Calendar Year 2021 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND

The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter,

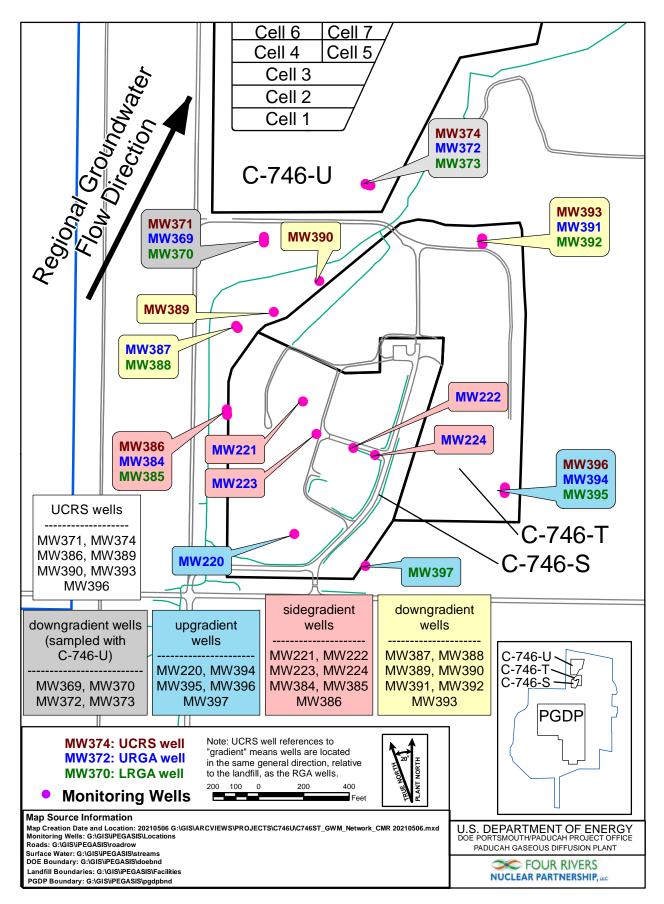


Figure 1. C-746-S&T Landfills Groundwater Monitoring Well Network

except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2021 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the fourth quarter 2021 was conducted in October and November 2021. MW221 was resampled on November 2, 2021, for volatile organic analytes (VOA) due to the laboratory using the incorrect sample vials for analysis for the October 2021 sample. The laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 26, 2021, in MWs of the C-746-S&T Landfills (see Appendix E, Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Appendix E, Figure E.3). Water level measurements in 38 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During October, RGA groundwater flow was directed inward and then northeast towards the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in October was 5.21×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was approximately 2.67×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills ranged from 0.454 to 0.774 ft/day (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the Solid Waste Landfill Permit. Industrial Hygiene staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on December 2, 2021. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills: (1) upstream location, L135; (2) instream location, L154; and (3) L136, instream location. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059 (FRNP 2021), which is Technical Application, Attachment 24, of the Solid Waste Landfill Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters that exceeded their MCL and also exceeded their historical background UTL, as well as other parameters that do not have MCLs but have concentrations that exceeded the statistically derived historical background UTL¹ during the fourth quarter 2021. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells designated as background wells (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
	MW387: Beta activity	MW373: Trichloroethene
	MW391: Trichloroethene	MW392: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Chemical oxygen demand	MW220: Oxidation-reduction	MW370: Oxidation-reduction
(COD), Oxidation-reduction potential	potential	potential, sulfate, technetium-99
MW390: Oxidation-reduction	MW221: Oxidation-reduction	MW373: Calcium, conductivity,
potential, technetium-99	potential	dissolved solids, magnesium,
		oxidation-reduction potential,
		sulfate
MW393: Oxidation-reduction	MW222: Oxidation-reduction	MW385: Oxidation-reduction
potential	potential	potential, sulfate
MW396: Oxidation-reduction	MW223: Oxidation-reduction	MW388: Oxidation-reduction
potential	potential	potential, sulfate
	MW224: Oxidation-reduction	MW392: Oxidation-reduction
	potential	potential
	MW369: Technetium-99	MW395: Oxidation-reduction
		potential

_

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL.

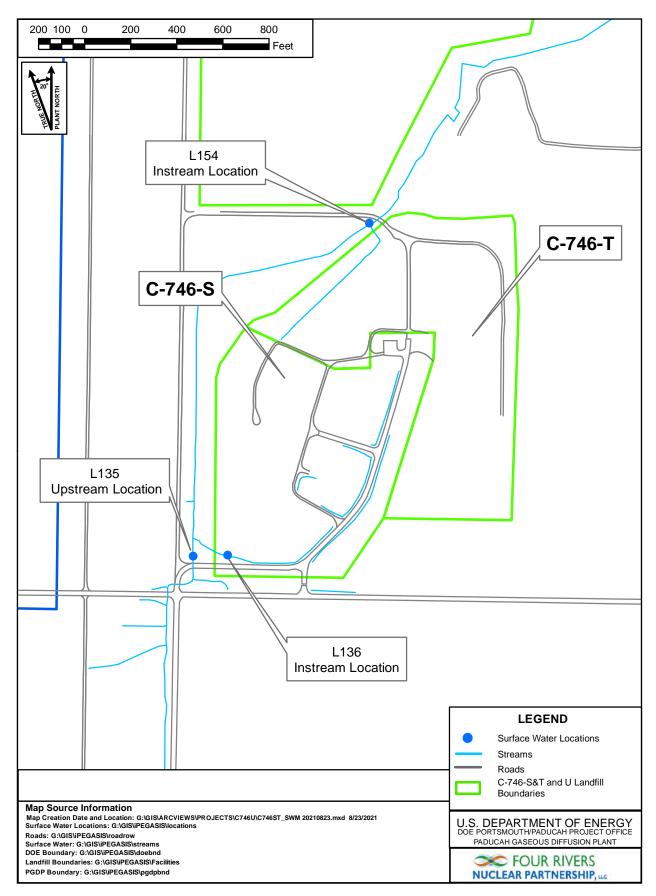


Figure 2. C-746-S&T Landfill Surface Water Monitoring Locations

Table 2. Exceedances of Statistically Derived Historical Background Concentrations (Continued)

UCRS*	URGA	LRGA
	MW372: Calcium, dissolved solids,	MW397: Oxidation-reduction
	magnesium, sodium, sulfate,	potential
	technetium-99	
	MW384: Sulfate, technetium-99	
	MW387: Beta activity, calcium,	
	dissolved solids, magnesium,	
	sulfate, technetium-99	

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Background wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA	
MW369: Technetium-99	MW370: Sulfate, technetium-99	
MW372: Calcium, dissolved solids,	MW373: Calcium, conductivity, dissolved	
magnesium, sodium, sulfate, technetium-99	solids, magnesium, sulfate	
MW387: Beta activity, calcium, dissolved	MW388: Sulfate	
solids, magnesium, sulfate, technetium-99		

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), the MCL exceedances for TCE in MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedance for beta activity in MW387 (downgradient well) was shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily this exceedance was considered to be a Type 2 exceedance. To evaluate this preliminary Type 2 exceedance further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. The MW387 beta activity did not show an increasing Mann-Kendall trend and is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
C-746-	MW369	Technetium-99	8	0.05	0.089	12	No Trend
S&T	MW370	Sulfate	8	0.05	0.452	3	No Trend
Landfill	W 3/0	Technetium-99	8	0.05	0.007	-20	Decreasing

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters (Continued)

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
		Calcium	8	0.05	0.119	9	No Trend
		Dissolved Solids	8	0.05	0.031	16	Increasing
	MW372	Magnesium	8	0.05	0.089	13	No Trend
	WW 3/2	Sodium	8	0.05	0.274	6	No Trend
		Sulfate	8	0.05	0.031	17	Increasing
		Technetium-99	8	0.05	0.274	-6	No Trend
		Calcium	8	0.05	0.007	-20	Decreasing
C 746		Conductivity	8	0.05	0.054	-14	No Trend
C-746- S&T	MW373	Dissolved Solids	8	0.05	0.360	5	No Trend
Landfill		Magnesium	8	0.05	0.031	-16	Decreasing
Landin		Sulfate	8	0.05	0.452	3	No Trend
		Beta activity	8	0.05	0.054	-14	No Trend
		Calcium	8	0.05	0.452	3	No Trend
	MW387	Dissolved Solids	8	0.05	0.274	6	No Trend
	WW 387	Magnesium	8	0.05	0.360	5	No Trend
		Sulfate	8	0.05	0.548	1	No Trend
		Technetium-99	8	0.05	0.138	-10	No Trend
	MW388	Sulfate	8	0.05	0.452	-2	No Trend

¹ An alpha of 0.05 represents a 95% confidence interval.

Note: Statistics generated using ProUCL.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL to identify if the current downgradient well concentrations are consistent with current background values. The current background UTL was developed using the most recent eight quarters of data from wells identified as background wells. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-S&T Landfills source; therefore, they are a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL and do not have an identified source are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan (LATA Kentucky 2014). To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. Nineteen of the 21 preliminary Type 2 exceedances in

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses; the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

downgradient wells do not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Two of the 21 preliminary Type 2 exceedances in downgradient wells have an increasing trend. Specifically, the Mann-Kendall statistical test indicates that there are increasing trends of groundwater constituents in MW372 over the past eight quarters. Constituents in MW372 that showed increasing trends were dissolved solids and sulfate.

Dissolved solids and sulfate in MW372 exceed the UTLs for historical and current background and exhibit similar increasing trends. These occurrences are indicators of high ionic strength of the area groundwater. Because levels of dissolved solids and sulfate are lower in MW372 (URGA) than in MW373 (LRGA), these trends do not appear to be associated with the C-746-S&T Landfills (influence of the landfill should have a greater impact on the URGA well). Trends of this ion and indicator parameter should be considered Type 1 exceedances—not attributable to the C-746-S&T Landfills.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 39:090.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS well MW390 with a technetium-99 value that exceeded both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS				
MW390: Technetium-99				

^{*}In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2021 groundwater data collected from the C-746-S&T Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as downgradient wells) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient well concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance—could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

To calculate the UTL, the data were divided into censored (non-detects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs historically included in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis^a

UCRS	URGA	LRGA
MW386	MW220 (background)	MW370
MW389 ^b	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396 ^c	MW224	MW392
	MW369	MW395 (background)
	MW372	MW397 (background)
	MW384	, ,
	MW387	
	MW391	
	MW394 (background)	

^a Map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient well concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, chemical oxygen demand (COD), oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL in downgradient well MW390 and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^b Well had insufficient water to permit a water sample for laboratory analysis.

^c In the same direction (relative to the landfill) as RGA wells considered to be background.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.


2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION: C-746-S&T Landfills Fourth Quarter Calendar Year 2021

(October-December) Compliance Monitoring Report, Paducah

Gaseous Diffusion Plant, Paducah, Kentucky

(FRNP-RPT-0193/V4)


Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Hedision believed to the state of the state

February 17, 2022


PG113927

13


4. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2021. Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 24, Four Rivers Nuclear Partnership, LLC, Paducah, KY, March.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM



GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM


NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah	Gaseous Diffusion Plant	Activity:	C-746-S&T Landfills	
	(As officially shown	on DWM Permit Face)	A		
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	4th Qtr. CY 2021	
Please check the	following as applicable:				
Character	rization X Quar	terly Semiannual	Annual	Assessment	
Please check app	olicable submittal(s):	X Groundwater	X S	urface Water	
	, -	Leachate	X M	1ethane Monitoring	
hours of making th lab report is <u>NOT</u> c	e determination using stat onsidered notification. Ins	ent. You must report any ind istical analyses, direct compartructions for completing the form	ison, or other similar to n are attached. Do not su	chniques. Submitting the ibmit the instruction pages.	
with a system desig	ned to assure that qualified	and all attachments were prepar personnel properly gather and sible for gathering the informati	evaluate the informatio	n submitted. Based on my	
knowledge and belie	f, true, accurate, and compl	ete. I am aware that there are sig			
including the possibilities	ility of fine and imprisonme	nt for such violations.	ala	56/2	
Myrna E Redfi	eld, Program Manager		Date	Jan	
Four Rivers Nu	clear Partnership, LLC				
Just	2		_ 2,	123/22	
Tracey Duncan	, Acting Paducah Site	Date			

U.S. Department of Energy



APPENDIX B FACILITY INFORMATION SHEET



FACILITY INFORMATION SHEET

Sampling Date: Facility Name: Site Address: Phone No:	5600 Hobbs Road Street	nd December 2021 eous Diffusion Plant icially shown on DWM Pe	County: McCrac rmit Face) Levil, Kentucky City/State N 37° 07' 37.70"	ken Permit Nos. Longitude:	SW07300014, SW07300015, SW07300045 42053 Zip W 88° 47' 55.41"
		OWNER IN	FORMATION		
Facility Owner: Contact Person Tourist Person Tourist Address:	U.S. DOE, Joel Bradburno Bruce Ford itle: Director, Environm 5511 Hobbs Road	e, Manager, Portsmo		Phone No:	(859) 219-4000 (270) 441-5357 42053
C	Street		City/State		Zip
Company:	(IF 0	THER THAN LANL	PERSONNEL OFILL OR LABORATOI	RY)	
Contact Person:	Jason Boulton	ланоп		Phone No:	(270) 816-3415
Mailing Address:	199 Kentucky Avenue Street]	Kevil, Kentucky City/State		42053 Zip
		LABORATOR	RY RECORD #1		
Laboratory:	GEL Laboratories, LLC	<u>,</u>	Lab ID No	: KY90129	
Contact Person: Mailing Address:	Valerie Davis 2040 Savage Road Street	Charl	eston, South Carolina City/State	Phone No:	(843) 769-7391 29407 Zip
		LABORATOR	XY RECORD #2		
Laboratory: Contact Person:	N/A N/A		Lab ID	No: No. Phone No:	N/A
Mailing Address:	N/A Street		City/State		Zip
		LABORATOR	Y RECORD #3		
Laboratory:	N/A		Lab ID	No: N/A	
Contact Person:	N/A			Phone No:	N/A
Mailing Address:	N/A Street		City/State		Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	42	8000-524	13
Facility's Loc	cal Well or Spring Number (e.g., N	∕W-1	, MW-2, etc	:.)	220		221		222		223	
Sample Sequenc	ce #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/27/2021 1	13:08	10/22/2021	07:25	10/22/2021	09:10	10/22/2021	08:15
Duplicate ("Y"	' or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW220SG1-	22R2	MW221SG	1-22R	MW222SG	1-22R	MW223SG1	-22R
Laboratory Sam	poratory Sample ID Number (if applicable)						559872	003	5598720	005	5598720	07
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					1	NA		10/29/20)21	10/29/202	21
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.28	*	0.457		0.344		0.353	
16887-00-6	Chloride(s)	т	mg/L	9056	16.7	J	35.2	*J	24.4	*J	24.6	*J
16984-48-8	Fluoride	Т	mg/L	9056	0.183	*J	0.237	J	0.319	J	0.319	J
s0595	0595 Nitrate & Nitrite T mg/L			9056	0.776	*J	0.902	J	1.86	J	1.73	J
14808-79-8	Sulfate	т	mg/L	9056	16.9	*B	12.8		9.09		9.23	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.81		30.1		30.12		30.11	
S0145	Specific Conductance	Т	μ MH0/cm	Field	341		402		317		420	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Loc	cal Well or Spring Number (e.g., MV	7-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	56.85		66.7		70.5		69.61	
N238	Dissolved Oxygen	т	mg/L	Field	3.73		5.77		4.57		5.04	
s0266	Total Dissolved Solids	т	mg/L	160.1	194		191		166		177	
s0296	рН	Т	Units	Field	6.05		6.1		6.28		6.09	
NS215	Eh	Т	mV	Field	443		455		438		448	
s0907	Temperature	т	°C	Field	16.61		15.78		16.28		16.06	
7429-90-5	Aluminum	Т	mg/L	6020	0.0298	J	<0.05		0.0375	J	0.0351	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.186		0.205		0.221		0.222	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00737	J	0.0169		0.00799	J	0.00776	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	21.3		18.8		12.6		12.4	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		0.000336	J	0.00042	J
7440-50-8	Copper	т	mg/L	6020	0.00146	J	0.000728	J	0.000438	J	0.000443	J
7439-89-6	Iron	т	mg/L	6020	0.0847	J	0.103		0.0422	J	0.0392	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	8.31		8.82		5.88		5.8	
7439-96-5	Manganese	т	mg/L	6020	0.00102	J	<0.005		<0.005		0.00123	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	, Facility Well/Spring Number				8000-520	01	8000-52	02	8000-52	42	8000-52	43
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.000412	J	0.00151		0.00159		0.00148	
7440-02-0	Nickel	Т	mg/L	6020	0.00671		0.00486		0.0223		0.0224	
7440-09-7	Potassium	Т	mg/L	6020	2.15		1.27		0.621		0.592	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	T	mg/L	6020	39.2		43.9		42.7		40.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00661	BJ	<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	0.00431	J	0.00509	J	0.00403	J	0.0042	J
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005	*		*	<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005			*	0.00316	BJ	0.00332	BJ
107-02-8	Acrolein	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003			*	<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001			*	<0.001		<0.001	

C

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520	02	8000-524	-2	8000-524	3
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	220		221		222		223	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001	*		*	<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001	*		*	0.001		0.00057	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	<u> </u>	8000-524	12	8000-524	43
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001			*	<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005			*	<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001			*	<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001			*	<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005			*	<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005			*	<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000189		<0.0000194		<0.0000188		<0.0000191	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001			*	<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001			*	<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001			*	<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001			*	<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001			*	<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001			*	<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001			*	<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.098		<0.0957		<0.0959		<0.0953	
12674-11-2	PCB-1016	т	ug/L	8082	<0.098		<0.0957		<0.0959		<0.0953	
11104-28-2	PCB-1221	т	ug/L	8082	<0.098		<0.0957		<0.0959		<0.0953	
11141-16-5	PCB-1232	т	ug/L	8082	<0.098		<0.0957		<0.0959		<0.0953	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.098		<0.0957		<0.0959		<0.0953	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.098		<0.0957		<0.0959		<0.0953	

C-7

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.098		<0.0957		<0.0959		<0.0953	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.098		<0.0957		<0.0959		<0.0953	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.098		<0.0957		<0.0959		<0.0953	
12587-46-1	Gross Alpha	T	pCi/L	9310	2.26	*	0.77	*	0.708	*	-3.27	*
12587-47-2	Gross Beta	Т	pCi/L	9310	11.4	*	4.24	*	5.17	*	7.03	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	AN-1418	0.396	*	0.0703	*	0.356	*	0.195	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.392	*	0.167	*	1.18	*	0.904	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	12.7	*	8.8	*	7.4	*	10.4	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	-0.179	*	0.337	*	0.302	*	-0.773	*
10028-17-8	Tritium	Т	pCi/L	906.0	54.5	*	6.46	*	-3.71	*	25	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		9.13	J	12.4	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.976	J	0.832	J	0.621	J	0.938	J
s0586	Total Organic Halides	т	mg/L	9020	<0.01		0.024		<0.01		0.00356	J
				_	_							

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

 $\texttt{FINDS/UNIT:} \underline{\texttt{KY8-890-008-982}} / \underline{1}$

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., M	1W−1	L, MW-2, etc	:.)	224		369		370		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/22/2021 1	0:02	10/12/2021	11:07	10/12/2021	11:50	10/13/2021 (06:21
Duplicate ("Y'	' or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW224SG1-	-22R	MW369U	G1-22	MW370U0	G1-22	MW372UG	1-22
Laboratory Sam	ooratory Sample ID Number (if applicable)					9	558733	015	558733	017	55883600	01
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					1	10/19/2	021	10/19/20	021	10/21/202	21
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKN				SIDE		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.3		0.327		0.48		0.678	*
16887-00-6	Chloride(s)	т	mg/L	9056	19.9	*J	29.3	J	37.9	J	39.8	J
16984-48-8	Fluoride	т	mg/L	9056	0.315	J	0.208	J	0.204	J	0.207	J
s0595	Nitrate & Nitrite	т	mg/L	9056	0.769	J	0.956	J	1	J	0.934	J
14808-79-8	Sulfate	т	mg/L	9056	11		8.82		21		147	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.12		30.04		30.04		29.96	
s0145	Specific Conductance	т	μ MH 0/cm	Field	415		305		391		484	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-E	f, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	70.82		325.04		325.03		325.19	
N238	Dissolved Oxygen	Т	mg/L	Field	2.33		2.82		4.6		2.28	
s0266	Total Dissolved Solids	Т	mg/L	160.1	204		179	В	229	В	461	*
s0296	рн	Т	Units	Field	6.17		6		5.9		5.8	
NS215	Eh	Т	mV	Field	403		343		359		390	
s0907	Temperature	т	°C	Field	16.72		16.5		16.39		16	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.022	J	<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.196		0.379		0.242		0.0622	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0109	J	0.0171		0.332		1.23	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	18.3		15.1		26.1		64.8	
7440-47-3	Chromium	Т	mg/L	6020	0.00935	J	<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00043	J	0.00429		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000828	J	0.00113	J	0.000486	J	0.000755	J
7439-89-6	Iron	Т	mg/L	6020	0.174		0.0624	J	<0.1		0.036	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	8.6		6.77		11		22.8	
7439-96-5	Manganese	Т	mg/L	6020	0.00158	J	0.00774		0.00119	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		0.000172	BJ	0.000173	BJ	0.000518	В

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				8000-524	14	8004-48	20	8004-48	18	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.00134		0.000511	J	<0.001		0.00187	*
7440-02-0	Nickel	т	mg/L	6020	0.0422		0.00279		<0.002		<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.11		0.67		2.9		2.29	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00278	J	<0.005		0.00214	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	53.9		48.4		42		62.5	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		0.00498	BJ
7440-66-6	Zinc	т	mg/L	6020	0.00478	J	0.0034	J	<0.02		0.00601	BJ
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
67-64-1	Acetone	т	mg/L	8260	0.00291	BJ	<0.005		<0.005		<0.005	*
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	*
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	308
Facility's Loc	al Well or Spring Number (e.g., b	∙w-:	1, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00168		0.00123		0.00084	J	0.004	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-4820)	8004-48	18	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g., N	1 ₩−1	1, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000191		<0.0000189		<0.0000187		<0.0000188	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0953		<0.0972		<0.0991		<0.102	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0953		<0.0972		<0.0991		<0.102	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0953		<0.0972		<0.0991		<0.102	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0953		<0.0972		<0.0991		<0.102	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0953		<0.0972		<0.0991		<0.102	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0953		<0.0972		<0.0991		<0.102	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820)	8004-481	8	8004-480	8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0953		<0.0972		<0.0991		<0.102	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0953		<0.0972		<0.0991		<0.102	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0953		<0.0972		<0.0991		<0.102	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.0431	*	1.47	*	3.13	*	-0.244	*
12587-47-2	Gross Beta	Т	pCi/L	9310	3.8	*	41.8	*	40.6	*	35.6	*
10043-66-0	Iodine-131	T	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.242	*	0.332	*	0.937	*	0.446	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.88	*	-0.314	*	3.66	*	5.09	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	1.42	*	59.8	*	39.2	*	55.9	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	0.609	*	-0.38	*	0.122	*	0.491	*
10028-17-8	Tritium	Т	pCi/L	906.0	11.4	*	13.8	*	19.3	*	-8.74	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		12.6	BJ	30.6	В	16.2	J
57-12-5	Cyanide	T	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.18	J	1.28	J	1.19	J	1.24	J
s0586	Total Organic Halides	T	mg/L	9020	0.00848	J	0.0111		0.0063	J	0.0084	J
							_				_	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	2	8004-48	309	8004-48	310	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g., N	MW−1	L, MW-2, etc	:.)	373		384		385		386	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/13/2021 0	7:18	10/14/2021	08:35	10/14/2021	09:19	10/14/2021	09:59
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG1	1-22	MW384S0	G1-22	MW385S0	G1-22	MW386SG	1-22
Laboratory San	poratory Sample ID Number (if applicable)						558988	001	5589880	003	5589880	07
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					:1	10/21/20	021	10/21/20)21	10/21/202	21
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.699	*	0.263		0.226		0.125	J
16887-00-6	Chloride(s)	т	mg/L	9056	35.2	J	23.9	*J	21.7	*J	11.5	*J
16984-48-8	Fluoride	Т	mg/L	9056	0.184	J	0.225	J	0.245	J	0.755	J
s0595			9056	0.86	J	0.894	J	0.366	J	<10		
14808-79-8	Sulfate	т	mg/L	9056	155		19.3		23.6		35.1	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.95		29.95		29.96		29.96	
S0145	Specific Conductance	т	μ MH 0/cm	Field	560		342	_	470		589	_

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	ocal Well or Spring Number (e.g., MW	I-1 , 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.18		40.23		40.59		20.41	
N238	Dissolved Oxygen	Т	mg/L	Field	2		5.77		1.42		0.48	
S0266	Total Dissolved Solids	Т	mg/L	160.1	491	*	179		241		370	
S0296	рн	Т	Units	Field	5.77		5.66		6.25		6.24	
NS215	Eh	Т	mV	Field	372		369		342		137	
s0907	Temperature	Т	°C	Field	16		16.11		16.33		16.44	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.672		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00233	J
7440-39-3	Barium	Т	mg/L	6020	0.0318		0.189		0.222		0.236	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.96		0.0321		0.0344		0.0193	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	67.8		21.7		40.3		21.4	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		0.000691	J	0.0144	
7440-50-8	Copper	т	mg/L	6020	0.000675	J	0.000405	J	0.00243		<0.002	
7439-89-6	Iron	т	mg/L	6020	0.0481	J	0.123		1.79		2.12	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		0.000802	J	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	26.1		8.74		12.8		8.86	
7439-96-5	Manganese	Т	mg/L	6020	0.0108		0.00635		0.0208		1.42	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	, Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	0.000288	J*	<0.001		0.00161		0.000556	J
7440-02-0	Nickel	Т	mg/L	6020	0.000959	J	0.000631	J	0.00222		0.00274	
7440-09-7	Potassium	Т	mg/L	6020	2.92		1.31		1.88		0.295	J
7440-16-6	Rhodium	T	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	62.8		39.2		32		108	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	0.000073	J	<0.0002		0.00081		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.0055	BJ	<0.02		0.00374	J	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	0.00596	BJ	<0.02		0.00817	J	<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-48	310	8004-48	304
Facility's Loc	al Well or Spring Number (e.g., N	MW-	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00591		0.00046	J	0.00038	J	<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-48	10	8004-48	04
Facility's Loc	al Well or Spring Number (e.g., N	1W −1	L, MW-2, et	cc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000189		<0.0000187		<0.0000187		<0.0000185	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0993		<0.1		<0.0987		<0.101	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0993		<0.1		<0.0987		<0.101	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0993		<0.1		<0.0987		<0.101	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0993		<0.1		<0.0987		<0.101	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0993		<0.1		<0.0987		<0.101	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0993		<0.1		<0.0987		<0.101	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809		8004-481	0	8004-480	14
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0993		<0.1		<0.0987		<0.101	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0993		<0.1		<0.0987		<0.101	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0993		<0.1		<0.0987		<0.101	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-6.66	*	3.05	*	-0.00536	*	-0.485	*
12587-47-2	Gross Beta	Т	pCi/L	9310	-1.1	*	8.16	*	-3.83	*	1.66	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.438	*	0.36	*	0.279	*	0.0291	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	4.38	*	5.08	*	5.42	*	0.0177	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	8.12	*	32.9	*	28.6	*	-5.4	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.51	*	0.472	*	0.997	*	0.524	*
10028-17-8	Tritium	Т	pCi/L	906.0	-29.1	*	-28.7	*	10.4	*	-3.72	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	16.2	J	30.6	В	25.5	В	56.2	В
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.36	J	1.2	J	1.38	J	12.3	
s0586	Total Organic Halides	т	mg/L	9020	0.00774	J	0.00372	J	0.00794	J	0.256	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

 $\texttt{FINDS/UNIT:} \underline{\texttt{KY8-890-008-982}} / \underline{1}$

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	311	8004-481	1
Facility's Loc	cal Well or Spring Number (e.g., N	4W−1	, MW-2, etc	:.)	387		388		389		390	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/14/2021 0	7:18	10/14/2021	07:52	NA		10/14/2021 0	06:19
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW387SG1	-22	MW388S	G1-22	NA		MW390SG1	-22
Laboratory Sam	poratory Sample ID Number (if applicable)						558988	011	NA		55898801	3
Date of Analys	ce of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					1	10/21/2	021	NA		10/21/202	:1
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.527		0.45			*	0.345	
16887-00-6	Chloride(s)	т	mg/L	9056	39.7	*J	37	*J		*	35.3	*J
16984-48-8					0.801	J	0.211	J		*	0.341	J
s0595	Nitrate & Nitrite	т	mg/L	9056	1	J	0.951	J		*	1.81	J
14808-79-8	Sulfate	т	mg/L	9056	33.6		19.6			*	37.3	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.94		29.94			*	29.94	
S0145	Specific Conductance	т	μ MH 0/cm	Field	561		377			*	601	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	38.45		38.46			*	35.07	
N238	Dissolved Oxygen	т	mg/L	Field	3.63		5.4			*	1.99	
s0266	Total Dissolved Solids	т	mg/L	160.1	331		203			*	363	
s0296	рн	Т	Units	Field	5.74		5.77			*	6.15	
NS215	Eh	т	mV	Field	367		363			*	383	
s0907	Temperature	Т	°C	Field	16.17		16.5			*	16.61	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0249	J		*	0.054	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00231	J	<0.005			*	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.144		0.187			*	0.234	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0302		0.029			*	0.016	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	42.7		23.3			*	29.5	
7440-47-3	Chromium	Т	mg/L	6020	0.00864	J	<0.01			*	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000398	J	0.000962	J		*	0.000881	J
7439-89-6	Iron	Т	mg/L	6020	0.0543	J	0.0998	J		*	0.0381	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	18.1		10			*	12.1	
7439-96-5	Manganese	т	mg/L	6020	0.00729		0.0054			*	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-481	1
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001			*	0.000352	J
7440-02-0	Nickel	Т	mg/L	6020	0.000695	J	<0.002			*	0.0014	J
7440-09-7	Potassium	Т	mg/L	6020	1.88		1.67			*	0.337	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	Т	mg/L	6020	52		40.5			*	91.1	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002			*	0.000183	J
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02			*	0.00353	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-4	812	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	cc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	*
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00089	J	0.00065	J		*	<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4810	6	8004-48	12	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., N	1 ₩−1	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	*
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000189		<0.000019			*	<0.0000189	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.101		<0.0992			*	<0.1	
12674-11-2	PCB-1016	т	ug/L	8082	<0.101		<0.0992			*	<0.1	
11104-28-2	PCB-1221	т	ug/L	8082	<0.101		<0.0992			*	<0.1	
11141-16-5	PCB-1232	т	ug/L	8082	<0.101		<0.0992			*	<0.1	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.101		<0.0992			*	<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.101		<0.0992			*	<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4815		8004-4816		8004-481	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	387		388		389		390	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.101		<0.0992			*	<0.1	
11096-82-5	PCB-1260	т	ug/L	8082	<0.101		<0.0992			*	<0.1	
11100-14-4	PCB-1268	т	ug/L	8082	<0.101		<0.0992			*	<0.1	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-2.78	*	2.91	*		*	-0.071	*
12587-47-2	Gross Beta	Т	pCi/L	9310	147	*	3.33	*		*	38	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.193	*	0.335	*		*	0.271	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.717	*	1.36	*		*	5.85	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	269	*	6.86	*		*	47.3	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.18	*	0.976	*		*	0.613	*
10028-17-8	Tritium	Т	pCi/L	906.0	99.4	*	39.7	*		*	0.783	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	28	В	30.6	В		*	46	В
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.49	J	1.23	J		*	2.3	
s0586	Total Organic Halides	Т	mg/L	9020	0.00952	J	0.0136			*	0.0135	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number		8004-480	5	8004-48	306	8004-48	07	8004-480)2		
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	L, MW-2, etc	:.)	391		392		393		394	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	Sample Date and Time (Month/Day/Year hour: minutes)						10/18/2021	10/18/2021 07:46		08:26	10/18/2021	09:28
Duplicate ("Y		N		N		N		N				
Split ("Y" or		N		N	N			N				
Facility Samp	Facility Sample ID Number (if applicable)						MW392S	G1-22	MW393S0	G1-22	MW394SG	1-22
Laboratory San	mple ID Number (if applicable)				55926600)1	559266	003	5592660	005	5592660	07
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	rganics Anal	ysis	10/22/202	1	10/22/2021		10/22/2021		10/22/202	21
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	DOWN	DOWN		DOWN		Ν	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.522		0.559		0.282		0.689	
16887-00-6	Chloride(s)	т	mg/L	9056	40.1	J	45.4	J	11.6	J	46	J
16984-48-8	16984-48-8 Fluoride T mg/L 9056				0.167	J	0.185	J	0.166	J	0.122	J
s0595	595 Nitrate & Nitrite T mg/L 9056		9056	0.937	J	0.657	J	<10		1.22	J	
14808-79-8	-8 Sulfate T mg/L 9056		9056	13.3		9.64		16.1		11.9		
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.21		30.21		30.22		30.24	
S0145	0145 Specific Conductance T µMH0/cm Field				380		360		389		394	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	7	8004-4802	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	42		41.19		26.6		53.32	
N238	Dissolved Oxygen	т	mg/L	Field	4.26		3.16		1.7		5.7	
s0266	Total Dissolved Solids	Т	mg/L	160.1	206		204		236		219	
s0296	рН	Т	Units	Field	6.02		6.07		6.12		6.14	
NS215	Eh	Т	mV	Field	385		386		289		370	
s0907	Temperature	Т	°C	Field	14.83		15.22		15.33		16.11	
7429-90-5	Aluminum	Т	mg/L	6020	0.02	J	<0.05		<0.05		0.106	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00285	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.212		0.237		0.143		0.273	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0277		0.0247		0.0162		0.0195	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	23.1		24.5		12		24.6	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		0.000441	J
7440-50-8	Copper	т	mg/L	6020	0.00134	J	0.00117	J	0.000551	J	0.00142	J
7439-89-6	Iron	т	mg/L	6020	0.0549	J	0.108		1.9		0.366	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		0.000518	J
7439-95-4	Magnesium	т	mg/L	6020	9.67		10.2		3.51		10.3	
7439-96-5	Manganese	Т	mg/L	6020	0.00254	J	0.0177		0.0543		0.0535	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	05	8004-48	06	8004-480	07	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.0002	J	<0.001		0.000353	J
7440-02-0	Nickel	т	mg/L	6020	0.00108	J	0.0012	J	<0.002		0.00696	
7440-09-7	Potassium	т	mg/L	6020	1.64		2.16		0.41		1.46	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	34.4		26.2		64.9		32.4	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	T	mg/L	6020	<0.02		0.00333	J	<0.02		<0.02	
7440-66-6	Zinc	T	mg/L	6020	0.00754	J	0.006	J	0.00483	J	0.00607	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4805	5	8004-480	06	8004-48	307	8004-48	302
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		0.00092	J	<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00748		0.0157		<0.001		0.00363	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-480)7	8004-480	02
Facility's Loc	cal Well or Spring Number (e.g., N	1 ₩−1	1, MW-2, et	cc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000185		<0.0000186		<0.0000185		<0.0000187	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0976		<0.0991		<0.1		<0.0996	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0976		<0.0991		<0.1		<0.0996	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0976		<0.0991		<0.1		<0.0996	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0976		<0.0991		<0.1		<0.0996	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0976		<0.0991		<0.1		<0.0996	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0976		<0.0991		<0.1		<0.0996	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-4805		8004-4806		8004-480	7	8004-480	2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	L, MW-2, et	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0976		<0.0991		<0.1		<0.0996	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0976		<0.0991		<0.1		<0.0996	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0976		<0.0991		<0.1		<0.0996	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.53	*	0.944	*	0.0124	*	-0.856	*
12587-47-2	Gross Beta	Т	pCi/L	9310	-8.49	*	-2.1	*	-1.74	*	-1.56	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.304	*	0.0646	*	0.332	*	0.534	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.83	*	4.08	*	3.54	*	4.22	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	4.24	*	3.95	*	2.66	*	6.06	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.66	*	-0.0447	*	0.0243	*	-0.154	*
10028-17-8	Tritium	Т	pCi/L	906.0	4.39	*	123	*	6.66	*	107	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	28	В	40.8	В	22.9	В	25.5	В
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.1	J	1.16	J	2.47		1.04	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00974	J	0.006	J	0.0136		0.0119	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-480	1	8004-48	303	8004-48	317	0000-000	0		
Facility's Loca	al Well or Spring Number (e.g., M	w−1	., MW-2, etc	:.)	395		396		397		E. BLAN	K
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		Е	
Sample Date and	d Time (Month/Day/Year hour: minu		10/18/2021 1	0:12	10/18/2021 10:50		10/14/2021	11:10	10/14/2021 ()5:45		
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N	N			N	
Facility Sample	e ID Number (if applicable)		MW395SG1	-22	MW396S	G1-22	MW397S0	G1-22	RI1SG1-2	22		
Laboratory Sam	Laboratory Sample ID Number (if applicable)						559266	011	558988	015	55898801	18
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>	or	ganics Anal	ysis	10/22/202	:1	10/22/2021		10/21/2021		10/21/202	21
Gradient with	respect to Monitored Unit (UP, DO	, NW	SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.506		0.96		0.406			*
16887-00-6	Chloride(s)	Т	mg/L	9056	43.5	J	56.6	J	35.6	*J		*
16984-48-8	Fluoride	т	mg/L	9056	0.134	J	0.574	J	0.17	J		*
s0595	S0595 Nitrate & Nitrite T mg/L 9056				1.31	J	<10		1.07	J		*
14808-79-8	08-79-8 Sulfate T mg/L 9056				11.9		26.2		12			*
NS1894	Barometric Pressure Reading T Inches/Hg Field		Field	30.25		30.25		29.96			*	
S0145	Specific Conductance T µMH0/cm Fie.				375		726		295			*

¹AKGWA # is 0000-0000 for any type of blank.

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

^{* =} See Comments

STANDARD FLAGS:

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	7	0000-0000	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	54.01		11.28		61.48			*
N238	Dissolved Oxygen	Т	mg/L	Field	5.4		0.9		6.69			*
S0266	Total Dissolved Solids	Т	mg/L	160.1	194		436		166			*
S0296	рн	Т	Units	Field	6.1		6.33		5.86			*
NS215	Eh	Т	mV	Field	391		181		315			*
s0907	Temperature	Т	°C	Field	16.56		16.44		16.94			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.349		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00287	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.262		0.438		0.132		<0.004	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.022		0.00825	J	0.00863	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	24.3		31		18.1		<0.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00248		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000593	J	0.000409	J	0.00241		0.000742	J
7439-89-6	Iron	т	mg/L	6020	<0.1		4.15		0.425		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.3		13.5		7.57		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.502		0.0214		<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-000	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	ΙΚ
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		0.000364	J	<0.001		<0.001	
7440-02-0	Nickel	Т	mg/L	6020	0.000752	J	0.00156	J	0.000825	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.64		0.852		1.85		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	30.8		93.9		31.6		<0.25	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.000068	٦	<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		0.00368	J	<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-00	000
Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00326		<0.001		<0.001	*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., N	1W −1	L, MW-2, et	cc.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000187		<0.0000187		<0.0000187		<0.0000183	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0994		<0.0981		<0.0997		<0.0953	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0994		<0.0981		<0.0997		<0.0953	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0994		<0.0981		<0.0997		<0.0953	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0994		<0.0981		<0.0997		<0.0953	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0994		<0.0981		<0.0997		<0.0953	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0994		<0.0981		<0.0997		<0.0953	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-4801		8004-4803		8004-481	7	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	395		396		397		E. BLAN	К
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0994		<0.0981		<0.0997		<0.0953	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0994		<0.0981		<0.0997		<0.0953	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0994		<0.0981		<0.0997		<0.0953	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.68	*	-0.703	*	-3	*	-0.216	*
12587-47-2	Gross Beta	Т	pCi/L	9310	5.98	*	-0.41	*	7.65	*	4.16	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.313	*	0.231	*	0.313	*	0.255	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.539	*	1.25	*	3.89	*	0.348	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	8.55	*	-3.65	*	12.8	*	-2.31	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.106	*	0.343	*	-0.117	*	-0.217	*
10028-17-8	Tritium	Т	pCi/L	906.0	71.2	*	-8.59	*	-16.7	*	190	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	22.9	В	33.2	В	33.2	В		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		0.661		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.725	J	5.01		0.616	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0059	J	0.0233		0.00876	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

 $\texttt{FINDS/UNIT:} \underline{\texttt{KY8-890-008-982}} / \underline{1}$

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., N	1W−1	l, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLANK	(2	T. BLANK	(3
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	F		Т		Т		Т	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/14/2021	10:02	10/14/2021	05:35	10/18/2021	06:10	10/22/2021 ()6:25
Duplicate ("Y'	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)		FB1SG1-	22	TB1SG1	-22	TB3SG1-	22	TB4SG1-2	22		
Laboratory Sam	poratory Sample ID Number (if applicable)						5498620	14	5592660	13	55987201	11
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	e 01	ganics Anal	ysis	10/21/202	21	10/21/20	21	10/22/20	21	10/29/202	21
Gradient with	respect to Monitored Unit (UP, DC	NWC,	SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN4	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595						*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	μ M H0/cm	Field		*		*		*		*

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MW	r-1, 1	MW-2, BLANK-	F, etc.)	F. BLANI	K	T. BLANK	. 1	T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рН	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	Т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	Т	mg/L	6020	<0.004			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	Т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	<0.002			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	0.0303			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002			*		*		*

Pe

RESIDENTIAL/INERT-QUARTERLY
Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	00	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001			*		*		*
7440-02-0	Nickel	Т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	Т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/L	6020	0.204	J		*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	Т	mg/L	6020	<0.02			*		*		*
7440-66-6	Zinc	Т	mg/L	6020	<0.02			*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	0.00648		0.00382	J	0.00378	J	0.0048	BJ
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000)	0000-000	00	0000-00	000	0000-00)00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	F. BLAN	(T. BLAN	< 1	T. BLAN	NK 2	T. BLAN	IK 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	1 ₩−1	l, MW-2, et	.c.)	F. BLAN	(T. BLANK	1	T. BLAN	< 2	T. BLANI	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000186		<0.0000184		<0.0000186		<0.0000192	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0961			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0961			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0961			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0961			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0961			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0961			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000		0000-0000		0000-0000)
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	F. BLANK		T. BLANK 1		T. BLANK 2	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	T	ug/L	8082	<0.0961			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0961			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0961			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.8	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	-5.82	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.118	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.2	*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-2.57	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.177	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0	247	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5			*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch

Permit Number: SW07300014, SW07300015, SW07300045 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS ...

AKGWA NUMBER,	Facility Well/Spring Number				0000-000	00	8004-480)4				
Facility's Loc	al Well or Spring Number (e.g., N	/W−1	., MW-2, etc	:.)	T. BLANK	(4	386					
Sample Sequenc	e #				1		2					
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	Т		NA					\overline{Z}
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		10/27/2021	12:00	10/14/2021	09:59			/	
Duplicate ("Y"	or "N") ²				N		Υ					
Split ("Y" or	"N") ³				N		N		\	\		
Facility Sampl	ility Sample ID Number (if applicable)					22	MW386DSG	61-22				
Laboratory Sam	oratory Sample ID Number (if applicable)					03	5589880	05				
Date of Analys	of Analysis (Month/Day/Year) For Volatile Organics Analysis				11/2/202	1	10/21/202	21				
Gradient with					NA		SIDE				V	
CAS RN ⁴	ient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) S RN4		METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL6	F L A G S	
24959-67-9	Bromide	т	mg/L	9056		*	0.126	J	,			
16887-00-6	Chloride(s)	т	mg/L	9056		*	11.5	*J	/			
16984-48-8						*	0.762	J				
s0595	Nitrate & Nitrite T mg/L					*	<10					$\overline{}$
14808-79-8	Sulfate	т	mg/L	9056		*	35.1					$\overline{1}$
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*				
S0145	Specific Conductance	т	μ MH 0/cm	Field		*		*	/			

¹AKGWA # is 0000-0000 for any type of blank.

- STANDARD FLAGS: * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	8004-480	4	Λ			/
Facility's Lo	cal Well or Spring Number (e.g., MW	r-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	4	386					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR RQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	E L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*				
N238	Dissolved Oxygen	т	mg/L	Field		*		*				
s0266	Total Dissolved Solids	т	mg/L	160.1		*	380					
s0296	Нд	т	Units	Field		*		*				
NS215	Eh	т	mV	Field		*		*		\		
s0907	Temperature	Т	°C	Field		*		*				
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.05					
7440-36-0	Antimony	т	mg/L	6020		*	<0.003			_\		
7440-38-2	Arsenic	т	mg/L	6020		*	0.0024	J			X	
7440-39-3	Barium	т	mg/L	6020		*	0.231					
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005					
7440-42-8	Boron	т	mg/L	6020		*	0.0184					
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		/			
7440-70-2	Calcium	т	mg/L	6020		*	21.4					
7440-47-3	Chromium	т	mg/L	6020		*	<0.01					
7440-48-4	Cobalt	т	mg/L	6020		*	0.0142					
7440-50-8	Copper	т	mg/L	6020		*	0.000352	J				
7439-89-6	Iron	т	mg/L	6020		*	2.12					\setminus
7439-92-1	Lead	т	mg/L	6020		*	<0.002					
7439-95-4	Magnesium	т	mg/L	6020		*	8.81		<u> </u>			
7439-96-5	Manganese	т	mg/L	6020		*	1.43					
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	00	8004-48	304	Λ			/
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLAN	< 4	386					
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR FQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020		*	0.000574	J			/	
7440-02-0	Nickel	т	mg/L	6020		*	0.0028					
7440-09-7	Potassium	т	mg/L	6020		*	0.292	J				
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005					
7782-49-2	Selenium	т	mg/L	6020		*	<0.005		\	\setminus		
7440-22-4	Silver	т	mg/L	6020		*	<0.001					
7440-23-5	Sodium	т	mg/L	6020		*	108					
7440-25-7	Tantalum	т	mg/L	6020		*	<0.005				/	
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002					
7440-61-1	Uranium	т	mg/L	6020		*	0.00007	J				
7440-62-2	Vanadium	т	mg/L	6020		*	<0.02					
7440-66-6	Zinc	т	mg/L	6020		*	<0.02					
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005	*	<0.005					
67-64-1	Acetone	т	mg/L	8260	0.00363	J	<0.005					
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005					
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005					
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<u> </u>			
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001					
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003					
100-42-5	Styrene	T	mg/L	8260	<0.001		<0.001		<u> </u>			
108-88-3	Toluene	T	mg/L	8260	<0.001		<0.001					
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		/			

C-48

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	8004-480	04	\			_/
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	cc.)	T. BLANK	4	386					$\overline{}$
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR POL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001				/	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001				/	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001				/	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		\			
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005					
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005					
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001					
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001				/	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001				X	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			/		
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			/		
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			/		
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			/		
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		/			
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001					
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001					
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001					
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001					
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001					\
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001					$\sqrt{}$
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001	*	<0.001					$\overline{}$
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001	*	<0.001		/			1

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number	0000-0000)	8004-4804	1	\setminus						
Facility's Loca	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						386					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR RQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001				/	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005					
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005					
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001					
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			\setminus		
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005					
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005					
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.0000192					
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001				X	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001					
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001					
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001					
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			/		
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001					
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001					
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001				\	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0981	*			\	
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0981	*				
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0981	*				
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0981	*				
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0981	*				
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.0981	*	/			-

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number	0000-0000)	8004-4804		\setminus					
Facility's Lo	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						386				
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR POL ⁶	F L A G S	DETECTED F L CR A PQL ⁶ G S
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.0981	*			
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0981	*			/
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.0981	*			/
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	3.57	*	\		
12587-47-2	Gross Beta	т	pCi/L	9310		*	3.02	*		\setminus	
10043-66-0	Iodine-131	т	pCi/L			*		*			
13982-63-3	Radium-226	т	pCi/L	AN-1418		*	0.155	*			
10098-97-2	Strontium-90	т	pCi/L	905.0		*	0.164	*			
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	-1.72	*			
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	0.385	*			
10028-17-8	Tritium	Т	pCi/L	906.0		*	7.91	*			
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*	53.7	В		/	
57-12-5	Cyanide	т	mg/L	9012		*	<0.2		/	/	
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5				
s0268	Total Organic Carbon	т	mg/L	9060		*	12				
s0586	Total Organic Halides	т	mg/L	9020		*	0.259				
											V
											\
									/		
									/		

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID: None

Finds/Unit: <u>KY8-890-008-982 / 1</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW22	20 MW220SG1-22R2	Bromide	W	Post-digestion spike recovery out of control limits.
		Fluoride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	L	LCS or LCSD recovery outside of control limits.
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits.
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Trichloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.64. Rad error is 4.63.
		Gross beta		TPU is 6.02. Rad error is 5.72.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.592. Rad error is 0.592.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.53. Rad error is 2.53.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.6. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.1. Rad error is 1.1.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 119. Rad error is 119.
		lodide	*	Duplicate analysis not within control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID: None

Finds/Unit: <u>KY8-890-008-982 / 1</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221SG1-22R	Chloride	W	Post-digestion spike recovery out of control limits.
		Vinyl acetate		See resample.
		Acetone		See resample.
		Acrolein		See resample.
		Acrylonitrile		See resample.
		Benzene		See resample.
		Chlorobenzene		See resample.
		Xylenes		See resample.
		Styrene		See resample.
		Toluene		See resample.
		Chlorobromomethane		See resample.
		Bromodichloromethane		See resample.
		Tribromomethane		See resample.
		Methyl bromide		See resample.
		Methyl Ethyl Ketone		See resample.
		trans-1,4-Dichloro-2-butene		See resample.
		Carbon disulfide		See resample.
		Chloroethane		See resample.
		Chloroform		See resample.
		Methyl chloride		See resample.
		cis-1,2-Dichloroethene		See resample.
		Methylene bromide		See resample.
		1,1-Dichloroethane		See resample.
		1,2-Dichloroethane		See resample.
		1,1-Dichloroethylene		See resample.
		1,2-Dibromoethane		See resample.
		1,1,2,2-Tetrachloroethane		See resample.
		1,1,1-Trichloroethane		See resample.
		1,1,2-Trichloroethane		See resample.
		1,1,1,2-Tetrachloroethane		See resample.
		Vinyl chloride		See resample.
		Tetrachloroethene		See resample.
		Trichloroethene		See resample.
		Ethylbenzene		See resample.
		2-Hexanone		See resample.
		lodomethane		See resample.
		Dibromochloromethane		See resample.
		Carbon tetrachloride		See resample.
		Dichloromethane		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221SG1-22R	Methyl Isobutyl Ketone		See resample.
		1,2-Dichloropropane		See resample.
		trans-1,3-Dichloropropene		See resample.
		cis-1,3-Dichloropropene		See resample.
		trans-1,2-Dichloroethene		See resample.
		Trichlorofluoromethane		See resample.
		1,2,3-Trichloropropane		See resample.
		1,2-Dichlorobenzene		See resample.
		1,4-Dichlorobenzene		See resample.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.87. Rad error is 3.87.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.5. Rad error is 5.45.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.382. Rad error is 0.382.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.67. Rad error is 1.67.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.2. Rad error is 1.19.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 140. Rad error is 140.
000-5242 MW222	MW222SG1-22R	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.47. Rad error is 3.47.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.95. Rad error is 4.87.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.559. Rad error is 0.559.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.02. Rad error is 2.01.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.14. Rad error is 1.13.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 138. Rad error is 138.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

ū	Facility Sample ID	Constituent	Flag	Description
3000-5243 MW223 MV	N223SG1-22R	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TI is 2.21. Rad error is 2.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 5.76. Rad error is 5.64.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 0.526. Rad error is 0.526.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.41. Rad error is 2.4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 11.8. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 0.756. Rad error is 0.756.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 133. Rad error is 133.
3000-5244 MW224 MV	N224SG1-22R	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.1. Rad error is 3.1.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.57. Rad error is 5.54.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.635. Rad error is 0.635.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.72. Rad error is 2.68.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.904. Rad error is 0.896.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 135. Rad error is 135.
3004-4820 MW369 MV	N369UG1-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.86. Rad error is 3.85.
		Gross beta		TPU is 11.2. Rad error is 8.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.466. Rad error is 0.466.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.17. Rad error is 3.17.
		Technetium-99		TPU is 15.5. Rad error is 14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.659. Rad error is 0.658.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 114. Rad error is 114.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4818 MW370 MW370UG1-22		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.77. Rad error is 4.74.
		Gross beta		TPU is 12. Rad error is 9.97.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.28. Rad error is 1.28.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.99. Rad error is 3.95.
		Technetium-99		TPU is 14.1. Rad error is 13.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.09. Rad error is 1.09.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 113. Rad error is 113.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4808 MW37	'2 MW372UG1-22	Bromide	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Molybdenum	*	Duplicate analysis not within control limits.
		Vinyl acetate	Н	Analysis performed outside holding time requirement
		Acetone	Н	Analysis performed outside holding time requirement
		Acrolein	Н	Analysis performed outside holding time requirement
		Acrylonitrile	Н	Analysis performed outside holding time requirement
		Benzene	Н	Analysis performed outside holding time requirement
		Chlorobenzene	Н	Analysis performed outside holding time requirement
		Xylenes	Н	Analysis performed outside holding time requirement
		Styrene	Н	Analysis performed outside holding time requirement
		Toluene	Н	Analysis performed outside holding time requirement
		Chlorobromomethane	Н	Analysis performed outside holding time requirement
		Bromodichloromethane	Н	Analysis performed outside holding time requirement
		Tribromomethane	Н	Analysis performed outside holding time requirement
		Methyl bromide	Н	Analysis performed outside holding time requirement
		Methyl Ethyl Ketone	Н	Analysis performed outside holding time requirement
		trans-1,4-Dichloro-2-butene	Н	Analysis performed outside holding time requirement
		Carbon disulfide	Н	Analysis performed outside holding time requirement
		Chloroethane	Н	Analysis performed outside holding time requirement
		Chloroform	Н	Analysis performed outside holding time requirement
		Methyl chloride	Н	Analysis performed outside holding time requirement
		cis-1,2-Dichloroethene	Н	Analysis performed outside holding time requirement
		Methylene bromide	Н	Analysis performed outside holding time requirement
		1,1-Dichloroethane	Н	Analysis performed outside holding time requirement
		1,2-Dichloroethane	Н	Analysis performed outside holding time requirement
		1,1-Dichloroethylene	Н	Analysis performed outside holding time requirement
		1,2-Dibromoethane	Н	Analysis performed outside holding time requirement
		1,1,2,2-Tetrachloroethane	Н	Analysis performed outside holding time requirement
		1,1,1-Trichloroethane	Н	Analysis performed outside holding time requirement
		1,1,2-Trichloroethane	Н	Analysis performed outside holding time requirement
		1,1,1,2-Tetrachloroethane	Н	Analysis performed outside holding time requirement
		Vinyl chloride	Н	Analysis performed outside holding time requirement
		Tetrachloroethene	Н	Analysis performed outside holding time requirement
		Trichloroethene	Н	Analysis performed outside holding time requirement
		Ethylbenzene	Н	Analysis performed outside holding time requirement
		2-Hexanone	Н	Analysis performed outside holding time requirement
		lodomethane	Н	Analysis performed outside holding time requirement
		Dibromochloromethane	Н	Analysis performed outside holding time requirement

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

	acility Sample ID	Constituent	Flag	Description
8004-4808 MW372 MW	/372UG1-22	Carbon tetrachloride	Н	Analysis performed outside holding time requirement
		Dichloromethane	Н	Analysis performed outside holding time requirement
		Methyl Isobutyl Ketone	Н	Analysis performed outside holding time requirement
		1,2-Dichloropropane	Н	Analysis performed outside holding time requirement
		trans-1,3-Dichloropropene	Н	Analysis performed outside holding time requirement
		cis-1,3-Dichloropropene	Н	Analysis performed outside holding time requirement
		trans-1,2-Dichloroethene	Н	Analysis performed outside holding time requirement
		Trichlorofluoromethane	Н	Analysis performed outside holding time requirement
		1,2,3-Trichloropropane	Н	Analysis performed outside holding time requirement
		1,2-Dichlorobenzene	Н	Analysis performed outside holding time requirement
		1,4-Dichlorobenzene	Н	Analysis performed outside holding time requirement
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.74. Rad error is 5.73.
		Gross beta		TPU is 12.3. Rad error is 10.8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.577. Rad error is 0.577.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.9. Rad error is 4.83.
		Technetium-99		TPU is 15. Rad error is 13.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.478. Rad error is 0.471.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 111. Rad error is 111.
3004-4792 MW373 MW	/373UG1-22	Bromide	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Molybdenum	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.62. Rad error is 4.62.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.08. Rad error is 5.08.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.6. Rad error is 0.599.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.08. Rad error is 4.03.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.912. Rad error is 0.906.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 111. Rad error is 111.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4809 MW384	MW384SG1-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 6.35. Rad error is 6.33.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 10.7. Rad error is 10.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.469. Rad error is 0.468.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 4.25. Rad error is 4.17.
		Technetium-99		TPU is 13.2. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.82. Rad error is 0.814.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 135. Rad error is 135.
8004-4810 MW385	MW385SG1-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 3.94. Rad error is 3.93.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 10.2. Rad error is 10.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.579. Rad error is 0.579.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 4.45. Rad error is 4.36.
		Technetium-99		TPU is 13.6. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.13. Rad error is 1.12.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 136. Rad error is 136.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW386 N	/W386SG1-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Benzene	S	Sample surrogate recovery outside acceptance criteria.
		Methyl Ethyl Ketone	S	Sample surrogate recovery outside acceptance criteria.
		Chloroform	S	Sample surrogate recovery outside acceptance criteria.
		1,2-Dichloroethane	S	Sample surrogate recovery outside acceptance criteria.
		1,1-Dichloroethylene	S	Sample surrogate recovery outside acceptance criteria.
		1,1,1-Trichloroethane	S	Sample surrogate recovery outside acceptance criteria.
		Vinyl chloride	S	Sample surrogate recovery outside acceptance criteria.
		Trichloroethene	S	Sample surrogate recovery outside acceptance criteria.
		Carbon tetrachloride	S	Sample surrogate recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.78. Rad error is 4.78.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 9.36. Rad error is 9.36.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.819. Rad error is 0.819.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.12. Rad error is 3.12.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.1. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.94. Rad error is 0.934.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 138. Rad error is 138.
04-4815 MW387 N	//W387SG1-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.96. Rad error is 3.96.
		Gross beta		TPU is 29.6. Rad error is 17.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.403. Rad error is 0.403.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.36. Rad error is 2.36.
		Technetium-99		TPU is 35.3. Rad error is 18.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.66. Rad error is 0.658.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 152. Rad error is 151.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4816 MW38	38 MW388SG1-22	Chloride	W	Post-digestion spike recovery out of control limits.
		= : - = = :: p::=:	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.32. Rad error is 5.3.	
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11. Rad error is 11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.04. Rad error is 1.04.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.64. Rad error is 3.64.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.942. Rad error is 0.929.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 146. Rad error is 146.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample was collected.
		Temperature		During sampling, the well was dry; therefore, no sample w collected.
		Aluminum		During sampling, the well was dry; therefore, no sample was collected.
		Antimony		During sampling, the well was dry; therefore, no sample was collected.
		Arsenic		During sampling, the well was dry; therefore, no sample w collected.
		Barium		During sampling, the well was dry; therefore, no sample w collected.
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.
		Boron		During sampling, the well was dry; therefore, no sample was collected.
		Cadmium		During sampling, the well was dry; therefore, no sample was collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample was collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample wa collected.
		Mercury		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample was collected.
		Selenium		During sampling, the well was dry; therefore, no sample was collected.
		Silver		During sampling, the well was dry; therefore, no sample was collected.
		Sodium		During sampling, the well was dry; therefore, no sample was collected.
		Tantalum		During sampling, the well was dry; therefore, no sample was collected.
		Thallium		During sampling, the well was dry; therefore, no sample was collected.
		Uranium		During sampling, the well was dry; therefore, no sample was collected.
		Vanadium		During sampling, the well was dry; therefore, no sample w collected.
		Zinc		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample w collected.
		Acetone		During sampling, the well was dry; therefore, no sample w collected.
		Acrolein		During sampling, the well was dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample w collected.
		Benzene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		Xylenes		During sampling, the well was dry; therefore, no sample w collected.
		Styrene		During sampling, the well was dry; therefore, no sample w collected.
		Toluene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample w collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample w collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample w collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample w collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample w collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample w collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
6004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample w collected.
		lodomethane		During sampling, the well was dry; therefore, no sample w collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample w collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample w collected.
		Gross beta		During sampling, the well was dry; therefore, no sample w collected.
		lodine-131		During sampling, the well was dry; therefore, no sample w collected.
		Radium-226		During sampling, the well was dry; therefore, no sample w collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample w collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample w collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample w collected.
		Tritium		During sampling, the well was dry; therefore, no sample w collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample w collected.
		Cyanide		During sampling, the well was dry; therefore, no sample w collected.
		lodide		During sampling, the well was dry; therefore, no sample w collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample w collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample v collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

04-4811 MW390	MW390SG1-22	Chloride	W	
		_	VV	Post-digestion spike recovery out of control limits.
		Benzene	S	Sample surrogate recovery outside acceptance criteria.
		Methyl Ethyl Ketone	S	Sample surrogate recovery outside acceptance criteria.
		Chloroform	S	Sample surrogate recovery outside acceptance criteria.
		1,2-Dichloroethane	S	Sample surrogate recovery outside acceptance criteria.
		1,1-Dichloroethylene	S	Sample surrogate recovery outside acceptance criteria.
		1,1,1-Trichloroethane	S	Sample surrogate recovery outside acceptance criteria.
		Vinyl chloride	S	Sample surrogate recovery outside acceptance criteria.
		Trichloroethene	S	Sample surrogate recovery outside acceptance criteria.
		Carbon tetrachloride	S	Sample surrogate recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4. Rad error is 4.
		Gross beta		TPU is 13.5. Rad error is 12.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.522. Rad error is 0.522.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.1. Rad error is 4.
		Technetium-99		TPU is 14.3. Rad error is 13.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.94. Rad error is 0.932.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 134. Rad error is 134.
04-4805 MW391	MW391SG1-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.13. Rad error is 2.12.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.27. Rad error is 6.27.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.526. Rad error is 0.526.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.76. Rad error is 1.73.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.7. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.928. Rad error is 0.927.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 146. Rad error is 146.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4806 MW392	MW392SG1-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.2. Rad error is 4.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.47. Rad error is 5.47.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.404. Rad error is 0.404.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. Tis 4.05. Rad error is 4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. Tis 13.1. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. Tis 1.14. Rad error is 1.14.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 154. Rad error is 152.
004-4807 MW393	MW393SG1-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.62. Rad error is 4.62.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.45. Rad error is 7.45.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 0.528. Rad error is 0.528.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. Tis 4. Rad error is 3.96.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.738. Rad error is 0.736.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 147. Rad error is 147.
004-4802 MW394	MW394SG1-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. Tis 5.19. Rad error is 5.18.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 6.39. Rad error is 6.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.599. Rad error is 0.599.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 3.79. Rad error is 3.73.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 0.768. Rad error is 0.768.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 152. Rad error is 150.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4801 MW395 MW395SG1-22		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.57. Rad error is 6.56.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.91. Rad error is 5.81.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.546. Rad error is 0.545.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.5. Rad error is 3.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.03. Rad error is 1.03.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 151. Rad error is 150.
004-4803 MW39	6 MW396SG1-22	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.18. Rad error is 4.17.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.78. Rad error is 5.78.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.472. Rad error is 0.472.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.44. Rad error is 3.44.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.844. Rad error is 0.84.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 145. Rad error is 145.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4817 MW397	7 MW397SG1-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Benzene	S	Sample surrogate recovery outside acceptance criteria.
		Methyl Ethyl Ketone	S	Sample surrogate recovery outside acceptance criteria.
		Chloroform	S	Sample surrogate recovery outside acceptance criteria.
		1,2-Dichloroethane	S	Sample surrogate recovery outside acceptance criteria.
		1,1-Dichloroethylene	S	Sample surrogate recovery outside acceptance criteria.
		1,1,1-Trichloroethane	S	Sample surrogate recovery outside acceptance criteria.
		Vinyl chloride	S	Sample surrogate recovery outside acceptance criteria.
		Trichloroethene	S	Sample surrogate recovery outside acceptance criteria.
		Carbon tetrachloride	S	Sample surrogate recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.65. Rad error is 3.65.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.1. Rad error is 10.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.565. Rad error is 0.565.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.35. Rad error is 4.31.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.3. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.722. Rad error is 0.721.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 136.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG1-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.12. Rad error is 4.12.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.46. Rad error is 7.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.445. Rad error is 0.445.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.36. Rad error is 2.36.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.646. Rad error is 0.646.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 168. Rad error is 164.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: $\underline{KY8-890-008-982 / 1}$

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1SG1-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.28. Rad error is 4.27.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.76. Rad error is 7.76.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.228. Rad error is 0.228.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.49. Rad error is 3.48.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.2. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.609. Rad error is 0.608.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 179. Rad error is 172.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG1-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG1-22	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG1-22	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	TB3SG1-22	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG1-22	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG1-22	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB5SG1-22	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB5SG1-22	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits.
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Trichloroethene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4804 MW38	36 MW386DSG1-22	Chloride	W	Post-digestion spike recovery out of control limits.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1016	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1221	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1232	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1242	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1248	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1254	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1260	S	Sample surrogate recovery outside acceptance criteria.
		PCB-1268	S	Sample surrogate recovery outside acceptance criteria.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 6.05. Rad error is 6.02.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 9.51. Rad error is 9.5.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.381. Rad error is 0.381.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 3.95. Rad error is 3.95.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 12.3. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.712. Rad error is 0.706.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 138. Rad error is 138.

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: $\underline{KY8-890-008-982}/\underline{1}$ LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	02	0000-00	00	\setminus			/
Facility's Loca	al Well or Spring Number (e.g., M	₩-1	., MW-2, etc	:.)	MW22	1	T. BLAN	K 5				
Sample Sequence	e #				3		3					
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		Т					
Sample Date and	Sample Date and Time (Month/Day/Year hour: minutes)						11/2/2021	12:00				
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N					
Split ("Y" or	Split ("Y" or "N") ³						N		\	\		
Facility Sample	Facility Sample ID Number (if applicable)						TB6SG1	-22				
Laboratory Sam	ple ID Number (if applicable)				56101600	1	5610160	002				
Date of Analys:	is (Month/Day/Year) For <u>Volatile</u>	Or	ganics Anal	ysis	11/11/2021 11/11/2021							
Gradient with :	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	OWN)	SIDE		NA			'	X	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*	,	/		
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*	/			
16984-48-8	Fluoride	Т	mg/L	9056		*		*				
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*				
14808-79-8	Sulfate	T	mg/L	9056		*		*				
NS1894	Barometric Pressure Reading	T	Inches/Hg	Field	30.42			*				
S0145	Specific Conductance	Т	μ MH0/cm	Field	397			*	/			

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	2	0000-000	0	\			
Facility's Loc	al Well or Spring Number (e.g., MW	-1, N	W−2, BLANK-	F, etc.)	221		T. BLANK	5				
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR FQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	323.84			*				
N238	Dissolved Oxygen	т	mg/L	Field	5.3			*				
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*				
S0296	рн	т	Units	Field	5.97			*				
NS215	Eh	т	mV	Field	459			*	\	\		
s0907	Temperature	т	°C	Field	16.33			*				
7429-90-5	Aluminum	т	mg/L	6020		*		*				
7440-36-0	Antimony	т	mg/L	6020		*		*				
7440-38-2	Arsenic	т	mg/L	6020		*		*			Χ	
7440-39-3	Barium	т	mg/L	6020		*		*				
7440-41-7	Beryllium	т	mg/L	6020		*		*				
7440-42-8	Boron	т	mg/L	6020		*		*				
7440-43-9	Cadmium	т	mg/L	6020		*		*	/			
7440-70-2	Calcium	т	mg/L	6020		*		*				
7440-47-3	Chromium	т	mg/L	6020		*		*			\	
7440-48-4	Cobalt	т	mg/L	6020		*		*				
7440-50-8	Copper	т	mg/L	6020		*		*				
7439-89-6	Iron	Т	mg/L	6020		*		*				
7439-92-1	Lead	Т	mg/L	6020		*		*	7			
7439-95-4	Magnesium	Т	mg/L	6020		*		*				
7439-96-5	Manganese	Т	mg/L	6020		*		*				
7439-97-6	Mercury	Т	mg/L	7470		*		*	/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	02	0000-00	00	\			$\overline{}$
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	221		T. BLAN	K 5				
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	Т	mg/L	6020		*		*				
7440-02-0	Nickel	Т	mg/L	6020		*		*				
7440-09-7	Potassium	Т	mg/L	6020		*		*				
7440-16-6	Rhodium	т	mg/L	6020		*		*				
7782-49-2	Selenium	т	mg/L	6020		*		*		\		
7440-22-4	Silver	т	mg/L	6020		*		*				
7440-23-5	Sodium	т	mg/L	6020		*		*				
7440-25-7	Tantalum	T	mg/L	6020		*		*			/	
7440-28-0	Thallium	T	mg/L	6020		*		*		>		
7440-61-1	Uranium	т	mg/L	6020		*		*				
7440-62-2	Vanadium	т	mg/L	6020		*		*				
7440-66-6	Zinc	т	mg/L	6020		*		*				
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005	*	<0.005	*				
67-64-1	Acetone	T	mg/L	8260	<0.005	*	<0.005	*	/			
107-02-8	Acrolein	T	mg/L	8260	<0.005	*	<0.005	*	/			
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005	*	<0.005	*				
71-43-2	Benzene	Т	mg/L	8260	<0.001	*	<0.001	*				
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001	*	<0.001	*				
1330-20-7	Xylenes	T	mg/L	8260	<0.003	*	<0.003	*				
100-42-5	Styrene	Т	mg/L	8260	<0.001	*	<0.001	*				
108-88-3	Toluene	T	mg/L	8260	<0.001	*	<0.001	*				
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001	*	<0.001	*				

C-83

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	2	0000-000	00	<u> </u>			$\overline{}$
Facility's Loc	cal Well or Spring Number (e.g.,	MW -1	L, MW-2, et	.c.)	221		T. BLAN	< 5				
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	VALUE	F L A G S	DETECTED VALUE OR PQL ⁶	L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001	*	<0.001	*			/	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001	*	<0.001	*				
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*				
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005	*	<0.005	*				
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005	*	<0.005	*	\			
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005	*	<0.005	*	<u> </u>	$\overline{}$		
75-00-3	Chloroethane	Т	mg/L	8260	<0.001	*	<0.001	*		\setminus		
67-66-3	Chloroform	Т	mg/L	8260	<0.001	*	<0.001	*			/	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001	*	<0.001	*			X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001	*	<0.001	*				
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001	*	<0.001	*		\mathcal{I}		
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001	*	<0.001	*	/			
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001	*	<0.001	*	/			
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001	*	<0.001	*	/			
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001	*	<0.001	*				
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001	*	<0.001	*				
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001	*	<0.001	*				
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001	*	<0.001	*				\
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001	*	<0.001	*	/			
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001	*	<0.001	*				
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001	*	<0.001	*	/			
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00055	J*	<0.001	*	$V^{}$			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	2	0000-000	0	\			
Facility's Loc	al Well or Spring Number (e.g., M	1W −1	L, MW-2, et	.c.)	221		T. BLANK	5				
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR FQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001	*	<0.001	*			/	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005	*	<0.005	*				
74-88-4	Iodomethane	Т	mg/L	8260	<0.005	*	<0.005	*				
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001	*	<0.001	*	\			
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001	*	<0.001	*		\setminus		
75-09-2	Dichloromethane	Т	mg/L	8260	0.0007	BJ*	0.00074	BJ*				
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005	*	<0.005	*				
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*		*				
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*			X	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001	*	<0.001	*				
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001	*	<0.001	*				
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001	*	<0.001	*				
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001	*	<0.001	*		/		
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001	*	<0.001	*				
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*				
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*			\	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*				
12674-11-2	PCB-1016	Т	ug/L	8082		*		*				\
11104-28-2	PCB-1221	т	ug/L	8082		*		*				
11141-16-5	PCB-1232	т	ug/L	8082		*		*				
53469-21-9	PCB-1242	т	ug/L	8082		*		*				
12672-29-6	PCB-1248	т	ug/L	8082		*		*	/			-

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description	
)00-5202 MW221	MW221SG1-22R2	Bromide		Analysis of constituent not required and not performed	
		Chloride		Analysis of constituent not required and not performed	
		Fluoride		Analysis of constituent not required and not performed	
		Nitrate & Nitrite		Analysis of constituent not required and not performed	
		Sulfate		Analysis of constituent not required and not performed	
		Total Dissolved Solids		Analysis of constituent not required and not performed	
		Aluminum		Analysis of constituent not required and not performed	
		Antimony		Analysis of constituent not required and not performed	
		Arsenic		Analysis of constituent not required and not performed	
		Barium		Analysis of constituent not required and not perfo	
		Beryllium		Analysis of constituent not required and not performed	
		Boron		Analysis of constituent not required and not performed	
		Cadmium		Analysis of constituent not required and not performed	
		Calcium	Calcium Analysis of constituent not required and not p	Analysis of constituent not required and not performed	
	Chromium Analysis of constituent no	Analysis of constituent not required and not performed			
		Cobalt		Analysis of constituent not required and not performed	
		Copper		Analysis of constituent not required and not performed	
		Iron		Analysis of constituent not required and not performed	
		Lead		Analysis of constituent not required and not performed	
		Magnesium		Analysis of constituent not required and not performed	
		Manganese		Analysis of constituent not required and not performed	
		Mercury		Analysis of constituent not required and not performed	
		Molybdenum		Analysis of constituent not required and not performed	
		Nickel		Analysis of constituent not required and not performed	
		Potassium		Analysis of constituent not required and not performed	
		Rhodium		Analysis of constituent not required and not performed	
		Selenium		Analysis of constituent not required and not performed	
		Silver		Analysis of constituent not required and not performed	
		Sodium		Analysis of constituent not required and not performed	
		Tantalum		Analysis of constituent not required and not performed	
		Thallium		Analysis of constituent not required and not performed	
		Uranium		Analysis of constituent not required and not performed	
		Vanadium		Analysis of constituent not required and not performed	
		Zinc	·	Analysis of constituent not required and not performed	
		Vinyl acetate	Н	Analysis performed outside holding time requirement.	
		Analysis performed outside holding time requirement.			
			Analysis performed outside holding time requirement.		
		Acrylonitrile	Н	Analysis performed outside holding time requirement.	
		Benzene	Н	Analysis performed outside holding time requirement.	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	•	cility mple ID	Constituent	Flag	Description
000-5202 N	/W221 MW2	21SG1-22R2	Chlorobenzene	Н	Analysis performed outside holding time requirement.
			Xylenes	Н	Analysis performed outside holding time requirement.
			Styrene	Н	Analysis performed outside holding time requirement.
			Toluene	Н	Analysis performed outside holding time requirement.
			Chlorobromomethane	Н	Analysis performed outside holding time requirement.
			Bromodichloromethane	Н	Analysis performed outside holding time requirement.
			Tribromomethane	Н	Analysis performed outside holding time requirement.
			Methyl bromide	Н	Analysis performed outside holding time requirement.
			Methyl Ethyl Ketone	Н	Analysis performed outside holding time requirement.
			trans-1,4-Dichloro-2-butene	Н	Analysis performed outside holding time requirement.
			Carbon disulfide	Н	Analysis performed outside holding time requirement.
			Chloroethane	HY1	Analysis performed outside holding time requirement ar MS/MSD recovery outside acceptance criteria.
			Chloroform	Н	Analysis performed outside holding time requirement.
		Methyl chloride	Н	Analysis performed outside holding time requirement.	
		cis-1,2-Dichloroethene	Н	Analysis performed outside holding time requirement.	
			Methylene bromide	Н	Analysis performed outside holding time requirement.
			1,1-Dichloroethane	Н	Analysis performed outside holding time requirement.
			1,2-Dichloroethane	Н	Analysis performed outside holding time requirement.
			1,1-Dichloroethylene	Н	Analysis performed outside holding time requirement.
			1,2-Dibromoethane	Н	Analysis performed outside holding time requirement.
			1,1,2,2-Tetrachloroethane	Н	Analysis performed outside holding time requirement.
			1,1,1-Trichloroethane	Н	Analysis performed outside holding time requirement.
			1,1,2-Trichloroethane	Н	Analysis performed outside holding time requirement.
			1,1,1,2-Tetrachloroethane	Н	Analysis performed outside holding time requirement.
			Vinyl chloride	Н	Analysis performed outside holding time requirement.
			Tetrachloroethene	Н	Analysis performed outside holding time requirement.
			Trichloroethene	Н	Analysis performed outside holding time requirement.
			Ethylbenzene	Н	Analysis performed outside holding time requirement.
			2-Hexanone	Н	Analysis performed outside holding time requirement.
			lodomethane	Н	Analysis performed outside holding time requirement.
			Dibromochloromethane	Н	Analysis performed outside holding time requirement.
			Carbon tetrachloride	Н	Analysis performed outside holding time requirement.
			Dichloromethane	Н	Analysis performed outside holding time requirement.
			Methyl Isobutyl Ketone	Н	Analysis performed outside holding time requirement.
			1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performed.
			1,2-Dichloropropane	Н	Analysis performed outside holding time requirement.
			trans-1,3-Dichloropropene	Н	Analysis performed outside holding time requirement.
			cis-1,3-Dichloropropene	Н	Analysis performed outside holding time requirement.
			trans-1,2-Dichloroethene	Н	Analysis performed outside holding time requirement.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5202 MW221	MW221SG1-22R2	Trichlorofluoromethane	Н	Analysis performed outside holding time requirement.
		1,2,3-Trichloropropane	Н	Analysis performed outside holding time requirement.
		1,2-Dichlorobenzene	Н	Analysis performed outside holding time requirement.
		1,4-Dichlorobenzene	Н	Analysis performed outside holding time requirement.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB6SG1-22	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony	Analysis of constituent not required a	Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium Analysis of constituent not requi	Analysis of constituent not required and not performed	
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:<u>None</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB6SG1-22	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Н	Analysis performed outside holding time requirement.
		Acetone	Н	Analysis performed outside holding time requirement.
		Acrolein	Н	Analysis performed outside holding time requirement.
		Acrylonitrile	Н	Analysis performed outside holding time requirement.
		Benzene	Н	Analysis performed outside holding time requirement.
		Chlorobenzene	Н	Analysis performed outside holding time requirement.
		Xylenes	Н	Analysis performed outside holding time requirement.
		Styrene	Н	Analysis performed outside holding time requirement.
		Toluene	Н	Analysis performed outside holding time requirement.
		Chlorobromomethane	Н	Analysis performed outside holding time requirement.
		Bromodichloromethane	Н	Analysis performed outside holding time requirement.
		Tribromomethane	Н	Analysis performed outside holding time requirement.
		Methyl bromide	Н	Analysis performed outside holding time requirement.
		Methyl Ethyl Ketone	Н	Analysis performed outside holding time requirement.
		trans-1,4-Dichloro-2-butene	Н	Analysis performed outside holding time requirement.
		Carbon disulfide	Н	Analysis performed outside holding time requirement.
		Chloroethane	HY1	Analysis performed outside holding time requirement at MS/MSD recovery outside acceptance criteria.
		Chloroform	Н	Analysis performed outside holding time requirement.
		Methyl chloride	Н	Analysis performed outside holding time requirement.
		cis-1,2-Dichloroethene	Н	Analysis performed outside holding time requirement.
		Methylene bromide	Н	Analysis performed outside holding time requirement.
		1,1-Dichloroethane	Н	Analysis performed outside holding time requirement.
		1,2-Dichloroethane	Н	Analysis performed outside holding time requirement.
		1,1-Dichloroethylene	Н	Analysis performed outside holding time requirement.
		1,2-Dibromoethane	Н	Analysis performed outside holding time requirement.
		1,1,2,2-Tetrachloroethane	Н	Analysis performed outside holding time requirement.
		1,1,1-Trichloroethane	Н	Analysis performed outside holding time requirement.
		1,1,2-Trichloroethane	Н	Analysis performed outside holding time requirement.
		1,1,1,2-Tetrachloroethane	Н	Analysis performed outside holding time requirement.
		Vinyl chloride	Н	Analysis performed outside holding time requirement.
		Tetrachloroethene	Н	Analysis performed outside holding time requirement.
		Trichloroethene	Н	Analysis performed outside holding time requirement.
		Ethylbenzene	Н	Analysis performed outside holding time requirement.
		2-Hexanone	Н	Analysis performed outside holding time requirement.
		Iodomethane	Н	Analysis performed outside holding time requirement.
		Dibromochloromethane	Н	Analysis performed outside holding time requirement.
		Carbon tetrachloride	Н	Analysis performed outside holding time requirement.

RESIDENTIAL/INERT-QUARTERLY


Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6SG1-22	Dichloromethane	Н	Analysis performed outside holding time requirement.
		Methyl Isobutyl Ketone	Н	Analysis performed outside holding time requirement.
		1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performed.
		1,2-Dichloropropane	Н	Analysis performed outside holding time requirement.
		trans-1,3-Dichloropropene	Н	Analysis performed outside holding time requirement.
		cis-1,3-Dichloropropene	Н	Analysis performed outside holding time requirement.
		trans-1,2-Dichloroethene	Н	Analysis performed outside holding time requirement.
		Trichlorofluoromethane	Н	Analysis performed outside holding time requirement.
		1,2,3-Trichloropropane	Н	Analysis performed outside holding time requirement.
		1,2-Dichlorobenzene	Н	Analysis performed outside holding time requirement.
		1,4-Dichlorobenzene	Н	Analysis performed outside holding time requirement.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 4th CY 2021

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u> Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2021 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2021 data used to conduct the statistical analyses were collected in October and November 2021. The statistical analyses for this report first used data from the initial eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one compliance well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW3891*	TW	UCRS
MW390 ¹	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

¹ **NOTE:** The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

BG: upgradient or background wells

TW: compliance or test wells

SG: sidegradient wells

^{*}Well was dry this quarter and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the background wells (identified as "BG"), the compliance or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2021. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

_

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations.

upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters

Aluminum

Beta Activity

Boron

Bromide

Calcium

Chemical Oxygen Demand (COD)

Chloride

cis-1,2-Dichloroethene

Cobalt

Conductivity

Copper

Dissolved Oxygen

Dissolved Solids

Iodide

Iron

Magnesium

Manganese

Methylene Chloride

Nickel

Oxidation-Reduction Potential

pH*

Potassium

Sodium

Sulfate

Technetium-99

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Vanadium

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	3	1	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	0	4	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	3	1	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	2	2	Yes
Conductivity	4	0	4	Yes
Copper	4	0	4	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	3	1	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	4	0	No
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
PCB, Total	4	4	0	No
PCB-1016	4	4	0	No
PCB-1221	4	4	0	No
PCB-1232	4	4	0	No
PCB-1242	4	4	0	No
PCB-1248	4	4	0	No
PCB-1254	4	4	0	No
PCB-1260	4	4	0	No
PCB-1268	4	4	0	No
pН	4	0	4	Yes
Potassium	4	1	3	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	4	0	No
Vinyl Acetate	4	4	0	No
Zinc	4	1	3	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	5	6	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	7	4	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	8	3	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	11	0	No
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	6	5	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Oxygen Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	0	11	Yes
Magnesium	11	0	11	Yes
Manganese	11	3	8	Yes
Methylene chloride	11	10	1	Yes
Molybdenum	11	11	0	No
Nickel	11	1	10	Yes
Oxidation-Reduction Potential	11	0	11	Yes
PCB, Total	11	11	0	No
PCB-1016	11	11	0	No
PCB-1221	11	11	0	No
PCB-1232	11	11	0	No
PCB-1242	11	11	0	No
PCB-1248	11	11	0	No
PCB-1254	11	11	0	No
PCB-1260	11	11	0	No
PCB-1268	11	11	0	No
pH	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	7	4	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	2	9	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	1	10	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	11	0	No
Vinyl Acetate	11	11	0	No
Zinc	11	3	8	Yes
		l .	l	

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	4	3	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	6	1	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	6	1	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	2	5	Yes
Magnesium	7	0	7	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	7	0	No
Nickel	7	2	5	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	7	0	No
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	7	0	No
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	5	2	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	5	2	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	5	2	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. For the UCRS, URGA, and LRGA, the test was applied to 25, 27, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which include those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background upper tolerance limit (UTL) for chemical oxygen demand (COD), oxidation-reduction potential, and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA	
MW386: Chemical oxygen demand (COD), oxidation-reduction potential	MW220: Oxidation-reduction potential	MW370: Oxidation-reduction potential, sulfate, technetium-99	
MW390: Oxidation-reduction potential, technetium-99	MW221: Oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate	
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Oxidation-reduction potential, sulfate	
MW396: Oxidation-reduction potential	MW223: Oxidation-reduction potential	MW388: Oxidation-reduction potential, sulfate	
	MW224: Oxidation-reduction potential	MW392: Oxidation-reduction potential	
	MW369: Technetium-99	MW395: Oxidation-reduction potential	
	MW372: Calcium, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW397: Oxidation-reduction potential	
	MW384: Sulfate, technetium-99		
	MW387: Beta activity, calcium, dissolved solids, magnesium, sulfate, technetium-99		

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	Current results exceed statistically derived historical background concentration in MW386.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentrations in MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372 and MW387.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Methylene Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW222, MW223, and MW224.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW372.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation

^{*}If CV > 1.0, used log-transformed data.

Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation

^{*}If CV > 1.0, used log-transformed data.

Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. For the UCRS, URGA, and LRGA, the test was applied to 3, 8, and 7 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate, technetium-99
MW372: Calcium, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, calcium, dissolved solids, magnesium, sulfate, technetium-99	MW388: Sulfate

<u>UCRS</u>

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the technetium-99 concentration in UCRS well (MW390) exceeded the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

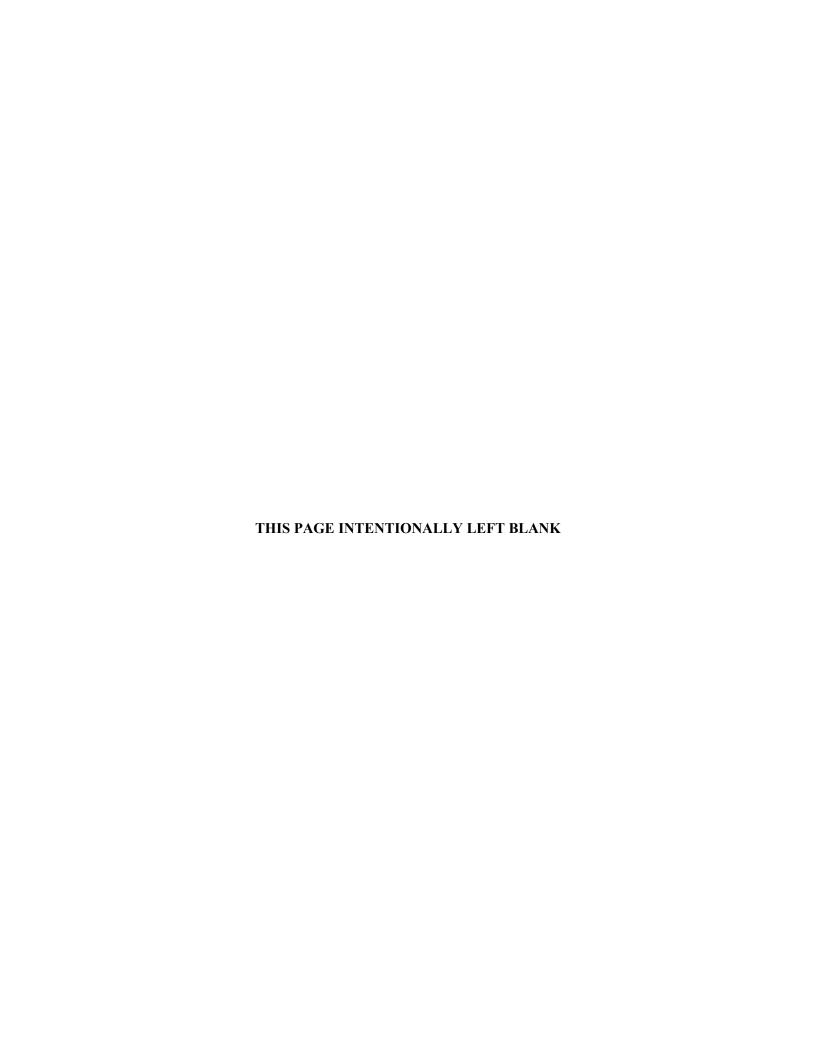
Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Chemical Oxygen Demand (COD)	Tolerance Interval	0.44	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.47	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-10.4	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.49	MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.11	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.17	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.12	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.10	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.14	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.27	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.68	MW369, MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.


Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.14	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.06	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.31	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.14	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.20	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.04	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.56	MW370 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

S = 0.182

CV(1)=0.567 K

K factor**= 3.188

TL(1) = 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259 S = 0.503

CV(2) = -0.400

K factor=** 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW390	Downgradien	t Yes	0.054	NO	-2.919	N/A	
MW393	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW396	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.833

CV(1)=1.282

K factor=** 3.188

TL(1)= 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.066

CV(2) = -1.031

K factor=** 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.693 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/14/2004 0.2 -1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.0193	N/A	-3.948	NO	
MW390	Downgradien	t Yes	0.016	N/A	-4.135	NO	
MW393	Downgradien	t Yes	0.0162	N/A	-4.123	NO	
MW396	Upgradient	Yes	0.00825	N/A	-4.798	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

CV(1)=0.236

K factor**= 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.301

S= 0.252

S = 0.327

CV(2)=0.838

K factor**= 3.188

TL(2)=1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.126	NO	-2.071	N/A	
MW390	Downgradien	t Yes	0.345	NO	-1.064	N/A	
MW393	Downgradien	t Yes	0.282	NO	-1.266	N/A	
MW396	Upgradient	Yes	0.96	NO	-0.041	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor**= 3.188

TL(1)= 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.711 **S**= 0.241

CV(2)=0.065

K factor**= 3.188

TL(2)= 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	21.4	NO	3.063	N/A
MW390	Downgradien	t Yes	29.5	NO	3.384	N/A
MW393	Downgradien	t Yes	12	NO	2.485	N/A
MW396	Upgradient	Yes	31	NO	3.434	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=35.375 S= 0.744 CV(1)=0.021

K factor**= 3.188

TL(1)= 37.747 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.566 S = 0.021

CV(2) = 0.006

K factor=** 3.188

TL(2) = 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW396	
Result	LN(Result)
36	3.584
35	3.555
37	3.611
35	3.555
35	3.555
35	3.555
35	3.555
35	3.555
	Result 36 35 37 35 35 35 35

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	56.2	YES	4.029	N/A
MW390	Downgradien	t No	46	N/A	3.829	N/A
MW393	Downgradien	t No	22.9	N/A	3.131	N/A
MW396	Upgradient	No	33.2	N/A	3.503	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.052

Statistics-Background Data

X = 101.725 S = 5.245

K factor**= 3.188

TL(1)= 118.447

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.621

S= 0.053 CV(2)=0.011

K factor=** 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	11.5	NO	2.442	N/A
MW390	Downgradien	t Yes	35.3	NO	3.564	N/A
MW393	Downgradien	t Yes	11.6	NO	2.451	N/A
MW396	Upgradient	Yes	56.6	NO	4.036	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

S = 0.011 C

CV(1)=1.340 K factor**= 3.188

88 **TL(1)=** 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.645 S = 1.339

CV(2) = -0.237

K factor=** 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0144	N/A	-4.241	NO
MW390	Downgradien	t No	0.001	N/A	-6.908	N/A
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.00248	N/A	-5.999	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor**= 3.188

TL(1)= 1265.579 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.822

 $S= 0.111 \quad CV(2)=0.016$

K factor=** 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	589	NO	6.378	N/A
MW390	Downgradien	t Yes	601	NO	6.399	N/A
MW393	Downgradien	t Yes	389	NO	5.964	N/A
MW396	Upgradient	Yes	726	NO	6.588	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **UCRS** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1) = 0.481S = 0.014

K factor=** 3.188

TL(1) = 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414

CV(2) = -0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00035	2 NO	-7.952	N/A
MW390	Downgradien	t Yes	0.00088	1 NO	-7.034	N/A
MW393	Downgradien	t Yes	0.00055	1 NO	-7.504	N/A
MW396	Upgradient	Yes	0.00040	9 NO	-7.802	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-11

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

CV(1) = 1.202

K factor**= 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

S = 1.677S = 0.814

CV(2) = -18.867

K factor=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.48	N/A	-0.734	NO
MW390	Downgradien	t Yes	1.99	N/A	0.688	NO
MW393	Downgradien	t Yes	1.7	N/A	0.531	NO
MW396	Upgradient	Yes	0.9	N/A	-0.105	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor**= 3.188

TL(1)= 882.980 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.298

S = 0.162 CV(2) = 0.026

K factor**= 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	380	NO	5.940	N/A
MW390	Downgradien	t Yes	363	NO	5.894	N/A
MW393	Downgradien	t Yes	236	NO	5.464	N/A
MW396	Upgradient	Yes	436	NO	6.078	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-13

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

S = 0.283 CV(1) = 0.132

K factor**= 3.188

TL(1) = 3.052

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.759

S= 0.123

CV(2)=0.162

K factor=** 3.188

TL(2)=1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.661	NO	-0.414	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

S= 3.723 **CV(1)**=0.478

K factor**= 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880

S= 0.723

CV(2)=0.384

K factor=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.588 1.8 9/16/2002 9.53 2.254 10/16/2002 7.43 2.006 1/13/2003 9.93 2.296 4/8/2003 2.322 10.2 7/16/2003 9.16 2.215 10/14/2003 11.9 2.477 0.884 1/14/2004 2.42

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	2.12	NO	0.751	N/A
MW390	Downgradien	t Yes	0.0381	NO	-3.268	N/A
MW393	Downgradien	t Yes	1.9	NO	0.642	N/A
MW396	Upgradient	Yes	4.15	NO	1.423	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 16.876 S = 3.313

CV(1)=0.196

K factor**= 3.188

TL(1) = 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S= 0.240 **CV(2)**=0.086

K factor**= 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 2.741 15.5 9/16/2002 17.3 2.851 10/16/2002 17.8 2.879 1/13/2003 19.2 2.955 4/8/2003 17.8 2.879 7/16/2003 17.8 2.879 10/14/2003 20.2 3.006 1/14/2004 9.41 2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	8.86	NO	2.182	N/A
MW390	Downgradien	t Yes	12.1	NO	2.493	N/A
MW393	Downgradien	t Yes	3.51	NO	1.256	N/A
MW396	Upgradient	Yes	13.5	NO	2.603	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

S = 0.353

CV(1)=0.456**K factor**=** 3.188 TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.566 S = 1.192 CV(2) = -2.105

K factor=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.43	NO	0.358	N/A
MW390	Downgradien	t No	0.005	N/A	-5.298	N/A
MW393	Downgradien	t Yes	0.0543	NO	-2.913	N/A
MW396	Upgradient	Yes	0.502	NO	-0.689	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-17

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Nickel UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

CV(1)=1.272

K factor=** 3.188

TL(1) = 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

S = 0.021

CV(2) = -0.225

K factor=** 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0028	N/A	-5.878	NO
MW390	Downgradien	t Yes	0.0014	N/A	-6.571	NO
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A
MW396	Upgradient	Yes	0.00156	N/A	-6.463	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-18

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison UNITS: mV Oxidation-Reduction Potential UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor**= 3.188

TL(1)= 210.502 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.364

S = 0.333

CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

L	Current Quarter Data									
V	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
-	MW386	Sidegradient	Yes	137	N/A	4.920	YES			
	MW390	Downgradien	t Yes	383	N/A	5.948	YES			
	MW393	Downgradien	t Yes	289	N/A	5.666	YES			
	MW396	Upgradient	Yes	181	N/A	5.198	YES			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-19

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

 $S= 0.350 \quad CV(1)=0.054$

K factor=** 3.736

TL(1) = 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X = 1.864

S = 0.054

CV(2) = 0.029

K factor**= 3.736

TL(2) = 2.067

LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 6.17 1.820 9/16/2002 6.4 1.856 5.9 10/16/2002 1.775 1/13/2003 6.4 1.856 4/8/2003 6.65 1.895 7/16/2003 6.4 1.856 10/14/2003 1.904 6.71 1/14/2004 7.05 1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Dat	ıta	Da	rter	Oua	rent	Curr
---------------------	-----	----	------	-----	------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.24	NO	1.831	N/A
MW390	Downgradien	t Yes	6.15	NO	1.816	N/A
MW393	Downgradien	t Yes	6.12	NO	1.812	N/A
MW396	Upgradient	Yes	6.33	NO	1.845	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

S= 0.399 **CV(1)**=0.282

K factor**= 3.188

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311

S= 0.271

CV(2)=0.870

K factor=** 3.188

TL(2)=1.175

TL(1) = 2.682

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	0.295	NO	-1.221	N/A			
MW390	Downgradien	t Yes	0.337	NO	-1.088	N/A			
MW393	Downgradien	t No	0.41	N/A	-0.892	N/A			
MW396	Upgradient	Yes	0.852	NO	-0.160	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor**= 3.188

TL(1)= 208.973 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.595 S = 0.492

CV(2) = 0.107

K factor=** 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	108	NO	4.682	N/A			
MW390	Downgradien	t Yes	91.1	NO	4.512	N/A			
MW393	Downgradien	t Yes	64.9	NO	4.173	N/A			
MW396	Upgradient	Yes	93.9	NO	4.542	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.463 S = 8.876

CV(1)=0.395

K factor**= 3.188

TL(1) = 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054

S = 0.351

CV(2) = 0.115

K factor=** 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 41.9 3.735 9/16/2002 26.3 3.270 10/16/2002 20.6 3.025 1/13/2003 16.6 2.809 4/8/2003 23.9 3.174 7/16/2003 18.8 2.934 10/14/2003 12.9 2.557 1/14/2004 18.7 2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW386	Sidegradient	Yes	35.1	NO	3.558	N/A				
MW390	Downgradien	t Yes	37.3	NO	3.619	N/A				
MW393	Downgradien	t Yes	16.1	NO	2.779	N/A				
MW396	Upgradient	Yes	26.2	NO	3.266	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

S= 6.558 **CV(1)**=0.860

K factor**= 3.188

TL(1)= 28.531

LL(1)=N/A

Statistics-Transformed Background

X = 1.498

S= 1.321

CV(2) = 0.882

K factor**= 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	-1.72	N/A	#Error	N/A		
MW390	Downgradien	t Yes	47.3	YES	3.857	N/A		
MW393	Downgradien	t No	2.66	N/A	0.978	N/A		
MW396	Upgradient	No	-3.65	N/A	#Error	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

S= 4.696 **CV(1)**=0.470

K factor**= 3.188

TL(1)= 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 0.454

CV(2) = 0.205

K factor**= 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	12.3	NO	2.510	N/A			
MW390	Downgradien	t Yes	2.3	NO	0.833	N/A			
MW393	Downgradien	t Yes	2.47	NO	0.904	N/A			
MW396	Upgradient	Yes	5.01	NO	1.611	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

K factor=** 3.188

TL(1)= 313.314 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.896 S = 0.390

CV(2)=0.080

K factor=** 3.188

TL(2) = 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	259	NO	5.557	N/A
MW390	Downgradien	t Yes	13.5	NO	2.603	N/A
MW393	Downgradien	t Yes	13.6	NO	2.610	N/A
MW396	Upgradient	Yes	23.3	NO	3.148	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

S= 0.035 **CV(1)**=0.786

K factor**= 3.188

TL(1)= 0.156

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.342 S = 0.682

CV(2) = -0.204

K factor**= 3.188

TL(2) = -1.168

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.02	N/A	-3.912	N/A
MW390	Downgradien	t Yes	0.00353	NO	-5.646	N/A
MW393	Downgradien	t Yes	0.00483	NO	-5.333	N/A
MW396	Upgradient	Yes	0.00368	NO	-5.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.221

S = 0.061

CV(1)=0.277

K factor**= 2.523

TL(1) = 0.376

LL(1)=N/A

Statistics-Transformed Background

X=-1.534 S= 0.212 CV(2)=-0.138

K factor=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.427	-0.851
1/13/2004	0.309	-1.174
4/13/2004	0.2	-1.609
7/21/2004	0.202	-1.599
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	0.0298	NO	-3.513	N/A
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A
MW222	Sidegradient	Yes	0.0375	NO	-3.283	N/A
MW223	Sidegradient	Yes	0.0351	NO	-3.350	N/A
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A
MW369	Downgradien	t Yes	0.022	NO	-3.817	N/A
MW372	Downgradien	t No	0.05	N/A	-2.996	N/A
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A
MW387	Downgradien	t No	0.05	N/A	-2.996	N/A
MW391	Downgradien	t Yes	0.02	NO	-3.912	N/A
MW394	Upgradient	Yes	0.106	NO	-2.244	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Beta activity UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.273 S = 13.883 CV(1) = 0.973

K factor**= 2.523

TL(1) = 49.300

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.213 S = 1.033 CV(2) = 0.467

K factor=** 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	11.4	N/A	2.434	N/A
MW221	Sidegradient	No	4.24	N/A	1.445	N/A
MW222	Sidegradient	No	5.17	N/A	1.643	N/A
MW223	Sidegradient	No	7.03	N/A	1.950	N/A
MW224	Sidegradient	No	3.8	N/A	1.335	N/A
MW369	Downgradien	t Yes	41.8	N/A	3.733	N/A
MW372	Downgradien	t Yes	35.6	N/A	3.572	N/A
MW384	Sidegradient	No	8.16	N/A	2.099	N/A
MW387	Downgradien	t Yes	147	YES	4.990	N/A
MW391	Downgradien	t No	-8.49	N/A	#Error	N/A
MW394	Upgradient	No	-1.56	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW387

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-29

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Boron** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.425

S = 0.615

CV(1) = 1.447**K** factor**= 2.523 **TL(1)=** 1.976

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.322 S= 0.786 CV(2)=-0.595

K factor=** 2.523

TL(2) = 0.663

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2 0.2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00737	N/A	-4.910	NO
MW221	Sidegradient	Yes	0.0169	N/A	-4.080	NO
MW222	Sidegradient	Yes	0.00799	N/A	-4.830	NO
MW223	Sidegradient	Yes	0.00776	N/A	-4.859	NO
MW224	Sidegradient	Yes	0.0109	N/A	-4.519	NO
MW369	Downgradien	t Yes	0.0171	N/A	-4.069	NO
MW372	Downgradien	t Yes	1.23	N/A	0.207	NO
MW384	Sidegradient	Yes	0.0321	N/A	-3.439	NO
MW387	Downgradien	t Yes	0.0302	N/A	-3.500	NO
MW391	Downgradien	t Yes	0.0277	N/A	-3.586	NO
MW394	Upgradient	Yes	0.0195	N/A	-3.937	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Bromide URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.000**K** factor**= 2.523 Statistics-Background Data X = 1.000S = 0.000TL(1)=1.000LL(1)=N/A **Statistics-Transformed Background CV(2)=**#Num!

Data

X = 0.000S = 0.000 **K factor**=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1 0.000 0.0004/10/2003 7/14/2003 1 0.000 10/13/2003 1 0.000 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1 0.0009/16/2002 1 0.000 10/16/2002 1 0.000 1/13/2003 0.0004/10/2003 0.0007/16/2003 1 0.00010/14/2003 0.000 1

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.28	NO	-1.273	N/A	
MW221	Sidegradient	Yes	0.457	NO	-0.783	N/A	
MW222	Sidegradient	Yes	0.344	NO	-1.067	N/A	
MW223	Sidegradient	Yes	0.353	NO	-1.041	N/A	
MW224	Sidegradient	Yes	0.3	NO	-1.204	N/A	
MW369	Downgradien	t Yes	0.327	NO	-1.118	N/A	
MW372	Downgradien	t Yes	0.678	NO	-0.389	N/A	
MW384	Sidegradient	Yes	0.263	NO	-1.336	N/A	
MW387	Downgradien	t Yes	0.527	NO	-0.641	N/A	
MW391	Downgradien	t Yes	0.522	NO	-0.650	N/A	
MW394	Upgradient	Yes	0.689	NO	-0.373	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-31

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 27.638 S = 4.743

CV(1)=0.172

K factor**= 2.523

TL(1)= 39.604

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.304

S= 0.183

CV(2) = 0.055

K factor=** 2.523

TL(2) = 3.765

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 23.6 3.161 1/15/2003 25.9 3.254 4/10/2003 30.4 3.414 7/14/2003 33.9 3.523 3.059 10/13/2003 21.3 1/13/2004 20.3 3.011 4/13/2004 23.8 3.170 7/21/2004 19 2.944 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 29.5 3.384 9/16/2002 29.9 3.398 10/16/2002 31.2 3.440 1/13/2003 30.7 3.424 4/10/2003 34.4 3.538 7/16/2003 29.6 3.388 10/14/2003 30.3 3.411 1/13/2004 28.4 3.346

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	Yes	21.3	NO	3.059	N/A		
MW221	Sidegradient	Yes	18.8	NO	2.934	N/A		
MW222	Sidegradient	Yes	12.6	NO	2.534	N/A		
MW223	Sidegradient	Yes	12.4	NO	2.518	N/A		
MW224	Sidegradient	Yes	18.3	NO	2.907	N/A		
MW369	Downgradien	t Yes	15.1	NO	2.715	N/A		
MW372	Downgradien	t Yes	64.8	YES	4.171	N/A		
MW384	Sidegradient	Yes	21.7	NO	3.077	N/A		
MW387	Downgradien	t Yes	42.7	YES	3.754	N/A		
MW391	Downgradien	t Yes	23.1	NO	3.140	N/A		
MW394	Upgradient	Yes	24.6	NO	3.203	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.000**K** factor**= 2.523 Statistics-Background Data X = 35.000 S = 0.000TL(1) = 35.000LL(1)=N/A **Statistics-Transformed Background** X = 3.555CV(2)=0.000S = 0.000**K factor**=** 2.523 TL(2) = 3.555LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555

35

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	No	20	N/A	2.996	N/A	
MW221	Sidegradient	No	20	N/A	2.996	N/A	
MW222	Sidegradient	Yes	9.13	NO	2.212	N/A	
MW223	Sidegradient	Yes	12.4	NO	2.518	N/A	
MW224	Sidegradient	No	20	N/A	2.996	N/A	
MW369	Downgradien	t No	12.6	N/A	2.534	N/A	
MW372	Downgradien	t Yes	16.2	NO	2.785	N/A	
MW384	Sidegradient	No	30.6	N/A	3.421	N/A	
MW387	Downgradien	t No	28	N/A	3.332	N/A	
MW391	Downgradien	t No	28	N/A	3.332	N/A	
MW394	Upgradient	No	25.5	N/A	3.239	N/A	
NI/A Danie	14. : 14:6: . 1 N	T D-44-	1		4-41:4-4:	1 4	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-33

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor**= 2.523

TL(1) = 77.499

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.866 S = 0.244 CV(2) = 0.063

K factor=** 2.523

TL(2) = 4.482

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.101
Date Collected	Result	` /
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	16.7	NO	2.815	N/A	
MW221	Sidegradient	Yes	35.2	NO	3.561	N/A	
MW222	Sidegradient	Yes	24.4	NO	3.195	N/A	
MW223	Sidegradient	Yes	24.6	NO	3.203	N/A	
MW224	Sidegradient	Yes	19.9	NO	2.991	N/A	
MW369	Downgradien	t Yes	29.3	NO	3.378	N/A	
MW372	Downgradien	t Yes	39.8	NO	3.684	N/A	
MW384	Sidegradient	Yes	23.9	NO	3.174	N/A	
MW387	Downgradien	t Yes	39.7	NO	3.681	N/A	
MW391	Downgradien	t Yes	40.1	NO	3.691	N/A	
MW394	Upgradient	Yes	46	NO	3.829	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-34

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Cobalt **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=2.440**K** factor**= 2.523 Statistics-Background Data X = 0.016S = 0.040TL(1) = 0.116LL(1)=N/A **Statistics-Transformed Background** X=-5.582 S= 1.573 CV(2)=-0.282

Data

K factor=** 2.523

TL(2) = -1.613

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.497 1/15/2003 0.00496 -5.3060.00289 4/10/2003 -5.8467/14/2003 0.161 -1.8260.0226 -3.79010/13/2003 1/13/2004 0.00464 -5.3734/13/2004 0.001 -6.908 7/21/2004 0.00264 -5.937Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.689 9/16/2002 0.025 -3.689 -6.908 10/16/2002 0.001 1/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	No	0.001	N/A	-6.908	N/A	
MW221	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW222	Sidegradient	Yes	0.00033	6 N/A	-7.998	NO	
MW223	Sidegradient	Yes	0.00042	N/A	-7.775	NO	
MW224	Sidegradient	Yes	0.00043	N/A	-7.752	NO	
MW369	Downgradien	t Yes	0.00429	N/A	-5.451	NO	
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW394	Upgradient	Yes	0.00044	1 N/A	-7.726	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-35

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison **Conductivity** UNITS: umho/cm **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor**= 2.523

TL(1)=652.432 LL(1)=N/A

Statistics-Transformed Background

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2) = 8.652

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 5.908 368 1/15/2003 433.2 6.071 489 6.192 4/10/2003 7/14/2003 430 6.064 10/13/2003 346 5.846 1/13/2004 365 5.900 4/13/2004 416 6.031 7/21/2004 353 5.866 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 406 6.006 9/16/2002 418 6.035 10/16/2002 411 6.019 1/13/2003 422 6.045 4/10/2003 420 6.040 7/16/2003 438 6.082 1.364 10/14/2003 3.91 5.979 1/13/2004 395

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	341	NO	5.832	N/A	
MW221	Sidegradient	Yes	397	NO	5.984	N/A	
MW222	Sidegradient	Yes	317	NO	5.759	N/A	
MW223	Sidegradient	Yes	420	NO	6.040	N/A	
MW224	Sidegradient	Yes	415	NO	6.028	N/A	
MW369	Downgradien	t Yes	305	NO	5.720	N/A	
MW372	Downgradien	t Yes	484	NO	6.182	N/A	
MW384	Sidegradient	Yes	342	NO	5.835	N/A	
MW387	Downgradien	t Yes	561	NO	6.330	N/A	
MW391	Downgradien	t Yes	380	NO	5.940	N/A	
MW394	Upgradient	Yes	394	NO	5.976	N/A	
MW369 MW372 MW384 MW387 MW391 MW394	Downgradien Downgradient Sidegradient Downgradien Downgradien Upgradient	t Yes t Yes Yes t Yes t Yes t Yes t Yes Yes	305 484 342 561 380 394	NO NO NO NO	5.720 6.182 5.835 6.330 5.940 5.976	N/A N/A N/A N/A N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-36

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.429**K** factor**= 2.523 Statistics-Background Data X = 0.024S = 0.010TL(1) = 0.050LL(1)=N/A **Statistics-Transformed Background** X = -3.794 S = 0.312 CV(2) = -0.082LL(2)=N/A

Data

K factor=** 2.523

TL(2) = -3.007

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.8581/15/2003 0.02 -3.9120.02 -3.9124/10/2003 7/14/2003 0.02 -3.91210/13/2003 0.02 -3.9121/13/2004 0.02 -3.9124/13/2004 0.02 -3.9127/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.996-3.91210/16/2002 0.02 1/13/2003 0.02 -3.912 -3.9124/10/2003 0.02 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	0.00146	NO	-6.529	N/A
MW221	Sidegradient	Yes	0.000728	8 NO	-7.225	N/A
MW222	Sidegradient	Yes	0.00043	8 NO	-7.733	N/A
MW223	Sidegradient	Yes	0.000443	3 NO	-7.722	N/A
MW224	Sidegradient	Yes	0.00082	8 NO	-7.096	N/A
MW369	Downgradien	t Yes	0.00113	NO	-6.786	N/A
MW372	Downgradien	t Yes	0.00075	5 NO	-7.189	N/A
MW384	Sidegradient	Yes	0.00040	5 NO	-7.812	N/A
MW387	Downgradien	t Yes	0.000398	8 NO	-7.829	N/A
MW391	Downgradien	t Yes	0.00134	NO	-6.615	N/A
MW394	Upgradient	Yes	0.00142	NO	-6.557	N/A
3.7/1 B	1	, p				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-37

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.499**K** factor**= 2.523 Statistics-Background Data X = 3.784S = 1.887TL(1) = 8.545LL(1)=N/A **Statistics-Transformed Background** X = 1.182CV(2) = 0.518S = 0.612**K factor**=** 2.523 TL(2) = 2.727LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 4/10/2003 3.6 1.281 7/14/2003 0.94 -0.06210/13/2003 0.501 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 1.343 3.83 4/10/2003 4.15 1.423 7/16/2003 0.604 1.83

3.33

3.14

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	3.73	NO	1.316	N/A	
MW221	Sidegradient	Yes	5.3	NO	1.668	N/A	
MW222	Sidegradient	Yes	4.57	NO	1.520	N/A	
MW223	Sidegradient	Yes	5.04	NO	1.617	N/A	
MW224	Sidegradient	Yes	2.33	NO	0.846	N/A	
MW369	Downgradien	t Yes	2.82	NO	1.037	N/A	
MW372	Downgradien	t Yes	2.28	NO	0.824	N/A	
MW384	Sidegradient	Yes	5.77	NO	1.753	N/A	
MW387	Downgradien	t Yes	3.63	NO	1.289	N/A	
MW391	Downgradien	t Yes	4.26	NO	1.449	N/A	
MW394	Upgradient	Yes	5.7	NO	1.740	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.203

1.144

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor**= 2.523

TL(1)=302.045 LL(1)=N/A

Statistics-Transformed Background

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	` /
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	194	NO	5.268	N/A	
MW221	Sidegradient	Yes	191	NO	5.252	N/A	
MW222	Sidegradient	Yes	166	NO	5.112	N/A	
MW223	Sidegradient	Yes	177	NO	5.176	N/A	
MW224	Sidegradient	Yes	204	NO	5.318	N/A	
MW369	Downgradien	t Yes	179	NO	5.187	N/A	
MW372	Downgradien	t Yes	461	YES	6.133	N/A	
MW384	Sidegradient	Yes	179	NO	5.187	N/A	
MW387	Downgradien	t Yes	331	YES	5.802	N/A	
MW391	Downgradien	t Yes	206	NO	5.328	N/A	
MW394	Upgradient	Yes	219	NO	5.389	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-39

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.897

S= 1.050

CV(1)=1.170

K factor=** 2.523

TL(1) = 3.545

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.565 S = 0.951

0.951 **CV(2)=**-1.683

K factor**= 2.523

TL(2)=1.834

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6094/10/2003 0.429 -0.8467/14/2003 4.33 1.466 0.593 10/13/2003 1.81 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.0407/21/2004 0.382 -0.962Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38 1/13/2003 0.262 1.3 4/10/2003 0.494 -0.7057/16/2003 0.62 -0.47810/14/2003 0.37 -0.9941/13/2004 0.251 -1.382

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	0.0847	N/A	-2.469	NO	
MW221	Sidegradient	Yes	0.103	N/A	-2.273	NO	
MW222	Sidegradient	Yes	0.0422	N/A	-3.165	NO	
MW223	Sidegradient	Yes	0.0392	N/A	-3.239	NO	
MW224	Sidegradient	Yes	0.174	N/A	-1.749	NO	
MW369	Downgradien	t Yes	0.0624	N/A	-2.774	NO	
MW372	Downgradien	t Yes	0.036	N/A	-3.324	NO	
MW384	Sidegradient	Yes	0.123	N/A	-2.096	NO	
MW387	Downgradien	t Yes	0.0543	N/A	-2.913	NO	
MW391	Downgradien	t Yes	0.0549	N/A	-2.902	NO	
MW394	Upgradient	Yes	0.366	N/A	-1.005	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X=10.796 S= 1.703 CV(1)=0.158

K factor**= 2.523

TL(1)= 15.092

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.368 S = 0.158

CV(2) = 0.067

K factor=** 2.523

TL(2) = 2.766

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 9.16 2.215 1/15/2003 10 2.303 4/10/2003 10.8 2.380 7/14/2003 14.7 2.688 10/13/2003 9.03 2.201 1/13/2004 8.49 2.139 4/13/2004 9.7 2.272 7/21/2004 8.06 2.087 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 11.8 2.468 9/16/2002 12.1 2.493 10/16/2002 11.3 2.425 1/13/2003 10.3 2.332 4/10/2003 11.7 2.460 7/16/2003 12 2.485 10/14/2003 12.2 2.501 1/13/2004 11.4 2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	8.31	NO	2.117	N/A
MW221	Sidegradient	Yes	8.82	NO	2.177	N/A
MW222	Sidegradient	Yes	5.88	NO	1.772	N/A
MW223	Sidegradient	Yes	5.8	NO	1.758	N/A
MW224	Sidegradient	Yes	8.6	NO	2.152	N/A
MW369	Downgradien	t Yes	6.77	NO	1.913	N/A
MW372	Downgradien	t Yes	22.8	YES	3.127	N/A
MW384	Sidegradient	Yes	8.74	NO	2.168	N/A
MW387	Downgradien	t Yes	18.1	YES	2.896	N/A
MW391	Downgradien	t Yes	9.67	NO	2.269	N/A
MW394	Upgradient	Yes	10.3	NO	2.332	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.287

CV(1)=2.156

K factor**= 2.523

TL(1)= 1.848

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.455 S = 1.619 CV(2) = -0.659

S = 0.619

K factor=** 2.523

TL(2) = 1.630

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.537-4.2904/10/2003 0.0137 7/14/2003 2.54 0.932 -0.97310/13/2003 0.378 1/13/2004 0.159 -1.8394/13/2004 0.00707 -4.952 7/21/2004 0.0841 -2.476Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.864-2.27310/16/2002 0.103 1/13/2003 0.128 -2.0564/10/2003 0.005 -5.298-1.302

0.272

0.0795

0.0658

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00102	N/A	-6.888	NO
MW221	Sidegradient	No	0.005	N/A	-5.298	N/A
MW222	Sidegradient	No	0.005	N/A	-5.298	N/A
MW223	Sidegradient	Yes	0.00123	N/A	-6.701	NO
MW224	Sidegradient	Yes	0.00158	N/A	-6.450	NO
MW369	Downgradien	t Yes	0.00774	N/A	-4.861	NO
MW372	Downgradien	t No	0.005	N/A	-5.298	N/A
MW384	Sidegradient	Yes	0.00635	N/A	-5.059	NO
MW387	Downgradien	t Yes	0.00729	N/A	-4.921	NO
MW391	Downgradien	t Yes	0.00254	N/A	-5.976	NO
MW394	Upgradient	Yes	0.0535	N/A	-2.928	NO
NI/A D	14. : 14:6: - 1 N	T D-44-	1		4-41:4-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.532

-2.721

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Methylene chloride UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.156**K** factor**= 2.523 Statistics-Background Data X = 4.813S = 0.750TL(1) = 6.705LL(1)=N/A **Statistics-Transformed Background** LL(2)=N/A

Data

X = 1.552S = 0.229 CV(2) = 0.148

K factor=** 2.523

TL(2) = 2.130

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.609 5 1/15/2003 5 1.609 4/10/2003 5 1.609 7/14/2003 5 1.609 5 10/13/2003 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 2 0.693 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	5	N/A	1.609	N/A
MW221	Sidegradient	Yes	0.7	NO	-0.357	N/A
MW222	Sidegradient	No	5	N/A	1.609	N/A
MW223	Sidegradient	No	5	N/A	1.609	N/A
MW224	Sidegradient	No	5	N/A	1.609	N/A
MW369	Downgradien	t No	5	N/A	1.609	N/A
MW372	Downgradien	t No	5	N/A	1.609	N/A
MW384	Sidegradient	No	5	N/A	1.609	N/A
MW387	Downgradien	t No	5	N/A	1.609	N/A
MW391	Downgradien	t No	5	N/A	1.609	N/A
MW394	Upgradient	No	5	N/A	1.609	N/A
		_				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.127 S = 0.228 CV(1) = 1.790 K factor** = 2.523
 TL(1) = 0.701 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.617 S = 1.837 CV(2) = -0.508 K factor** = 2.523
 TL(2) = 1.019 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.304-0.609 4/10/2003 0.544 7/14/2003 0.106-2.244-2.93910/13/2003 0.0529 1/13/2004 0.0209 -3.8684/13/2004 0.005 -5.298 7/21/2004 0.0192 -3.953Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/16/2002 0.005 -5.2981/13/2003 0.005 -5.298 4/10/2003 0.005 -5.2987/16/2003 0.005 -5.29810/14/2003 0.005 -5.2981/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00671	N/A	-5.004	NO
MW221	Sidegradient	Yes	0.00486	N/A	-5.327	NO
MW222	Sidegradient	Yes	0.0223	N/A	-3.803	NO
MW223	Sidegradient	Yes	0.0224	N/A	-3.799	NO
MW224	Sidegradient	Yes	0.0422	N/A	-3.165	NO
MW369	Downgradien	t Yes	0.00279	N/A	-5.882	NO
MW372	Downgradien	t No	0.002	N/A	-6.215	N/A
MW384	Sidegradient	Yes	0.00063	1 N/A	-7.368	NO
MW387	Downgradien	t Yes	0.00069	5 N/A	-7.272	NO
MW391	Downgradien	t Yes	0.00108	N/A	-6.831	NO
MW394	Upgradient	Yes	0.00696	N/A	-4.968	NO
N/A - Resu	lts identified as N	Ion-Detects	luring laho	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison URGA Oxidation-Reduction Potential UNITS:** mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor=** 2.523

TL(1)= 397.652 **LL(1)=**N/A

Statistics-Transformed Background

X=4.861 S= 1.252 CV(2)=0.258

K factor=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1						
Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	443	YES	6.094	N/A
MW221	Sidegradient	Yes	459	YES	6.129	N/A
MW222	Sidegradient	Yes	438	YES	6.082	N/A
MW223	Sidegradient	Yes	448	YES	6.105	N/A
MW224	Sidegradient	Yes	403	YES	5.999	N/A
MW369	Downgradien	t Yes	343	NO	5.838	N/A
MW372	Downgradien	t Yes	390	NO	5.966	N/A
MW384	Sidegradient	Yes	369	NO	5.911	N/A
MW387	Downgradien	t Yes	367	NO	5.905	N/A
MW391	Downgradien	t Yes	385	NO	5.953	N/A
MW394	Upgradient	Yes	370	NO	5.914	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220 MW221

MW222

MW223

MW224

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-45

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.138

S = 0.282

CV(1)=0.046

K factor=** 2.904

TL(1) = 6.957

LL(1)=5.3179

Statistics-Transformed Background Data

X = 1.813

S = 0.047

CV(2) = 0.026

K factor**= 2.904

TL(2)= 1.950

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.04	1.798
1/15/2003	6.31	1.842
4/10/2003	6.5	1.872
7/14/2003	6.3	1.841
10/13/2003	6.34	1.847
1/13/2004	6.33	1.845
4/13/2004	6.3	1.841
7/21/2004	5.9	1.775
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 8/13/2002	Result 5.8	1.758
Date Collected 8/13/2002 9/30/2002	Result 5.8 5.93	1.758 1.780
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5.8 5.93 5.42	1.758 1.780 1.690
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5.8 5.93 5.42 6	1.758 1.780 1.690 1.792
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.8 5.93 5.42 6 6.04	1.758 1.780 1.690 1.792 1.798

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Culltuit	Vuui tti	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>, ,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	, ,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.05	NO	1.800	N/A
MW221	Sidegradient	Yes	5.97	NO	1.787	N/A
MW222	Sidegradient	Yes	6.28	NO	1.837	N/A
MW223	Sidegradient	Yes	6.09	NO	1.807	N/A
MW224	Sidegradient	Yes	6.17	NO	1.820	N/A
MW369	Downgradien	t Yes	6	NO	1.792	N/A
MW372	Downgradien	t Yes	5.8	NO	1.758	N/A
MW384	Sidegradient	Yes	5.66	NO	1.733	N/A
MW387	Downgradien	t Yes	5.74	NO	1.747	N/A
MW391	Downgradien	t Yes	6.02	NO	1.795	N/A
MW394	Upgradient	Yes	6.14	NO	1.815	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Potassium URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.399**K** factor**= 2.523 Statistics-Background Data X = 6.654S = 9.310TL(1)=30.144LL(1)=N/A **Statistics-Transformed Background** X = 1.130S = 1.208CV(2) = 1.069**K factor**=** 2.523 TL(2) = 4.178LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.902 6.7 1/15/2003 29.7 3.391 3.215 4/10/2003 24.9 7/14/2003 1.13 0.122 10/13/2003 3.43 1.233 1/13/2004 6.71 1.904 4/13/2004 19.3 2.960 7/21/2004 3.97 1.379 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 1.03 0.030 1/13/2003 0.095 1.1 4/10/2003 1.24 0.215 7/16/2003 1.14 0.131 10/14/2003 1.05 0.049 1/13/2004 1.07 0.068

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	2.15	N/A	0.765	NO
MW221	Sidegradient	Yes	1.27	N/A	0.239	NO
MW222	Sidegradient	Yes	0.621	N/A	-0.476	NO
MW223	Sidegradient	Yes	0.592	N/A	-0.524	NO
MW224	Sidegradient	Yes	1.11	N/A	0.104	NO
MW369	Downgradien	t Yes	0.67	N/A	-0.400	NO
MW372	Downgradien	t Yes	2.29	N/A	0.829	NO
MW384	Sidegradient	Yes	1.31	N/A	0.270	NO
MW387	Downgradien	t Yes	1.88	N/A	0.631	NO
MW391	Downgradien	t Yes	1.64	N/A	0.495	NO
MW394	Upgradient	Yes	1.46	N/A	0.378	NO
NI/A D.	14. : 14:6: . 1 N	T D-44-	1		4-41:4-4:	4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-47

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 36.363 **S**= 8.666

CV(1) = 0.238

K factor**= 2.523

TL(1) = 58.227

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.570

S = 0.222

CV(2)=0.062

K factor=** 2.523

TL(2) = 4.129

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35.4 3.567 1/15/2003 40.6 3.704 3.932 4/10/2003 51 7/14/2003 58.2 4.064 10/13/2003 38.1 3.640 1/13/2004 37 3.611 4/13/2004 43.2 3.766 7/21/2004 33.8 3.520 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 32.9 3.493 9/16/2002 29.9 3.398 10/16/2002 29 3.367 1/13/2003 27.1 3.300 4/10/2003 24.8 3.211 7/16/2003 3.572 35.6 10/14/2003 3.523 33.9 1/13/2004 31.3 3.444

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	39.2	NO	3.669	N/A
MW221	Sidegradient	Yes	43.9	NO	3.782	N/A
MW222	Sidegradient	Yes	42.7	NO	3.754	N/A
MW223	Sidegradient	Yes	40.9	NO	3.711	N/A
MW224	Sidegradient	Yes	53.9	NO	3.987	N/A
MW369	Downgradien	t Yes	48.4	NO	3.879	N/A
MW372	Downgradien	t Yes	62.5	YES	4.135	N/A
MW384	Sidegradient	Yes	39.2	NO	3.669	N/A
MW387	Downgradien	t Yes	52	NO	3.951	N/A
MW391	Downgradien	t Yes	34.4	NO	3.538	N/A
MW394	Upgradient	Yes	32.4	NO	3.478	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.481 **S**= 2.648

CV(1)=0.253 **K factor****= 2.523

3 **TL(1)=** 17.161

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.322

S= 0.239

CV(2) = 0.103

K factor**= 2.523

TL(2) = 2.925

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.416
Date Collected	Result	
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW220	Upgradient	Yes	16.9	NO	2.827	N/A			
MW221	Sidegradient	Yes	12.8	NO	2.549	N/A			
MW222	Sidegradient	Yes	9.09	NO	2.207	N/A			
MW223	Sidegradient	Yes	9.23	NO	2.222	N/A			
MW224	Sidegradient	Yes	11	NO	2.398	N/A			
MW369	Downgradien	t Yes	8.82	NO	2.177	N/A			
MW372	Downgradien	t Yes	147	YES	4.990	N/A			
MW384	Sidegradient	Yes	19.3	YES	2.960	N/A			
MW387	Downgradien	t Yes	33.6	YES	3.515	N/A			
MW391	Downgradien	t Yes	13.3	NO	2.588	N/A			
MW394	Upgradient	Yes	11.9	NO	2.477	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.354

S= 9.280

CV(1)=0.992

K factor=** 2.523

TL(1) = 32.768

LL(1)=N/A

Statistics-Transformed Background

X = 2.270

S= 0.849

CV(2) = 0.374

K factor=** 2.523

23 **TL(2)=** 3.262

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	19.7	2.981
1/15/2003	26.1	3.262
4/10/2003	3.56	1.270
7/14/2003	0	#Func!
10/13/2003	21	3.045
1/13/2004	6.32	1.844
4/13/2004	3	1.099
7/21/2004	14.6	2.681
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.639
Date Collected	Result	
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 5.45	2.639 1.696
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 14 5.45 2.49	2.639 1.696 0.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 14 5.45 2.49 18.3	2.639 1.696 0.912 2.907
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 14 5.45 2.49 18.3 -1.45	2.639 1.696 0.912 2.907 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW220	Upgradient	No	12.7	N/A	2.542	N/A			
MW221	Sidegradient	No	8.8	N/A	2.175	N/A			
MW222	Sidegradient	No	7.4	N/A	2.001	N/A			
MW223	Sidegradient	No	10.4	N/A	2.342	N/A			
MW224	Sidegradient	No	1.42	N/A	0.351	N/A			
MW369	Downgradien	t Yes	59.8	YES	4.091	N/A			
MW372	Downgradien	t Yes	55.9	YES	4.024	N/A			
MW384	Sidegradient	Yes	32.9	YES	3.493	N/A			
MW387	Downgradien	t Yes	269	YES	5.595	N/A			
MW391	Downgradien	t No	4.24	N/A	1.445	N/A			
MW394	Upgradient	No	6.06	N/A	1.802	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW372

MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.494CV(1)=0.493**K** factor**= 2.523 Statistics-Background Data S = 0.737TL(1) = 3.353LL(1)=N/A TL(2) = 1.330

Statistics-Transformed Background Data

X = 0.315CV(2) = 1.279S = 0.402

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1.1 0.095 0.0004/10/2003 1 7/14/2003 3.3 1.194 10/13/2003 1.8 0.588 1/13/2004 1 0.000 4/13/2004 2 0.693 7/21/2004 3.1 1.131 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.3 0.262 9/16/2002 1 0.000 10/16/2002 1 0.000 1/13/2003 0.470 1.6 4/10/2003 1 0.0007/16/2003 1.4 0.336 10/14/2003 1.3 0.262 0.000

1

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW220	Upgradient	Yes	0.976	NO	-0.024	N/A			
MW221	Sidegradient	Yes	0.832	NO	-0.184	N/A			
MW222	Sidegradient	Yes	0.621	NO	-0.476	N/A			
MW223	Sidegradient	Yes	0.938	NO	-0.064	N/A			
MW224	Sidegradient	Yes	1.18	NO	0.166	N/A			
MW369	Downgradien	t Yes	1.28	NO	0.247	N/A			
MW372	Downgradien	t Yes	1.24	NO	0.215	N/A			
MW384	Sidegradient	Yes	1.2	NO	0.182	N/A			
MW387	Downgradien	t Yes	1.49	NO	0.399	N/A			
MW391	Downgradien	t Yes	1.1	NO	0.095	N/A			
MW394	Upgradient	Yes	1.04	NO	0.039	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-51

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor=** 2.523

TL(1) = 475.063LL(1)=N/A

Statistics-Transformed Background Data

X=3.103 S=1.145 CV(2)=0.369

K factor=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.912 50 1/15/2003 10 2.303 10 2.303 4/10/2003 10 7/14/2003 2.303 10/13/2003 10 2.303 1/13/2004 10 2.303 4/13/2004 10 2.303 7/21/2004 10 2.303 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 50 3.912 9/16/2002 672 6.510 3.912 10/16/2002 50 1/13/2003 36.1 3.586 4/10/2003 10 2.303 7/16/2003 42.7 3.754 10/14/2003 22 3.091 1/13/2004 12.8 2.549

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	No	10	N/A	2.303	N/A			
MW221	Sidegradient	Yes	24	N/A	3.178	NO			
MW222	Sidegradient	No	10	N/A	2.303	N/A			
MW223	Sidegradient	Yes	3.56	N/A	1.270	NO			
MW224	Sidegradient	Yes	8.48	N/A	2.138	NO			
MW369	Downgradien	t Yes	11.1	N/A	2.407	NO			
MW372	Downgradien	t Yes	8.4	N/A	2.128	NO			
MW384	Sidegradient	Yes	3.72	N/A	1.314	NO			
MW387	Downgradien	t Yes	9.52	N/A	2.253	NO			
MW391	Downgradien	t Yes	9.74	N/A	2.276	NO			
MW394	Upgradient	Yes	11.9	N/A	2.477	NO			
37/4 5		, p							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 8.813
 S= 8.376
 CV(1)=0.951 K factor**= 2.523
 TL(1)=29.946 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.395
 S= 1.449
 CV(2)=1.039 K factor**= 2.523
 TL(2)=5.052 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1 0.000 0.0004/10/2003 7/14/2003 1 0.000 10/13/2003 1 0.000 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 7/16/2003 19 2.944 10/14/2003 20 2.996 1/13/2004 16 2.773

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	No	1	N/A	0.000	N/A			
MW221	Sidegradient	Yes	0.55	N/A	-0.598	N/A			
MW222	Sidegradient	Yes	1	N/A	0.000	N/A			
MW223	Sidegradient	Yes	0.57	N/A	-0.562	N/A			
MW224	Sidegradient	Yes	1.68	N/A	0.519	N/A			
MW369	Downgradien	t Yes	1.23	N/A	0.207	N/A			
MW372	Downgradien	t Yes	4	N/A	1.386	N/A			
MW384	Sidegradient	Yes	0.46	N/A	-0.777	N/A			
MW387	Downgradien	t Yes	0.89	N/A	-0.117	N/A			
MW391	Downgradien	t Yes	7.48	NO	2.012	N/A			
MW394	Upgradient	Yes	3.63	N/A	1.289	N/A			
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validation	and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Zinc **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.722**K** factor**= 2.523 Statistics-Background Data X = 0.036S = 0.026TL(1)=0.101LL(1)=N/A **Statistics-Transformed Background** X = -3.485 S = 0.525CV(2) = -0.151**K factor**=** 2.523 TL(2) = -2.162LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.025 -3.6891/15/2003 0.035 -3.3524/10/2003 0.035 -3.3527/14/2003 0.0389 -3.2470.026 10/13/2003 -3.6501/13/2004 0.02 -3.9124/13/2004 0.02 -3.9127/21/2004 0.02 -3.912Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.352 4/10/2003 0.035 -3.3527/16/2003 0.02 -3.91210/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW220	Upgradient	Yes	0.00431	NO	-5.447	N/A			
MW221	Sidegradient	Yes	0.00509	NO	-5.280	N/A			
MW222	Sidegradient	Yes	0.00403	NO	-5.514	N/A			
MW223	Sidegradient	Yes	0.0042	NO	-5.473	N/A			
MW224	Sidegradient	Yes	0.00478	NO	-5.343	N/A			
MW369	Downgradien	t Yes	0.0034	NO	-5.684	N/A			
MW372	Downgradien	t No	0.00601	N/A	-5.114	N/A			
MW384	Sidegradient	No	0.02	N/A	-3.912	N/A			
MW387	Downgradien	t No	0.02	N/A	-3.912	N/A			
MW391	Downgradien	t Yes	0.00754	NO	-4.888	N/A			
MW394	Upgradient	Yes	0.00607	NO	-5.104	N/A			
N/A - Recu	Its identified as N	Ion-Detects	luring labo	oratory analysis or	data validation	and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-54

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

S = 0.221

CV(1)=0.856

K factor**= 2.523

TL(1) = 0.815

LL(1)=N/A

Statistics-Transformed Background

X = -2.266 S = 2.485 CV(2) = -1.097

K factor=** 2.523

TL(2) = 4.003

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.194
Date Collected	Result	
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW370	Downgradient	No	0.05	N/A	-2.996	N/A				
MW373	Downgradient	No	0.05	N/A	-2.996	N/A				
MW385	Sidegradient	Yes	0.672	NO	-0.397	N/A				
MW388	Downgradient	Yes	0.0249	NO	-3.693	N/A				
MW392	Downgradient	No	0.05	N/A	-2.996	N/A				
MW395	Upgradient	No	0.05	N/A	-2.996	N/A				
MW397	Upgradient	Yes	0.349	NO	-1.053	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S= 0.805 **CV(1)**=1.238

K factor=** 2.523

TL(1)=2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6090.2 -1.6094/10/2003 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/17/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data										
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	Yes	0.332	N/A	-1.103	NO				
MW373	Downgradient	Yes	1.96	N/A	0.673	NO				
MW385	Sidegradient	Yes	0.0344	N/A	-3.370	NO				
MW388	Downgradient	Yes	0.029	N/A	-3.540	NO				
MW392	Downgradient	Yes	0.0247	N/A	-3.701	NO				
MW395	Upgradient	Yes	0.022	N/A	-3.817	NO				
MW397	Upgradient	Yes	0.00863	N/A	-4.753	NO				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.000

S = 0.000

CV(1)=0.000

K factor=** 2.523

TL(1)=1.000

LL(1)=N/A

Statistics-Transformed Background

X = 0.000

S = 0.000

CV(2)=#Num!

K factor=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well	No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW.	370	Downgradient	Yes	0.48	NO	-0.734	N/A			
MW.	373	Downgradient	Yes	0.699	NO	-0.358	N/A			
MW.	385	Sidegradient	Yes	0.226	NO	-1.487	N/A			
MW.	388	Downgradient	Yes	0.45	NO	-0.799	N/A			
MW.	392	Downgradient	Yes	0.559	NO	-0.582	N/A			
MW.	395	Upgradient	Yes	0.506	NO	-0.681	N/A			
MW.	397	Upgradient	Yes	0.406	NO	-0.901	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.103 S = 11.538 CV(1) = 0.499

K factor**= 2.523

TL(1) = 52.213

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.357 S = 2.411 CV(2) = 1.023

K factor=** 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	26.1	NO	3.262	N/A		
MW373	Downgradient	Yes	67.8	YES	4.217	N/A		
MW385	Sidegradient	Yes	40.3	NO	3.696	N/A		
MW388	Downgradient	Yes	23.3	NO	3.148	N/A		
MW392	Downgradient	Yes	24.5	NO	3.199	N/A		
MW395	Upgradient	Yes	24.3	NO	3.190	N/A		
MW397	Upgradient	Yes	18.1	NO	2.896	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.313 S = 1.250

CV(1) = 0.035

K factor**= 2.523

TL(1)= 38.466

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.564

S = 0.033

CV(2)=0.009

K factor=** 2.523

TL(2) = 3.648

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 40 3.689 9/16/2002 35 3.555 10/17/2002 35 3.555 1/13/2003 35 3.555 4/8/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW370	Downgradient	No	30.6	N/A	3.421	N/A	
MW373	Downgradient	Yes	16.2	NO	2.785	N/A	
MW385	Sidegradient	No	25.5	N/A	3.239	N/A	
MW388	Downgradient	No	30.6	N/A	3.421	N/A	
MW392	Downgradient	No	40.8	N/A	3.709	N/A	
MW395	Upgradient	No	22.9	N/A	3.131	N/A	
MW397	Upgradient	No	33.2	N/A	3.503	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor**= 2.523

TL(1) = 81.242

LL(1)=N/A

Statistics-Transformed Background

X= 3.924 **S**= 0.229

CV(2) = 0.058

K factor**= 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.661
Date Collected	Result	
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	37.9	NO	3.635	N/A		
MW373	Downgradient	Yes	35.2	NO	3.561	N/A		
MW385	Sidegradient	Yes	21.7	NO	3.077	N/A		
MW388	Downgradient	Yes	37	NO	3.611	N/A		
MW392	Downgradient	Yes	45.4	NO	3.816	N/A		
MW395	Upgradient	Yes	43.5	NO	3.773	N/A		
MW397	Upgradient	Yes	35.6	NO	3.572	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=5.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 5.000
 LL(1)=N/A

 Statistics-Transformed Background
 X=1.609
 S= 0.000
 CV(2)=0.000
 K factor**= 2.523
 TL(2)= 1.609
 LL(2)=N/A

Historical Background Data from

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	5	1.609
9/30/2002	5	1.609
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
,	MW370	Downgradient	No	1	N/A	0.000	N/A	
	MW373	Downgradient	No	1	N/A	0.000	N/A	
	MW385	Sidegradient	No	1	N/A	0.000	N/A	
	MW388	Downgradient	No	1	N/A	0.000	N/A	
	MW392	Downgradient	Yes	0.92	NO	-0.083	N/A	
	MW395	Upgradient	No	1	N/A	0.000	N/A	
	MW397	Upgradient	No	1	N/A	0.000	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.011

CV(1)=1.515

K factor**= 2.523

TL(1) = 0.034

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.053 S = 1.416 CV(2) = -0.234

K factor=** 2.523

TL(2) = -2.480

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/17/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/8/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.001	N/A	-6.908	N/A	
MW373	Downgradient	No	0.001	N/A	-6.908	N/A	
MW385	Sidegradient	Yes	0.00069	1 N/A	-7.277	NO	
MW388	Downgradient	No	0.001	N/A	-6.908	N/A	
MW392	Downgradient	No	0.001	N/A	-6.908	N/A	
MW395	Upgradient	No	0.001	N/A	-6.908	N/A	
MW397	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-62

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Conductivity** UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor=** 2.523

TL(1)= 509.326 **LL(1)=**N/A

Statistics-Transformed Background

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected	-	LN(Result)
		LN(Result) 5.775
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	391	NO	5.969	N/A	
MW373	Downgradient	t Yes	560	YES	6.328	N/A	
MW385	Sidegradient	Yes	470	NO	6.153	N/A	
MW388	Downgradient	Yes	377	NO	5.932	N/A	
MW392	Downgradient	Yes	360	NO	5.886	N/A	
MW395	Upgradient	Yes	375	NO	5.927	N/A	
MW397	Upgradient	Yes	295	NO	5.687	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-63

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

S = 0.013

CV(1)=0.474 K factor**= 2.523

TL(1)= 0.061

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.662 S = 0.406

CV(2) = -0.111

K factor=** 2.523

TL(2)= -2.638

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.99610/16/2002 -3.572 0.0281 1/13/2003 0.02 -3.9120.02 -3.9124/10/2003 7/16/2003 0.02 -3.91210/14/2003 0.02 -3.9121/13/2004 0.02 -3.912Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.99610/17/2002 0.02 -3.9121/13/2003 0.02 -3.912 4/8/2003 0.02 -3.9127/16/2003 0.02 -3.91210/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradien	t Yes	0.000486	6 NO	-7.629	N/A	
MW373	Downgradien	t Yes	0.000673	5 NO	-7.301	N/A	
MW385	Sidegradient	Yes	0.00243	NO	-6.020	N/A	
MW388	Downgradien	t Yes	0.000962	2 NO	-6.946	N/A	
MW392	Downgradien	t Yes	0.00117	NO	-6.751	N/A	
MW395	Upgradient	Yes	0.000593	3 NO	-7.430	N/A	
MW397	Upgradient	Yes	0.00241	NO	-6.028	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 4.678

S= 2.431 **CV(1)**=0.520

K factor=** 2.523

TL(1)= 10.812

LL(1)=N/A

Statistics-Transformed Background

X = 1.414

S= 0.550

CV(2) = 0.389

K factor=** 2.523

TL(2) = 2.802

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	7.29	1.987
9/30/2002	4.03	1.394
10/16/2002	3.85	1.348
1/13/2003	2.36	0.859
4/10/2003	1.14	0.131
7/16/2003	1.76	0.565
10/14/2003	4.05	1.399
1/13/2004	4.26	1.449
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.448
Date Collected	Result	
Date Collected 8/13/2002	Result 11.56	2.448
Date Collected 8/13/2002 9/16/2002	Result 11.56 5.86	2.448 1.768
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 11.56 5.86 5.94	2.448 1.768 1.782
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 11.56 5.86 5.94 4.66	2.448 1.768 1.782 1.539
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 11.56 5.86 5.94 4.66 3.77	2.448 1.768 1.782 1.539 1.327

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradien	Yes	4.6	NO	1.526	N/A
MW373	Downgradien	Yes	2	NO	0.693	N/A
MW385	Sidegradient	Yes	1.42	NO	0.351	N/A
MW388	Downgradien	Yes	5.4	NO	1.686	N/A
MW392	Downgradien	Yes	3.16	NO	1.151	N/A
MW395	Upgradient	Yes	5.4	NO	1.686	N/A
MW397	Upgradient	Yes	6.69	NO	1.901	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor=** 2.523

TL(1) = 305.301

LL(1)=N/A

Statistics-Transformed Background

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.231
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	229	NO	5.434	N/A
MW373	Downgradient	Yes	491	YES	6.196	N/A
MW385	Sidegradient	Yes	241	NO	5.485	N/A
MW388	Downgradient	Yes	203	NO	5.313	N/A
MW392	Downgradient	Yes	204	NO	5.318	N/A
MW395	Upgradient	Yes	194	NO	5.268	N/A
MW397	Upgradient	Yes	166	NO	5.112	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.400

S = 0.514

CV(1) = 1.286**K** factor**= 2.523

TL(1)= 1.698

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.197 S = 2.634 CV(2) = -1.199

K factor=** 2.523

TL(2) = 4.449

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.457
Date Collected	Result	
Date Collected 8/13/2002	Result 1.58	0.457
Date Collected 8/13/2002 9/16/2002	Result 1.58 0.232	0.457 -1.461
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.58 0.232 0.0002	0.457 -1.461 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.58 0.232 0.0002 0.453	0.457 -1.461 -8.517 -0.792
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.58 0.232 0.0002 0.453 0.2	0.457 -1.461 -8.517 -0.792 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.1	N/A	-2.303	N/A	
MW373	Downgradient	Yes	0.0481	N/A	-3.034	NO	
MW385	Sidegradient	Yes	1.79	N/A	0.582	NO	
MW388	Downgradient	Yes	0.0998	N/A	-2.305	NO	
MW392	Downgradient	Yes	0.108	N/A	-2.226	NO	
MW395	Upgradient	No	0.1	N/A	-2.303	N/A	
MW397	Upgradient	Yes	0.425	N/A	-0.856	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.102

S= 4.685 **CV(1)**=0.515

K factor=** 2.523

TL(1)= 20.922

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.423

S= 2.408

CV(2)=1.692

K factor=** 2.523

TL(2) = 7.500

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 2.526 12.5 9/16/2002 13 2.565 10/16/2002 0.0127 -4.3661/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 13.4 2.595 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 10/17/2002 0.00658 -5.0241/13/2003 6.69 1.901 4/8/2003 7.28 1.985 7/16/2003 7.82 2.057 10/14/2003 7.94 2.072 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	11	NO	2.398	N/A	
MW373	Downgradient	Yes	26.1	YES	3.262	N/A	
MW385	Sidegradient	Yes	12.8	NO	2.549	N/A	
MW388	Downgradient	Yes	10	NO	2.303	N/A	
MW392	Downgradient	Yes	10.2	NO	2.322	N/A	
MW395	Upgradient	Yes	10.3	NO	2.332	N/A	
MW397	Upgradient	Yes	7.57	NO	2.024	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

CV(1) = 1.487X = 0.131S = 0.195

K factor**= 2.523

TL(1) = 0.624

LL(1)=N/A

Statistics-Transformed Background

X = -3.104 S = 1.529 CV(2) = -0.493

K factor=** 2.523

TL(2) = 0.755

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.466	-0.764
9/16/2002	0.077	-2.564
10/17/2002	0.028	-3.576
1/13/2003		4.110
	0.0164	-4.110
4/8/2003	0.0164 0.0407	-4.110 -3.202
4/8/2003 7/16/2003		
	0.0407	-3.202

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	0.00119	N/A	-6.734	NO		
MW373	Downgradient	Yes	0.0108	N/A	-4.528	NO		
MW385	Sidegradient	Yes	0.0208	N/A	-3.873	NO		
MW388	Downgradient	Yes	0.0054	N/A	-5.221	NO		
MW392	Downgradient	Yes	0.0177	N/A	-4.034	NO		
MW395	Upgradient	No	0.005	N/A	-5.298	N/A		
MW397	Upgradient	Yes	0.0214	N/A	-3.844	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-69

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

S = 0.020

CV(1)=1.089

K factor**= 2.523

TL(1) = 0.068

LL(1)=N/A

Statistics-Transformed Background

X = -4.540 S = 1.020 CV(2) = -0.225

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002		2.770
J, 10, 2002	0.05	-2.996
10/17/2002	0.05 0.005	
		-2.996
10/17/2002	0.005	-2.996 -5.298
10/17/2002 1/13/2003	0.005 0.00502	-2.996 -5.298 -5.294
10/17/2002 1/13/2003 4/8/2003	0.005 0.00502 0.005	-2.996 -5.298 -5.294 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.002	N/A	-6.215	N/A	
MW373	Downgradient	Yes	0.000959	9 N/A	-6.950	NO	
MW385	Sidegradient	Yes	0.00222	N/A	-6.110	NO	
MW388	Downgradient	No	0.002	N/A	-6.215	N/A	
MW392	Downgradient	Yes	0.0012	N/A	-6.725	NO	
MW395	Upgradient	Yes	0.000752	2 N/A	-7.193	NO	
MW397	Upgradient	Yes	0.00082	5 N/A	-7.100	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor=** 2.523

TL(1)=289.395 LL(1)=N/A

Statistics-Transformed Background

X = 5.003 S = 0.348 CV(2) = 0.069

K factor=** 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.745
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW370	Downgradient	Yes	359	YES	5.883	N/A	
MW373	Downgradient	Yes	372	YES	5.919	N/A	
MW385	Sidegradient	Yes	342	YES	5.835	N/A	
MW388	Downgradient	Yes	363	YES	5.894	N/A	
MW392	Downgradient	Yes	386	YES	5.956	N/A	
MW395	Upgradient	Yes	391	YES	5.969	N/A	
MW397	Upgradient	Yes	315	YES	5.753	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW370
MW373
MW385
MW388
MW392
MW395

MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.048

S= 0.248 **CV(1)**=0.041

K factor=** 2.904

TL(1) = 6.767

LL(1)=5.3289

Statistics-Transformed Background Data

X = 1.799

S = 0.042

CV(2)=0.023

K factor**= 2.904

TL(2)= 1.920

LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/16/2002 1.792 10/16/2002 5.47 1.699 1/13/2003 6 1.792 4/10/2003 6.18 1.821 7/16/2003 6 1.792 10/14/2003 6.31 1.842 1/13/2004 6.24 1.831 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 5.84 1.765 9/30/2002 1.792 6 10/17/2002 5.75 1.749 1/13/2003 1.792 6 4/8/2003 6.3 1.841 7/16/2003 6.2 1.825 10/14/2003 6.36 1.850 1/13/2004 6.32 1.844

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
				result LL(1).		Er (result) EE(2):
MW370	Downgradient	Yes	5.9	NO	1.775	N/A
MW373	Downgradient	Yes	5.77	NO	1.753	N/A
MW385	Sidegradient	Yes	6.25	NO	1.833	N/A
MW388	Downgradient	Yes	5.77	NO	1.753	N/A
MW392	Downgradient	Yes	6.07	NO	1.803	N/A
MW395	Upgradient	Yes	6.1	NO	1.808	N/A
MW397	Upgradient	Yes	5.86	NO	1.768	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.590

S = 0.642 C

CV(1)=0.404 K factor

K factor**= 2.523

TL(1) = 3.208

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.306 S = 2.457

CV(2) = -8.028

K factor=** 2.523

TL(2) = 5.892

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 10/16/2002 0.00129 -6.6531/13/2003 1.51 0.412 0.513 4/10/2003 1.67 7/16/2003 1.73 0.548 10/14/2003 1.7 0.531 1/13/2004 1.58 0.457 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2.03 0.708 9/16/2002 0.693 2. 0.00145 10/17/2002 -6.5361/13/2003 1.69 0.525 4/8/2003 1.73 0.548 7/16/2003 2 0.693 10/14/2003 1.92 0.652 1/13/2004 1.87 0.626

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	2.9	NO	1.065	N/A	
MW373	Downgradient	Yes	2.92	NO	1.072	N/A	
MW385	Sidegradient	Yes	1.88	NO	0.631	N/A	
MW388	Downgradient	Yes	1.67	NO	0.513	N/A	
MW392	Downgradient	Yes	2.16	NO	0.770	N/A	
MW395	Upgradient	Yes	1.64	NO	0.495	N/A	
MW397	Upgradient	Yes	1.85	NO	0.615	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor**= 2.523

TL(1)= 64.616

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.615 S = 2.411 CV(2) = 0.922

K factor=** 2.523

TL(2) = 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	42	NO	3.738	N/A	
MW373	Downgradient	Yes	62.8	NO	4.140	N/A	
MW385	Sidegradient	Yes	32	NO	3.466	N/A	
MW388	Downgradient	Yes	40.5	NO	3.701	N/A	
MW392	Downgradient	Yes	26.2	NO	3.266	N/A	
MW395	Upgradient	Yes	30.8	NO	3.428	N/A	
MW397	Upgradient	Yes	31.6	NO	3.453	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147 CV(1) = 0.200

K factor**= 2.523

TL(1)= 16.173

LL(1)=N/A

Statistics-Transformed Background

X = 2.356

S = 0.203

CV(2) = 0.086

K factor**= 2.523

TL(2) = 2.869

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.639
Date Collected	Result	
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	21	YES	3.045	N/A	
MW373	Downgradient	Yes	155	YES	5.043	N/A	
MW385	Sidegradient	Yes	23.6	YES	3.161	N/A	
MW388	Downgradient	Yes	19.6	YES	2.976	N/A	
MW392	Downgradient	Yes	9.64	NO	2.266	N/A	
MW395	Upgradient	Yes	11.9	NO	2.477	N/A	
MW397	Upgradient	Yes	12	NO	2.485	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison** Technetium-99 UNITS: pCi/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.805**K factor**=** 2.523 **TL(1)=** 34.414 Statistics-Background Data X = 11.359 S = 9.138LL(1)=N/A **Statistics-Transformed Background** X = 2.398S = 0.859CV(2) = 0.358**K factor**=** 2.523 TL(2) = 3.246LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.802
Date Collected	Result	
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	39.2	YES	3.669	N/A
MW373	Downgradient	No	8.12	N/A	2.094	N/A
MW385	Sidegradient	Yes	28.6	NO	3.353	N/A
MW388	Downgradient	No	6.86	N/A	1.926	N/A
MW392	Downgradient	No	3.95	N/A	1.374	N/A
MW395	Upgradient	No	8.55	N/A	2.146	N/A
MW397	Upgradient	No	12.8	N/A	2.549	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X=1.544 S=0.856 CV(1)=0.554 K factor**= 2.523 TL(1)=3.702 LL(1)=N/A

Statistics-Transformed Background Data

X = 0.325 S = 0.452 CV(2) = 1.393

K factor=** 2.523 **TL(2)=** 1.465

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.470 1.6 9/16/2002 1.1 0.095 10/16/2002 0.0001 1/13/2003 2 0.693 4/10/2003 3.4 1.224 7/16/2003 2 0.693 10/14/2003 1 0.000 1/13/2004 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.0009/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 1.281 3.6 4/8/2003 1.9 0.642 7/16/2003 1.1 0.095 10/14/2003 0.000 1 0.000 1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	1.19	NO	0.174	N/A
MW373	Downgradient	t Yes	1.36	NO	0.307	N/A
MW385	Sidegradient	Yes	1.38	NO	0.322	N/A
MW388	Downgradient	Yes	1.23	NO	0.207	N/A
MW392	Downgradient	Yes	1.16	NO	0.148	N/A
MW395	Upgradient	Yes	0.725	NO	-0.322	N/A
MW397	Upgradient	Yes	0.616	NO	-0.485	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=31.513 S= 18.609 CV(1)=0.591

K factor**= 2.523

TL(1) = 78.462

LL(1)=N/A

Statistics-Transformed Background

X = 3.240 S = 0.707 CV(2) = 0.218

K factor=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	6.3	NO	1.841	N/A	
MW373	Downgradient	Yes	7.74	NO	2.046	N/A	
MW385	Sidegradient	Yes	7.94	NO	2.072	N/A	
MW388	Downgradient	Yes	13.6	NO	2.610	N/A	
MW392	Downgradient	Yes	6	NO	1.792	N/A	
MW395	Upgradient	Yes	5.9	NO	1.775	N/A	
MW397	Upgradient	Yes	8.76	NO	2.170	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-78

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Historical Background Comparison Trichloroethene** UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313

CV(1)=0.780S = 5.701

K factor=** 2.523

TL(1)=21.695

LL(1)=N/A

Statistics-Transformed Background Data

X=1.467 S= 1.213 CV(2)=0.827

K factor=** 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.609
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1 1	1.609 1.609 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.84	N/A	-0.174	N/A	
MW373	Downgradient	Yes	5.91	NO	1.777	N/A	
MW385	Sidegradient	Yes	0.38	N/A	-0.968	N/A	
MW388	Downgradient	Yes	0.65	N/A	-0.431	N/A	
MW392	Downgradient	Yes	15.7	NO	2.754	N/A	
MW395	Upgradient	Yes	3.26	N/A	1.182	N/A	
MW397	Upgradient	No	1	N/A	0.000	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-79

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.021

S = 0.002

CV(1)=0.105

K factor=** 2.523

TL(1) = 0.027

LL(1)=N/A

Statistics-Transformed Background Data

X=-3.856 **S=** 0.100

CV(2) = -0.026

K factor=** 2.523

TL(2) = -3.604

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 -3.9120.02 1/13/2003 0.02 -3.9127/16/2003 -3.9120.02 10/14/2003 0.02 -3.9121/13/2004 0.02 -3.9124/12/2004 0.02 -3.912Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.025 -3.689 9/16/2002 0.025 -3.689 -3.91210/17/2002 0.02 1/13/2003 0.02 -3.9124/8/2003 0.02 -3.9127/16/2003 0.02 -3.91210/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Cı	Current Quarter Data							
We	ll No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MV	W370	Downgradient	No	0.02	N/A	-3.912	N/A	
MV	W373	Downgradient	No	0.0055	N/A	-5.203	N/A	
ΜV	W385	Sidegradient	Yes	0.00374	NO	-5.589	N/A	
ΜV	W388	Downgradient	No	0.02	N/A	-3.912	N/A	
ΜV	W392	Downgradient	Yes	0.00333	NO	-5.705	N/A	
MV	W395	Upgradient	No	0.02	N/A	-3.912	N/A	
MV	W397	Upgradient	No	0.02	N/A	-3.912	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

S= 0.034 **CV(1)**=0.760

K factor**= 2.523

TL(1) = 0.129

LL(1)=N/A

Statistics-Transformed Background Data

X=-3.342 **S**= 0.659

CV(2) = -0.197

K factor**= 2.523

TL(2)=-1.679

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 -2.303 0.1 9/16/2002 0.1 -2.303-3.689 10/16/2002 0.025 1/13/2003 0.035 -3.352-3.3524/10/2003 0.035 7/16/2003 0.02 -3.91210/14/2003 0.02 -3.9121/13/2004 0.02 -3.912Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/17/2002 0.025 -3.6891/13/2003 0.035 -3.352 4/8/2003 0.035 -3.3527/16/2003 0.02 -3.91210/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t No	0.02	N/A	-3.912	N/A	
MW373	Downgradien	t No	0.00596	N/A	-5.123	N/A	
MW385	Sidegradient	Yes	0.00817	NO	-4.807	N/A	
MW388	Downgradien	t No	0.02	N/A	-3.912	N/A	
MW392	Downgradien	t Yes	0.006	NO	-5.116	N/A	
MW395	Upgradient	No	0.02	N/A	-3.912	N/A	
MW397	Upgradient	No	0.02	N/A	-3.912	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

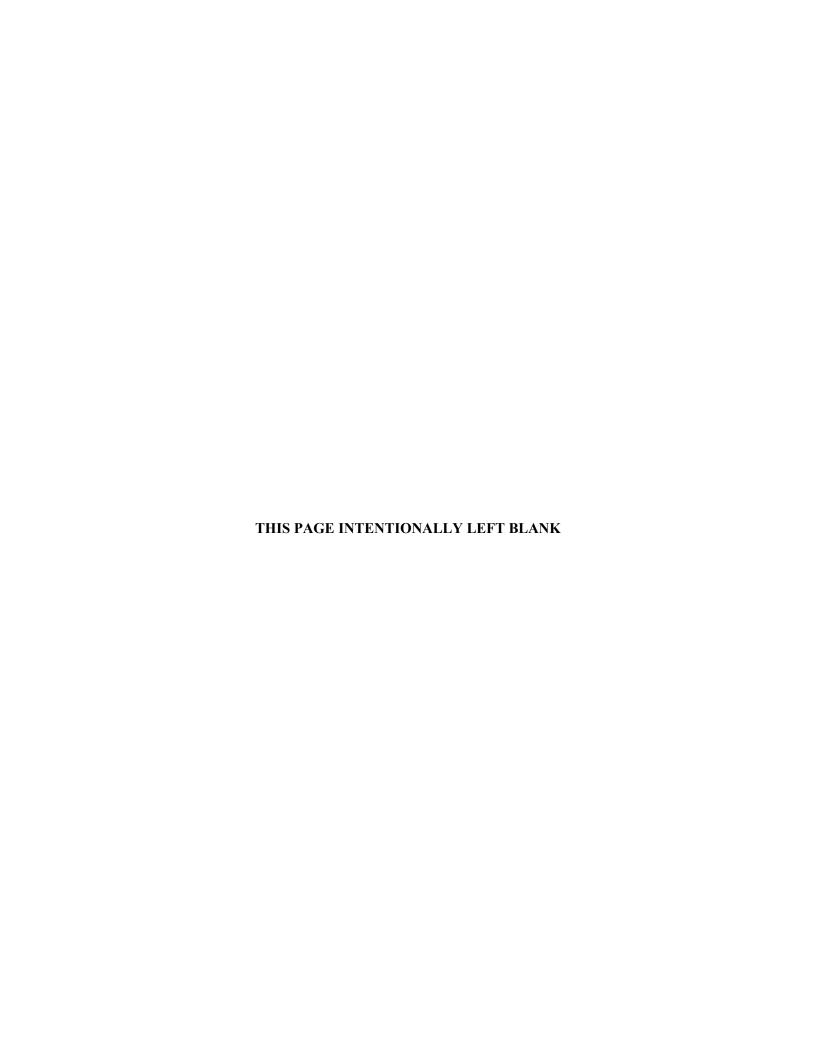
Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)


X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Fourth Quarter 2021 Statistical Analysis Current Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 26.488 S = 11.558 CV(1) = 0.436

K factor**= 3.188

TL(1) = 63.335 LL(1) = N/A

Statistics-Transformed Background

X = 3.197

S = 0.425 CV(2) = 0.133

K factor**= 3.188

TL(2) = 4.553

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 10/10/2019 17.8 2.879 1/27/2020 49.7 3.906 4/22/2020 31.1 3.437 7/29/2020 26.3 3.270 10/22/2020 31 3.434 1/26/2021 26.5 3.277 4/14/2021 16.1 2.779 7/21/2021 13.4 2.595

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	56.2	NO	4.029	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 264.625 S = 123.175 CV(1) = 0.465

K factor**= 3.188

TL(1)= 657.306 **LL(1)**=N/A

Statistics-Transformed Background

X = 5.451 S = 0.585 CV(2) = 0.107

K factor**= 3.188

TL(2) = 7.317

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 10/10/2019 227 5.425 3/18/2020 127 4.844 4/22/2020 5.994 401 7/29/2020 346 5.846 10/22/2020 204 5.318 1/26/2021 80 4.382 4/14/2021 332 5.805 5.991 7/21/2021 400

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW386	Sidegradient	Yes	137	NO	4.920	N/A
MW390	Downgradien	t Yes	383	NO	5.948	N/A
MW393	Downgradien	t Yes	289	NO	5.666	N/A
MW396	Upgradient	Yes	181	NO	5.198	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = -0.747 S = 7.779

S = 0.604

CV(1)=-10.412

K factor**= 3.188

TL(1) = 24.052

LL(1)=N/A

Statistics-Transformed Background

X = 1.770

CV(2)=0.341

K factor**= 3.188

TL(2)= 2.389

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/10/2019	-9.62	#Func!
1/27/2020	3.26	1.182
4/22/2020	5.69	1.739
7/29/2020	-0.35	#Func!
10/22/2020	-12.9	#Func!
1/26/2021	10.9	2.389
4/14/2021	-0.297	#Func!
7/21/2021	-2.66	#Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradient	Yes	47.3	YES	3.857	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.153 S = 4.929

CV(1)=0.485

K factor**= 2.523

TL(1) = 22.588

LL(1)=N/A

Statistics-Transformed Background

X = 2.197

S = 0.525 CV(2) = 0.239

K factor=** 2.523

TL(2) = 3.522

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/8/2019	18.9	2.939
1/22/2020	8.34	2.121
4/21/2020	16.5	2.803
7/28/2020	18.9	2.939
10/14/2020	13.7	2.617
1/25/2021	5.57	1.717
4/15/2021	9.12	2.210
7/19/2021	12	2.485

7/19/2021	12	2.485
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/10/2019	8.14	2.097
1/27/2020	4.69	1.545
4/22/2020	5.27	1.662
7/29/2020	12	2.485
10/22/2020	10.9	2.389
1/26/2021	3.05	1.115
4/14/2021	9.32	2.232
7/21/2021	6.04	1.798

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW387	Downgradien	t Ves	147	VFS	4 990	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Cu Calcium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 24.581 **S**= 2.803

CV(1)=0.114

K factor**= 2.523

TL(1) = 31.653

LL(1)=N/A

Statistics-Transformed Background

X = 3.196 S = 0.118

CV(2) = 0.037

K factor=** 2.523

TL(2) = 3.493

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/8/2019	20.9	3.040
1/22/2020	26.3	3.270
4/21/2020	28.8	3.360
7/28/2020	20.6	3.025
10/14/2020	19.9	2.991
1/25/2021	20.9	3.040
4/15/2021	27.7	3.321
7/19/2021	22.2	3.100

Well Number:	MW394	
Date Collected	Result	LN(Result)
10/10/2019	25.2	3.227
1/27/2020	25.3	3.231
4/22/2020	24.9	3.215
7/29/2020	26	3.258
10/22/2020	27.4	3.311
1/26/2021	25.5	3.239
4/14/2021	26.8	3.288
7/21/2021	24.9	3.215

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	64.8	YES	4.171	N/A
MW387	Downgradient	Yes	42.7	YES	3.754	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Current Background Comparison Dissolved Solids** URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 209.063 S = 36.390 CV(1) = 0.174

K factor**= 2.523

TL(1) = 300.873 LL(1) = N/A

Statistics-Transformed Background

X = 5.329S = 0.170 **CV(2)**=0.032

K factor**= 2.523

TL(2) = 5.757

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/8/2019	176	5.170
1/22/2020	256	5.545
4/21/2020	214	5.366
7/28/2020	191	5.252
10/14/2020	190	5.247
1/25/2021	161	5.081
4/15/2021	250	5.521
7/19/2021	196	5.278
Well Number:	MW394	

7/19/2021	196	5.278
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/10/2019	251	5.525
1/27/2020	200	5.298
4/22/2020	200	5.298
7/29/2020	213	5.361
10/22/2020	154	5.037
1/26/2021	196	5.278
4/14/2021	207	5.333
7/21/2021	290	5.670

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	461	YES	6.133	N/A
MW387	Downgradient	Yes	331	YES	5.802	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Current Background Comparison** Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

CV(1)=0.117X = 10.348 S = 1.209

K factor**= 2.523

TL(1)= 13.399

URGA

LL(1)=N/A

Statistics-Transformed Background

X = 2.330S = 0.121 CV(2)=0.052

K factor**= 2.523

TL(2) = 2.636

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/8/2019	8.71	2.164
1/22/2020	10.9	2.389
4/21/2020	11.9	2.477
7/28/2020	8.24	2.109
10/14/2020	8.71	2.164
1/25/2021	8.72	2.166
4/15/2021	11.7	2.460
7/19/2021	9.29	2.229
W/-11 N1	MW204	

Well Number:	MW394	
Date Collected	Result	LN(Result)
10/10/2019	10.7	2.370
1/27/2020	10.6	2.361
4/22/2020	10.7	2.370
7/29/2020	11.2	2.416
10/22/2020	11.8	2.468
1/26/2021	10.7	2.370
4/14/2021	11	2.398
7/21/2021	10.7	2.370

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	22.8	YES	3.127	N/A
MW387	Downgradient	Yes	18.1	YES	2.896	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2021 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 404.438 S = 41.798 CV(1) = 0.103

K factor**= 2.523

TL(1)= 509.894

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.997

CV(2)=0.018 S = 0.106

K factor**= 2.523

TL(2) = 6.264

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/8/2019	414	6.026
3/18/2020	378	5.935
4/21/2020	435	6.075
7/28/2020	375	5.927
10/14/2020	385	5.953
1/25/2021	496	6.207
4/15/2021	410	6.016
7/19/2021	406	6.006
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 6.082
Date Collected	Result	,
Date Collected 10/10/2019	Result 438	6.082
Date Collected 10/10/2019 1/27/2020	Result 438 440	6.082 6.087
Date Collected 10/10/2019 1/27/2020 4/22/2020	Result 438 440 432	6.082 6.087 6.068
Date Collected 10/10/2019 1/27/2020 4/22/2020 7/29/2020	Result 438 440 432 356	6.082 6.087 6.068 5.875
Date Collected 10/10/2019 1/27/2020 4/22/2020 7/29/2020 10/22/2020	Result 438 440 432 356 396	6.082 6.087 6.068 5.875 5.981
Date Collected 10/10/2019 1/27/2020 4/22/2020 7/29/2020 10/22/2020 1/26/2021	Result 438 440 432 356 396 309	6.082 6.087 6.068 5.875 5.981 5.733

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	443	NO	6.094	N/A	
MW221	Sidegradient	Yes	459	NO	6.129	N/A	
MW222	Sidegradient	Yes	438	NO	6.082	N/A	
MW223	Sidegradient	Yes	448	NO	6.105	N/A	
MW224	Sidegradient	Yes	403	NO	5.999	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-10

C-746-S/T Fourth Quarter 2021 Statistical Analysis Sodium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 37.213 S = 5.144

CV(1)=0.138

K factor**= 2.523

TL(1) = 50.192

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.608

S = 0.133 CV(2) = 0.037

K factor**= 2.523

TL(2) = 3.943

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220			
Result	LN(Result)		
39.4	3.674		
47.6	3.863		
44	3.784		
38.3	3.645		
38.3	3.645		
36.1	3.586		
46.5	3.839		
39.7	3.681		
	Result 39.4 47.6 44 38.3 38.3 36.1 46.5		

	4/15/2021	46.5	3.839
7/19/2021		39.7	3.681
	Well Number:	MW394	
	Date Collected	Result	LN(Result)
	10/10/2019	33	3.497
	1/27/2020	34.1	3.529
	4/22/2020	33.4	3.509
	7/29/2020	33.7	3.517
	10/22/2020	35.4	3.567
	1/26/2021	30.9	3.431
	4/14/2021	32.9	3.493
	7/21/2021	32.1	3.469

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	62.5	YES	4.135	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2021 Statistical Analysis C Sulfate UNITS: mg/L

Current Background Comparison
URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 14.994 **S**= 4.078

CV(1)=0.272

K factor**= 2.523

TL(1)=25.282

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.677

S= 0.248 **CV(2)**=0.092

K factor=** 2.523

TL(2) = 3.302

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/8/2019	15.6	2.747
1/22/2020	20.1	3.001
4/21/2020	22.2	3.100
7/28/2020	15.3	2.728
10/14/2020	13.9	2.632
1/25/2021	15.9	2.766
4/15/2021	24.4	3.195
7/19/2021	17	2.833
Well Number:	MW394	
Date Collected	Result	LN(Result)

4/15/2021	24.4	3.195
7/19/2021	17	2.833
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/10/2019	12	2.485
1/27/2020	12.1	2.493
4/22/2020	12.7	2.542
7/29/2020	11.7	2.460
10/22/2020	11.3	2.425
1/26/2021	11.4	2.434
4/14/2021	12.5	2.526
7/21/2021	11.8	2.468

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	147	YES	4.990	N/A
MW384	Sidegradient	Yes	19.3	NO	2.960	N/A
MW387	Downgradient	Yes	33.6	YES	3.515	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2021 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.954 S = 7.467

CV(1)=0.682

K factor=** 2.523

TL(1)= 29.794

LL(1)=N/A

Statistics-Transformed Background

X = 2.004

S= 1.591

CV(2)=0.794

K factor**= 2.523

TL(2) = 3.296

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/8/2019	27	3.296
1/22/2020	12	2.485
4/21/2020	18.7	2.929
7/28/2020	19	2.944
10/14/2020	16.7	2.815
1/25/2021	10.3	2.332
4/15/2021	12.1	2.493
7/19/2021	13.3	2.588
**** 11.5.7 1	1 HH204	
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) #Func!
Date Collected	Result	, ,
Date Collected 10/10/2019	Result -2.22	#Func!
Date Collected 10/10/2019 1/27/2020	Result -2.22 10.2	#Func! 2.322
Date Collected 10/10/2019 1/27/2020 4/22/2020	Result -2.22 10.2 6.29	#Func! 2.322 1.839

0.0414

9.97

4/14/2021

7/21/2021

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	t Yes	59.8	YES	4.091	N/A
MW372	Downgradient	t Yes	55.9	YES	4.024	N/A
MW384	Sidegradient	Yes	32.9	YES	3.493	N/A
MW387	Downgradient	t Yes	269	YES	5.595	N/A

Conclusion of Statistical Analysis on Current Data

-3.184

2.300

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW372

MW384

MW387

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2021 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 21.631 S = 3.071

CV(1)=0.142

K factor**= 2.523

TL(1)= 29.380

LL(1)=N/A

Statistics-Transformed Background

X = 3.065

S = 0.143 CV(2) = 0.047

K factor=** 2.523

TL(2) = 3.425

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/10/2019	23.4	3.153
1/27/2020	24.4	3.195
4/22/2020	24	3.178
7/29/2020	24.7	3.207
10/22/2020	25.7	3.246
1/26/2021	24.8	3.211
4/14/2021	24.4	3.195
7/21/2021	25	3.219

7/21/2021	25	3.219
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/9/2019	18.8	2.934
1/27/2020	18.6	2.923
4/22/2020	18.1	2.896
7/27/2020	18.9	2.939
10/22/2020	19.8	2.986
1/25/2021	18.8	2.934
4/14/2021	18.4	2.912
7/19/2021	18.3	2.907

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	67.8	YES	4.217	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Current Background Comparison LRGA Conductivity** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 339.250 S = 20.138 CV(1) = 0.059

K factor**= 2.523

TL(1)= 390.058 **LL(1)=**N/A

Statistics-Transformed Background

CV(2)=0.010 X = 5.825S = 0.059

K factor**= 2.523

TL(2) = 5.974

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/10/2019	357	5.878
1/27/2020	348	5.852
4/22/2020	350	5.858
7/29/2020	354	5.869
10/22/2020	358	5.881
1/26/2021	358	5.881
4/14/2021	366	5.903
7/21/2021	372	5.919

7/21/2021	372	5.919
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/9/2019	319	5.765
3/18/2020	321	5.771
4/22/2020	319	5.765
7/27/2020	322	5.775
10/22/2020	324	5.781
1/25/2021	320	5.768
4/14/2021	314	5.749
7/19/2021	326	5.787

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Ves	560	YES	6.328	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2021 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 164.036 **S**= 50.586 **CV(1)**=0.308

K factor=** 2.523

TL(1)= 291.665

LL(1)=N/A

Statistics-Transformed Background

X = 4.961

 $S = 0.766 \quad CV$

CV(2)=0.154

K factor**= 2.523

utilizing TL(1).

TL(2) = 6.894

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/10/2019 146 4.984 1/27/2020 257 5.549 4/22/2020 199 5.293 7/29/2020 5.153 173 10/22/2020 150 5.011 1/26/2021 8.57 2.148 4/14/2021 184 5.215 7/21/2021 204 5.318

Current Quarter Data

Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2)

MW373 Downgradient Yes 491 YES 6.196 N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
10/9/2019	173	5.153
1/27/2020	177	5.176
4/22/2020	160	5.075
7/27/2020	179	5.187
10/22/2020	133	4.890
1/25/2021	151	5.017
4/14/2021	157	5.056
7/19/2021	173	5.153

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Current Background Comparison** Magnesium UNITS: mg/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.141

S = 1.326CV(1)=0.145 K factor**= 2.523

TL(1)=12.485

LL(1)=N/A

Statistics-Transformed Background

X = 2.203

S = 0.146CV(2) = 0.066 K factor**= 2.523

TL(2) = 2.571

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected LN(Result) Result 10/10/2019 9.88 2.291 1/27/2020 10.3 2.332 4/22/2020 10.2 2.322 7/29/2020 10.4 2.342 10/22/2020 2.407 11.1 1/26/2021 10.4 2.342 4/14/2021 10.2 2.322 7/01/0001

7/21/2021	10.6	2.361
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/9/2019	8	2.079
1/27/2020	7.81	2.055
4/22/2020	7.81	2.055
7/27/2020	7.7	2.041
10/22/2020	8.61	2.153
1/25/2021	7.94	2.072
4/14/2021	7.68	2.039
7/19/2021	7.62	2.031

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	26.1	YES	3 262	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-17

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Oxidation-Reduction Potential UNITS:** mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 381.563 S = 75.989 CV(1) = 0.199

K factor**= 2.523

TL(1)= 573.282

LL(1)=N/A

Statistics-Transformed Background

X = 5.921

S = 0.239

Current Quarter Data

CV(2) = 0.040

K factor**= 2.523

TL(2) = 6.525

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/10/2019 443 6.094 1/27/2020 457 6.125 4/22/2020 419 6.038 5.903 7/29/2020 366 10/22/2020 354 5.869 1/26/2021 334 5.811 4/14/2021 372 5.919 7/21/2021 6.026 414 Well Number: MW397 Date Collected Result LN(Result) 10/9/2019 439 6.084 3/18/2020 246 5.505 4/22/2020 420 6.040 7/27/2020 360 5.886 10/22/2020 190 5.247 1/25/2021 478 6.170 5.969 4/14/2021 391

422

7/19/2021

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	359	NO	5.883	N/A
MW373	Downgradien	t Yes	372	NO	5.919	N/A
MW385	Sidegradient	Yes	342	NO	5.835	N/A
	D 11	. 37	2.62	310	5.004	3.7/4

MW388 Downgradient Yes 363 NO 5.894 N/A MW392 386 5.956 N/A Downgradient Yes NO 391 MW395 Upgradient Yes NO 5.969 N/A MW397 Upgradient 315 NO 5.753 Yes N/A

Conclusion of Statistical Analysis on Current Data

6.045

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-18

C-746-S/T Fourth Quarter 2021 Statistical Analysis **Current Background Comparison Sulfate** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 11.619 S = 0.453

CV(1)=0.039

K factor**= 2.523

TL(1)=12.763

LRGA

LL(1)=N/A

Statistics-Transformed Background

X = 2.452

S = 0.039CV(2) = 0.016 K factor**= 2.523

TL(2) = 2.550

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/10/2019 12.1 2.493 1/27/2020 11.7 2.460 4/22/2020 12.4 2.518 7/29/2020 12 2.485 10/22/2020 11.7 2.460 1/26/2021 11.6 2.451 4/14/2021 12.4 2.518 7/21/2021 11.8 2.468 Well Number: MW397 Date Collected LN(Result) Result 10/9/2019 11.4 2.434 1/27/2020 10.9 2.389 4/22/2020 11 2.398 7/27/2020 11.7 2.460

11.1

11.5

11.3

11.3

10/22/2020

1/25/2021

4/14/2021

7/19/2021

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW370	Downgradient	t Yes	21	YES	3.045	N/A
MW373	Downgradient	t Yes	155	YES	5.043	N/A
MW385	Sidegradient	Yes	23.6	YES	3.161	N/A
MW388	Downgradient	t Yes	19.6	YES	2.976	N/A

Conclusion of Statistical Analysis on Current Data

2.407

2.442

2.425

2.425

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2021 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.199 **S**= 5.755

CV(1)=0.564

K factor**= 2.523

TL(1)= 24.719

LL(1)=N/A

Statistics-Transformed Background
Data

X= 2.252 **S**= 0.606

CV(2)=0.269

K factor**= 2.523

TL(2) = 3.001

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/10/2019	8.31	2.117
1/27/2020	3.14	1.144
4/22/2020	8.44	2.133
7/29/2020	12.2	2.501
10/22/2020	-1.04	#Func!
1/26/2021	14	2.639
4/14/2021	3.78	1.330
7/21/2021	9.45	2.246

Well Number: MW397 Date Collected LN(Result) Result 10/9/2019 2.728 15.3 1/27/2020 3.04 1.112 4/22/2020 15 2.708 7/27/2020 20.1 3.001 10/22/2020 8.46 2.135 1/25/2021 15.2 2.721 4/14/2021 14 2.639 7/19/2021 13.8 2.625

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	39.2	YES	3 669	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

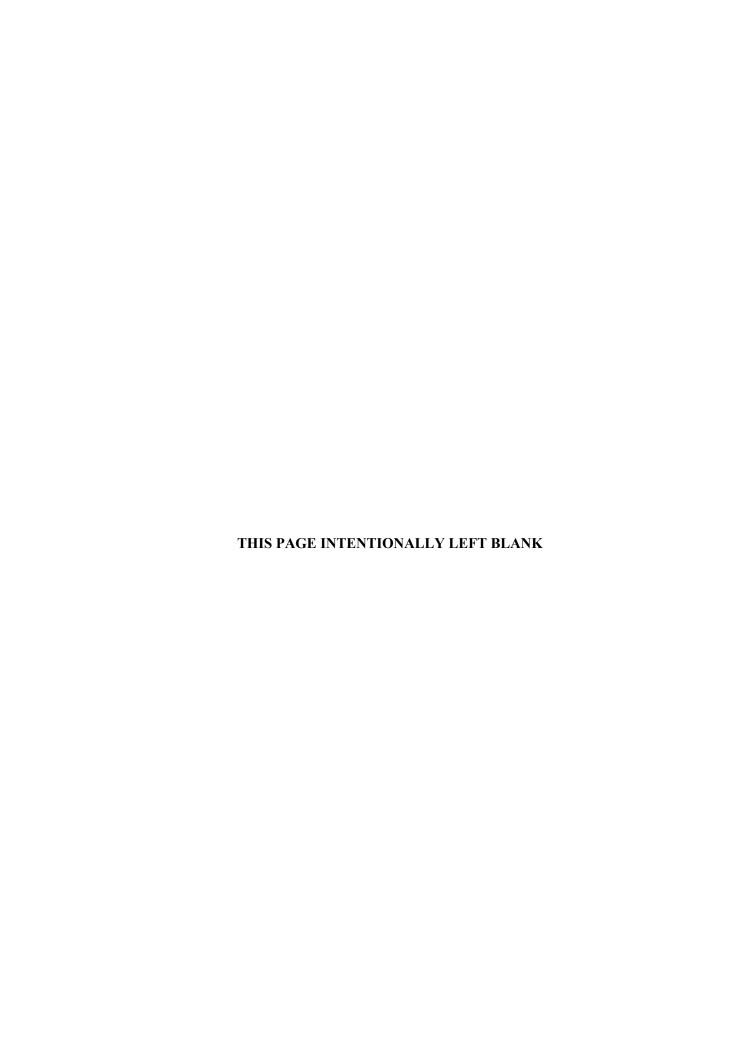
X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

January 24, 2022

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053


Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by an independent technical reviewer with Four Rivers Nuclear Partnership, LLC.


For this project, the statistical analyses conducted on the fourth quarter 2021 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Bryan Smith

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—QUARTERLY, 4th CY 2021 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2021 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on October 26, 2021. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for a water level measurement and water sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. During October, RGA groundwater flow was directed inward and then northeast towards the Ohio River. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 2.67×10^{-4} ft/ft. Additional water level measurements in October (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 5.21×10^{-4} ft/ft, northward. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for October 2021, RGA groundwater flow from the landfill area was directed to the northeast.

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW197, and MW200), were used to contour the RGA potentiometric surface. Water level could not be measured in MW193 this quarter.

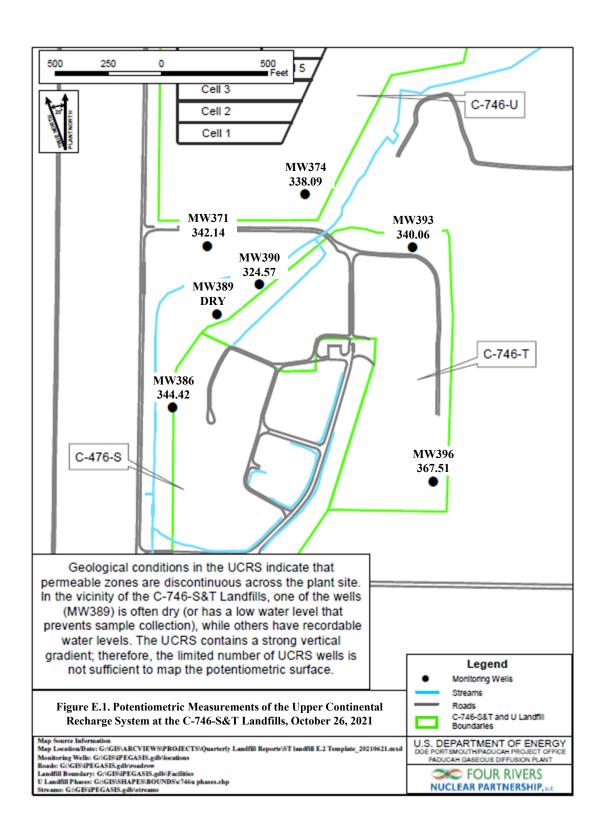


Table E.1. C-746-S&T Landfills Fourth Quarter 2021 (October) Water Levels

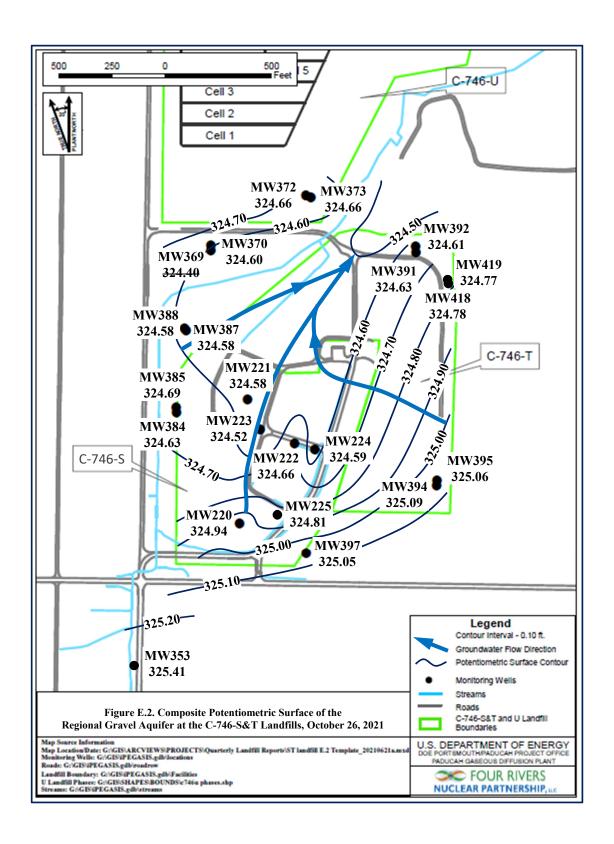
			C-746-S&	&T Landfills (O	ctober 202	1) Water Lo	evels			
							Rav	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/26/2021	10:16	MW220	URGA	382.01	30.11	0.00	57.07	324.94	57.07	324.94
10/26/2021	10:27	MW221	URGA	391.38	30.11	0.00	66.80	324.58	66.80	324.58
10/26/2021	10:22	MW222	URGA	395.27	30.11	0.00	70.61	324.66	70.61	324.66
10/26/2021	10:24	MW223	URGA	394.38	30.11	0.00	69.86	324.52	69.86	324.52
10/26/2021	10:20	MW224	URGA	395.69	30.11	0.00	71.10	324.59	71.10	324.59
10/26/2021	10:14	MW225	URGA	385.73	30.11	0.00	60.92	324.81	60.92	324.81
10/26/2021	10:38	MW353	LRGA	375.05	30.11	0.00	49.64	325.41	49.64	325.41
10/26/2021	9:36	MW369	URGA	364.23	30.11	0.00	39.83	324.40	39.83	324.40
10/26/2021	9:38	MW370	LRGA	365.12	30.11	0.00	40.52	324.60	40.52	324.60
10/26/2021	9:37	MW371	UCRS	364.64	30.11	0.00	22.50	342.14	22.50	342.14
10/26/2021	9:31	MW372	URGA	359.42	30.11	0.00	34.76	324.66	34.76	324.66
10/26/2021	9:33	MW373	LRGA	359.73	30.11	0.00	35.07	324.66	35.07	324.66
10/26/2021	9:32	MW374	UCRS	359.44	30.11	0.00	21.35	338.09	21.35	338.09
10/26/2021	10:00	MW384	URGA	365.29	30.11	0.00	40.66	324.63	40.66	324.63
10/26/2021	10:02	MW385	LRGA	365.74	30.11	0.00	41.05	324.69	41.05	324.69
10/26/2021	10:01	MW386	UCRS	365.32	30.11	0.00	20.90	344.42	20.90	344.42
10/26/2021	10:04	MW387	URGA	363.48	30.11	0.00	38.90	324.58	38.90	324.58
10/26/2021	10:05	MW388	LRGA	363.45	30.11	0.00	38.87	324.58	38.87	324.58
10/26/2021	10:06	MW389	UCRS	364.11			N/A			
10/26/2021	10:08	MW390	UCRS	360.39	30.11	0.00	35.82	324.57	35.82	324.57
10/26/2021	9:42	MW391	URGA	366.67	30.11	0.00	42.04	324.63	42.04	324.63
10/26/2021	9:44	MW392	LRGA	365.85	30.11	0.00	41.24	324.61	41.24	324.61
10/26/2021	9:43	MW393	UCRS	366.62	30.11	0.00	26.56	340.06	26.56	340.06
10/26/2021	9:52	MW394	URGA	378.46	30.11	0.00	53.37	325.09	53.37	325.09
10/26/2021	9:54	MW395	LRGA	379.12	30.11	0.00	54.06	325.06	54.06	325.06
10/26/2021	9:53	MW396	UCRS	378.75	30.11	0.00	11.24	367.51	11.24	367.51
10/26/2021	9:56	MW397	LRGA	387.00	30.11	0.00	61.95	325.05	61.95	325.05
10/26/2021	9:48	MW418	URGA	367.21	30.11	0.00	42.43	324.78	42.43	324.78
10/26/2021	9:49	MW419	LRGA	367.05	30.11	0.00	42.28	324.77	42.28	324.77
Reference Ba	arometri	c Pressure			30.11					_

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

N/A = not available

*Assumes a barometric efficiency of 1.0

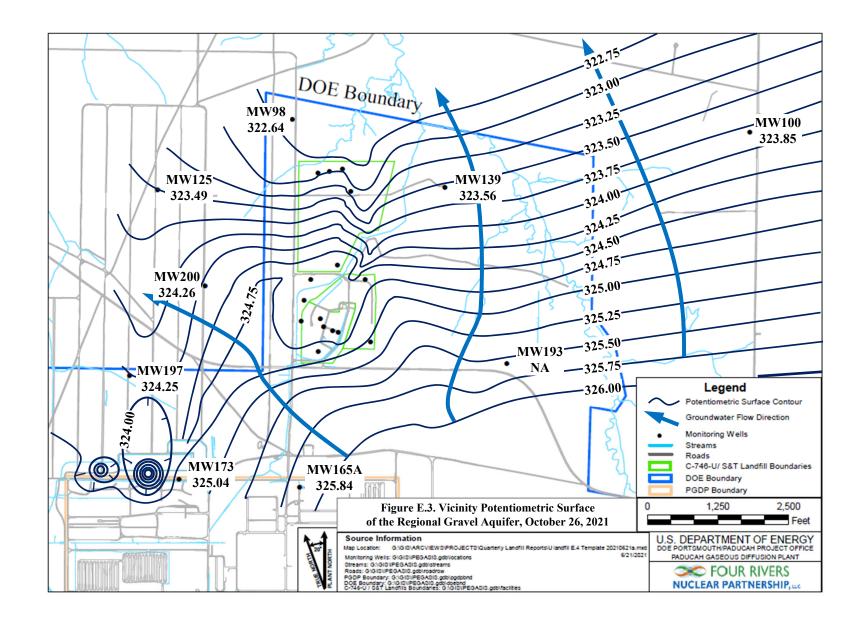



Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	2.67 × 10 ⁻⁴
Vicinity	5.21 × 10 ⁻⁴

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific l	Discharge (q)	Average	e Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.193	6.83 × 10 ⁻⁵	0.774	2.73 × 10 ⁻⁴
425	0.150	0.113	4.00 × 10 ⁻⁵	0.454	1.60 × 10 ⁻⁴
Vicinity					
725	0.256	0.378	1.33 × 10 ⁻⁴	1.51	5.33 × 10 ⁻⁴
425	0.150	0.221	7.81 × 10 ⁻⁵	0.886	3.13 × 10 ⁻⁴

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the fourth quarter 2021 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW372 MW369, MW372, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

11/16/2021

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS

SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4792	MW373	Trichloroethene	8260D	5.91	ug/L	5
8004-4815	MW387	Beta activity	9310	147	pCi/L	50
8004-4805	MW391	Trichloroethene	8260D	7.48	ug/L	5
8004-4806	MW392	Trichloroethene	8260D	15.7	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES



Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

Gradient Monitoring Well ACETONE Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2005 Quarter 4, 2019	S 386	D 389	D 390	D 393	U 396	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
ACETONE Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2005	386	389	390	393	306	221	40.0												ע			_	
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2005					220	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2003 Quarter 1, 2005																							
Quarter 1, 2005							*					*											
											*								*				
Quarter 4, 2019									*														
																*							
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									1
Quarter 4, 2003							*	*			*			*									1
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*									\vdash
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				_
Quarter 2, 2005			*				*																-
Quarter 2, 2005 Quarter 3, 2005	1	-	*				*			*											*		
Quarter 3, 2005 Quarter 4, 2005	1	-	*				*			*	*										*		-
• /			不								*		40										<u> </u>
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																<u> </u>
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*				-				*												
Quarter 3, 2010			*								*			*			*			*			-
			Ť				*				*			•			•			т.			
Quarter 1, 2011			¥				•																-
Quarter 2, 2011	 	 	*								*												—
Quarter 2, 2012			*				42																₩
Quarter 3, 2012				<u> </u>			*																<u> </u>
Quarter 1, 2013							*				*												<u> </u>
Quarter 3, 2013		L	*																				Щ.
Quarter 1, 2014							*																<u> </u>
Quarter 2, 2014											*												
Quarter 4, 2014			*																				
Quarter 1, 2016							*																
Quarter 2, 2016														*									
Quarter 1, 2017							*																
Quarter 4, 2017																							*
Quarter 1, 2018							*																
Quarter 1, 2020													*										
BARIUM																							
Quarter 3, 2003							•																
Quarter 4, 2003																							
BETA ACTIVITY																							
Quarter 4, 2002													•										
Quarter 1, 2003																							
					_																		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	3						1	URGA	4								LRGA	Ι.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015																							
Quarter 3, 2015	Н																		 				
Quarter 4, 2015																							
Quarter 1, 2016		 			l -							 		 	 			l -					
Quarter 2, 2016	Н																		 				
Quarter 3, 2016	Н									Ŧ							Ē		 	Ħ			
Quarter 4, 2016	-	_								ī		-		_	-			H	\vdash				
Quarter 1, 2017	-	_								Ī		-		_	-		Ē		\vdash	Ħ			
Quarter 2, 2017	-	_								ī		-		_	-		Ē		\vdash	Ħ			
Quarter 3, 2017										Ŧ							H			i			\vdash
Quarter 5, 2017	_	_	_		_	_	_			Ė		_	Ė	_	_		Ė	Ė	_				_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR	S						1	URG	A								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2017																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019																							
Quarter 3, 2019																							
Quarter 4, 2019																							
Quarter 1, 2020																				<u></u>			
Quarter 2, 2020																							
Quarter 3, 2020													_					_					
Quarter 4, 2020													_					•		<u> </u>			<u> </u>
Quarter 1, 2021													•							ļ			
Quarter 2, 2021																				<u> </u>			<u> </u>
Quarter 3, 2021													_							ļ			
Quarter 4, 2021													•										
BROMIDE			طو																				
Quarter 1, 2003			*	<u> </u>	<u> </u>			<u> </u>		<u> </u>		<u> </u>					<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>
Quarter 4, 2003			*	<u> </u>	<u> </u>			<u> </u>		<u> </u>		<u> </u>					<u> </u>		<u> </u>	<u> </u>	<u> </u>		-
Quarter 1, 2004			*	<u> </u>	<u> </u>			<u> </u>		<u> </u>		<u> </u>					<u> </u>		<u> </u>	<u> </u>	<u> </u>		-
Quarter 2, 2004			*	<u> </u>	<u> </u>			<u> </u>				<u> </u>								<u> </u>	<u> </u>		<u> </u>
Quarter 3, 2004	_		*	_	_			_		_		_					_		_	<u> </u>	_		<u> </u>
Quarter 4, 2004				<u> </u>	<u> </u>															<u> </u>			<u> </u>
Quarter 1, 2005			*																	ļ			
Quarter 3, 2006			*																				
CALCIUM			-11																				
Quarter 1, 2003			*																	ļ			igwdown
Quarter 2, 2003			*									*								<u> </u>			
Quarter 3, 2003			*									44							4	ļ			
Quarter 4, 2003			*									*		4					*	<u> </u>			
Quarter 1, 2004			*									*		*					*	<u> </u>			
Quarter 2, 2004			*									*							*				-
Quarter 3, 2004	-		*									*							*				-
Quarter 4, 2004			不																	<u> </u>			
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*	ļ			
Quarter 3, 2005												*							*	<u> </u>			<u> </u>
Quarter 4, 2005												*							*	<u> </u>			<u> </u>
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007										_		*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008	L	L	L	L	L		L	L	L	L	L	*	L		L		L	L	*	L	L	L	L
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010	1	 	 				1					*							*	 			-
Quarter 4, 2010												*							*	†			\vdash
Quarter 1, 2011												*							*	 			\vdash
Quarter 2, 2011	1											*	*						*				\vdash
Quarter 3, 2011	1											*	Ė						*				\vdash
Quarter 4, 2011	1											*							*	 			
	 	-	-	_	_	-	-	_		_		*					<u> </u>		*	 	_		\vdash
Quarter 1, 2012 Quarter 2, 2012	 	-	-	_	_	-	-	_		_		*					<u> </u>		*	 	_		├
	 	-	-	<u> </u>	<u> </u>		-	<u> </u>	-	├	-	*	-		-		-		*	1	<u> </u>	-	₩
Quarter 3, 2012						_				_		不					_		不				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		1	UCRS	2						_	JRGA	Λ.				-			_	LRGA			—
Gradient Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392		397
CALCIUM																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015 Quarter 4, 2015												*							*				_
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				\dashv
Quarter 2, 2017												*							*				\exists
Quarter 3, 2017												*							*				一
Quarter 4, 2017												*							*				
Quarter 1, 2018												*							*				
Quarter 2, 2018												*							*				
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*	4						*				
Quarter 4, 2019												*	*						*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020 Quarter 3, 2020												*	*						*				_
Quarter 4, 2020												*	*						*				
Quarter 1, 2021												*	*						*				
Quarter 2, 2021												*							*				
Quarter 3, 2021												*	*						*				
Quarter 4, 2021												*	*						*				-1
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
Quarter 2, 2017												*	*						*				
CHEMICAL OXYGEN DEMAN	D																						
Quarter 1, 2003				*																			
Quarter 2, 2003				*			*			*													
Quarter 3, 2003 Ouarter 4, 2003				*			*			*													
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*	-										-					\vdash		-				\dashv
Quarter 1, 2005	*																H						\dashv
Quarter 2, 2005	*																						\dashv
Quarter 3, 2005	*									*		*									*		一
Quarter 4, 2005	*									*													\exists
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																Ш						
Quarter 3, 2007	*																Ш						
Quarter 4, 2007	*	<u> </u>										<u> </u>					\vdash		<u> </u>				_
Quarter 1, 2008	*					<u> </u>											\vdash						_
Quarter 2, 2008	*																Н						
Quarter 3, 2008 Quarter 4, 2008	*	-				-						-					\vdash		-				\dashv
Quarter 4, 2008 Quarter 1, 2009	*	<u> </u>				-						<u> </u>							<u> </u>				\dashv
Quarter 1, 2009 Quarter 2, 2009	*		_			<u> </u>							_	_			H			*			\dashv
Quarter 3, 2009	*																H			•			\dashv
Quanto 5, 2007	_																						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	4]	LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHEMICAL OXYGEN DEMAN	D																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*						-1-		*				*					*					
Quarter 4, 2014							*																
Quarter 2, 2015															46	*							
Quarter 3, 2015			.								.				*								
Quarter 3, 2016			*								*						J						
Quarter 4, 2016							4										*						
Quarter 2, 2017	*						*								*								
Quarter 3, 2017	*					JE.									*								
Quarter 4, 2017	\vdash					*								4 E								*	-
Quarter 2, 2018 Quarter 3, 2018	lacksquare											*		*								本	
. ,												不											*
Quarter 4, 2018 Quarter 2, 2019	\vdash				*		<u> </u>		<u> </u>			*		*					*				*
Quarter 3, 2019					不							*	*	*					*			*	*
	*			*				*			*	*	т.			*			т			т.	т.
Quarter 4, 2019 Quarter 1, 2020	~			٠	*			•	*		•	~				~					*		
Quarter 1, 2020 Quarter 2, 2020		-			•				~						*						•		
Quarter 4, 2020															т.	*							
Quarter 1, 2021	-											*				т.							
Quarter 2, 2021						*						-4-			*								
Quarter 4, 2021	*																						
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004																							
Quarter 4, 2004	Ш		*																				
			*																				
Quarter 1, 2005			* *																				
Quarter 2, 2005			* * *																				
Quarter 2, 2005 Quarter 3, 2005			* * * *																				
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005			* * *																				
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006			* * * * *															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006			* * * * *															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006			* * * * *															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006			* * * * * *															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007			* * * * * * *															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007			* * * * * * *															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007			* * * * * * * *															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007			****															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008			*****															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008			****															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008			****															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008			****															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009			****															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009			****															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009			****															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009			****															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010			*****															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 1, 2010			****															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010			****															*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 1, 2010			****															*					

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	I		UCRS	S						1	URGA	A]	LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE																							
Quarter 2, 2011			*																				
Quarter 3, 2011	1		*																				t
Quarter 4, 2011	1		*																				1
Quarter 3, 2012			*																				
Quarter 3, 2013			*																				
Quarter 4, 2013	1		*																			 	\vdash
Quarter 4, 2014	1	-	*			-																₩	┢
Quarter 2, 2019	1	-				-															*	₩	┢
																					т.		
CHROMIUM																						_	
Quarter 4, 2002	1																						<u> </u>
Quarter 1, 2003	1						_	-														_	<u> </u>
Quarter 2, 2003	1					_																	<u> </u>
Quarter 3, 2009						_																<u> </u>	<u> </u>
Quarter 1, 2019						▝																_	╙
COBALT							,																
Quarter 3, 2003		<u> </u>	<u> </u>	<u> </u>	<u> </u>		*	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>						<u> </u>	Щ	丄
CONDUCTIVITY																							
Quarter 4, 2002	<u> </u>	<u> </u>								*						Ш			*			<u> </u>	Щ
Quarter 1, 2003	<u> </u>	<u> </u>	*							*									*			<u> </u>	<u></u>
Quarter 2, 2003			*							*									*				<u> </u>
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							*									*				
Quarter 1, 2004																			*				
Quarter 2, 2004										*									*				
Quarter 3, 2004										*									*				
Quarter 4, 2004			*							*									*				
Quarter 1, 2005										*		*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005																			*				
Quarter 4, 2005										*		*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007	1											*					*		*				
Quarter 1, 2008	t											*							*				
Quarter 2, 2008	t											*							*				Г
Quarter 3, 2008	t											*					*		*				
Quarter 4, 2008	t	t										*				H			*				┢
Quarter 1, 2009	t	t										*				Н			*				┢
Quarter 2, 2009	l	t										*				H			*				┢
Quarter 3, 2009	t											*							*			t	\vdash
Quarter 4, 2009	t				\vdash							*					*		*			t	\vdash
Quarter 1, 2010	t				\vdash							*							*			t	\vdash
Quarter 2, 2010	t	\vdash			 	 						*				H			*			 	\vdash
Quarter 3, 2010	t	\vdash			 	 						*				H			*			 	\vdash
Quarter 4, 2010	1	1			-	1						*							*			\vdash	\vdash
Quarter 1, 2011	t	1			\vdash	1			-	*		*			-	H			*			\vdash	\vdash
Quarter 2, 2011	╂	 			 	 				Ë		*				H			*			\vdash	\vdash
Quarter 3, 2011	 	 			_	 					_	*				$\vdash\vdash$			*			\vdash	₩
Quarter 4, 2011	1	1	-	-		1	-	-	-			*	-	-	-	\vdash			*		-	₩	┢
Quarter 4, 2011 Quarter 1, 2012	 	 			_	 					*	*				$\vdash\vdash$			*			\vdash	₩
Quarter 1, 2012 Quarter 2, 2012	├	-				_					_	*							*			\vdash	├
	├	-				_						*							*			\vdash	├
Quarter 3, 2012	_				_							_ *					_		*				<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR	S						Į	URGA	Α								LRG	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				<u> </u>
Quarter 4, 2013												*							*				<u> </u>
Quarter 1, 2014												*							*				<u> </u>
Quarter 2, 2014												*							*				<u> </u>
Quarter 3, 2014												*							*				<u> </u>
Quarter 4, 2014			<u> </u>									*							*				<u> </u>
Quarter 1, 2015			<u> </u>									*							*				<u> </u>
Quarter 2, 2015			<u> </u>									*							*				<u> </u>
Quarter 3, 2015			<u> </u>									*							*				<u> </u>
Quarter 4, 2015												*							*				₩
Quarter 1, 2016 Quarter 2, 2016												不							*				<u> </u>
Quarter 3, 2016			-									*							*				_
Quarter 4, 2016												~							*				
Quarter 1, 2017			-																*				
Quarter 1, 2017 Quarter 2, 2017	-		 	-			-												*		-		_
Quarter 3, 2017 Quarter 3, 2017			 																*				
Quarter 4, 2017	\vdash	\vdash	\vdash	 	-	 	 	-											*	-	 	\vdash	
Quarter 1, 2018	\vdash	\vdash	\vdash	 	-	 	 	-		H							H		*	-	 	\vdash	
Quarter 2, 2018				 			 												*		 		
Quarter 3, 2018			1																*				
Quarter 4, 2018			1																*				
Quarter 1, 2019																			*				
Quarter 2, 2019																			*				
Quarter 3, 2019																			*				
Quarter 4, 2019												*							*				1
Quarter 1, 2020												*							*				1
Quarter 2, 2020												*							*	*			t
Quarter 3, 2020												*							*				
Quarter 4, 2020												*							*				t
Quarter 1, 2021												*							*				t
Quarter 2, 2021												*							*				
Quarter 3, 2021												*							*				t
Quarter 4, 2021																			*				
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				<u> </u>
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		L
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007			i –							*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008		1	 		 			 				*							*	 		1	
Quarter 3, 2008			 									*							*				
Quarter 4, 2008			1							*		*							*				
	_	 	1									*							*				
Ouarter 1, 2009													1					1				1	1
Quarter 1, 2009 Quarter 2, 2009												*	*						*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Monitoring Well DISSOLVED SOLIDS Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014	S 886	D 389	D 390	D 393	U 396	S 221	S 222	S 223	S 224	* * *	D 369	D 372 * * * *	D 387 * * *	D 391	U 220	U 394	S 385	D 370	D 373 * * * * * * *	D 388	D 392	U 395	U 397
DISSOLVED SOLIDS Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014	886	389	390	393	396	221	222	223	224	* *	369	* * *	* *	391	220	394	385	370	* * *	388	392	395	397
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014										*		* * *	*						* * *				
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 7, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014										*		* * *	*						* * *				
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 7, 2013 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 7, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014										*		*	*						*				
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014										*		*							*				
Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014										*		*	*						*				
Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014										*								!					
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2014												不							· *			1	├—
Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014										f		*						$\overline{}$	*	┢			
Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014										1		*	*					\vdash	*	-		\vdash	-
Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014												*						-	*	₩		\vdash	
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014												*							*				
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014							I				*	*	*					\vdash	*	\vdash			
Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014												*							*				
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014										*		*	*					\vdash	*	 			
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014												*	*					\vdash	*				
Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014										*		*						\Box	*				
Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014			1									*						\Box	*				
Quarter 1, 2014 Quarter 2, 2014												*						П	*				
Quarter 2, 2014												*						\Box	*				
												*	*					\neg	*				
0 2 . 201.4												*						\neg	*				
Quarter 3, 2014									*			*	*					\Box	*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015									*			*						*	*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*	*	*					*				
Quarter 3, 2016												*						ш	*				
Quarter 4, 2016												*						ш	*				
Quarter 1, 2017												*						ш	*				
Quarter 2, 2017												*						ш	*				
Quarter 3, 2017												*		*	*			\square	*				
Quarter 4, 2017												*						\square	*				
Quarter 1, 2018												*						\square	*				
Quarter 2, 2018												*						ш	*				
Quarter 3, 2018												*		*				ш	*				
Quarter 4, 2018												*						ш	*	igspace		<u> </u>	<u> </u>
Quarter 1, 2019												*						ш	*			$\vdash \vdash$	
Quarter 2, 2019												*	4					ш	*			$\vdash \vdash$	
Quarter 3, 2019												*	*					ш	*			\vdash	
Quarter 4, 2019												*	*					\vdash	*	<u> </u>		\vdash	
Quarter 1, 2020																		\vdash		<u> </u>		\vdash	<u> </u>
Quarter 2, 2020	_					-	-			*		*	*		\vdash	-	*	\vdash	*	₩		$\vdash\vdash$	<u> </u>
Quarter 4, 2020	_					-	-			不		*	*		\vdash	-	不	\vdash	*	₩		$\vdash\vdash$	<u> </u>
Quarter 4, 2020 Quarter 1, 2021	_					-	-					*	*		\vdash	-		\vdash	*	₩		$\vdash\vdash$	<u> </u>
Quarter 1, 2021 Quarter 2, 2021	_					<u> </u>						*	*					\vdash	*	₩		\vdash	\vdash
Quarter 2, 2021 Quarter 3, 2021	-					-	-					*	*					\vdash	*	₩		\vdash	\vdash
Quarter 4, 2021	-											*	*					\vdash	*	\vdash			
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*												\dashv		H			
Quarter 3, 2003	7												*					\dashv		\vdash		\sqcap	
Quarter 1, 2004	7			*														\dashv		\vdash		\sqcap	
Quarter 3, 2010																		\vdash		T	*		
Quarter 2, 2013										*								\neg					\vdash
IRON																							
Quarter 1, 2003							*			*	*			*				\neg					
Quarter 2, 2003										*	*	*	*					, – 1					
Quarter 3, 2003							*	*	*	*	*	*						\neg					
Quarter 4, 2003											*							\neg					
Quarter 1, 2004											*							\neg		\vdash			
Quarter 2, 2004										*	*							\neg		\vdash			
Quarter 3, 2004										*								\neg					
Quarter 4, 2004										*								\neg					
							_	_	_	_	_			_	_	_					_	_	_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						i	URG	4								LRGA	Α.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2005	_											*											
Quarter 2, 2005	1										*	*											
Quarter 1, 2006	1						*																
Quarter 2, 2006	+-	<u> </u>										*											
Quarter 3, 2006	+										*												-
Quarter 1, 2007	+	-									*	*											
Quarter 1, 2007 Quarter 2, 2007	+	<u> </u>									*	***											₩
,	+	-									•	*											₩
Quarter 2, 2008	-																						
Quarter 3, 2008												*											
MAGNESIUM																							
Quarter 1, 2003	-	-	*									.							.				<u> </u>
Quarter 2, 2003	-		*				46					*							*				
Quarter 3, 2003			*				*					*							4				<u> </u>
Quarter 4, 2003	_	<u> </u>	*									* 1		- At-		\vdash			*				₩
Quarter 1, 2004	_	<u> </u>	*									*		*					*				₩
Quarter 2, 2004	┺	<u> </u>	*									*							*				<u> </u>
Quarter 3, 2004	┺	<u> </u>	*									*							*				<u> </u>
Quarter 4, 2004	_	<u> </u>	*									*							*				<u> </u>
Quarter 1, 2005		<u> </u>	L									*							*				<u></u>
Quarter 2, 2005		<u> </u>										*							*				<u></u>
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007	1											*							*				t
Quarter 3, 2007	1											*							*				t
Quarter 4, 2007	1											*							*				1
Quarter 1, 2008	1											*							*				
Quarter 2, 2008	1											*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008	+-	<u> </u>										*							*				
Quarter 1, 2009	+											*							*				-
Quarter 2, 2009	+	<u> </u>										*							*				₩
	-											*	*						*				
Quarter 3, 2009	-											*	不						*				-
Quarter 4, 2009	-	ļ																					<u> </u>
Quarter 1, 2010												*							*				<u> </u>
Quarter 2, 2010												*	*						*				<u> </u>
Quarter 3, 2010												*							*				<u> </u>
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012	1	t										*	*			H			*				\vdash
Quarter 1, 2013	1	\vdash										*				H			*				\vdash
Quarter 2, 2013	+	1							-		-	*	-	-					*		-		\vdash
Quarter 3, 2013	+											*							*				\vdash
Quarter 4, 2013	+	\vdash	1			_						*				\vdash			*				\vdash
Quarter 1, 2014	+	 	-				_			_		<u> </u>			_	$\vdash\vdash$		*	*				├
		i	İ		Ī		Ī	l	l	Ī	l		l	l					-,4-	Ī	l	1	

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

MAGNESIUM Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020	S 386	D 389	D 390	D 393	U 396	S 221	S 222	S 223	S 224	S 384	D 369	D 372 * * * * * *	D 387 * * *	D 391	U 220	U 394	S 385	D 370	D 373 * * * * * * * * * *	D 388	D 392	U 395	U 397
MAGNESIUM Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020	386	389	390	393	396	221	222	223	224	384	369	* * * * *	*		220	394	385	370	* * * * * *	388	392	395	397
Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020												* * *	*	*					* * * *				
Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020												* * *	*	*					* * * *				
Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020												* * *		*					* * * *				
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020												* * *		*					* * *				
Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020												* *	*	*					* * *				
Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020												*		*					* *				
Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020												*		*					*				
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020												*		*					*				
Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020														*									
Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020												*		*					*				
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020																							
Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020											ì	*							*		l		
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020												*		*					*				
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020												*		*					*				
Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020							_					*											
Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020												*		*									
Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020												*							*				
Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020												*	*						*				
Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020				\vdash								*											
Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020				1								*											
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2, 2020 Quarter 3, 2020 Quarter 4, 2020												*	*	*					*				
Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020												*		*					*				_
Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020												*							*				\vdash
Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020												*	*						*				
Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020												*	*						*				_
Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020												*	*						*				
Quarter 3, 2020 Quarter 4, 2020												*	*						*				
Quarter 4, 2020												*	*						*				
												*	*						*				
Quarter 1, 2021												*	*						*				
Quarter 2, 2021												*	*						*				-
Quarter 3, 2021												*	*						*				-
Quarter 4, 2021												*	*						*				-
												~	Α						~				
MANGANESE																					*		
Quarter 4, 2002							*	*													不		
Quarter 3, 2003							*	*															-
Quarter 4, 2003								*															-
Quarter 1, 2004							*																-
Quarter 2, 2004							*	¥															-
Quarter 4, 2004								*															
Quarter 1, 2005							*																<u> </u>
Quarter 3, 2005																					*		<u> </u>
Quarter 3, 2009	*																						<u> </u>
OXIDATION-REDUCTION POTI	ENT	IAL																					
Quarter 4, 2003			*																				<u> </u>
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					Щ.
Quarter 4, 2004			*			*																	oxdot
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				Ш
Quarter 3, 2005	*		*																				L
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
						_	_	_									*	~			_		_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	I		UCRS	S						1	URG	A								LRGA	A		_
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION PO	TENT	ΓIAL																					
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		<u> </u>
Quarter 3, 2011	*		*	*			*	*		*			*		*		*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*	Ļ	*	*	*			*	*	*	*	*	*	_	*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
Quarter 2, 2017	*		*	*	*												*			*	*		
Quarter 3, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 1, 2018	*		*	*	*	*												*	*	*	*		*
Quarter 2, 2018	*		*	*	*												*	*	*	*	*	*	*
Quarter 3, 2018	*		*	*	*	*	*	*	*								*	*	*	*	*	*	*
Quarter 4, 2018	*		*	*	*	*				*			*		*		*	*	*	*	*		*
Quarter 1, 2019	*		*	*	*	*	*	*			*						*	*	*	*	*	*	*
Quarter 2, 2019	*		*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2019	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2019	*		*	*	*				*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2020	*		*	*	*	*	*	*	*				*			*	*	*	*	*	*	*	
Quarter 2, 2020	*		*	*	*	*	*	*	*	*			*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2020	*		*	*	*	*											*	*	*	*	*	*	*
Quarter 4, 2020	*		*	*	*	*		*						*			*	*	*	*	*	*	
Quarter 1, 2021	*		*	*		*	*	*	*	*			*		*		*	*	*	*		*	*
Quarter 2, 2021	*		*	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*
Quarter 3, 2021	*		*	*	*	*	*	*	*				*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2021	*		*	*	*	*	*	*	*						*		*	*	*	*	*	*	*
PCB-1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												Ш
Quarter 1, 2006											*				L								<u> </u>
Quarter 2, 2006											*												<u></u>
Quarter 4, 2006											*												Щ.
Quarter 1, 2007											*	*			L								<u> </u>
Quarter 2, 2007											<u>L</u>	*											<u></u>
Quarter 3, 2007											*												Щ.
Quarter 2, 2008											*	*											<u></u>
Quarter 3, 2008	<u> </u>										*												上
Quarter 4, 2008											*												oxdot
Quarter 1, 2009											*												L
Quarter 2, 2009											*												
Quarter 3, 2009	1										*												
Quarter 4, 2009	Ĭ										*												
Quarter 1, 2010	1										*												
	+	 			t			l			*									l			\vdash
Quarter 2, 2010			l																				1
Quarter 2, 2010 Quarter 3, 2010											*												
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010											*												

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	A								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	
PCB-1232																							
Quarter 1, 2011											*												T
PCB-1248																							
Quarter 2, 2008												*											_
PCB-1260																							
Quarter 2, 2006																		*					1
pH																							
Quarter 4, 2002																	*						_
Quarter 2, 2003																	*						\vdash
Quarter 3, 2003																	*						┢
Quarter 4, 2003							*										*						┢
Quarter 1, 2004	+	-					*										*						┢
Quarter 2, 2004	+	-															*						┢
Quarter 3, 2004	+	-															*						┢
	-	<u> </u>															*						₩
Quarter 4, 2004	-	-	-							*							*				*		\vdash
Quarter 3, 2005	+	<u> </u>	 														*				木		<u> </u>
Quarter 4, 2005	+	<u> </u>	 							*													<u> </u>
Quarter 1, 2006	+	<u> </u>	 														*						<u> </u>
Quarter 2, 2006	_	<u> </u>								<u> </u>							*			<u> </u>			₩
Quarter 3, 2006																	*						<u> </u>
Quarter 3, 2007																	*						<u> </u>
Quarter 4, 2007																	*						<u> </u>
Quarter 4, 2008																	*						<u> </u>
Quarter 1, 2009																	*						<u> </u>
Quarter 1, 2011																	*						<u> </u>
Quarter 2, 2011											*												<u> </u>
Quarter 3, 2011											*												<u></u>
Quarter 1, 2012														*									<u></u>
Quarter 1, 2013										*			*				*						<u></u>
Quarter 4, 2014																					*		
Quarter 2, 2016																		*	*				
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														T
Quarter 1, 2009											*												T
Quarter 3, 2014	T		t						*			*											\vdash
Quarter 4, 2014	T		*								*							*					\vdash
Quarter 1, 2015	+	1	*				*			*	<u> </u>	*	-		-			*		\vdash	-		\vdash
Quarter 2, 2015	1	1	*				*			*		*						*		-			\vdash
Quarter 3, 2015	+	-	*			-	Ė					Ė											┢
					ı			1	1									1				1	1

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	A								LRGA	Α.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
RADIUM-226																							
Quarter 4, 2015					*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016																		*					
Quarter 4, 2016	*		*			*			*				*		*					*		*	
Quarter 1, 2017			*							*	*							*					<u> </u>
Quarter 2, 2017																	*	*		*	*		
Quarter 3, 2017					*				*	*	*									*			Щ.
Quarter 4, 2017																		*		*			
Quarter 1, 2018												*						*		*			
Quarter 4, 2018													*				*						<u> </u>
Quarter 1, 2020	<u> </u>																*						<u> </u>
Quarter 2, 2020	1														*								<u> </u>
RADIUM-228											_												
Quarter 2, 2005	ļ		_																				<u> </u>
Quarter 3, 2005	₽																						<u> </u>
Quarter 4, 2005	₽	-		<u> </u>	_	<u> </u>	_		•	<u> </u>		<u> </u>		_	<u> </u>	\vdash		_	_			_	├
Quarter 1, 2006					_																		
SELENIUM Overton 4, 2002																							
Quarter 4, 2002	├	-	-	<u> </u>			<u> </u>	-		├	-	<u> </u>	-		<u> </u>					-	-		₩
Quarter 1, 2003	├	-		<u> </u>	-		<u> </u>	-		├	-	<u> </u>	-		<u> </u>					-	-	-	₩
Quarter 2, 2003 Quarter 3, 2003	├	-		<u> </u>			<u> </u>	-		├	-	<u> </u>	-		<u> </u>					-	-		₩
	1				-																		_
Quarter 4, 2003 SODIUM			_																				
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*								т.		~		-
Quarter 2, 2003				*					т.	*	*		*										-
Quarter 3, 2003	1			-4-			*	*		*			-4-										-
Quarter 4, 2003	1						*	т.	*	*													-
Quarter 1, 2004	1								*	*				*									-
Quarter 2, 2004	\vdash									*													-
Quarter 3, 2004	1									*													
Quarter 4, 2004	1								*	*													
Quarter 1, 2005	1									*									*				
Quarter 2, 2005	1									*									*				
Quarter 3, 2005	\vdash								*	*									*				-
Quarter 4, 2005	\vdash								*	*													-
Quarter 1, 2006	\vdash								*	*													-
Quarter 2, 2006	1								*	-													-
Quarter 3, 2006	1								*	*		*							*				-
Quarter 4, 2006	1								*	*		-					*		-				-
Quarter 1, 2007									*	-		*											-
Quarter 2, 2007									*	*		т.											-
									*	т.													-
Quarter 3, 2007	 								*														
Quarter 4, 2007 Quarter 1, 2008	 								*														
	 	-							*			*				-							├
Quarter 3, 2008	₽—								طو	Ju.		*											—
Quarter 4, 2008	₽								*	*		ىد							*				<u> </u>
Quarter 1, 2009	₽				<u> </u>		<u> </u>		*			*			<u> </u>				不				<u> </u>
Quarter 3, 2009	₽			<u> </u>	<u> </u>		<u> </u>		JL.			*			<u> </u>								<u> </u>
Quarter 4, 2009	 			<u> </u>	<u> </u>		<u> </u>		*	<u> </u>		*			<u> </u>								<u> </u>
Quarter 1, 2010	 			<u> </u>	<u> </u>		<u> </u>			40		*			<u> </u>								<u> </u>
Quarter 2, 2010	<u> </u>									*		*											<u> </u>
Quarter 3, 2010	<u> </u>									*													<u> </u>
Quarter 4, 2010	<u> </u>								*	*													<u> </u>
Quarter 1, 2011	<u> </u>									*													<u> </u>
Quarter 2, 2011									*														
Quarter 4, 2011																			*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				t
Quarter 4, 2013												*							*				t
Quarter 1, 2014												*											t
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014									*	*		*	*										
Quarter 1, 2015													*										
Quarter 2, 2015												*											
Quarter 3, 2015										*		*											
Quarter 4, 2015									*	*		*											
Quarter 2, 2016									-		*	-											
Quarter 3, 2016											*												*
Quarter 1, 2017										*	*		*					*					H
Quarter 2, 2017									*	*	*		<u> </u>					-					
Quarter 2, 2017									Ė	Ë	Ë		*										
Quarter 3, 2018		-		-	-		-				-	-	Ė	*							-		
Quarter 1, 2019													*	-									
Quarter 2, 2019		 				 							*			H				\vdash		\vdash	
Quarter 4, 2019												*	<u> </u>			\vdash							<u> </u>
Quarter 1, 2020											*	*				\vdash			*				<u> </u>
Quarter 2, 2020											*	-	*						*				
Quarter 3, 2020											*	*	т-						-				
Quarter 4, 2020											-	*											├
Quarter 1, 2021												*	*										
Quarter 2, 2021												*	т-										
Quarter 3, 2021												*											╀
Quarter 4, 2021												*											╂
STRONTIUM-90												*											_
Quarter 2, 2003																							
Quarter 1, 2004										i													├
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				├
Quarter 2, 2003										*		*	*				т	*	*				
Quarter 3, 2003										*		*	*						*				├
Quarter 4, 2003										*		*	*						*				├
										*		*	*					*	*				<u> </u>
Quarter 1, 2004 Quarter 2, 2004										*		*	*				*	*	*	*			╀
									*	*		*	*				~	*	*	*			╂
Quarter 3, 2004	-	-	-	 	 		 	-	*	*	 	*	*	1		\vdash		*	*	-	 	-	
Quarter 4, 2004	⊢	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			*	<u> </u>		*			\vdash	3k	*	*	├	<u> </u>	-	<u> </u>
Quarter 1, 2005	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		_		<u> </u>	*			_	$\vdash \vdash$	*			-	<u> </u>	-	₩
Quarter 2, 2005	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>			*	<u> </u>	*	*				- JL	*	*		<u> </u>		<u> </u>
Quarter 3, 2005										*		*	*			Ш	*	*	*	d-			<u> </u>
Quarter 4, 2005		<u> </u>		<u> </u>	<u> </u>		<u> </u>			*	<u> </u>	*	*					*	*	*	<u> </u>		<u> </u>
Quarter 1, 2006										*		*	*				*	*	*	*			<u> </u>
Quarter 2, 2006		<u> </u>							*	*		*	*				*	*	*	*			<u> </u>
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006		L				L			*	*		*	*		L		*		*	L		LĪ	L
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*		1	
Quarter 4, 2008		-								*	-	*	*			H	*		*		-		\vdash
Quarter 1, 2009		-								*		*	*			\vdash	*	*	*			_	-
Quarter 2, 2009	-	 	-	 	 		 	-	*	*	 	*	*			\vdash	*	*	*	*	 		
	-	-	-	 	 		 	-	*	*	 	*	*	1		\vdash	*	*	*	*	 	-	
Quarter 3, 2009	<u>*</u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		*		<u> </u>				_	$\vdash \vdash$				*	<u> </u>	-	₩
Quarter 4, 2009	*								JL.	*		*	*	1		\vdash	*	*	*				<u> </u>
O				1	1		1	1	*	*	ı	*	*	1	i		*	ı	*				1
Quarter 1, 2010	*				_	_	_			_	_	_	_	_	_		_		_			_	_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SULFATE																							
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
	-									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013														44									
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*			
Quarter 4, 2013										*		*	*				*	*	*	*			
Quarter 1, 2014								*		*		*	*				*	*	*	*			
Quarter 2, 2014	L	L	L	L	L	L	L	L	L	*	L	*	*	*	L	LĪ	*	*	*	*	L	L	L
Quarter 3, 2014										*		*	*	*			*	*	*	*			
Quarter 4, 2014										*		*	*				*	*	*	*			
Quarter 1, 2015										*		*	*				*	*	*	*			
Quarter 2, 2015										*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2015										*		*	*	*			*		*	*			
Quarter 1, 2016								*		*		*	*	*			*	*	*	*		 	1
Quarter 2, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2016										*		*	*	*	*		*	*	*	*			
Quarter 1, 2017										*		*	*	*	*		*	*	*	*			
Quarter 2, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2017								**		*		*	*	*	*		*	*	*	*			
Quarter 1, 2018										*		*	*	*			*	*	*	*			
								*		*	*	*	*	*	*		*	*	*	*			
Quarter 2, 2018								*		*	不	*	不	*	*		*	*	*	*		-	-
Quarter 3, 2018								*					.		不								
Quarter 4, 2018								¥		*		*	*	*			*	*	*	*			
Quarter 1, 2019								*		*		*	*	*	*		*	*	*	*			
Quarter 2, 2019								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2019			*					*		*		*	*	*	*		*	*	*	*	*		
Quarter 4, 2019			*							*		*	*	*			*	*	*	*	*		
Quarter 1, 2020								*		*		*	*	*	*		*	*	*	*	*		
Quarter 2, 2020								*		*		*	*	*	*		*	*	*	*	*		
Quarter 3, 2020			*							*		*	*				*	*	*	*	*		
Quarter 4, 2020										*		*	*				*	*	*	*			
Quarter 1, 2021										*		*	*				*	*	*	*			
Quarter 2, 2021								*		*		*	*		*		*	*	*	*	*		
Quarter 3, 2021										*		*	*				*	*	*	*			
Quarter 4, 2021										*		*	*				*	*	*	*			
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*				*		*				
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*									*					*		*				
Quarter 4, 2004			*							*		*	*				*	*	*				
Quarter 1, 2005			*							*		*	*				*			*		†	1
Quarter 2, 2005			*							*		H	*	1			*	*	*	*		_	1
Quarter 3, 2005			*							*		_	*	_			*	*	*	*			
			*							*		*	*				*	Ë	*	*		-	
Quarter 4, 2005			木														不						
Quarter 1, 2006										*		*	*				4.	41.	*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*	L		L	L	L	L	L	L	*	L	*	*	L	L		L	L	*	*	L	L	L
Quarter 1, 2007			*							*			*				*		*	*			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	Г	-	UCRS	S						1	URGA	A								LRGA	<u> </u>		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008	t									*		*	*	\vdash			*			*			T
Quarter 4, 2008	t		*							*		*	*	\vdash			*	*	*	*			T
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009	t		*							*		*	*	\vdash			*	*		*			T
Quarter 3, 2009	t		*							*	*	*	*	\vdash			*			*			T
Quarter 4, 2009	t		*							*		*	*	\vdash			*						T
Quarter 1, 2010	t		*							*		*	*	\vdash			*						T
Quarter 2, 2010	t		*							*			*	\vdash			*	*		*			T
Quarter 3, 2010	t		*							*	*	*	*	\vdash			*						T
Quarter 4, 2010	1		*							*		*	*				*						
Quarter 1, 2011	1									*			*				*						
Quarter 2, 2011	1		*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011	t		*							*	*	*	*	\vdash	\vdash		*		H	\vdash		\vdash	┢
Quarter 1, 2012	t	 	*							*			*	\vdash	H		*		<u> </u>	*		<u> </u>	\vdash
Quarter 2, 2012	t		*							*			*	 	\vdash		*		*	*			\vdash
Quarter 3, 2012	t		*							*		*	*	 	\vdash		*			\vdash			\vdash
Quarter 4, 2012	H		H		 		 	 		*		*	*	\vdash	\vdash		*	\vdash	*	*	\vdash	 	\vdash
Quarter 1, 2013	\vdash	<u> </u>								*		_	*	\vdash	 		*	\vdash	*	*		-	<u> </u>
Quarter 2, 2013	\vdash	<u> </u>								*		*	*	\vdash	 		*	\vdash	*	*		-	<u> </u>
Quarter 3, 2013	1		*							*		*	*				*	\vdash	*	*		-	<u> </u>
Quarter 4, 2013	1		*							*		*	*	-	-		*	\vdash	*	*		-	-
Quarter 1, 2014	1		*							*	*	-	*	-	-		*	\vdash	*	*		-	-
Quarter 2, 2014	1		*							*	*		*	*	-		*	\vdash	*	*		-	-
Quarter 3, 2014	1		*							*	***		*				*	\vdash		*		-	<u> </u>
Quarter 4, 2014			*							*	*	*	*	 	-		*		*	*		 	-
Quarter 1, 2015			*							*	*	*	*	 	-		*		~	*		 	-
Quarter 2, 2015			*							*	*	-	*	 	-		*		 	*		 	-
Quarter 3, 2015	1		*							*	*	*	*				*	*	*	*			-
Quarter 4, 2015	╂	-	*							*	*	*	*	 	-		*	*	~	*		-	_
	1		*							*	*	Ť	*				*	_	*	*			-
Quarter 1, 2016	-		*			*					~		*	<u> </u>	\vdash		*	*	~	*		├	-
Quarter 2, 2016	-		*			*				*		*	*	<u> </u>	\vdash		*	*	├	*		├	-
Quarter 3, 2016	-		*							*	*	不	*	<u> </u>	\vdash		*	不	├	*		├	-
Quarter 4, 2016			*								不		*	<u> </u>	ļ		*	*	-	*		-	<u> </u>
Quarter 1, 2017	₩	<u> </u>								*									-			-	
Quarter 2, 2017	₩	<u> </u>	*							*	*		*				*	*	-	*		-	
Quarter 3, 2017	!	-								*	不	44							—			—	₽
Quarter 4, 2017			*							*	46	*	*				*	*	—	*		—	<u> </u>
Quarter 1, 2018	!	-	*							*	*	44	*				*	*	—	*		—	₽
Quarter 2, 2018	1	<u> </u>	*			<u> </u>		<u> </u>		*	*	*	*	Щ	igspace		*	*	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>
Quarter 3, 2018	1	<u> </u>	*			<u> </u>		<u> </u>		*	14.	*	*	Щ	igspace		*	*	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2018	 	<u> </u>	*		<u> </u>		<u> </u>			*	*	*	*	\vdash	igspace		*	*	₩	*	<u> </u>	₩	₩
Quarter 1, 2019	<u> </u>	<u> </u>	*							*	*	*	*	Щ	Щ.		*	*	Щ	*	<u> </u>	Щ	<u> </u>
Quarter 2, 2019	<u> </u>	<u> </u>	*							*	*	*	*	Щ	Щ.		*	*	Щ	*	<u> </u>	Щ	<u> </u>
Quarter 3, 2019	<u> </u>	<u> </u>	*							*	*	*	*	igsquare			*	*		*	<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2019	<u> </u>	<u> </u>	*		<u> </u>		<u> </u>			*		*	*	Ш			*	*	*	*	<u> </u>	<u> </u>	<u> </u>
Quarter 1, 2020	<u> </u>	<u> </u>	*		<u> </u>		<u> </u>			*		*	*	Ш			*	*	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>
Quarter 2, 2020	<u> </u>	<u> </u>	*							*		*	*				*	*	<u> </u>	*	<u> </u>	<u> </u>	Ц_
Quarter 3, 2020	<u> </u>		*		<u> </u>		<u> </u>	<u> </u>		*		*	*	Щ			*	*	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2020			*							*		*	*				*	*	<u> </u>		<u> </u>	<u> </u>	<u>L</u>
Quarter 1, 2021	<u> </u>	<u> </u>	*							*	*	*	*				*	*	Щ		<u> </u>	Щ	Щ
Quarter 2, 2021	<u> </u>	<u> </u>	*								*	*	*				Ш	*	Щ		<u> </u>	Щ	Щ
Quarter 3, 2021			*							*	*	*	*				*	*	<u> </u>		<u> </u>	<u> </u>	<u></u>
Quarter 4, 2021		$oxedsymbol{oxed}$	*		$oxedsymbol{oxed}$		$oxedsymbol{oxed}$			*	*	*	*					*	oxdot		oxdot	oxdot	oxdot
THORIUM-230																							
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*		*																oxdot			oxdot	匚
	*	1						l -	*	*			*		*		1]	1 7]	1		
Quarter 3, 2015	т.		-																				
Quarter 3, 2015 Quarter 1, 2017	_		*							*							*						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

President Section Se	Groundwater Flow System	Г	1	UCRS	S						1	URG	4								LRGA	A		
Montroet	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
MORINA-324	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Descript 2,007	THORIUM-234																							
DUENE	Quarter 2, 2003						*			*					*									
Description	Quarter 4, 2007									*														
### ### ##############################	TOLUENE																							
Description	Quarter 2, 2014										*	*		*										
Description	TOTAL ORGANIC CARBON																							
Marter 2,0003	Quarter 4, 2002																					*		
Darker 4, 2003 Darker 5, 2003 Darker 6, 2003 Darker 6, 2004 Darker 6, 2004 Darker 7, 2004 Darker 7, 2004 Darker 8, 2005 Darker 1, 2005 Darker 1, 2005 Darker 1, 2006 Darker 1, 2007 Darker 2, 2006 Darker 2, 2006 Darker 3, 2007 Darker 3, 2007 Darker 3, 2007 Darker 4, 2005 Darker 4, 2006 Darker 1, 2006 Darker 1, 2007 Darker 3, 2007 Darker 3, 2007 Darker 4, 2005 Darker 4, 2006 Darker 1, 2006 Darker 1, 2007 Darker 3, 2007 Darker 4, 2006 Darker 4, 2005 Darker 4, 2006 Darker 4, 2006 Darker 4, 2006 Darker 4, 2005 Darker 4, 2006 Darker 4, 2008 Darker 4, 2008 Darker 4, 2008 Darker 4, 2009 Darker 4, 2000 Quarter 1, 2003				*						*	*							*	*		*			
Duarter 3, 2003 Duarter 4, 2005 Duarter 2, 2006 Duarter 4, 2006 Duarter 4, 2007 Duarter 3, 2006 Duarter 2, 2007 Duarter 3, 2006 Duarter 4, 2006 Duarter 4, 2006 Duarter 4, 2006 Duarter 1, 2006 Duarter 3, 2006 Duarter 3, 2007 Duarter 3, 2006 Duarter 4, 2009 Duarter 3, 2001 Duarter 4, 2009 Duarter 3, 2001 Duarter 4, 2009 Duarter 3, 2001 Duarter 3, 2001 Duarter 3, 2001 Duarter 4, 2009 Duarter 3, 2001 Duarter 4, 2000 Duarter 5, 2000 Duarter 6, 200											*	*		*								*		
Dearter 2,0003 Dearter 2,0004 Dearter 2,0004 Dearter 2,0004 Dearter 2,0004 Dearter 2,0004 Dearter 2,0005 Dearter 2,0006 Dearter 2,0007 Dearter 2	-							*	*	*	*	*	*											
Darrier 1, 2004	` '																							
Duarter 2, 2004																								
Dearter 3, 2004												*												
Duarter 4, 2004 Duarter 2, 2005 Duarter 3, 2005 Duarter 1, 2006 Duarter 1, 2006 Duarter 1, 2006 Duarter 1, 2006 Duarter 2, 2006 Duarter 2, 2006 Duarter 1, 2006 Duarter 2, 2006 Duarter 3, 2007 Duarter 3, 2007 Duarter 3, 2001 Duarter 3, 2001 Duarter 4, 2002 Duarter 3, 2006 Duarter 1, 2006 Duarter 3, 2006 Duarter 4, 2006 Duarter 2, 2009 Duarter 3, 2001 Duarter 3, 2001 Duarter 3, 2001 Duarter 3, 2001 Duarter 3, 2009 Duarte												-												
Duarter 1, 2005 Duarter 2, 2005 Duarter 3, 2006 Duarter 4, 2006 Duarter 4, 2006 Duarter 3, 2007 Duarter 3, 2007 Duarter 3, 2007 Duarter 3, 2007 Duarter 4, 2008 Duarter 4, 2006 Duarter 4, 2007 Duarter 3, 2007 Duarter 3, 2007 Duarter 4, 2008 Duarter 4, 2008 Duarter 4, 2008 Duarter 4, 2007 Duarter 4, 2008 Duarter 4, 2008 Duarter 4, 2008 Duarter 4, 2009 Duarter 4, 2008 Duarter 4, 2009 Duarter 5, 2007 Duarter 5, 200																								
Duarter 2, 2005 Duarter 3, 2005 Duarter 1, 2006 Duarter 1, 2007 Duarter 3, 2007 Duarter 3, 2010 Duarter 3, 2010 Duarter 4, 2002 Duarter 4, 2003 Duarter 4, 2006 Duarter 1, 2006 Duarter 1, 2006 Duarter 1, 2006 Duarter 3, 2010 TOTAL ORGANIC HALIDES Duarter 4, 2002 Duarter 3, 2010 Duarter 3, 2010 Duarter 3, 2006 Duarter 1, 2005 Duarter 3, 2006 Duarter 4, 2008 Duarter 4, 2008 Duarter 4, 2006 Duarter 3, 2006 Duarter 4, 2006 Duarter 4, 2006 Duarter 4, 2006 Duarter 3, 2006 Duarter 4, 2008 Duarter 4, 2008 Duarter 4, 2009 Duarter 5, 2000 Duarter 6, 2009 Duarter 6, 2001 Duarter 6, 2001 Duarter 6, 2001 Duarter 7, 2001 Duarter 7, 2001 Duarter 8, 2009 Duarter 8, 2009 Duarter 9, 2009 Duarter 9, 2001																								
Duarter 3, 2005 Duarter 4, 2005 Duarter 5, 2006 Duarter 6, 2006 Duarter 7, 2007 Duarter 8, 2007 Duarter 9, 2008 Duarter 9, 2008 Duarter 9, 2008 Duarter 9, 2008 Duarter 1, 2005 Duarter 1, 2005 Duarter 1, 2006 Duarter 1, 2007 Duarter 1, 2007 Duarter 1, 2008 Duarter 1, 2006 Duarter 1, 2007 Duarter 1, 2006 Duarter 1, 2006 Duarter 1, 2007 Duarter 1, 2008 Duarter 2, 2009 Duarter 4, 2009 Duarter 2, 2009 Duarter 4, 2001 Duarter 4, 2009 Duarter 4, 2000 Duarter 4, 2000 Duarter 4, 2000 Duarte		1	-					-														*		
Duarter 4, 2005 Duarter 1, 2006 Duarter 2, 2006 Duarter 3, 2006 Duarter 4, 2006 Duarter 4, 2006 Duarter 4, 2006 Duarter 3, 2007 ** ** ** ** ** ** ** ** **		 	 					 					سر											
Duarter 1, 2006 Duarter 2, 2006 Duarter 3, 2007 Duarter 3, 2007 Duarter 3, 2007 Duarter 3, 2007 Duarter 3, 2011 Duarter 3, 2012 Duarter 3, 2016 Duarter 4, 2002 Duarter 4, 2002 Duarter 1, 2003 Duarter 4, 2002 Duarter 2, 2004 Duarter 2, 2004 Duarter 2, 2004 Duarter 2, 2005 Duarter 2, 2005 Duarter 2, 2005 Duarter 2, 2006 Duarter 4, 2005 Duarter 4, 2005 Duarter 2, 2006 Duarter 4, 2006 Duarter 4, 2007 Duarter 4, 2006 Duarter 4, 2007 Duarter 4, 2006 Duarter 4, 2007 Duarter 4, 2008 Duarter 4, 2008 Duarter 4, 2009 Duarter 4, 2000 Duarter 4, 200													*		-					<u> </u>				<u> </u>
Duarter 2, 2006 Duarter 4, 2006 Duarter 3, 2007 Duarter 3, 2007 Duarter 3, 2007 Duarter 3, 2011 Duarter 3, 2012 Duarter 3, 2012 Duarter 3, 2016 Duarter 4, 2006 Duarter 4, 2006 Duarter 4, 2006 Duarter 4, 2007 Duarter 4, 2008 Duarter 4, 2009 Duarter 4, 2008 Duarter 4, 2008 Duarter 4, 2008 Duarter 4, 2008 Duarter 4, 2009 Duarter 4, 2000 Duarter 5, 2000 Duarter 5, 2000 Duarter 5, 200																						*		
Duarter 4, 2006 Duarter 1, 2007 Duarter 2, 2017 Duarter 3, 2012 Duarter 3, 2016 OTAL ORGANIC HALIDES Duarter 3, 2003 Duarter 3, 2003 Duarter 3, 2004 Duarter 2, 2004 Duarter 2, 2004 Duarter 1, 2005 Duarter 1, 2005 Duarter 4, 2005 Duarter 4, 2005 Duarter 4, 2006 Duarter 4, 2006 Duarter 3, 2006 Duarter 1, 2006 Duarter 3, 2006 Duarter 3, 2006 Duarter 1, 2006 Duarter 1, 2006 Duarter 3, 2006 Duarter 4, 2006 Duarter 3, 2007 Duarter 4, 2006 Duarter 4, 2006 Duarter 4, 2006 Duarter 3, 2007 Duarter 4, 2007 Duarter 4, 2007 Duarter 4, 2008 Duarter 4, 2009 Duarter 4, 2010 Duarter	Quarter 1, 2006																							
Duarter 1, 2007	Quarter 2, 2006										*		*											L
Summer 3, 2007	Quarter 4, 2006																	*						
Duarter 3, 2012	Quarter 1, 2007	*									*													
Quarter 3, 2012	Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Durater 2,0016	Quarter 2, 2011											*												
OTAL ORGANIC HALIDES	Quarter 3, 2012	*																						
COTAL ORGANIC HALIDES	Quarter 3, 2016																			*				
Quarter 4, 2002																								
Puarter 1, 2003																			*	*		*		
Puarter 3, 2003 *					*														*			*		
Puarter 2, 2004 Puarter 3, 2004 * Puarter 1, 2005 Puarter 2, 2005 Puarter 2, 2005 Puarter 3, 2005 Puarter 4, 2005 Puarter 1, 2006 Puarter 2, 2006 Puarter 2, 2006 Puarter 3, 2006 Puarter 4, 2006 Puarter 4, 2006 Puarter 1, 2007 Puarter 2, 2007 Puarter 3, 2007 Puarter 4, 2007 Puarter 4, 2007 Puarter 1, 2008 Puarter 4, 2008 Puarter 4, 2008 Puarter 2, 2009 Puarter 2, 2009 Puarter 3, 2009 Puarter 2, 2009 Puarter 2, 2009 Puarter 3, 2009 Puarter 4, 2009 Puarter 2, 2009 Puarter 2, 2009 Puarter 3, 2009 Puarter 4, 2009 Puarter 4, 2009 Puarter 2, 2010 Puarter 3, 2010 Puarter 4, 2010 Puarter 4, 2010 Puarter 3, 2010 Puarter 4, 2010 Puarter 4, 2010 Puarter 3, 2010 Puarter 4, 2010 Puarter 4, 2010 Puarter 4, 2010 Puarter 3, 2010 Puarter 4, 2010 Puarter 4, 2010 Puarter 4, 2010 Puarter 4, 2010 Puarter 3, 2010 Puarter 4, 2010 Puar																						*		
Quarter 3, 2004																								
Quarter 2005		*																				-		
Puarter 2, 2005																								
Quarter 4, 2005																								
Puarter 4, 2005																								
Puarter 1, 2006																								
Quarter 2, 2006																								
Puarter 3, 2006	-																							_
Duarter 1, 2006			-					-																
Quarter 1, 2007	-	_	-					-										*						
Puarter 2, 2007	` '	*	-					-							-			*						-
Duarter 3, 2007			-					-							-									-
Puarter 1, 2008			-				<u> </u>	-	<u> </u>						-									├
Puarter 1, 2008			 					 														ىد		
Quarter 4, 2008											<u> </u>				-					<u> </u>		*		<u> </u>
Puarter 4, 2008	` '										<u> </u>				-					<u> </u>				₩
Quarter 1, 2009											<u> </u>				-					<u> </u>				₩
Puarter 2, 2009	Quarter 4, 2008																							
Quarter 3, 2009			<u> </u>					<u> </u>			<u> </u>									<u> </u>				<u> </u>
Quarter 4, 2009			<u> </u>					<u> </u>			<u> </u>									<u> </u>		*		<u> </u>
Quarter 1, 2010																								
Quarter 2, 2010 * Quarter 3, 2010 * Quarter 4, 2010 * Quarter 1, 2011 *																								
Quarter 3, 2010 *	Quarter 1, 2010		L					L																
Quarter 4, 2010 *	Quarter 2, 2010																							
Quarter 1, 2011 *	Quarter 3, 2010																							
	Quarter 4, 2010																							
Quarter 3, 2013 *	Quarter 1, 2011	*																						
	Quarter 3, 2013																					*		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							t
Quarter 4, 2004																							t
Quarter 1, 2005																							T
Quarter 2, 2005																							1
Quarter 3, 2005																							1
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006		 										=	l -		 			Ŧ		 			
Quarter 2, 2007	\vdash	\vdash										Ŧ		i	\vdash	Ħ		Ē	i	\vdash	H	=	+-
Quarter 3, 2007												i								_	i	i	+
Quarter 4, 2007												i		Ħ		i			Ħ		i		\vdash
Quarter 1, 2008	!	-						_							-					-		<u>-</u>	+-
	!	-						_							-					-			+-
Quarter 2, 2008 Quarter 3, 2008																							₩
																							₩
Quarter 4, 2008																							₩
Quarter 1, 2009												_		_					₽		Ŀ		₩
Quarter 2, 2009												_		•		_			•		_		<u> </u>
Quarter 3, 2009												_		•		_			•				—
Quarter 4, 2009											•	_		•		_			•		-		<u> </u>
Quarter 1, 2010												•		•		•			•		-		<u> </u>
Quarter 2, 2010												-		_		_			_		_		<u> </u>
Quarter 3, 2010														•					•		•	•	<u> </u>
Quarter 4, 2010																							<u> </u>
Quarter 1, 2011																							<u> </u>
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014																							T
Quarter 3, 2014																							T
Quarter 4, 2014																							T
Quarter 1, 2015													l									l	t
Quarter 2, 2015																\vdash							t
Quarter 3, 2015																							\vdash
Quarter 4, 2015		t													t					t			t
Quarter 1, 2016		t													t					t			t
Quarter 2, 2016		 													 					 			+-
Quarter 3, 2016	-	_													_					1		-	
Quarter 4, 2016	\vdash	\vdash										i		-	\vdash	i			-	\vdash	i		
Quarter 1, 2017												i		=						_	i		-
Quarter 2, 2017 Quarter 2, 2017		-										=	-	=	-	<u> </u>			=	1	i	-	+-
Quarter 2, 2017 Quarter 3, 2017	!	-						_				=		H	-	_			H	-	i		<u> </u>
Quarter 4, 2017		 					-	-				-	-		 					 		-	<u> </u>
		1									-			_					_				Ш.

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		1	UCRS	S						Ţ	URGA	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018														•					•				
Quarter 1, 2019																							
Quarter 2, 2019														•					•				
Quarter 3, 2019														•									
Quarter 4, 2019																							
Quarter 1, 2020														•									
Quarter 2, 2020														•									
Quarter 3, 2020																							
Quarter 4, 2020														•									
Quarter 1, 2021																							
Quarter 2, 2021														•					•				
Quarter 3, 2021														•		•							
Quarter 4, 2021																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														

* Statistical test results indicate an elevated concentration (i.e., a statistically significant increase).

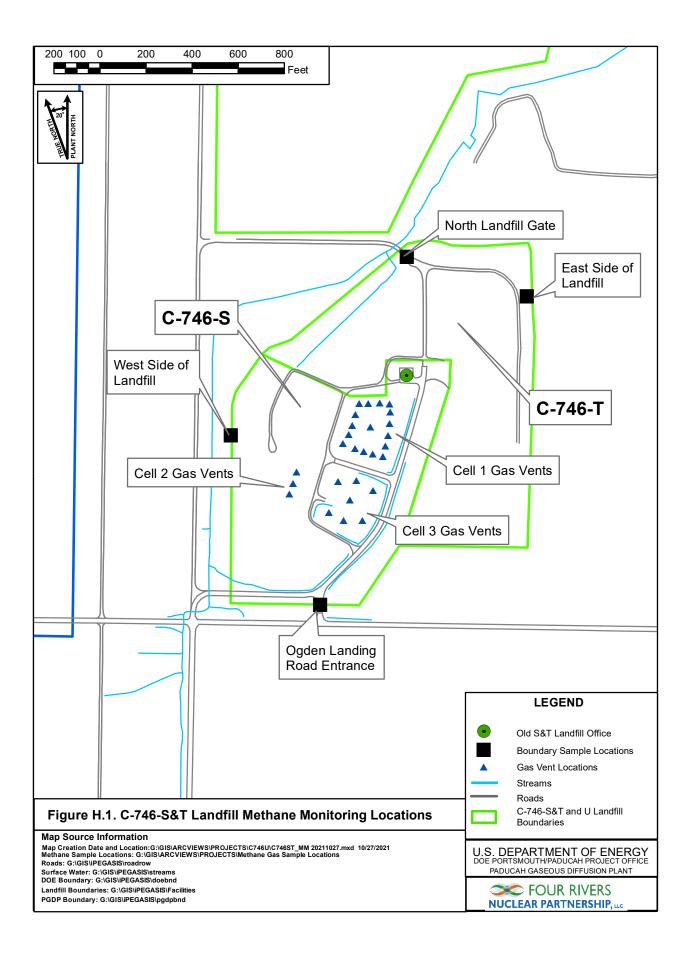
■ MCL Exceedance

Previously reported as an MCL exceedance; however, result was equal to MCL.


UCRS = Upper Continental Recharge System

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer
S = Sidegradient; D = Downgradient; U = Upgradient


APPENDIX H METHANE MONITORING DATA


CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	Decem	ber	2, 20	21			Tin	ne:	1	09	35				M	onito	or:	F	Rol	bert	Kir	by	
Weather Co	nditions	s: Sı	ınny	, 56	degr	ees	, slig	ght v	vin	d,	hun	nidit	y: 37	' %									
Monitoring	Equipm	ent::	:Mul	ti RA	λE –	Seri	ial#	118	80														
					IV	loni	torir	ng Lo	oca	atio	on											Read (% LI	
Ogden Landi Road Entran		Che	ecked	d at g	round	lleve	el															0	
North Landfi	II Gate	Che	ecked	d at g	round	lleve	el															0	
West Side of Landfill: North 37° West 88°	07.652	Che	ecked	d at g	rounc	l leve	el															0	
East Side of Landfill: North 37° West 88°	07.628	Che	ecked	d at g	rounc	l leve	el															0	
Cell 1 Gas Vo	ent (17)	1 0	2	3	4 0	5 0	6 0	7 0		8 0	9.0	10 0	11 0	12 0	13 0	14 0	15 0	16 0		17 0		0	
Cell 2 Gas V	ent (3)	1 0	2	3			•	•					•	•				•	•			0	
Cell 3 Gas V	ent (7)	1 0	2 0	3 0	4 0	5 0	6 0	7 0														0	
	II Office	Che	ecked	d at fl	oor le	vel																0	
Suspect or P	Problem Areas	 Nor	ne no	ted																		N/A	A
Remarks:																							
All gas ven	ts chec	ked	1" fr	om (open	ing.																	
Performed * Same	-	e rbox me	ما لھ	y Ro	bert Ki Si	ୟଞ୍ଚ gna	ට ture	uta (1	وينو	لمود_	L+	accus	ela.	J		Jaire	<u></u>	الم	4			\2√r Date	1/2021

- Robert Kirby is out of office.

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: None

SURFACE WATER SAMPLE ANALYSIS(s)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "Do	OWNSTREAM")	L135 UPSTREA	AM	L154 INSTREA	AM	L136 INSTRE	AM	F. BLANI	K
Sample Sequer	nce	#				1		1		1		1	
If sample is	a B	lank, specify Type: (F)ield, (T) ri	ip, (M) ethod	, or (E)quipment	NA		NA		NA		F	
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		10/11/2021 16:	02	12/6/2021 07:	47	10/11/2021 15	5:48	10/11/2021 1	16:01
Duplicate ("Y	Y" (or "N") ¹				N		N		N		N	
Split ('Y' or	r "1	N") ²				N		N		N		N	
Facility Samp	ple	ID Number (if applicable)				L135SS1-22		L154US1-22)	L136SS1-2	2	FB1SS1-2	22
Laboratory Sa	amp.	le ID Number (if applicable)				558725002		564079001		558725003	3	55872500)4
Date of Analy	ysi	s (Month/Day/Year)				11/2/2021		12/30/2021		11/2/2021		11/2/202	1
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G
A200-00-0	0	Flow	Т	MGD	Field		*		*		*		*
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	10		2.77		6.82		<0.2	
14808-79-8	0	Sulfate	Т	mg/L	300.0	8.12		4.73		11.6		<0.4	
7439-89-6	0	Iron	Т	mg/L	200.8	0.833		1.4		0.138		<0.1	
7440-23-5	0	Sodium	Т	mg/L	200.8	4.53		2.51		1.1		<0.25	
S0268	0	Organic Carbon ⁶	Т	mg/L	9060	19.2		17.8		23.4			*
S0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		*
s0130	0	Chemical Oxygen Demand	Т	mg/L	410.4	78		65.9		132			*

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

I-3

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / 1 LAB ID: None

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

CONSTITUENT T D 4 ecific Conductance T tal Suspended Solids T tal Dissolved Solids	OF MEASURE LHMS/CM	METHOD Field	DETECTED VALUE OR PQL ⁵ 182	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A	DETECTED VALUE OR	F L
tal Suspended Solids T	P	Field	182			s ⁷	121	G S ⁷	PQL ⁵	A G S ⁷
-	ma/T		102		114		145			*
tal Dissolved Solids T		160.2	47	*	41.1		7.17	*		*
	mg/L	160.1	137	*	130		120	*		*
tal Solids T	mg/L	SM-2540 B 17	202		249		157			*
т	Units	Field	7.69		8.22		7.96			*
anium T	mg/L	200.8	0.00511		0.00152		0.000148	J	<0.0002	
oss Alpha (\alpha)	pCi/L	9310	3.97	*	3.74	*	3.8	*	0.446	*
oss Beta (β) T	pCi/L	9310	36.1	*	18	*	5.35	*	2.71	*
										_
										$oxed{\Box}$
aı	nium T ss Alpha (α) T	T Units nium T mg/L ss Alpha (α) T pCi/L	T Units Field nium T mg/L 200.8 ss Alpha (α) T pCi/L 9310	T Units Field 7.69 nium T mg/L 200.8 0.00511 ss Alpha (α) T pCi/L 9310 3.97	T Units Field 7.69 nium T mg/L 200.8 0.00511 ss Alpha (α) T pCi/L 9310 3.97 *	T Units Field 7.69 8.22 nium T mg/L 200.8 0.00511 0.00152 ss Alpha (α) T pCi/L 9310 3.97 * 3.74	T Units Field 7.69 8.22 nium T mg/L 200.8 0.00511 0.00152 ss Alpha (α) T pCi/L 9310 3.97 * 3.74 *	T Units Field 7.69 8.22 7.96 nium T mg/L 200.8 0.00511 0.00152 0.000148 ss Alpha (α) T pCi/L 9310 3.97 * 3.74 * 3.8	T Units Field 7.69 8.22 7.96 nium T mg/L 200.8 0.00511 0.00152 0.000148 J ss Alpha (α) T pCi/L 9310 3.97 * 3.74 * 3.8 *	T Units Field 7.69 8.22 7.96 nium T mg/L 200.8 0.00511 0.00152 0.000148 J <0.0002 ss Alpha (α) T pCi/L 9310 3.97 * 3.74 * 3.8 * 0.446

Division of Waste Management

RESIDENTIAL/INERT-OUARTERLY

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "DO	OWNSTREAM")	L135 UPSTREA	ΑM						
Sample Sequen	ce	#				2							$\overline{/}$
If sample is a	ı Bl	ank, specify Type: (F)ield, (T) ri	ip, (M) ethod	, or (E)quipment	NA							
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		10/11/2021 16:0	02						
Duplicate ("Y	'' c	r "N") ¹				N							
Split ('Y' or	"N	I") ²				N							
Facility Samp	le	ID Number (if applicable)				L135DSS1-22	2						
Laboratory Sa	mpl	e ID Number (if applicable)				558725001							
Date of Analy	sis	(Month/Day/Year)				11/2/2021							
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED FOR THE PROPERTY OF T	A G	DETECTED VALUE OR PQL ⁵	F L A G
A200-00-0	0	Flow	Т	MGD	Field		*						
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	10.5							
14808-79-8	0	Sulfate	Т	mg/L	300.0	8.16							
7439-89-6	0	Iron	Т	mg/L	200.8	0.797							
7440-23-5	0	Sodium	Т	mg/L	200.8	4.58							
s0268	0	Organic Carbon ⁶	Т	mg/L	9060	19							
s0097	0	BOD ⁶	Т	mg/L	not applicable		*						
s0130	0	Chemical Oxygen Demand	Т	mg/L	410.4	86.3							

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

i-													_
Monitoring Po	int	(KPDES Discharge Number, or	r "(JPSTREAM" or	"DOWNSTREAM")	L135 UPSTR	EAM						Δ
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQD ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED IN THE POLY IN THE PO	L A
S0145	1	Specific Conductance	т	µmho/cm	Field		*						
s0270	0	Total Suspended Solids	т	mg/L	160.2	44.5	*						
s0266	0	Total Dissolved Solids	Т	mg/L	160.1	141	*		$\overline{}$				
s0269	0	Total Solids	т	mg/L	SM-2540B	206							
s0296	0	рН	Т	Units	Field		*						
7440-61-1		Uranium	т	mg/L	200.8	0.00508							
12587-46-1		Gross Alpha (α)	T	pCi/L	900.0	3.92	*						
12587-47-2		Gross Beta (β)	T	pCi/L	900.0	35	*						
								/					
													\sqcup
								/					\setminus

I-6

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

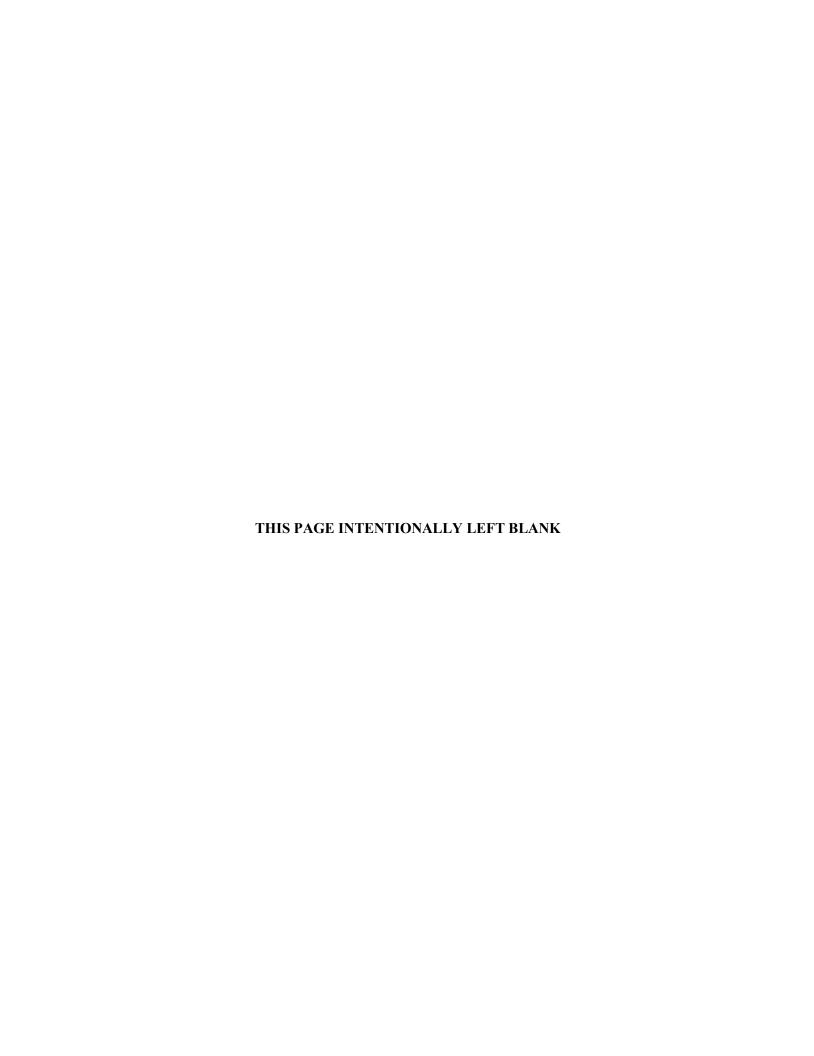
Finds/Unit	: <u>KY8-890-008-982 / 1</u>
LAB ID:	None

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135SS1-22	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.94. Rad error is 4.89.
		Beta activity		TPU is 10.5. Rad error is 8.54.
L154	L154US1-22	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.02. Rad error is 3.96.
		Beta activity		TPU is 7.74. Rad error is 7.13.
L136	L136SS1-22	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5. Rad error is 4.96.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.42. Rad error is 6.36.
QC	FB1SS1-22	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.28. Rad error is 3.28.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.45. Rad error is 5.44.

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant


Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None

SURFACE WATER WRITTEN COMMENTS

Monitorii Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135DSS1-22	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		рН		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.07. Rad error is 5.03.
		Beta activity		TPU is 10.2. Rad error is 8.42.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2I A has accredited

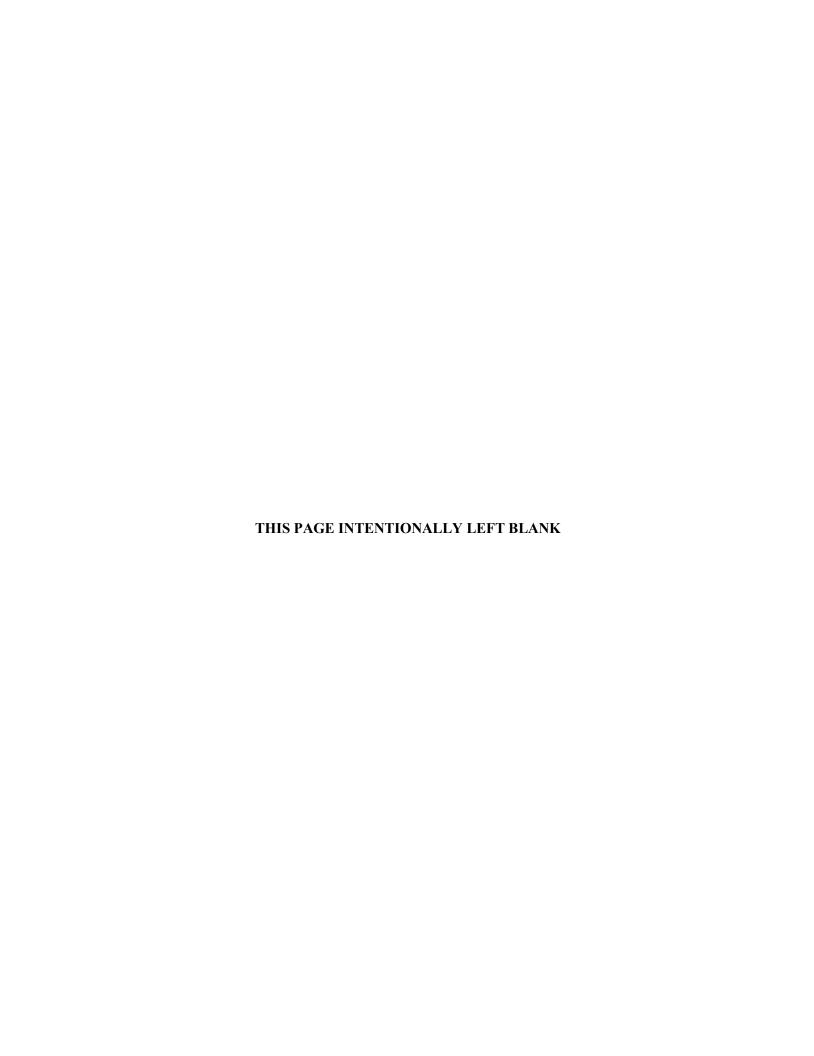
GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 and 2016 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



Presented this 16th day of June 2021.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2023

APPENDIX K LABORATORY ANALYTICAL METHODS



LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and 1,2,3-
		Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L MICROPURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-S&T Landfills

		Mille /	wild !	Uniti	* POTA .			Mile /	with /	Unit!	,dot3,
	Zergé.	Stree Conduct	dirity of the state of the stat	Jirie Jingalia	a or the life of t		- Leither	Conduc	ind St	Jida Jissalu	a of No.
MW220				Ì		MW221			ſ		<u> </u>
Date Collected: 10/27/2021						Date Collected: 10/22/2021					
1301	61.8	341	6.10	3.62	0.00	0718	60.3	403	6.34	6.00	3.75
1304	61.8	340	6.06	3.74	0.00	0721	60.4	405	6.10	5.81	3.16
307	61.9	341	6.05	3.73	0.00	0724	60.4	402	6.10	5.77	3.19
MW222						MW223					
Date Collected: 10/22/2021						Date Collected: 10/22/2021					
0903	61.6	315	6.40	4.80	3.70	0808	61.0	419	6.18	5.10	3.07
0906	61.4	318	6.30	4.60	3.71	0811	60.9	420	6.09	5.06	3.00
9909	61.3	317	6.28	4.57	3.60	0814	60.9	420	6.09	5.04	3.01
MW224	01.5	317	0.20	1107	5.00	MW369	0017	120	0.07	5.0.	3.01
Date Collected: 10/22/2021						Date Collected: 10/12/2021					
0955	61.9	414	6.26	2.47	3.99	1100	62.5	304	6.20	3.26	5.18
0958	62.0	415	6.18	2.35	3.26	1103	62.1	305	6.07	2.91	4.90
1001	62.1	415	6.17	2.33	3.20	1106	61.7	305	6.00	2.82	4.85
	02.1	413	0.17	2.33	3.20		01./	303	0.00	2.02	4.63
MW370						MW372					
Date Collected: 10/12/2021	(2.0	201	6.02	4.03	2.21	Date Collected: 10/13/2021	(0.7	470	5.02	2.50	2.20
1143	63.0	391	6.03	4.82	2.21	0614	60.6	479	5.93	2.58	2.20
1146	61.7	390	5.94	4.65	2.30	0617	60.8	482	5.81	2.30	2.46
1149	61.5	391	5.90	4.60	2.26	0620	60.8	484	5.80	2.28	2.32
MW373						MW384					
Date Collected: 10/13/2021						Date Collected: 10/14/2021					
0711	61.2	561	5.90	2.34	2.01	0828	61.5	347	5.77	5.81	0.00
0714	61.0	559	5.79	2.04	1.98	0831	61.2	343	5.71	5.76	0.00
0717	60.8	560	5.77	2.00	2.11	0834	61.0	342	5.66	5.77	0.00
MW385						MW386					
Date Collected: 10/14/2021						Date Collected: 10/14/2021					
912	62.1	484	6.30	2.11	28.97	0952	61.4	589	6.29	1.01	0.00
915	61.7	473	6.27	1.44	29.01	0955	61.6	590	6.27	0.53	0.00
918	61.4	470	6.25	1.42	28.78	0958	61.6	589	6.24	0.48	0.00
MW387						MW388					
Date Collected: 10/14/2021						Date Collected: 10/14/2021					
711	62.1	559	5.93	3.91	0.00	0745	62.4	375	5.99	5.70	9.78
714	61.2	560	5.79	3.71	0.00	0748	62.0	375	5.80	5.46	9.69
717	61.1	561	5.74	3.63	0.00	0751	61.7	377	5.77	5.40	9.88
MW390	0111	501	5.7.	5.05	0.00	MW391	0117	577	51,77	5.10	7.00
Date Collected: 10/14/2021						Date Collected: 10/18/2021					
0612	64.3	601	6.30	3.73	1.88	0653	58.6	379	6.19	4.50	3.48
0615	62.0	600	6.18	2.01	0.17	0656	58.7	380	6.02	4.28	3.80
0618	61.9	601	6.15	1.99	0.17	0659	58.7	380	6.00	4.26	4.01
MW392	01.9	001	0.13	1.99	0.10	MW393	30.7	300	0.00	4.20	4.01
Oate Collected: 10/18/2021						Date Collected: 10/18/2021					
	50.6	262	636	2.60	3.79	0819	59.8	390	6.24	1.95	12.70
0739	59.6	362	6.26	3.60							12.78
742	59.4	360	6.09	3.20	3.61	0822	59.7	390	6.16	1.73	12.84
0745	59.4	360	6.07	3.16	3.56	0825	59.6	389	6.12	1.70	12.57
MW394						MW395					
Date Collected: 10/18/2021						Date Collected: 10/18/2021					
921	61.4	395	6.30	6.15	80.09	1005	62.0	375	6.27	5.68	2.54
924	60.9	393	6.20	5.72	78.16	1008	61.7	376	6.15	5.49	2.66
927	61.0	394	6.14	5.70	78.04	1011	61.8	375	6.10	5.40	2.60
AW396						MW397					
Date Collected: 10/18/2021						Date Collected: 10/14/2021					
043	61.5	724	6.49	1.46	2.99	1103	66.7	302	6.37	6.80	24.78
.046	61.6	725	6.37	0.95	2.61	1106	62.6	297	5.90	6.70	20.49
1049	61.6	726	6.33	0.90	2.74	1109	62.5	295	5.86	6.69	20.10
MW221 Resample	01.0	, 20	0.55	0.70	2.71		02.0	275	5.00	0.07	20.10
Date Collected: 11/2/2021											
1306	61.1	400	6.00	5 15	0.00						
	61.1	400	6.00	5.45	0.00						
	(1.2	205									
309 312	61.3 61.4	395 397	5.97 5.97	5.36	0.00						

