

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

August 26, 2021

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Ms. Jamie Nielsen Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-S&T LANDFILLS SECOND QUARTER CALENDAR YEAR 2021 (APRIL—JUNE) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0193/V2, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the second quarter calendar year (CY) 2021 has been uploaded to the KY eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). This report includes groundwater analytical data, surface water analytical data, a validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the second quarter CY 2021 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Monitoring Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance (1989). This report also serves as the statistical increase notification for the second quarter CY 2021, in accordance with Monitoring Condition GSTR0003, Standard Requirement 5, of the Permit.

PPPO-02-10015461-21B

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Sennifer Woodard Paducah Site Lead

Portsmouth/Paducah Project Office

unifer Woodard

Enclosure:

C-746-S&T Landfills Second Quarter Calendar Year 2021 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-193/V2

cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.woodard@pppo.gov, PPPO joel.bradburne@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov stephaniec.brock@ky.gov, KYRHB

cc via KY eForms portal: jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP

C-746-S&T Landfills Second Quarter Calendar Year 2021 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

David Hayden
FRNP Classification Spport

0<u>8-25-20</u>21

C-746-S&T Landfills
Second Quarter Calendar Year 2021
(April–June)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—August 2021

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURE	S		V
TA	BLES	S		v
ΑC	CRON	YMS		vii
1.	INTI	RODUC'	TION	1
	1.1		GROUND	
	1.2	MONI	TORING PERIOD ACTIVITIES	
		1.2.1	Groundwater Monitoring	
		1.2.2	Methane Monitoring	
		1.2.3	Surface Water Monitoring	
	1.3	KEY R	ESULTS	5
2.	DAT		LUATION/STATISTICAL SYNOPSIS	
	2.1		STICAL ANALYSIS OF GROUNDWATER DATA	
		2.1.1	Upper Continental Recharge System	
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	
	2.2	DATA	VERIFICATION AND VALIDATION	11
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	13
4.	REF	ERENC!	ES	15
AF	PENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE	
			MONITORING SAMPLE DATA REPORTING FORM	A-1
AF	PENI	OIX B:	FACILITY INFORMATION SHEET	B-1
AF	PENI	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PENI	DIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PENI	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PENI	OIX F:	NOTIFICATIONS	F-1
ΑF	PENI	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AF	PENI	OIX H:	METHANE MONITORING DATA	H-1
ΑF	PENI	OIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
ΑF	PENI	OIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1
ΑF	PENI	OIX K:	LABORATORY ANALYTICAL METHODS	K-1
ΔΙ	PENI	NX I ·	MICRO-PURGING STABILITY PARAMETERS	T -1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
	C-746-S&T Landfills Surface Water Monitoring Locations	
	TABLES	
	Summary of MCL Exceedances	
2.	Exceedances of Statistically Derived Historical Background Concentrations	5
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	6
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	8
6.	Monitoring Wells Included in Statistical Analysis	10

ACRONYMS

CFR Code of Federal Regulations
COD chemical oxygen demand

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit

MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Second Quarter Calendar Year 2021 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND

The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter,

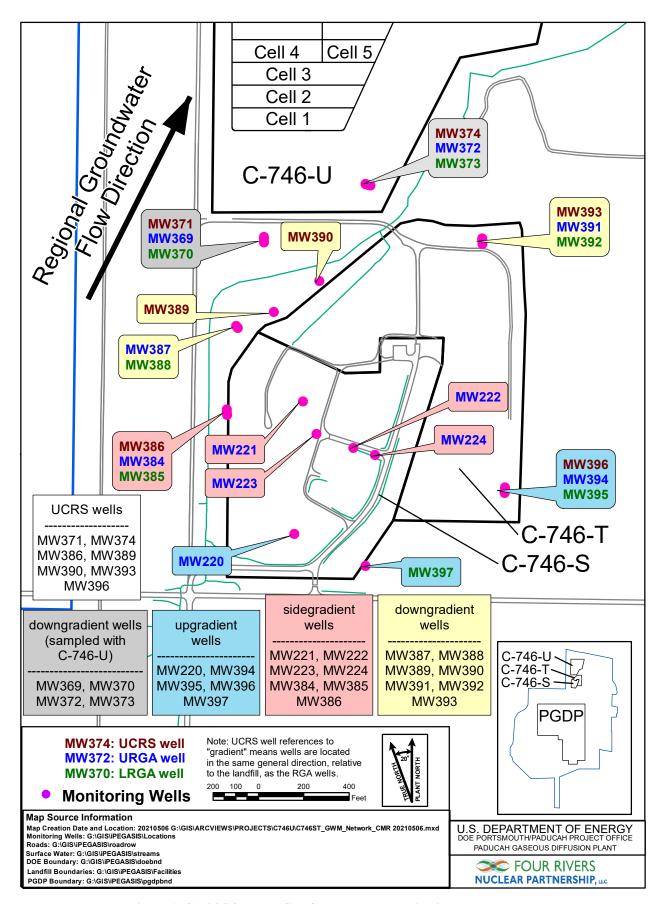


Figure 1. C-746-S&T Landfills Groundwater Monitoring Well Network

except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the second quarter 2021 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the second quarter 2021 was conducted in April 2021. The laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 16, 2021, in MWs of the C-746-S&T Landfills (see Appendix E, Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Appendix E, Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During April, RGA groundwater flow was directed inward and then northeast towards the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in April was 2.60×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was approximately 4.51×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.767 to 1.31 ft/day (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the Solid Waste Landfill Permit. Industrial Hygiene staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on June 16, 2021. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills: (1) upstream location, L135; (2) instream location, L154; and (3) instream location, L136.

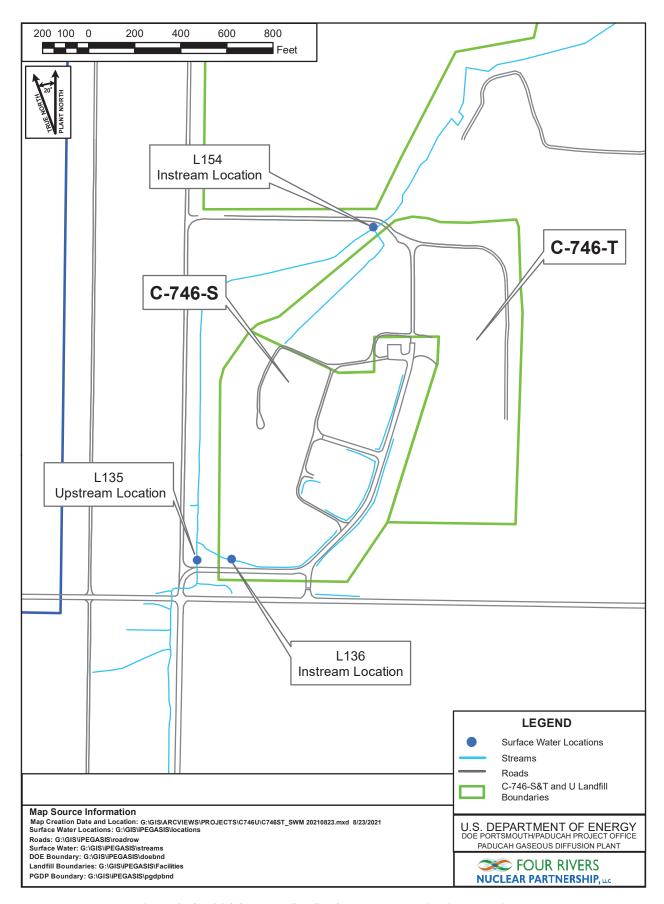


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059 (FRNP 2021), which is Technical Application, Attachment 24, of the Solid Waste Landfill Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters that exceeded their MCL and also exceeded their historical background UTL, as well as other parameters that do not have MCLs but have concentrations that exceeded the statistically derived historical background UTL¹ during the second quarter 2021. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells designated as background wells (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW387: Beta activity	MW373: Trichloroethene
	MW391: Trichloroethene	MW392: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW220: Chemical oxidation	MW370: Oxidation-reduction
potential	demand (COD),	potential, sulfate, technetium-99
	oxidation-reduction potential,	
	sulfate	
MW390: Oxidation-reduction	MW221: Chemical oxidation	MW373: Calcium, conductivity,
potential, technetium-99	demand (COD),	dissolved solids, magnesium,
	oxidation-reduction potential	oxidation-reduction potential, sulfate
MW393: Oxidation-reduction	MW222: Oxidation-reduction	MW385: Oxidation-reduction
potential	potential	potential, sulfate
MW396: Oxidation-reduction	MW223: Oxidation-reduction	MW388: Oxidation-reduction
potential	potential, sulfate	potential, sulfate
	MW224: Oxidation-reduction	MW392: Oxidation-reduction
	potential	potential, sulfate
	MW369: Oxidation-reduction	MW395: Oxidation-reduction
	potential, technetium-99	potential
	MW372: Calcium, conductivity,	MW397: Oxidation-reduction
	dissolved solids, magnesium,	potential
	oxidation-reduction potential,	
	sodium, sulfate, technetium-99	
	MW384: Oxidation-reduction	
	potential, sulfate	

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL.

_

Table 2. Exceedances of Statistically Derived Historical Background Concentrations (Continued)

UCRS*	URGA	LRGA
	MW387: Beta activity, dissolved	
	solids, magnesium,	
	oxidation-reduction potential,	
	sulfate, technetium-99	
	MW391: Oxidation-reduction	
	potential	

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Background wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate, technetium-99
MW372: Calcium, conductivity, dissolved	MW373: Calcium, conductivity, dissolved
solids, magnesium, sodium, sulfate,	solids, magnesium, sulfate
technetium-99	
MW387: Beta activity, dissolved solids,	MW388: Sulfate
magnesium, sulfate, technetium-99	
	MW392: Sulfate

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), the MCL exceedances for TCE in MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedance for beta activity in MW387 (downgradient well) was shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily this exceedance was considered to be a Type 2 exceedance. To evaluate this preliminary Type 2 exceedance further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. The MW387 beta activity did not show an increasing Mann-Kendall trend and is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
C-746-	MW369	Technetium-99	8	0.05	0.452	-2	No Trend
S&T	MW370	Sulfate	8	0.05	0.089	12	No Trend
Landfill	IVI VV 3 / U	Technetium-99	8	0.05	0.007	-20	Decreasing

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters (Continued)

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
		Calcium	8	0.05	0.089	13	No Trend
		Conductivity	8	0.05	0.002	22	Increasing
		Dissolved Solids	8	0.05	0.452	2	No Trend
	MW372	Magnesium	8	0.05	0.016	18	Increasing
		Sodium	8	0.05	0.36	4	No Trend
		Sulfate	8	0.05	0	26	Increasing
		Technetium-99	8	0.05	0.031	-16	Decreasing
	MW373	Calcium	8	0.05	0.452	-2	No Trend
C-746-		Conductivity	8	0.05	0.089	12	No Trend
S&T		Dissolved Solids	8	0.05	0.452	3	No Trend
Landfill		Magnesium	8	0.05	0.119	-9	No Trend
		Sulfate	8	0.05	0.089	12	No Trend
		Beta activity	8	0.05	0.452	-2	No Trend
		Dissolved Solids	8	0.05	0.452	2	No Trend
	MW387	Magnesium	8	0.05	0.452	2	No Trend
		Sulfate	8	0.05	0.274	-6	No Trend
		Technetium-99	8	0.05	0.274	-6	No Trend
	MW388	Sulfate	8	0.05	0.119	-8	No Trend
1	MW392	Sulfate	8	0.05	0.138	-10	No Trend

¹ An alpha of 0.05 represents a 95% confidence interval.

Note: Statistics generated using ProUCL.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL to identify if the current downgradient well concentrations are consistent with current background values. The current background UTL was developed using the most recent eight quarters of data from wells identified as background wells. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-S&T Landfills source; therefore, they are a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL and do not have an identified source are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan (LATA Kentucky 2014). To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. Nineteen of the 22 preliminary Type 2 exceedances in

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses; the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

downgradient wells do not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Three of the 22 preliminary Type 2 exceedances in downgradient wells have an increasing trend. Specifically, the Mann-Kendall statistical test indicates that there are increasing trends of groundwater constituents in MW372 over the past eight quarters. Constituents in MW372 that showed increasing trends were conductivity, magnesium, and sulfate.

Conductivity, magnesium, and sulfate in MW372 all exceed the UTLs for historical and current background and exhibit similar increasing trends. These occurrences are indicators of high ionic strength of the area groundwater. Because levels of conductivity, magnesium, and sulfate are lower in MW372 (URGA) than in MW373 (LRGA), these trends do not appear to be associated with the C-746-S&T Landfills (influence of the landfill should have a greater impact on the URGA well). Trends of these ions and indicator parameter should be considered Type 1 exceedances—not attributable to the C-746-S&T Landfills.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS well MW390 with a technetium-99 value that exceeded both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T Landfills sources and is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS				
MW390: Technetium-99				

^{*}In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2021 groundwater data collected from the C-746-S&T Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as downgradient wells) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient well concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance—could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

To calculate the UTL, the data were divided into censored (non-detects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs historically included in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis^a

UCRS	URGA	LRGA
MW386	MW220 (background)	MW370
MW389 ^b	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396c	MW224	MW392
	MW369	MW395 (background)
	MW372	MW397 (background)
	MW384	, ,
	MW387	
	MW391	
	MW394 (background)	

^a Map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient well concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 22 parameters, including those with MCLs, required statistical analysis in the UCRS. During the second quarter, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL in a downgradient well and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the URGA. During the second quarter, beta activity, calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^b Well had insufficient water to permit a water sample for laboratory analysis.

^c In the same direction (relative to the landfill) as RGA wells considered to be background.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the LRGA. During the second quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

Second Quarter Calendar Year 2021 (April—June)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0193/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

PG113927

Quant 25, 202

PG113927 KDais 8-25-2021

4. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2021. Surface Water Monitoring Plan for C-746-U and C-746-S&T Landfills Permit Number SW07300014, SW07300015, SW07300045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Agency Interest Number 3059, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 24, Four Rivers Nuclear Partnership, LLC, Paducah, KY, March.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name: U.S. DOE-Paducah Gaseous Diffusion Plant (As officially shown on DWM Permit Face)		<u>Plant</u> Activit	y: <u>C-746-S&T Landfills</u>	
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter &	Year 2nd Qtr. CY 2021
Please check the f	ollowing as appli	cable:		
Characteri	zation X	Quarterly Ser	niannual Aı	nnual Assessment
Please check appli	icable submittal(s	s): X Groundy	water X	Surface Water
		Leachate	e <u>X</u>	Methane Monitoring
45:160) or by statute jurisdiction of the Di- hours of making the lab report is NOT co- I certify under penalty with a system design- inquiry of the person knowledge and belief	(Kentucky Revised vision of Waste Ma determination usin nsidered notification of law that this do ed to assure that quo or persons directly true, accurate, and	d Statues Chapter 224) to command the common of the common of the common of the completion. Instructions for completing the common of the completion of the completing the common of the	onduct groundwater and surt any indication of contact comparison, or other sing the form are attached. Determined the prepared under my direct ather and evaluate the information, the informationer are significant penalties.	Regulations-401 KAR 48:300 and urface water monitoring under the mination within forty-eight (48) milar techniques. Submitting the o not submit the instruction pages. ection or supervision in accordance formation submitted. Based on my ion submitted is, to the best of my is for submitting false information,
Mugka	dasse			8/26/31
Myrna E. Redfie Four Rivers Nuc			Е	Date
dennifer Woodar U.S. Department		Lead		8/26/21 Date

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

	Groundwater: April 2021 Surface water: April 2021				SW07300014, SW07300015,
Sampling Date:	Methane: June 2021		y: McCracken	Permit Nos.	SW07300045
Facility Name: U.S. DOE—Paducah Gaseous Diffusion Plant					
(As officially shown on DWM Permit Face)					
Site Address:	5600 Hobbs Road	Kevil, Kentuc	ky		42053
	Street	City/State			Zip
Phone No:	(270) 441-6800	Latitude: N 37° 07'	37.70"	Longitude:	W 88° 47' 55.41"
OWNER INFORMATION					
Facility Owner:	Owner: U.S. DOE, Joel Bradburne, Acting Manager			Phone No:	(859) 219-4000
Contact Person:	Bruce Ford	<u> </u>		Phone No:	(270) 441-5357
Contact Person Title: Director, Environmental Services, Four Rivers Nuclear Partnership, LLC					
Mailing Address:	5511 Hobbs Road	Kevil, Kentuc	ky		42053
	Street	City/State			Zip
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)					
Company:	GEO Consultants Corpo	oration			
Contact Person:	Jason Boulton			Phone No:	(270) 816-3415
Mailing Address:	199 Kentucky Avenue	Kevil, Kentuc	ky		42053
	Street	City/State			Zip
LABORATORY RECORD #1					
Laboratory:	GEL Laboratories, LLC		Lab ID No: <u>KY90129</u>		
Contact Person:	Valerie Davis			Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charleston, South	Carolina		29407
	Street	City/State			Zip
LABORATORY RECORD #2					
Laboratory:	N/A		Lab ID No:	N/A	
Contact Person:	N/A	_		Phone No:	N/A
Mailing Address:	N/A				
	Street	City/State			Zip
LABORATORY RECORD #3					
Laboratory:	N/A		Lab ID No:	N/A	
Contact Person:	N/A			Phone No:	N/A
Mailing Address:	N/A				
	Street	City/State			Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520 ⁻	1	8000-52	202	8000-52	242	8000-524	13
Facility's Loc	cal Well or Spring Number (e.g., N	1W−1	L, MW-2, etc	:.)	220		221		222		223	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/15/2021 09	9:41	4/15/2021	06:50	4/15/2021	08:25	4/15/2021 0	7:45
Duplicate ("Y'	' or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW220SG3	-21	MW221S	G3-21	MW222S0	G3-21	MW223SG	3-21
Laboratory Sam	mple ID Number (if applicable)		54102200	1	541022	005	541022	007	5410220	09		
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organi				4/22/2021		4/22/20)21	4/22/20	21	4/22/202	:1
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	UP		SIDE	Ξ	SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.212		0.481		0.427		0.437	
16887-00-6	Chloride(s)	Т	mg/L	9056	18.1		38.4		31.4		33.3	
16984-48-8	Fluoride	Т	mg/L	9056	0.291		0.246		0.311		0.254	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.28		1.17		1.13		1.01	
14808-79-8	Sulfate	т	mg/L	9056	24.4		15.8		14.2		19	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.1		30.09		30.1		30.11	
s0145	Specific Conductance	т	μ M H0/cm	Field	438		406		378		393	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242)	8000-5243	
Facility's Lo	ocal Well or Spring Number (e.g., MW	i-1 , 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.36		328.4		328.55		328.63	
N238	Dissolved Oxygen	т	mg/L	Field	3.85		5.05		3.97		4.44	
s0266	Total Dissolved Solids	Т	mg/L	160.1	250		220		221		213	
s0296	рн	Т	Units	Field	6.12		6.14		6.1		6.1	
NS215	Eh	Т	mV	Field	410		451		429		440	
s0907	Temperature	Т	°C	Field	15.61		13.78		15.78		15.39	
7429-90-5	Aluminum	T	mg/L	6020	0.046	J	<0.05		<0.05		0.0212	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.239		0.215		0.281		0.223	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.00616	J	0.0204		0.0101	J	0.0092	J
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	27.7		21.9		19.4		21.9	
7440-47-3	Chromium	Т	mg/L	6020	0.00326	J	0.00626	J	<0.01		0.0189	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.000323	J	<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00096	J	0.00152	J	0.000683	J	0.00102	J
7439-89-6	Iron	Т	mg/L	6020	0.106		<0.1		<0.1		0.0475	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.7		9.24		8.43		9.14	
7439-96-5	Manganese	т	mg/L	6020	0.00119	J	0.00139	J	0.00178	J	0.00624	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		0.000486		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number		8000-520	01	8000-52	:02	8000-524	42	8000-52	43		
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.000868	J	0.0069		0.00279		0.00488	
7440-02-0	Nickel	т	mg/L	6020	0.01		0.0293		0.0421		0.0706	
7440-09-7	Potassium	т	mg/L	6020	1.2		2.71		0.569		1.42	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	46.5		43.9		42.5		42.5	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

C-6

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

11ND5/0N11: 110 090

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8000-520	1	8000-520)2	8000-52	242	8000-52	243		
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-52	42	8000-52	43
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	L, MW-2, et	cc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191		<0.000019		<0.0000189		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	13
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	3.78	*	1.2	*	1.04	*	0.255	*
12587-47-2	Gross Beta	Т	pCi/L	9310	9.12	*	3.11	*	20.6	*	12.1	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.414	*	0.228	*	0.00433	*	0.201	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.7	*	0.65	*	-0.635	*	1.59	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	12.1	*	4.06	*	-7.98	*	-1.97	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.256	*	0.165	*	-0.217	*	-0.362	*
10028-17-8	Tritium	Т	pCi/L	906.0	179	*	81.7	*	113	*	185	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	37.1		41.9		22.8		27.6	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.88	J	1.13	J	1.03	J	1.2	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0058	J	0.00754	J	0.00878	J	0.00528	J
							_					

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480	08
Facility's Lo	cal Well or Spring Number (e.g., N	4W−1	, MW-2, etc	:.)	224		369		370		372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/15/2021 09	9:04	4/13/2021	06:38	4/13/2021	07:20	4/13/2021 0	8:26
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW224SG3	-21	MW369U	G3-21	MW370U0	G3-21	MW372UG	3-21
Laboratory San	oratory Sample ID Number (if applicable)					1	540680	001	5406800	003	54068000	07
Date of Analy	te of Analysis (Month/Day/Year) For Volatile Organic				4/22/2021		4/20/20)21	4/20/20	21	4/20/202	:1
Gradient with	adient with respect to Monitored Unit (UP, DO			IOWN)	SIDE		DOW	N	DOWI	Ν	DOWN	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.459		0.437	J	0.499		0.521	
16887-00-6	Chloride(s)	т	mg/L	9056	37.7		30.7	*	39.7	*	38.4	*
16984-48-8	Fluoride	т	mg/L	9056	0.288		0.222		0.173		0.183	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.07		0.532		0.91		0.807	
14808-79-8	Sulfate	т	mg/L	9056	16.9		7.59		21.7		157	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.1		30.11		30.11		30.13	
S0145	Specific Conductance	т	μ MH 0/cm	Field	422		383		492		795	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., MW	1-1 , 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.7		328.82		328.8		328.85	
N238	Dissolved Oxygen	Т	mg/L	Field	6.15		0.86		3.57		1.75	
s0266	Total Dissolved Solids	Т	mg/L	160.1	230		209		271		483	
s0296	рн	Т	Units	Field	6.13		6.01		5.9		6	
NS215	Eh	Т	mV	Field	418		444		435		411	
s0907	Temperature	т	°C	Field	15.94		15		15.5		15.94	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0299	J	<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.211		0.395		0.228		0.0622	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.032		0.0302		0.933		1.25	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.9		16.7		29.9		62.3	
7440-47-3	Chromium	Т	mg/L	6020	0.0353		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.000587	J	0.00341		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00125	J	0.0013	J	0.000747	J	0.000629	J
7439-89-6	Iron	т	mg/L	6020	0.244		0.0944	J	<0.1		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	9.57		6.97		12.9		23.2	
7439-96-5	Manganese	Т	mg/L	6020	0.00488	J	0.0217		<0.005		<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number		8000-524	44	8004-48	20	8004-48	18	8004-48	08		
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.00245		0.000211	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.0498		0.00352		0.00128	J	0.000918	J
7440-09-7	Potassium	т	mg/L	6020	0.831		0.521		2.47		2.16	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	T	mg/L	6020	<0.005		0.00207	J	<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	46		54		47.4		59	
7440-25-7	Tantalum	T	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		0.00565	J	0.00333	J	<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	308
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.00118		0.00124		0.00483	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	1	8004-4820)	8004-48	18	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000193		<0.0000188		<0.0000189		<0.000019	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.1		<0.0969		<0.0986	
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.1		<0.0969		<0.0986	
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.1		<0.0969		<0.0986	
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.1		<0.0969		<0.0986	
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.1		<0.0969		<0.0986	
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.1		<0.0969		<0.0986	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820)	8004-481	8	8004-480	18
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.1		<0.0969		<0.0986	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.1		<0.0969		<0.0986	
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.1		<0.0969		<0.0986	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.03	*	2.38	*	3.51	*	5.95	*
12587-47-2	Gross Beta	т	pCi/L	9310	13.2	*	38	*	33.5	*	35.3	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	-0.0347	*	0.231	*	0.348	*	0.647	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.711	*	3.56	*	0.106	*	0.867	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	5.74	*	60.3	*	44.2	*	51.3	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.525	*	0.377	*	-0.479	*	-0.0359	*
10028-17-8	Tritium	т	pCi/L	906.0	163	*	-60.6	*	9	*	-44.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	10.9	J	16.1	J	13.3	J	10.6	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5	*	<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.18	J	1.59	J	1.49	J	1.29	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00604	J	0.0173		0.00976	J	0.00708	J
												-
												

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	2	8004-48	309	8004-48	310	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	373		384		385		386	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/13/2021 08	3:59	4/14/2021	08:15	4/14/2021	08:49	4/14/2021 0	9:19
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG3	3-21	MW384S0	G3-21	MW385S0	G3-21	MW386SG	3-21
Laboratory San	oratory Sample ID Number (if applicable)					9	540852	001	5408520	003	54085200	05
Date of Analy	te of Analysis (Month/Day/Year) For Volatile Organics Analys					1	4/20/20)21	4/20/20	21	4/20/202	:1
Gradient with	adient with respect to Monitored Unit (UP, 1			IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.642	J	0.279		0.291		0.142	J
16887-00-6	Chloride(s)	т	mg/L	9056	38	*	24.6	*	25.8	*	11.1	*
16984-48-8	Fluoride	т	mg/L	9056	0.184		0.192		0.193		0.719	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.737		1.06		1.07		0.089	J
14808-79-8	Sulfate	т	mg/L	9056	167		19.4		22.5		49.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.14		30.18		30.18		30.17	
S0145	Specific Conductance	т	μ MH 0/cm	Field	834		384		405		534	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479		8004-480	9	8004-4810)	8004-4804	
	cal Well or Spring Number (e.g., MV	I-1, I	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.83		328.33		328.38		345.42	
N238	Dissolved Oxygen	т	mg/L	Field	1.33		4.4		3.96		4.3	
S0266	Total Dissolved Solids	т	mg/L	160.1	484		197		211		331	
S0296	рН	Т	Units	Field	6		6.06		6.03		6.85	
NS215	Eh	т	mV	Field	407		401		390		353	
s0907	Temperature	т	°c	Field	16.39		14.72		14.83		14.61	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	0.00127	J	<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.029		0.2		0.229		0.123	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	1.72		0.0405		0.0745		<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	62.9		22.5		24.1		19.4	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		0.000639	J	<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000611	J	0.000678	J	0.000841	J	0.000625	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		<0.1		<0.1		0.0377	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	24.7		9.32		9.76		7.91	
7439-96-5	Manganese	Т	mg/L	6020	0.00242	J	<0.005		<0.005		0.0226	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000293	BJ	0.000221	BJ	0.000462	BJ
7440-02-0	Nickel	т	mg/L	6020	0.00131	J	0.000882	J	0.00121	J	<0.002	
7440-09-7	Potassium	Т	mg/L	6020	2.5		1.35		1.51		0.25	J
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	55.4		42.2		44.8		91.4	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		0.000103	BJ
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-48	310	8004-48	304
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00574		0.00039	J	0.00061	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-48	10	8004-48	04
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	L, MW-2, et	cc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193	*	<0.0000188		<0.000019		<0.0000188	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0964			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0964			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0964			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0964			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0964			*		*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.0964			*		*		*

C-19

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809	1	8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0964			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0964			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0964			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	5.14	*	0.733	*	0.234	*	3.28	*
12587-47-2	Gross Beta	Т	pCi/L	9310	11.3	*	20.8	*	26.7	*	0.618	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.114	*	0.161	*	0.367	*	-0.197	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.04	*	-0.835	*	-1.71	*	3.95	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	17.5	*	19	*	18.8	*	-3.55	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.42	*	0.817	*	0.202	*	0.456	*
10028-17-8	Tritium	Т	pCi/L	906.0	-1.83	*	97.7	*	29.5	*	4.52	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		13.3	J	<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	1.23	J	1.04	J	1.11	J	3.62	
S0586	Total Organic Halides	Т	mg/L	9020	0.012		0.00636	J	0.00898	J	0.0863	
												\vdash

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	312	8004-481	1
Facility's Loc	cal Well or Spring Number (e.g., N	w−1	L, MW-2, etc	:.)	387		388		389		390	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/14/2021 06	6:57	4/14/2021	07:40	NA		4/14/2021 0	6:22
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	Le ID Number (if applicable)				MW387SG3	-21	MW388S0	G3-21	NA		MW390SG3	-21
Laboratory Sam	poratory Sample ID Number (if applicable)					7	540852	009	NA		54085201	1
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						4/20/20	21	NA		4/20/2021	1
Gradient with	adient with respect to Monitored Unit (UP,			IOWN)	DOWN		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.649		0.489			*	0.312	
16887-00-6	Chloride(s)	т	mg/L	9056	48.2	*	38.4	*		*	26.7	*
16984-48-8	Fluoride	т	mg/L	9056	0.449		0.315			*	0.389	
s0595	Nitrate & Nitrite	т	mg/L	9056	2.42		1.12			*	1.6	
14808-79-8	Sulfate	т	mg/L	9056	28.1		22.8			*	40.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.16		30.16			*	30.14	
S0145	Specific Conductance	т	μ MH 0/cm	Field	580		463			*	649	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	ocal Well or Spring Number (e.g., MW	r-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.43		328.37			*	328.56	
N238	Dissolved Oxygen	т	mg/L	Field	2.27		3.97			*	3.59	
S0266	Total Dissolved Solids	т	mg/L	160.1	324		226			*	376	
s0296	рн	Т	Units	Field	6.21		6.13			*	6.35	
NS215	Eh	Т	mV	Field	417		409			*	453	
s0907	Temperature	т	°C	Field	14.44		14.78			*	14.94	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05			*	0.0228	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00302	J	<0.005			*	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.177		0.193			*	0.242	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0207		0.0275			*	0.0218	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	39.2		30.7			*	30	
7440-47-3	Chromium	т	mg/L	6020	0.00779	J	<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000798	J	0.000821	J		*	0.000969	J
7439-89-6	Iron	т	mg/L	6020	0.0593	J	<0.1			*	<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	15.3		13.4			*	12.4	
7439-96-5	Manganese	Т	mg/L	6020	0.039		<0.005			*	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-48	15	8004-48	316	8004-48	12	8004-481	11
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		<0.001			*	0.000269	BJ
7440-02-0	Nickel	т	mg/L	6020	0.00122	J	0.00131	J		*	0.0015	J
7440-09-7	Potassium	т	mg/L	6020	1.31		1.7			*	0.315	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	Т	mg/L	6020	54.5		44.9			*	95	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.000217	В
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	0.00453	J	<0.02			*	<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	16	8004-48	312	8004-48	11
Facility's Loc	al Well or Spring Number (e.g., 1	w-:	1, MW-2, et	cc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00101		0.00057	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4816	3	8004-48	12	8004-481	1
Facility's Loc	al Well or Spring Number (e.g., M	1 ₩−1	1, MW-2, et	cc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.000188		<0.0000185			*	<0.0000192	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816	6	8004-481	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	387		388		389		390	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	8.33	*	2.42	*		*	8.16	*
12587-47-2	Gross Beta	Т	pCi/L	9310	268	*	24.3	*		*	35.2	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.379	*	0.636	*		*	0.419	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.166	*	-2.84	*		*	2.96	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	476	*	34	*		*	51.7	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.98	*	0.394	*		*	0.184	*
10028-17-8	Tritium	Т	pCi/L	906.0	93.3	*	-90.8	*		*	-17.4	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	10.6	J	13.3	J		*	<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*		*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	1.25	J	0.969	J		*	2.5	
s0586	Total Organic Halides	Т	mg/L	9020	0.0194		0.011			*	0.0158	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

1									<u> </u>			
AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	307	8004-480)2
Facility's Loc	cal Well or Spring Number (e.g., N	4W−1	., MW-2, etc	.)	391		392		393		394	
Sample Sequenc	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/14/2021 12	2:11	4/14/2021	12:47	4/14/2021	13:16	4/14/2021 0	9:58
Duplicate ("Y	" or "N") ²				N	N		N			N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Samp	Facility Sample ID Number (if applicable)					3-21	MW392S	G3-21	MW393S0	33-21	MW394SG	3-21
Laboratory Sar	Laboratory Sample ID Number (if applicable)					3	540852015		540852017		5408520	19
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	e Or	ganics Anal	ysis	4/20/2021		4/20/2021		4/20/2021		4/20/202	<u>′</u> 1
Gradient with	respect to Monitored Unit (UP, DO	OWN, SIDE, UNKNOWN)			DOWN		DOWN		DOWN		UP	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.554		0.639		0.141	J	0.577	
16887-00-6	Chloride(s)	т	mg/L	9056	39.2		44.3		10.7		49.8	*
16984-48-8	Fluoride	т	mg/L	9056	0.133	J	0.162		0.156		0.152	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.02		0.811		0.28		1.74	
14808-79-8	Sulfate	т	mg/L	9056	14.1	*	18	*	23	*	12.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.13		30.13		30.11		30.15	
S0145	Specific Conductance	т	μ MH 0/cm	Field	374		406		454		392	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	•	8004-4802	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-1	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	328.49		328.43		340.54		328.49	
N238	Dissolved Oxygen	Т	mg/L	Field	3.8		2.27		2.1		5.5	
s0266	Total Dissolved Solids	Т	mg/L	160.1	196		204		273		207	
s0296	рн	Т	Units	Field	6.06		6.06		6.32		6.08	
NS215	Eh	Т	mV	Field	409		390		369		393	
s0907	Temperature	Т	°C	Field	15.33		15.44		15.89		14.72	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		0.00221	J	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.181		0.225		0.118		0.279	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0373		0.0295		0.0185		0.0192	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	25		30.5		15.6		26.8	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000559	J	0.000541	J	0.000785	J	0.000528	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		<0.1		0.667		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.6		11.5		4.04		11	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.00844		0.00839		<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	05	8004-48	06	8004-480	07	8004-48)2
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.000721	J	0.000737	J	0.000631	J	0.00891	
7440-09-7	Potassium	т	mg/L	6020	1.47		1.81		0.473		1.54	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	32.9		32.1		81.2		32.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	T	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	T	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None
For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-480	5	8004-480	06	8004-4	307	8004-48	302		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	0.00034	J	0.00124		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00805		0.0148		<0.001		0.00289	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	5	8004-480	07	8004-48	02
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.0000187		<0.0000189		<0.0000187	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4805		8004-4806		8004-480	7	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.12	*	2.85	*	-0.68	*	0.0514	*
12587-47-2	Gross Beta	Т	pCi/L	9310	9.12	*	3.5	*	4.69	*	9.32	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.224	*	0.282	*	-0.178	*	0.678	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.757	*	0.863	*	0.707	*	-1.46	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-13	*	-17.3	*	-5.78	*	0.0414	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.426	*	0.754	*	0.426	*	0.735	*
10028-17-8	Tritium	Т	pCi/L	906.0	17.8	*	-53.9	*	-8.08	*	-58.2	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		10.6	J	<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
S0268	Total Organic Carbon	Т	mg/L	9060	0.793	J	0.848	J	2.4		0.887	J
s0586	Total Organic Halides	т	mg/L	9020	0.0158		0.0224		0.0147		0.0157	
		\vdash										

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480	1	8004-48	303	8004-48	317	0000-0000	0
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	., MW-2, etc	:.)	395		396		397		E. BLAN	K
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		E	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)			4/14/2021 10	0:32	4/14/2021 11:04		4/14/2021 13:55		4/15/2021 0	6:05
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW395SG3	-21	MW396SG3-21		MW397SG3-21		RI1SG3-2	:1
Laboratory San	mple ID Number (if applicable)				54085202	:1	540852	023	540852	025	54102201	14
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/20/2021		4/20/20)21	4/20/20	21	4/22/202	21
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.512		0.825		0.412			*
16887-00-6	Chloride(s)	т	mg/L	9056	43.8	*	56.3	*	34.5			*
16984-48-8	Fluoride	т	mg/L	9056	0.166		0.706		0.117			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.7		0.591	J	1.01			*
14808-79-8	Sulfate	т	mg/L	9056	12.4		29.7		11.3	*	_	*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.15		30.15		30.11			*
S0145	Specific Conductance	т	μ M H0/cm	Field	366		686		314			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-480	1	8004-480	3	8004-4817	,	0000-0000			
Facility's Lo	ocal Well or Spring Number (e.g., M	√-1 , 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.85		372.87		328.46			*
N238	Dissolved Oxygen	т	mg/L	Field	4.72		2.83		6.3			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	184		397		157			*
S0296	рн	T	Units	Field	5.99		6.57		6.02			*
NS215	Eh	T	mV	Field	372		332		391			*
s0907	Temperature	T	°C	Field	14.72		14.67		15.78			*
7429-90-5	Aluminum	T	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.238		0.351		0.135		<0.004	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0199		0.00645	J	0.00843	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	24.4		31.7		18.4		<0.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000521	J	0.000873	J	0.000505	J	<0.002	
7439-89-6	Iron	т	mg/L	6020	<0.1		<0.1		<0.1		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	T	mg/L	6020	10.2		13.9		7.68		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	0.00113	J	0.0124		<0.005		<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number		8004-480	01	8004-48	03	8004-48	17	0000-00	00		
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	1K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		0.000415	BJ	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.000895	J	<0.002		0.000868	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.46		0.823		1.69		<0.3	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	28.6		97.3		32.8		<0.25	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480	03	8004-48	317	0000-00	000
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00232		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g., N	1 ₩−1	1, MW-2, et	.c.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000188		<0.0000191		<0.0000191		<0.000019	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

11NDB/ 0N11. 110 090

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803		8004-4817		0000-0000	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	T	pCi/L	9310	-1.58	*	3.42	*	2.27	*	-1.21	*
12587-47-2	Gross Beta	T	pCi/L	9310	2.08	*	3.62	*	12.1	*	1.79	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	AN-1418	0.251	*	0.0261	*	0.0593	*	0.00497	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.15	*	-2.76	*	-3.43	*	-1.47	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	3.78	*	-0.297	*	14	*	-10.1	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	-0.21	*	0.498	*	-0.538	*	0.391	*
10028-17-8	Tritium	Т	pCi/L	906.0	-48.4	*	-1.59	*	-69.3	*	51.7	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		16.1	J	<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.909	J	4.35		0.751	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0055	J	0.0622		0.00382	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				000-000	00	0000-00	00	0000-00	00	8000-520	2
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	F. BLAN	IK	T. BLAN	IK 1	T. BLAN	K 2	221	
Sample Sequen	mple Sequence #					1		1			2	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	F		Т		Т		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/15/2021 0	6:55	4/14/2021	05:45	4/15/2021 (06:00	4/15/2021 00	6:50
Duplicate ("Y	" or "N") ²				N		N		N		Υ	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				FB1SG3-2	21	TB1SG3	3-21	TB2SG3-	-21	MW221DSG	3-21
Laboratory Sa	mple ID Number (if applicable)				54102201	3	5408520)27	5410220	15	541022003	3
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/22/2021	1	4/20/20	21	4/22/20	21	4/22/202	1
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	NA		NA		NA		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*	0.487	
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*	38.4	
16984-48-8	Fluoride	т	mg/L	9056		*		*		*	0.239	
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*	1.16	
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*	15.8	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	μ MH 0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	8000-5202	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-E	f, etc.)	F. BLAN	<	T. BLANK	1	T. BLANK 2		221	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*	211	
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05			*		*	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003			*		*	<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005			*		*	<0.005	
7440-39-3	Barium	Т	mg/L	6020	<0.004			*		*	0.209	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005			*		*	<0.0005	
7440-42-8	Boron	Т	mg/L	6020	<0.015			*		*	0.0197	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001			*		*	<0.001	
7440-70-2	Calcium	Т	mg/L	6020	<0.2			*		*	21.6	
7440-47-3	Chromium	Т	mg/L	6020	<0.01			*		*	0.00629	J
7440-48-4	Cobalt	Т	mg/L	6020	<0.001			*		*	0.000305	J
7440-50-8	Copper	Т	mg/L	6020	<0.002			*		*	0.00165	J
7439-89-6	Iron	Т	mg/L	6020	<0.1			*		*	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	<0.03			*		*	9.07	
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*	0.0013	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002			*		*	<0.0002	

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-0000		0000-0000		8000-5202	
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	F. BLAN	1K	T. BLAN	K 1	T. BLANK 2		221	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001			*		*	0.00686	
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*	0.0292	
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*	2.71	
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*	<0.001	
7440-23-5	Sodium	Т	mg/L	6020	<0.25			*		*	43.3	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*		*		*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002			*		*	<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02			*		*	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02			*		*	<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-0000)	0000-000	00	0000-00	000	8000-52	202
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	F. BLANK	(T. BLAN	(1	T. BLANK 2		221	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001	*	<0.001		<0.001	*	<0.001	*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000		0000-0000		8000-52	02
Facility's Loc	cal Well or Spring Number (e.g., M	1W-:	1, MW-2, et	.c.)	F. BLAN	(T. BLANK	1	T. BLANK 2		221	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005	*	<0.005		<0.005	*	<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191		<0.0000186		<0.0000193		<0.0000189	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001	*	<0.001		<0.001	*	<0.001	*
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000		0000-000	0	8000-520	2
Facility's Lo	cal Well or Spring Number (e.g.	, MW-1	L, MW-2, et	.c.)	F. BLANK		T. BLANK	1	T. BLANK	2	221	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.09	*		*		*	-3.28	*
12587-47-2	Gross Beta	т	pCi/L	9310	-0.892	*		*		*	3.14	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.163	*		*		*	0.041	*
10098-97-2	Strontium-90	т	pCi/L	905.0	3.76	*		*		*	-0.177	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-12.2	*		*		*	4.01	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.723	*		*		*	-0.183	*
10028-17-8	Tritium	т	pCi/L	906.0	215	*		*		*	150	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*	22.8	
57-12-5	Cyanide	т	mg/L	9012		*		*		*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5			*		*	<0.5	*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*	1.11	J
s0586	Total Organic Halides	т	mg/L	9020		*		*		*	0.00452	J

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW22	20 MW220SG3-21	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.82. Rad error is 6.77.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.45. Rad error is 8.31.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.605. Rad error is 0.605.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.32. Rad error is 3.31.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.2. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.813. Rad error is 0.809.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 152. Rad error is 148.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221SG3-21	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.4. Rad error is 3.4.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.39. Rad error is 5.36.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.343. Rad error is 0.343.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.72. Rad error is 2.72.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.2. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.895. Rad error is 0.892.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 145. Rad error is 144.
		Iodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5242 MW22	22 MW222SG3-21	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.06. Rad error is 3.05.
		Gross beta		TPU is 9.55. Rad error is 8.92.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.199. Rad error is 0.199.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.07. Rad error is 3.07.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.839. Rad error is 0.838.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 147. Rad error is 145.
		Iodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

00-5243 MW223		Constituent	Flag	Description
U-3243 IVIVV223 IVIVV223333-2 I	3 MW223SG3-21	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.87. Rad error is 3.86.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 9.58. Rad error is 9.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.356. Rad error is 0.356.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.1. Rad error is 3.09.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.925. Rad error is 0.924.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 153. Rad error is 148.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

•	acility Sample ID	Constituent	Flag	Description
000-5244 MW224 MW	/224SG3-21	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		Iodomethane	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.17. Rad error is 3.17.
		Gross beta		TPU is 8.09. Rad error is 7.79.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.252. Rad error is 0.252.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.18. Rad error is 3.18.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.07. Rad error is 1.07.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 148. Rad error is 145.
004-4820 MW369 MW	/369UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.15. Rad error is 4.13.
		Gross beta		TPU is 11.6. Rad error is 9.79.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.568. Rad error is 0.568.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.19. Rad error is 4.15.
		Technetium-99		TPU is 14.6. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.998. Rad error is 0.994.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 149. Rad error is 149.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4818 MW370	MW370UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 4.72. Rad error is 4.68.
		Gross beta		TPU is 11. Rad error is 9.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.708. Rad error is 0.708.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.86. Rad error is 2.86.
		Technetium-99		TPU is 13.6. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.96. Rad error is 2.92.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 143. Rad error is 143.
3004-4808 MW372	MW372UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 5.93. Rad error is 5.84.
		Gross beta		TPU is 11.2. Rad error is 9.53.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.863. Rad error is 0.862.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.9. Rad error is 2.9.
		Technetium-99		TPU is 14.9. Rad error is 13.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.26. Rad error is 1.26.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 151. Rad error is 151.
3004-4792 MW373	MW373UG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 4.84. Rad error is 4.77.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 9.03. Rad error is 8.83.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.588. Rad error is 0.588.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.5. Rad error is 2.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 11.8. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.988. Rad error is 0.982.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 153. Rad error is 153.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4809 MW38	34 MW384SG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.41. Rad error is 5.4.
		Gross beta		TPU is 9.52. Rad error is 8.89.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.11. Rad error is 1.11.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.05. Rad error is 3.05.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 13.9. Rad error is 13.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.19. Rad error is 1.18.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 121. Rad error is 120.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4810 MW385 MW385SG3-21		Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.79. Rad error is 2.78.
		Gross beta		TPU is 9.07. Rad error is 7.97.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.64. Rad error is 0.64.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 3. Rad error is 3.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 13.9. Rad error is 13.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.858. Rad error is 0.855.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 121. Rad error is 121.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW38	6 MW386SG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.29. Rad error is 4.25.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.23. Rad error is 4.23.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.427. Rad error is 0.427.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.55. Rad error is 3.49.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.3. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.39. Rad error is 1.39.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 117. Rad error is 117.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4815 MW387	MW387SG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 8.99. Rad error is 8.78.
		Gross beta		TPU is 48.8. Rad error is 21.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.626. Rad error is 0.625.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.55. Rad error is 3.55.
		Technetium-99		TPU is 58.8. Rad error is 25.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.36. Rad error is 1.34.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 125. Rad error is 123.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4816 MW388 MW388SG3-21		Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 5.04. Rad error is 5.
		Gross beta		TPU is 9.61. Rad error is 8.76.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.765. Rad error is 0.764.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 3.58. Rad error is 3.58.
		Technetium-99		TPU is 14.4. Rad error is 13.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1. Rad error is 0.999.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 115. Rad error is 115.
		Iodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample w collected.
		Temperature		During sampling, the well was dry; therefore, no sample w collected.
		Aluminum		During sampling, the well was dry; therefore, no sample w collected.
		Antimony		During sampling, the well was dry; therefore, no sample w collected.
		Arsenic		During sampling, the well was dry; therefore, no sample w collected.
		Barium		During sampling, the well was dry; therefore, no sample w collected.
		Beryllium		During sampling, the well was dry; therefore, no sample w collected.
		Boron		During sampling, the well was dry; therefore, no sample w collected.
		Cadmium		During sampling, the well was dry; therefore, no sample w collected.
		Calcium		During sampling, the well was dry; therefore, no sample w collected.
		Chromium		During sampling, the well was dry; therefore, no sample w collected.
		Cobalt		During sampling, the well was dry; therefore, no sample w collected.
		Copper		During sampling, the well was dry; therefore, no sample w collected.
		Iron		During sampling, the well was dry; therefore, no sample w collected.
		Lead		During sampling, the well was dry; therefore, no sample w collected.
		Magnesium		During sampling, the well was dry; therefore, no sample w collected.
		Manganese		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Mercury		During sampling, the well was dry; therefore, no sample wa collected.
		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample wa collected.
		Silver		During sampling, the well was dry; therefore, no sample wa collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample wa collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well was dry; therefore, no sample was collected.
		Zinc		During sampling, the well was dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample w collected.
		Acetone		During sampling, the well was dry; therefore, no sample was collected.
		Acrolein		During sampling, the well was dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample was collected.
		Benzene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		Xylenes		During sampling, the well was dry; therefore, no sample was collected.
		Styrene		During sampling, the well was dry; therefore, no sample was collected.
		Toluene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Carbon disulfide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		Chloroform		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample w collected.
		Iodomethane		During sampling, the well was dry; therefore, no sample w collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample w collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample w collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample w collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample w collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well was dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well was dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well was dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample wa collected.
		Tritium		During sampling, the well was dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well was dry; therefore, no sample wa collected.
		lodide		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4811 MW390 MW390SG3-21		Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 6.59. Rad error is 6.45.
		Gross beta		TPU is 11.2. Rad error is 9.59.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.659. Rad error is 0.658.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.62. Rad error is 4.59.
		Technetium-99		TPU is 15.7. Rad error is 14.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.12. Rad error is 1.12.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 118. Rad error is 118.
		Iodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4805 MW391	MW391SG3-21	Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.45. Rad error is 4.44.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.49. Rad error is 7.34.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.506. Rad error is 0.506.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.95. Rad error is 3.95.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.07. Rad error is 1.06.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 118. Rad error is 118.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4806 MW392 MW392SG3-21		Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.75. Rad error is 7.73.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.6. Rad error is 6.57.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.786. Rad error is 0.786.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.82. Rad error is 3.82.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.8. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.78. Rad error is 1.77.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 116. Rad error is 116.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4807 MW39	93 MW393SG3-21	Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.79. Rad error is 2.79.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.56. Rad error is 7.52.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.503. Rad error is 0.503.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.13. Rad error is 4.13.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.2. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.24. Rad error is 1.23.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 116. Rad error is 116.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4802 MW39	4 MW394SG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.35. Rad error is 3.35.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.65. Rad error is 6.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.03. Rad error is 1.02.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.1. Rad error is 4.1.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.26. Rad error is 1.25.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 116. Rad error is 116.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4801 MW39	5 MW395SG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.77. Rad error is 2.76.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.78. Rad error is 6.78.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.646. Rad error is 0.646.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.21. Rad error is 3.2.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 13.8. Rad error is 13.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.888. Rad error is 0.888.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 119. Rad error is 119.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4803 MW39	96 MW396SG3-21	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.86. Rad error is 5.83.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.18. Rad error is 6.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.465. Rad error is 0.465.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.05. Rad error is 3.05.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.5. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.11. Rad error is 1.1.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 119. Rad error is 119.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW397	MW397SG3-21	Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.54. Rad error is 5.51.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 8.34. Rad error is 8.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.651. Rad error is 0.651.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.38.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 14.2. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.61. Rad error is 0.609.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 117. Rad error is 117.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG3-21	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		Iodomethane	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.38. Rad error is 2.38.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.83. Rad error is 6.83.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.228. Rad error is 0.228.
		Strontium-90	U 	Indicates analyte/nuclide was analyzed for, but not detected is 3.75. Rad error is 3.75.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.863. Rad error is 0.857.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 140. Rad error is 140.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG3-21	Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG3-21	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		Iodomethane	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.7. Rad error is 1.69.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.08. Rad error is 6.08.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.263. Rad error is 0.263.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.84. Rad error is 2.78.
		Technetium-99	U 	Indicates analyte/nuclide was analyzed for, but not detected. T is 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.14. Rad error is 1.14.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 152. Rad error is 146.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed. Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG3-21	Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG3-21	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН	Analysis of constituent not required and not performed.	
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum	Aluminum	Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG3-21	Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG3-21	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG3-21	Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		Iodomethane	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		Iodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5202 MW221 MW221DSG3-21		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		Iodomethane	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.31. Rad error is 4.3.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.74. Rad error is 7.72.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.289. Rad error is 0.289.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.6. Rad error is 3.6.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.687. Rad error is 0.686.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 149. Rad error is 146.
		lodide	W	Post-digestion spike recovery out of control limits.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 2nd CY 2021

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u>

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2021 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The second quarter 2021 data used to conduct the statistical analyses were collected in April 2021. The statistical analyses for this report first used data from the initial eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one compliance well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW3891*	TW	UCRS
$MW390^1$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

¹ **NOTE:** The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

BG: upgradient or background wells

TW: compliance or test wells

SG: sidegradient wells

^{*}Well was dry this quarter and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the background wells (identified as "BG"), the compliance or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2021. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

lower $TL = X - (K \times S)$

-

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations. upper $TL = X + (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Aluminum Antimony Beta Activity Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride cis-1,2-Dichloroethene Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Sodium Sulfate Technetium-99 Total Organic Carbon (TOC) Total Organic Halides (TOX) Trichloroethene

 $[\]begin{tabular}{ll} Zinc \\ \hline *For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values. \\ \end{tabular}$

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

1,1,2-Tetrachloroethane	No
1,1,2-Trichloroethane	No No No No No No No
1,1-Dichloroethane	No No No No
1,2,3-Trichloropropane 4 4 0 1,2-Dibromo-3-chloropropane 4 4 0 1,2-Dibromoethane 4 4 0 1,2-Dichloropropane 4 4 0 1,2-Dichloropropane 4 4 0 2-Butanone 4 4 0 2-Hexanone 4 4 0 4-Methyl-2-pentanone 4 4 0 Acctone 4 4 0 Acrolein 4 4 0 Acrolein 4 4 0 Acrylonitrile 4 4 0 Aluminum 4 3 1 Antimony 4 4 0 Beryllium 4 4 0 Bromo 4 1 3 Bromide 4 4 0 Bromodichloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Caricum 4 <	No No No
1,2-Dibromo-3-chloropropane 4 4 0 1,2-Dibromoethane 4 4 0 1,2-Dichlorobenzene 4 4 0 1,2-Dichloropropane 4 4 0 2-Butanone 4 4 0 2-Hexanone 4 4 0 4-Methyl-2-pentanone 4 4 0 Acctone 4 4 0 Acrolein 4 4 0 Aluminum 4 3 1 Antimony 4 4 0 Beryllium 4 4 0 Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromoform <td>No No No</td>	No No No
1,2-Dibromoethane 4 4 0 1,2-Dichlorobenzene 4 4 0 1,2-Dichloropropane 4 4 0 2-Butanone 4 4 0 2-Hexanone 4 4 0 4-Methyl-2-pentanone 4 4 0 Acetone 4 4 0 Acrolein 4 4 0 Acrylonitrile 4 4 0 Aluminum 4 3 1 Antimony 4 4 0 Beryllium 4 4 0 Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4	No No
1,2-Dichlorobenzene 4 4 0 1,2-Dichloropropane 4 4 0 2-Butanone 4 4 0 2-Hexanone 4 4 0 4-Methyl-2-pentanone 4 4 0 Acetone 4 4 0 Acrolein 4 4 0 Acrylonitrile 4 4 0 Aluminum 4 3 1 Antimony 4 4 0 Beryllium 4 4 0 Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chlorobenzene 4 4 <td>No</td>	No
1,2-Dichloropropane 4 4 0 2-Butanone 4 4 0 2-Hexanone 4 4 0 4-Methyl-2-pentanone 4 4 0 Acctone 4 4 0 Acrolein 4 4 0 Acrylonitrile 4 4 0 Aluminum 4 3 1 Antimony 4 4 0 Beryllium 4 4 0 Bromide 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chlorobenzene 4 4 0	
2-Butanone 4 4 0 2-Hexanone 4 4 0 4-Methyl-2-pentanone 4 4 0 Acetone 4 4 0 Acrolein 4 4 0 Acrylonitrile 4 4 0 Aluminum 4 3 1 Antimony 4 4 0 Beryllium 4 4 0 Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromoform 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
2-Hexanone 4 4 0 4-Methyl-2-pentanone 4 4 0 Acetone 4 4 0 Acrolein 4 4 0 Acrylonitrile 4 4 0 Aluminum 4 3 1 Antimony 4 4 0 Beryllium 4 4 0 Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromoform 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	
4-Methyl-2-pentanone 4 4 0 Acetone 4 4 0 Acrolein 4 4 0 Acrylonitrile 4 4 0 Aluminum 4 3 1 Antimony 4 4 0 Beryllium 4 4 0 Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromoform 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
Acetone 4 4 0 Acrolein 4 4 0 Acrylonitrile 4 4 0 Aluminum 4 3 1 Antimony 4 4 0 Beryllium 4 4 0 Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromofichloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
Acrolein 4 4 0 Acrylonitrile 4 4 0 Aluminum 4 3 1 Antimony 4 4 0 Beryllium 4 4 0 Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromodichloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
Acrylonitrile 4 4 0 Aluminum 4 3 1 Antimony 4 4 0 Beryllium 4 4 0 Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromodichloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
Aluminum 4 3 1 Antimony 4 4 0 Beryllium 4 4 0 Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromodichloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
Antimony 4 4 0 Beryllium 4 4 0 Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromodichloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
Beryllium 4 4 0 Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromodichloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	Yes
Boron 4 1 3 Bromide 4 0 4 Bromochloromethane 4 4 0 Bromodichloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
Bromide 4 0 4 Bromochloromethane 4 4 0 Bromodichloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
Bromochloromethane 4 4 0 Bromodichloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	Yes
Bromodichloromethane 4 4 0 Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	Yes
Bromoform 4 4 0 Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
Bromomethane 4 4 0 Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
Calcium 4 0 4 Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
Carbon disulfide 4 4 0 Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	No
Chemical Oxygen Demand (COD) 4 2 2 Chloride 4 0 4 Chlorobenzene 4 4 0	Yes
Chloride 4 0 4 Chlorobenzene 4 4 0	No
Chlorobenzene 4 4 0	Yes
	Yes
	No
Chloroethane 4 4 0	No
Chloroform 4 4 0	No
Chloromethane 4 4 0	No
cis-1,2-Dichloroethene 4 4 0	No
cis-1,3-Dichloropropene 4 4 0	No
Cobalt 4 4 0	No
Conductivity 4 0 4	Yes
Copper 4 0 4	Yes
Cyanide 4 4 0	No
Dibromochloromethane 4 4 0	No
Dibromomethane 4 4 0	No
Dimethylbenzene, Total 4 4 0	No
Dissolved Oxygen 4 0 4	
Dissolved Solids 4 0 4	Yes
Ethylbenzene 4 4 0	Yes Yes
Iodide 4 4 0	

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	2	2	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	4	0	No
Nickel	4	2	2	Yes
Oxidation-Reduction Potential	4	0	4	Yes
pН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	4	0	No
Vinyl Acetate	4	4	0	No
Zinc	4	4	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	8	3	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	5	6	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	2	9	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	10	1	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	8	3	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Oxygen Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	6	5	Yes
Magnesium	11	0	11	Yes
Manganese	11	4	7	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	5	6	Yes
Nickel	11	0	11	Yes
Oxidation-Reduction Potential	11	0	11	Yes
pН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	8	3	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	0	11	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	5	6	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	11	0	No
Vinyl Acetate	11	11	0	No
Zinc	11	9	2	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	7	0	No
Antimony	7	6	1	Yes
Beryllium	7	7	0	No
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	5	2	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	6	1	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	7	0	No
Magnesium	7	0	7	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Manganese	7	4	3	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	7	0	No
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	5	2	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc	7	6	1	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. For the UCRS, URGA, and LRGA, the test was applied to 22, 28, and 25 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which include those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background upper tolerance limit (UTL) for oxidation-reduction potential and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Chemical oxygen demand (COD), oxidation-reduction potential, sulfate	MW370: Oxidation-reduction potential, sulfate, technetium-99
MW390: Oxidation-reduction potential, technetium-99	MW221: Chemical oxygen demand (COD), oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Oxidation-reduction potential, sulfate
MW396: Oxidation-reduction potential	MW223: Oxidation-reduction potential, sulfate	MW388: Oxidation-reduction potential, sulfate
	MW224: Oxidation-reduction potential	MW392: Oxidation-reduction potential, sulfate
	MW369: Oxidation-reduction potential, technetium-99	MW395: Oxidation-reduction potential
	MW372: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW384: Oxidation-reduction potential, sulfate	
	MW387: Beta activity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, technetium-99	
	MW391: Oxidation-reduction potential	

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentrations in MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentrations in MW220 and MW221.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentrations in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW222, MW223, MW224, MW369, MW372, MW384, MW387, and MW391.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW372.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW223, MW372, MW384, and MW387.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

¹ Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Antimony	Tolerance Interval	1.62	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, and MW392.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

¹ Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. For the UCRS, URGA, and LRGA, the test was applied to 2, 10, and 7 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate, technetium-99
MW372: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, dissolved solids, magnesium, sulfate, technetium-99	MW388: Sulfate
	MW392: Sulfate

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the technetium-99 concentration in one UCRS well (i.e., MW390) exceeded the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

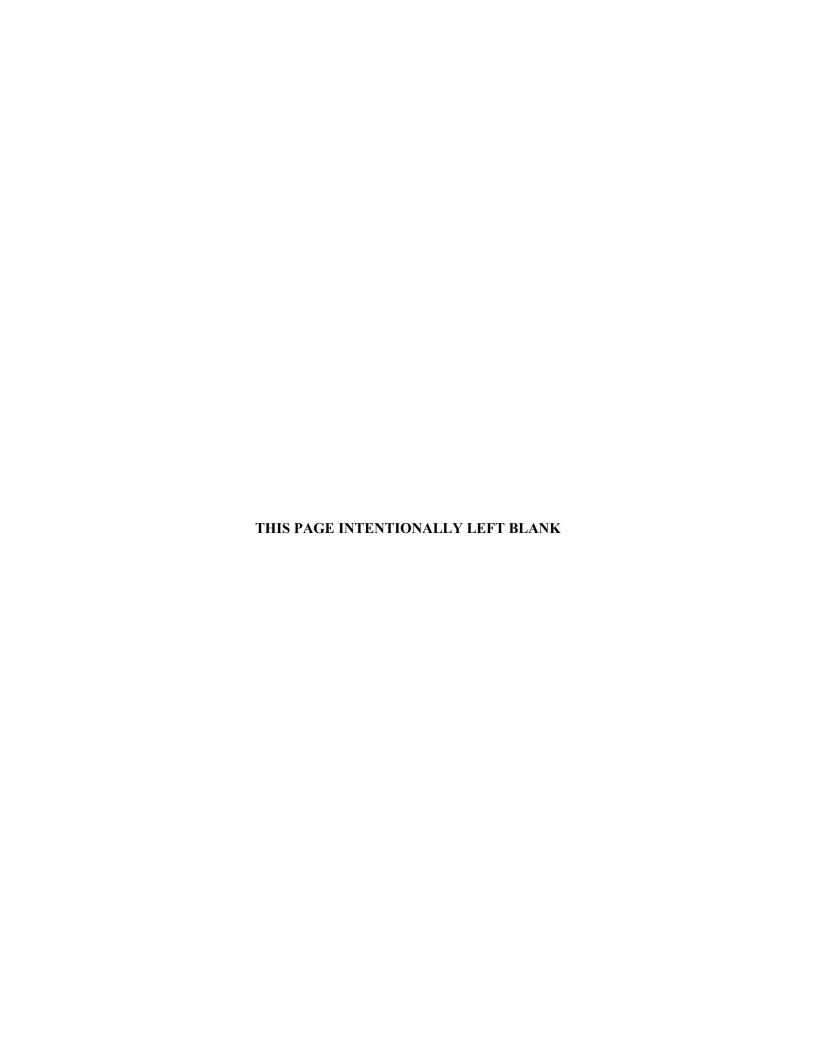
Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.49	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	29.9	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.52	MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.15	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand	Tolerance Interval	0.84	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Conductivity	Tolerance Interval	0.08	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.17	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.11	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.13	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.15	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.28	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.72	MW369, MW372, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.


Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.15	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.06	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.31	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.14	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.21	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.06	MW370, MW373, MW385, MW388, and MW392 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.72	MW370 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

S = 0.182 CV(1) = 0.567

K factor=** 3.188

TL(1)= 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259 S = 0.503

CV(2) = -0.400

K factor**= 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:		MW396		
	Date Collected	Result	LN(Result)	
	8/13/2002	0.393	-0.934	
	9/16/2002	0.2	-1.609	
	10/16/2002	0.2	-1.609	
	1/13/2003	0.501	-0.691	
	4/8/2003	0.2	-1.609	
	7/16/2003	0.2	-1.609	
	10/14/2003	0.2	-1.609	
	1/14/2004	0.668	-0.403	

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW390	Downgradien	t Yes	0.0228	NO	-3.781	N/A	
MW393	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW396	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

CV(1) = 1.282

K factor=** 3.188

TL(1) = 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.066

S = 0.833

CV(2)=-1.031

K factor=** 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.015	N/A	-4.200	N/A	
MW390	Downgradien	t Yes	0.0218	N/A	-3.826	NO	
MW393	Downgradien	t Yes	0.0185	N/A	-3.990	NO	
MW396	Upgradient	Yes	0.00645	N/A	-5.044	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

CV(1) = 0.236

K factor=** 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.301

S= 0.327 **S**= 0.252

CV(2) = 0.838

K factor**= 3.188

TL(2)=1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.142	NO	-1.952	N/A	
MW390	Downgradien	t Yes	0.312	NO	-1.165	N/A	
MW393	Downgradien	t Yes	0.141	NO	-1.959	N/A	
MW396	Upgradient	Yes	0.825	NO	-0.192	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor**= 3.188

TL(1)= 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.711 **S**= 0.241

CV(2) = 0.065

K factor=** 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	19.4	NO	2.965	N/A	
MW390	Downgradien	t Yes	30	NO	3.401	N/A	
MW393	Downgradien	t Yes	15.6	NO	2.747	N/A	
MW396	Upgradient	Yes	31.7	NO	3.456	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744 CV(1) = 0.021

K factor**= 3.188

TL(1)= 37.747

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.566 **S**

S= 0.021 CV(2)=0.006

K factor=** 3.188

TL(2) = 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	20	N/A	2.996	N/A	
MW390	Downgradien	t No	20	N/A	2.996	N/A	
MW393	Downgradien	t Yes	10.6	NO	2.361	N/A	
MW396	Upgradient	Yes	16.1	NO	2.779	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Chloride** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

CV(1)=0.052**K** factor**= 3.188 **TL(1)=** 118.447

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.621 S = 0.053

CV(2) = 0.011

K factor=** 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	11.1	NO	2.407	N/A	
MW390	Downgradien	t Yes	26.7	NO	3.285	N/A	
MW393	Downgradien	t Yes	10.7	NO	2.370	N/A	
MW396	Upgradient	Yes	56.3	NO	4.031	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-8

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison **UCRS** Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor**= 3.188

TL(1)= 1265.579 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.822 S = 0.111 CV(2) = 0.016

K factor=** 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	534	NO	6.280	N/A
MW390	Downgradien	t Yes	649	NO	6.475	N/A
MW393	Downgradien	t Yes	454	NO	6.118	N/A
MW396	Upgradient	Yes	686	NO	6.531	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-9

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **UCRS** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1) = 0.481S = 0.014

K factor**= 3.188

TL(1) = 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414 CV(2) = -0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00062	5 NO	-7.378	N/A
MW390	Downgradien	t Yes	0.00096	9 NO	-6.939	N/A
MW393	Downgradien	t Yes	0.00078	5 NO	-7.150	N/A
MW396	Upgradient	Yes	0.00087	3 NO	-7.044	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-10

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

CV(1) = 1.202

K factor=** 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

S = 1.677

CV(2) = -18.867

K factor=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	4.3	N/A	1.459	NO
MW390	Downgradien	t Yes	3.59	N/A	1.278	NO
MW393	Downgradien	t Yes	2.1	N/A	0.742	NO
MW396	Upgradient	Yes	2.83	N/A	1.040	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-11

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor**= 3.188

TL(1)= 882.980

LL(1)=N/A

Statistics-Transformed Background

X = 6.298

 $S= 0.162 \quad CV(2)=0.026$

K factor=** 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	331	NO	5.802	N/A
MW390	Downgradien	t Yes	376	NO	5.930	N/A
MW393	Downgradien	t Yes	273	NO	5.609	N/A
MW396	Upgradient	Yes	397	NO	5.984	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

CV(1) = 0.478

K factor**= 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X= 1.880

S= 0.723

S = 3.723

CV(2) = 0.384

K factor=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.0377	NO	-3.278	N/A	
MW390	Downgradien	t No	0.1	N/A	-2.303	N/A	
MW393	Downgradien	t Yes	0.667	NO	-0.405	N/A	
MW396	Upgradient	No	0.1	N/A	-2.303	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 16.876 S = 3.313 CV(1) = 0.196

K factor**= 3.188

TL(1)= 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S= 0.240

CV(2) = 0.086

K factor**= 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	7.91	NO	2.068	N/A
MW390	Downgradien	t Yes	12.4	NO	2.518	N/A
MW393	Downgradien	t Yes	4.04	NO	1.396	N/A
MW396	Upgradient	Yes	13.9	NO	2.632	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

CV(1)=0.456

K factor**= 3.188

TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

S = 0.353

X = -0.566 S = 1.192 CV(2) = -2.105

K factor=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.0226	NO	-3.790	N/A	
MW390	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW393	Downgradien	t Yes	0.00839	NO	-4.781	N/A	
MW396	Upgradient	Yes	0.0124	NO	-4.390	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-15

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

CV(1)=1.272

K factor=** 3.188

TL(1)= 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

CV(2) = -0.225

K factor**= 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

S = 0.021

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.002	N/A	-6.215	N/A	
MW390	Downgradien	t Yes	0.0015	N/A	-6.502	NO	
MW393	Downgradien	t Yes	0.00063	1 N/A	-7.368	NO	
MW396	Upgradient	No	0.002	N/A	-6.215	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor**= 3.188

TL(1)= 210.502 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.364

S = 0.333 CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	353	N/A	5.866	YES
MW390	Downgradien	t Yes	453	N/A	6.116	YES
MW393	Downgradien	t Yes	369	N/A	5.911	YES
MW396	Upgradient	Yes	332	N/A	5.805	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-17

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

 $S= 0.350 \quad CV(1)=0.054$

K factor=** 3.736

TL(1) = 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X = 1.864

S= 0.054

CV(2) = 0.029

K factor=** 3.736

TL(2) = 2.067

LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.85	NO	1.924	N/A
MW390	Downgradien	t Yes	6.35	NO	1.848	N/A
MW393	Downgradien	t Yes	6.32	NO	1.844	N/A
MW396	Upgradient	Yes	6.57	NO	1.883	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

S = 0.399 CV(1) = 0.282

K factor=** 3.188

TL(1) = 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311

S= 0.271

CV(2) = 0.870

K factor**= 3.188

TL(2)= 1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.25	NO	-1.386	N/A	
MW390	Downgradien	t Yes	0.315	NO	-1.155	N/A	
MW393	Downgradien	t Yes	0.473	NO	-0.749	N/A	
MW396	Upgradient	Yes	0.823	NO	-0.195	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor**= 3.188

TL(1)= 208.973

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.595

S = 0.492

CV(2) = 0.107

K factor=** 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 4.745 115 9/16/2002 116 4.754 10/16/2002 117 4.762 1/13/2003 122 4.804 4/8/2003 106 4.663 7/16/2003 117 4.762 10/14/2003 132 4.883 1/14/2004 29.6 3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	91.4	NO	4.515	N/A
MW390	Downgradien	t Yes	95	NO	4.554	N/A
MW393	Downgradien	t Yes	81.2	NO	4.397	N/A
MW396	Upgradient	Yes	97.3	NO	4.578	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.463 S = 8.876

K factor**= 3.188

TL(1)= 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054 S = 0.351

CV(2) = 0.115

CV(1)=0.395

K factor=** 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	49.5	NO	3.902	N/A
MW390	Downgradien	t Yes	40.2	NO	3.694	N/A
MW393	Downgradien	t Yes	23	NO	3.135	N/A
MW396	Upgradient	Yes	29.7	NO	3.391	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1) = 0.860

K factor=** 3.188

TL(1) = 28.531

LL(1)=N/A

Statistics-Transformed Background

X = 1.498

S= 1.321

S = 6.558

CV(2) = 0.882

K factor=** 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	-3.55	N/A	#Error	N/A
MW390	Downgradien	t Yes	51.7	YES	3.945	N/A
MW393	Downgradien	t No	-5.78	N/A	#Error	N/A
MW396	Upgradient	No	-0.297	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

S= 4.696 **CV(1)**= 0.470

K factor=** 3.188

TL(1)= 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 0.454

CV(2) = 0.205

K factor**= 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	3.62	NO	1.286	N/A
MW390	Downgradien	t Yes	2.5	NO	0.916	N/A
MW393	Downgradien	t Yes	2.4	NO	0.875	N/A
MW396	Upgradient	Yes	4.35	NO	1.470	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

S = 0.390

K factor**= 3.188

TL(1)= 313.314 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.896

CV(2) = 0.080

K factor**= 3.188

TL(2) = 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	86.3	NO	4.458	N/A
MW390	Downgradien	t Yes	15.8	NO	2.760	N/A
MW393	Downgradien	t Yes	14.7	NO	2.688	N/A
MW396	Upgradient	Yes	62.2	NO	4.130	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.221

S = 0.061

CV(1) = 0.277

K factor**= 2.523

TL(1) = 0.376

LL(1)=N/A

Statistics-Transformed Background

X = -1.534 S = 0.212 CV(2) = -0.138

K factor=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.6090.2 1/15/2003 0.2 -1.609-1.6094/10/2003 0.2 7/14/2003 0.2 -1.60910/13/2003 0.427 -0.8511/13/2004 0.309 -1.1744/13/2004 0.2 -1.6097/21/2004 0.202 -1.599Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.2 -1.6099/16/2002 0.2 -1.60910/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609

0.2

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	0.046	NO	-3.079	N/A
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A
MW222	Sidegradient	No	0.05	N/A	-2.996	N/A
MW223	Sidegradient	Yes	0.0212	NO	-3.854	N/A
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A
MW369	Downgradien	t Yes	0.0299	NO	-3.510	N/A
MW372	Downgradien	t No	0.05	N/A	-2.996	N/A
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A
MW387	Downgradien	t No	0.05	N/A	-2.996	N/A
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A
MW394	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-25

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: pCi/L Beta activity **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.273 S = 13.883 CV(1) = 0.973

K factor**= 2.523

TL(1) = 49.300

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.213 S = 1.033 CV(2) = 0.467

K factor=** 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.615
Date Collected	Result	,
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	9.12	N/A	2.210	N/A
MW221	Sidegradient	No	3.14	N/A	1.144	N/A
MW222	Sidegradient	Yes	20.6	N/A	3.025	N/A
MW223	Sidegradient	No	12.1	N/A	2.493	N/A
MW224	Sidegradient	Yes	13.2	N/A	2.580	N/A
MW369	Downgradien	t Yes	38	N/A	3.638	N/A
MW372	Downgradien	t Yes	35.3	N/A	3.564	N/A
MW384	Sidegradient	Yes	20.8	N/A	3.035	N/A
MW387	Downgradien	t Yes	268	YES	5.591	N/A
MW391	Downgradien	t No	9.12	N/A	2.210	N/A
MW394	Upgradient	No	9.32	N/A	2.232	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW387

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-26

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.425

S= 0.615 **CV(1)**= 1.447

K factor**= 2.523

TL(1)= 1.976

LL(1)=N/A

Statistics-Transformed Background

X = -1.322 S = 0.786 CV(2) = -0.595

K factor=** 2.523

TL(2) = 0.663

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2 0.2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00616	N/A	-5.090	NO
MW221	Sidegradient	Yes	0.0204	N/A	-3.892	NO
MW222	Sidegradient	Yes	0.0101	N/A	-4.595	NO
MW223	Sidegradient	Yes	0.0092	N/A	-4.689	NO
MW224	Sidegradient	Yes	0.032	N/A	-3.442	NO
MW369	Downgradien	t Yes	0.0302	N/A	-3.500	NO
MW372	Downgradien	t Yes	1.25	N/A	0.223	NO
MW384	Sidegradient	Yes	0.0405	N/A	-3.206	NO
MW387	Downgradien	t Yes	0.0207	N/A	-3.878	NO
MW391	Downgradien	t Yes	0.0373	N/A	-3.289	NO
MW394	Upgradient	Yes	0.0192	N/A	-3.953	NO
N/A Pagu	lte identified as N	Jon Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-27

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Bromide URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.000**K** factor**= 2.523 Statistics-Background Data X = 1.000S = 0.000TL(1)=1.000LL(1)=N/A **Statistics-Transformed Background** X = 0.000**CV(2)=**#Num! S = 0.000**K factor**=** 2.523 TL(2) = 0.000LL(2)=N/A

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1 0.000 0.0004/10/2003 7/14/2003 1 0.00010/13/2003 0.000 1 1/13/2004 1 0.000 4/13/2004 1 0.0007/21/2004 1 0.000Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1 0.0009/16/2002 1 0.000 10/16/2002 0.000 1/13/2003 0.000

1

1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	0.212	NO	-1.551	N/A
Sidegradient	Yes	0.487	NO	-0.719	N/A
Sidegradient	Yes	0.427	NO	-0.851	N/A
Sidegradient	Yes	0.437	NO	-0.828	N/A
Sidegradient	Yes	0.459	NO	-0.779	N/A
Downgradien	t Yes	0.437	NO	-0.828	N/A
Downgradien	t Yes	0.521	NO	-0.652	N/A
Sidegradient	Yes	0.279	NO	-1.277	N/A
Downgradien	t Yes	0.649	NO	-0.432	N/A
Downgradien	t Yes	0.554	NO	-0.591	N/A
Upgradient	Yes	0.577	NO	-0.550	N/A
	Upgradient Sidegradient Sidegradient Sidegradient Sidegradient Downgradien Downgradien Downgradient Downgradient Downgradient Downgradien Upgradient	Gradient Detected? Upgradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Downgradient Yes Downgradient Yes Sidegradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes	Gradient Detected? Result Upgradient Yes 0.212 Sidegradient Yes 0.487 Sidegradient Yes 0.427 Sidegradient Yes 0.437 Sidegradient Yes 0.459 Downgradient Yes 0.437 Downgradient Yes 0.521 Sidegradient Yes 0.521 Sidegradient Yes 0.649 Downgradient Yes 0.554 Upgradient Yes 0.577	Gradient Detected? Result Result >TL(1)? Upgradient Yes 0.212 NO Sidegradient Yes 0.487 NO Sidegradient Yes 0.427 NO Sidegradient Yes 0.437 NO Sidegradient Yes 0.459 NO Downgradient Yes 0.437 NO Downgradient Yes 0.521 NO Sidegradient Yes 0.521 NO Sidegradient Yes 0.521 NO Downgradient Yes 0.649 NO Downgradient Yes 0.554 NO Upgradient Yes 0.577 NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.212 NO -1.551 Sidegradient Yes 0.487 NO -0.719 Sidegradient Yes 0.427 NO -0.851 Sidegradient Yes 0.437 NO -0.828 Sidegradient Yes 0.437 NO -0.779 Downgradient Yes 0.521 NO -0.652 Sidegradient Yes 0.279 NO -1.277 Downgradient Yes 0.649 NO -0.432 Downgradient Yes 0.554 NO -0.591 Upgradient Yes 0.577 NO -0.550

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

0.000

0.000

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 27.638
 S= 4.743
 CV(1)=0.172
 K factor**= 2.523
 TL(1)= 39.604
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.304
 S= 0.183
 CV(2)=0.055
 K factor**= 2.523
 TL(2)= 3.765
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 23.6 3.161 1/15/2003 25.9 3.254 4/10/2003 30.4 3.414 7/14/2003 33.9 3.523 10/13/2003 3.059 21.3 1/13/2004 20.3 3.011 4/13/2004 23.8 3.170 7/21/2004 19 2.944 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 29.5 3.384 9/16/2002 29.9 3.398 10/16/2002 31.2 3.440 1/13/2003 30.7 3.424 4/10/2003 34.4 3.538 7/16/2003 29.6 3.388 10/14/2003 30.3 3.411 1/13/2004 28.4 3.346

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	27.7	NO	3.321	N/A
MW221	Sidegradient	Yes	21.9	NO	3.086	N/A
MW222	Sidegradient	Yes	19.4	NO	2.965	N/A
MW223	Sidegradient	Yes	21.9	NO	3.086	N/A
MW224	Sidegradient	Yes	22.9	NO	3.131	N/A
MW369	Downgradien	t Yes	16.7	NO	2.815	N/A
MW372	Downgradien	t Yes	62.3	YES	4.132	N/A
MW384	Sidegradient	Yes	22.5	NO	3.114	N/A
MW387	Downgradien	t Yes	39.2	NO	3.669	N/A
MW391	Downgradien	t Yes	25	NO	3.219	N/A
MW394	Upgradient	Yes	26.8	NO	3.288	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 35.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 35.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.555
 S= 0.000
 CV(2)=0.000
 K factor**= 2.523
 TL(2)= 3.555
 LL(2)=N/A

Data Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	37.1	YES	3.614	N/A
MW221	Sidegradient	Yes	41.9	YES	3.735	N/A
MW222	Sidegradient	Yes	22.8	NO	3.127	N/A
MW223	Sidegradient	Yes	27.6	NO	3.318	N/A
MW224	Sidegradient	Yes	10.9	NO	2.389	N/A
MW369	Downgradien	t Yes	16.1	NO	2.779	N/A
MW372	Downgradien	t Yes	10.6	NO	2.361	N/A
MW384	Sidegradient	Yes	13.3	NO	2.588	N/A
MW387	Downgradien	t Yes	10.6	NO	2.361	N/A
MW391	Downgradien	t No	20	N/A	2.996	N/A
MW394	Upgradient	No	20	N/A	2.996	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220 MW221

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Chloride **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor**= 2.523

TL(1) = 77.499

LL(1)=N/A

Statistics-Transformed Background

X = 3.866 S = 0.244 CV(2) = 0.063

K factor=** 2.523

TL(2) = 4.482

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.798 44.6 1/15/2003 43.2 3.766 4/10/2003 31.5 3.450 7/14/2003 30.8 3.428 10/13/2003 40.9 3.711 1/13/2004 40.8 3.709 4/13/2004 37.5 3.624 7/21/2004 40.8 3.709 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 60.4 4.101 9/16/2002 60.3 4.099 10/16/2002 58 4.060 1/13/2003 60.7 4.106 4/10/2003 62.9 4.142 7/16/2003 58.1 4.062 10/14/2003 58.2 4.064 1/13/2004 56 4.025

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	18.1	NO	2.896	N/A
MW221	Sidegradient	Yes	38.4	NO	3.648	N/A
MW222	Sidegradient	Yes	31.4	NO	3.447	N/A
MW223	Sidegradient	Yes	33.3	NO	3.506	N/A
MW224	Sidegradient	Yes	37.7	NO	3.630	N/A
MW369	Downgradien	t Yes	30.7	NO	3.424	N/A
MW372	Downgradien	t Yes	38.4	NO	3.648	N/A
MW384	Sidegradient	Yes	24.6	NO	3.203	N/A
MW387	Downgradien	t Yes	48.2	NO	3.875	N/A
MW391	Downgradien	t Yes	39.2	NO	3.669	N/A
MW394	Upgradient	Yes	49.8	NO	3.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-31

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 5.000 S= 0.000 CV(1)=0.000 K factor**= 2.523 TL(1)=5.000 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.609 S= 0.000 CV(2)=0.000 K factor**= 2.523 TL(2)=1.609 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.609 5 1/15/2003 5 1.609 1.609 4/10/2003 5 7/14/2003 5 1.609 10/13/2003 5 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t No	1	N/A	0.000	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t No	1	N/A	0.000	N/A
MW391	Downgradien	t Yes	0.34	NO	-1.079	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Cobalt **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 2.440**K** factor**= 2.523 Statistics-Background Data X = 0.016S = 0.040TL(1) = 0.116LL(1)=N/A **Statistics-Transformed Background**

X = -5.582 S = 1.573 CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.613

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.497 1/15/2003 0.00496 -5.3060.00289 4/10/2003 -5.8467/14/2003 0.161 -1.82610/13/2003 0.0226 -3.7901/13/2004 0.00464 -5.3734/13/2004 0.001 -6.908 7/21/2004 0.00264 -5.937Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.9081/13/2003 0.001-6.9084/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.001	N/A	-6.908	N/A
MW221	Sidegradient	Yes	0.00032	3 N/A	-8.038	NO
MW222	Sidegradient	No	0.001	N/A	-6.908	N/A
MW223	Sidegradient	No	0.001	N/A	-6.908	N/A
MW224	Sidegradient	Yes	0.00058	7 N/A	-7.440	NO
MW369	Downgradien	t Yes	0.00341	N/A	-5.681	NO
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	No	0.001	N/A	-6.908	N/A
NI/A D.	14. : 14:C: . 1 X	I D-44-	4		4-4114-41-	4 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-33

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor**= 2.523

TL(1) = 652.432

LL(1)=N/A

Statistics-Transformed Background

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2)= 8.652

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	368	5.908
1/15/2003	433.2	6.071
4/10/2003	489	6.192
7/14/2003	430	6.064
10/13/2003	346	5.846
1/13/2004	365	5.900
4/13/2004	416	6.031
7/21/2004	353	5.866
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 6.006
Date Collected	Result	
Date Collected 8/13/2002	Result 406	6.006
Date Collected 8/13/2002 9/16/2002	Result 406 418	6.006 6.035
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 406 418 411	6.006 6.035 6.019
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 406 418 411 422	6.006 6.035 6.019 6.045
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 406 418 411 422 420	6.006 6.035 6.019 6.045 6.040

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	438	NO	6.082	N/A
MW221	Sidegradient	Yes	406	NO	6.006	N/A
MW222	Sidegradient	Yes	378	NO	5.935	N/A
MW223	Sidegradient	Yes	393	NO	5.974	N/A
MW224	Sidegradient	Yes	422	NO	6.045	N/A
MW369	Downgradien	t Yes	383	NO	5.948	N/A
MW372	Downgradien	t Yes	795	YES	6.678	N/A
MW384	Sidegradient	Yes	384	NO	5.951	N/A
MW387	Downgradien	t Yes	580	NO	6.363	N/A
MW391	Downgradien	t Yes	374	NO	5.924	N/A
MW394	Upgradient	Yes	392	NO	5.971	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.429**K** factor**= 2.523 Statistics-Background Data X = 0.024S = 0.010TL(1) = 0.050LL(1)=N/A **Statistics-Transformed Background** X = -3.794 S = 0.312 CV(2) = -0.082**K factor**=** 2.523 TL(2) = -3.007LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.8581/15/2003 0.02 -3.9120.02 -3.9124/10/2003 7/14/2003 0.02 -3.912 10/13/2003 0.02 -3.9121/13/2004 0.02 -3.9124/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.996-3.91210/16/2002 0.02 1/13/2003 0.02 -3.9124/10/2003 0.02-3.912 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00096	NO	-6.949	N/A
MW221	Sidegradient	Yes	0.00165	NO	-6.407	N/A
MW222	Sidegradient	Yes	0.00068	3 NO	-7.289	N/A
MW223	Sidegradient	Yes	0.00102	NO	-6.888	N/A
MW224	Sidegradient	Yes	0.00125	NO	-6.685	N/A
MW369	Downgradien	t Yes	0.0013	NO	-6.645	N/A
MW372	Downgradien	t Yes	0.00062	9 NO	-7.371	N/A
MW384	Sidegradient	Yes	0.00067	8 NO	-7.296	N/A
MW387	Downgradien	t Yes	0.00079	8 NO	-7.133	N/A
MW391	Downgradien	t Yes	0.00055	9 NO	-7.489	N/A
MW394	Upgradient	Yes	0.00052	8 NO	-7.546	N/A
N/A - Resu	lts identified as N	Ion-Detects	during labo	oratory analysis or	data validatio	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-35

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.499**K** factor**= 2.523 Statistics-Background Data X = 3.784**S**= 1.887 TL(1) = 8.545LL(1)=N/A **Statistics-Transformed Background** X = 1.182S = 0.612

CV(2) = 0.518

K factor=** 2.523

TL(2) = 2.727

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 4/10/2003 3.6 1.281 7/14/2003 0.94 -0.06210/13/2003 0.501 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 3.83 1.343 4/10/2003 1.423 4.15 7/16/2003 1.83 0.604 10/14/2003 3.33 1.203 1/13/2004 3.14 1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	3.85	NO	1.348	N/A
MW221	Sidegradient	Yes	5.05	NO	1.619	N/A
MW222	Sidegradient	Yes	3.97	NO	1.379	N/A
MW223	Sidegradient	Yes	4.44	NO	1.491	N/A
MW224	Sidegradient	Yes	6.15	NO	1.816	N/A
MW369	Downgradien	t Yes	0.86	NO	-0.151	N/A
MW372	Downgradien	t Yes	1.75	NO	0.560	N/A
MW384	Sidegradient	Yes	4.4	NO	1.482	N/A
MW387	Downgradien	t Yes	2.27	NO	0.820	N/A
MW391	Downgradien	t Yes	3.8	NO	1.335	N/A
MW394	Upgradient	Yes	5.5	NO	1.705	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-36

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor**= 2.523

TL(1)=302.045 LL(1)=N/A

Statistics-Transformed Background

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	250	NO	5.521	N/A	
MW221	Sidegradient	Yes	220	NO	5.394	N/A	
MW222	Sidegradient	Yes	221	NO	5.398	N/A	
MW223	Sidegradient	Yes	213	NO	5.361	N/A	
MW224	Sidegradient	Yes	230	NO	5.438	N/A	
MW369	Downgradien	t Yes	209	NO	5.342	N/A	
MW372	Downgradien	t Yes	483	YES	6.180	N/A	
MW384	Sidegradient	Yes	197	NO	5.283	N/A	
MW387	Downgradien	t Yes	324	YES	5.781	N/A	
MW391	Downgradien	t Yes	196	NO	5.278	N/A	
MW394	Upgradient	Yes	207	NO	5.333	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-37

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.170**K** factor**= 2.523 Statistics-Background Data X = 0.897S = 1.050TL(1) = 3.545LL(1)=N/A **Statistics-Transformed Background** CV(2)=-1.683

X = -0.565 S = 0.951

K factor=** 2.523

TL(2) = 1.834

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.6090.2 1/15/2003 0.2 -1.609-0.8464/10/2003 0.429 7/14/2003 4.33 1.466 10/13/2003 0.593 1.81 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.0407/21/2004 0.382 -0.962Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38 1/13/2003 1.3 0.2624/10/2003 0.494 -0.705-0.478 7/16/2003 0.62 10/14/2003 0.37 -0.9941/13/2004 0.251 -1.382

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.106	N/A	-2.244	NO	
MW221	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW222	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW223	Sidegradient	Yes	0.0475	N/A	-3.047	NO	
MW224	Sidegradient	Yes	0.244	N/A	-1.411	NO	
MW369	Downgradien	t Yes	0.0944	N/A	-2.360	NO	
MW372	Downgradien	t No	0.1	N/A	-2.303	N/A	
MW384	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW387	Downgradien	t Yes	0.0593	N/A	-2.825	NO	
MW391	Downgradien	t No	0.1	N/A	-2.303	N/A	
MW394	Upgradient	No	0.1	N/A	-2.303	N/A	
NI/A D	14. : 14:6: . 1 N	I D-44-	J 1 . 1.		4-4114-41-	1 4	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.796 **S**= 1.703

K factor=** 2.523

TL(1)= 15.092

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.368 S = 0.158

CV(2) = 0.067

CV(1)=0.158

K factor**= 2.523

= 2.523 **TL(2)**= 2.766

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 9.16 2.215 1/15/2003 10 2.303 4/10/2003 10.8 2.380 7/14/2003 14.7 2.68810/13/2003 9.03 2.201 1/13/2004 8.49 2.139 4/13/2004 9.7 2.272 7/21/2004 8.06 2.087 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 11.8 2.468 9/16/2002 12.1 2.493 10/16/2002 11.3 2.425 1/13/2003 10.3 2.332 4/10/2003 11.7 2.460 7/16/2003 12 2.485 10/14/2003 12.2 2.501

11.4

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	11.7	NO	2.460	N/A	
MW221	Sidegradient	Yes	9.24	NO	2.224	N/A	
MW222	Sidegradient	Yes	8.43	NO	2.132	N/A	
MW223	Sidegradient	Yes	9.14	NO	2.213	N/A	
MW224	Sidegradient	Yes	9.57	NO	2.259	N/A	
MW369	Downgradien	t Yes	6.97	NO	1.942	N/A	
MW372	Downgradien	t Yes	23.2	YES	3.144	N/A	
MW384	Sidegradient	Yes	9.32	NO	2.232	N/A	
MW387	Downgradien	t Yes	15.3	YES	2.728	N/A	
MW391	Downgradien	t Yes	10.6	NO	2.361	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

11

Yes

Conclusion of Statistical Analysis on Historical Data

2.434

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

MW372 MW387

2.398

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=2.156**K** factor**= 2.523 Statistics-Background Data X = 0.287S = 0.619**TL(1)=** 1.848 LL(1)=N/A **Statistics-Transformed Background** X = -2.455 S = 1.619 CV(2) = -0.659**K factor**=** 2.523 TL(2) = 1.630LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.5370.0137 -4.2904/10/2003 7/14/2003 2.54 0.932 10/13/2003 -0.9730.378 1/13/2004 0.159 -1.8394/13/2004 0.00707 -4.9527/21/2004 0.0841 -2.476Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.864-2.27310/16/2002 0.103 1/13/2003 0.128 -2.0560.005-5.2984/10/2003 7/16/2003 0.272 -1.30210/14/2003 0.0795 -2.5321/13/2004 0.0658 -2.721

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	0.00119	N/A	-6.734	NO			
MW221	Sidegradient	Yes	0.00139	N/A	-6.578	NO			
MW222	Sidegradient	Yes	0.00178	N/A	-6.331	NO			
MW223	Sidegradient	Yes	0.00624	N/A	-5.077	NO			
MW224	Sidegradient	Yes	0.00488	N/A	-5.323	NO			
MW369	Downgradien	t Yes	0.0217	N/A	-3.830	NO			
MW372	Downgradien	t No	0.005	N/A	-5.298	N/A			
MW384	Sidegradient	No	0.005	N/A	-5.298	N/A			
MW387	Downgradien	t Yes	0.039	N/A	-3.244	NO			
MW391	Downgradien	t No	0.005	N/A	-5.298	N/A			
MW394	Upgradient	No	0.005	N/A	-5.298	N/A			
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not								

 Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-40

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Molybdenum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.261**K** factor**= 2.523 Statistics-Background Data X = 0.006S = 0.008TL(1) = 0.026LL(1)=N/A **Statistics-Transformed Background** X = -5.747 S = 1.205 CV(2) = -0.210**K factor**=** 2.523 LL(2)=N/A

TL(2) = -2.708

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.00558 -5.1891/15/2003 0.00983 -4.6220.0109 -4.519 4/10/2003 7/14/2003 0.00245 -6.01210/13/2003 0.00566 -5.1741/13/2004 0.00572 -5.1644/13/2004 0.001 -6.908 7/21/2004 0.00392 -5.542Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001-6.9084/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00086	8 N/A	-7.049	NO	
MW221	Sidegradient	Yes	0.0069	N/A	-4.976	NO	
MW222	Sidegradient	Yes	0.00279	N/A	-5.882	NO	
MW223	Sidegradient	Yes	0.00488	N/A	-5.323	NO	
MW224	Sidegradient	Yes	0.00245	N/A	-6.012	NO	
MW369	Downgradien	t Yes	0.00021	1 N/A	-8.464	NO	
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW384	Sidegradient	No	0.00029	3 N/A	-8.135	N/A	
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW394	Upgradient	No	0.001	N/A	-6.908	N/A	
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.127 S = 0.228 CV(1) = 1.790 K factor** = 2.523
 TL(1) = 0.701 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.617 S = 1.837 CV(2) = -0.508 K factor** = 2.523
 TL(2) = 1.019 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.304-0.609 4/10/2003 0.544 7/14/2003 0.106-2.24410/13/2003 -2.9390.0529 1/13/2004 0.0209 -3.8684/13/2004 0.005 -5.298 7/21/2004 0.0192 -3.953Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/16/2002 0.005 -5.2981/13/2003 0.005-5.2980.005-5.2984/10/2003 7/16/2003 0.005 -5.298 10/14/2003 0.005 -5.2981/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.01	N/A	-4.605	NO		
MW221	Sidegradient	Yes	0.0293	N/A	-3.530	NO		
MW222	Sidegradient	Yes	0.0421	N/A	-3.168	NO		
MW223	Sidegradient	Yes	0.0706	N/A	-2.651	NO		
MW224	Sidegradient	Yes	0.0498	N/A	-3.000	NO		
MW369	Downgradien	t Yes	0.00352	N/A	-5.649	NO		
MW372	Downgradien	t Yes	0.00091	8 N/A	-6.993	NO		
MW384	Sidegradient	Yes	0.00088	2 N/A	-7.033	NO		
MW387	Downgradien	t Yes	0.00122	N/A	-6.709	NO		
MW391	Downgradien	t Yes	0.00072	1 N/A	-7.235	NO		
MW394	Upgradient	Yes	0.00891	N/A	-4.721	NO		
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not								

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor**= 2.523

TL(1) = 397.652

LL(1)=N/A

Statistics-Transformed Background

X = 4.861 S = 1.252 CV(2) = 0.258

K factor=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 205 5.323 1/15/2003 1.95 0.668 4/10/2003 203 5.313 7/14/2003 30 3.401 10/13/2003 107 4.673 1/13/2004 295 5.687 4/13/2004 190 5.247 7/21/2004 319 5.765 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 90 4.500 9/16/2002 240 5.481 10/16/2002 185 5.220 1/13/2003 220 5.394 4/10/2003 196 5.278 7/16/2003 172 5.147 10/14/2003 175 5.165 1/13/2004 249 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	410	YES	6.016	N/A	
MW221	Sidegradient	Yes	451	YES	6.111	N/A	
MW222	Sidegradient	Yes	429	YES	6.061	N/A	
MW223	Sidegradient	Yes	440	YES	6.087	N/A	
MW224	Sidegradient	Yes	418	YES	6.035	N/A	
MW369	Downgradien	t Yes	444	YES	6.096	N/A	
MW372	Downgradien	t Yes	411	YES	6.019	N/A	
MW384	Sidegradient	Yes	401	YES	5.994	N/A	
MW387	Downgradien	t Yes	417	YES	6.033	N/A	
MW391	Downgradien	t Yes	409	YES	6.014	N/A	
MW394	Upgradient	Yes	393	NO	5.974	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220

MW221

MW222

MW223 MW224

MW369

MW372

MW384

MW387

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.138 S = 0.282 CV(1) = 0.046 K factor**= 2.904 TL(1) = 6.957 LL(1) = 5.3179

Statistics-Transformed Background Data

X= 1.813 **S**= 0.047 **CV(2)**= 0.026

K factor**= 2.904 TL

TL(2)= 1.950

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.798 6.04 1/15/2003 6.31 1.842 4/10/2003 6.5 1.872 7/14/2003 6.3 1.841 10/13/2003 6.34 1.847 1/13/2004 6.33 1.845 4/13/2004 6.3 1.841 7/21/2004 5.9 1.775 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.8 1.758 9/30/2002 5.93 1.780 10/16/2002 5.42 1.690 1/13/2003 6 1.792 6.04 1.798 4/10/2003 7/16/2003 6.2 1.825 10/14/2003 1.856 6.4 1/13/2004 6.39 1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Cultunt	Qual tti	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>` ,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	` ,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.12	NO	1.812	N/A
MW221	Sidegradient	Yes	6.14	NO	1.815	N/A
MW222	Sidegradient	Yes	6.1	NO	1.808	N/A
MW223	Sidegradient	Yes	6.1	NO	1.808	N/A
MW224	Sidegradient	Yes	6.13	NO	1.813	N/A
MW369	Downgradien	t Yes	6.01	NO	1.793	N/A
MW372	Downgradien	t Yes	6	NO	1.792	N/A
MW384	Sidegradient	Yes	6.06	NO	1.802	N/A
MW387	Downgradien	t Yes	6.21	NO	1.826	N/A
MW391	Downgradien	t Yes	6.06	NO	1.802	N/A
MW394	Upgradient	Yes	6.08	NO	1.805	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Potassium URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.399**K** factor**= 2.523 Statistics-Background Data X = 6.654S = 9.310TL(1)=30.144LL(1)=N/A **Statistics-Transformed Background** X = 1.130S = 1.208CV(2) = 1.069**K factor**=** 2.523 TL(2) = 4.178LL(2)=N/A

7/16/2003

10/14/2003

1/13/2004

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.902 6.7 1/15/2003 29.7 3.391 4/10/2003 24.9 3.215 7/14/2003 1.13 0.122 10/13/2003 3.43 1.233 1/13/2004 6.71 1.904 4/13/2004 19.3 2.960 7/21/2004 3.97 1.379 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 1.03 0.030 1/13/2003 1.1 0.095 4/10/2003 0.215 1.24

1.14

1.05

1.07

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.2	N/A	0.182	NO
MW221	Sidegradient	Yes	2.71	N/A	0.997	NO
MW222	Sidegradient	Yes	0.569	N/A	-0.564	NO
MW223	Sidegradient	Yes	1.42	N/A	0.351	NO
MW224	Sidegradient	Yes	0.831	N/A	-0.185	NO
MW369	Downgradien	t Yes	0.521	N/A	-0.652	NO
MW372	Downgradien	t Yes	2.16	N/A	0.770	NO
MW384	Sidegradient	Yes	1.35	N/A	0.300	NO
MW387	Downgradien	t Yes	1.31	N/A	0.270	NO
MW391	Downgradien	t Yes	1.47	N/A	0.385	NO
MW394	Upgradient	Yes	1.54	N/A	0.432	NO
N/A - Resu	lts identified as N	Jon-Detects	during lah	oratory analysis or	data validatio	n and were not

 Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.131

0.049

0.068

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-46

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Sodium **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 36.363 S = 8.666

CV(1) = 0.238

K factor**= 2.523

TL(1) = 58.227

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.570 S = 0.222 CV(2) = 0.062

K factor=** 2.523

TL(2) = 4.129

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	35.4	3.567
1/15/2003	40.6	3.704
4/10/2003	51	3.932
7/14/2003	58.2	4.064
10/13/2003	38.1	3.640
1/13/2004	37	3.611
4/13/2004	43.2	3.766
7/21/2004	33.8	3.520
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.493
Date Collected	Result	
Date Collected 8/13/2002	Result 32.9	3.493
Date Collected 8/13/2002 9/16/2002	Result 32.9 29.9	3.493 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 32.9 29.9	3.493 3.398 3.367
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 32.9 29.9 29	3.493 3.398 3.367 3.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 32.9 29.9 29 27.1 24.8	3.493 3.398 3.367 3.300 3.211

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	46.5	NO	3.839	N/A
MW221	Sidegradient	Yes	43.9	NO	3.782	N/A
MW222	Sidegradient	Yes	42.5	NO	3.750	N/A
MW223	Sidegradient	Yes	42.5	NO	3.750	N/A
MW224	Sidegradient	Yes	46	NO	3.829	N/A
MW369	Downgradien	t Yes	54	NO	3.989	N/A
MW372	Downgradien	t Yes	59	YES	4.078	N/A
MW384	Sidegradient	Yes	42.2	NO	3.742	N/A
MW387	Downgradien	t Yes	54.5	NO	3.998	N/A
MW391	Downgradien	t Yes	32.9	NO	3.493	N/A
MW394	Upgradient	Yes	32.9	NO	3.493	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-47

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Sulfate** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.481 S = 2.648

CV(1)=0.253

K factor**= 2.523

TL(1)= 17.161

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.322

S = 0.239 CV(2) = 0.103

K factor=** 2.523

TL(2) = 2.925

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.416
Date Collected	Result	
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	24.4	YES	3.195	N/A	
MW221	Sidegradient	Yes	15.8	NO	2.760	N/A	
MW222	Sidegradient	Yes	14.2	NO	2.653	N/A	
MW223	Sidegradient	Yes	19	YES	2.944	N/A	
MW224	Sidegradient	Yes	16.9	NO	2.827	N/A	
MW369	Downgradien	t Yes	7.59	NO	2.027	N/A	
MW372	Downgradien	t Yes	157	YES	5.056	N/A	
MW384	Sidegradient	Yes	19.4	YES	2.965	N/A	
MW387	Downgradien	t Yes	28.1	YES	3.336	N/A	
MW391	Downgradien	t Yes	14.1	NO	2.646	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

12.5

Yes

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

MW220 MW223

2.526

MW372

MW384 MW387

MW394 Upgradient

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.354

S= 9.280 **CV(1)**=0.992

K factor=** 2.523

TL(1) = 32.768

LL(1)=N/A

Statistics-Transformed Background

X = 2.270

S= 0.849

CV(2) = 0.374

K factor**= 2.523

TL(2) = 3.262

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	19.7	2.981
1/15/2003	26.1	3.262
4/10/2003	3.56	1.270
7/14/2003	0	#Func!
10/13/2003	21	3.045
1/13/2004	6.32	1.844
4/13/2004	3	1.099
7/21/2004	14.6	2.681
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.639
Date Collected	Result	
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 5.45	2.639 1.696
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 14 5.45 2.49	2.639 1.696 0.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 14 5.45 2.49 18.3	2.639 1.696 0.912 2.907
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 14 5.45 2.49 18.3 -1.45	2.639 1.696 0.912 2.907 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

_							
Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	12.1	N/A	2.493	N/A	
MW221	Sidegradient	No	4.06	N/A	1.401	N/A	
MW222	Sidegradient	No	-7.98	N/A	#Error	N/A	
MW223	Sidegradient	No	-1.97	N/A	#Error	N/A	
MW224	Sidegradient	No	5.74	N/A	1.747	N/A	
MW369	Downgradien	t Yes	60.3	YES	4.099	N/A	
MW372	Downgradien	t Yes	51.3	YES	3.938	N/A	
MW384	Sidegradient	No	19	N/A	2.944	N/A	
MW387	Downgradien	t Yes	476	YES	6.165	N/A	
MW391	Downgradien	t No	-13	N/A	#Error	N/A	
MW394	Upgradient	No	0.0414	N/A	-3.184	N/A	
N/A - Recu	Its identified as N	Jon-Detects	during lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW372

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X=1.494 S= 0.737 CV(1)=0.493

K factor=** 2.523

LL(1)=N/A

Statistics-Transformed Background

X= 0.315 **S**= 0.402

CV(2) = 1.279

K factor=** 2.523

TL(2)=1.330

TL(1) = 3.353

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1.1 0.095 4/10/2003 0.0001 7/14/2003 3.3 1.194 10/13/2003 1.8 0.588 1/13/2004 1 0.000 4/13/2004 2 0.693 7/21/2004 3.1 1.131 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.3 0.262 9/16/2002 1 0.000 0.000 10/16/2002 1 1/13/2003 1.6 0.470 4/10/2003 1 0.0007/16/2003 1.4 0.336 10/14/2003 1.3 0.262

1

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.88	NO	-0.128	N/A
MW221	Sidegradient	Yes	1.13	NO	0.122	N/A
MW222	Sidegradient	Yes	1.03	NO	0.030	N/A
MW223	Sidegradient	Yes	1.2	NO	0.182	N/A
MW224	Sidegradient	Yes	1.18	NO	0.166	N/A
MW369	Downgradien	t Yes	1.59	NO	0.464	N/A
MW372	Downgradien	t Yes	1.29	NO	0.255	N/A
MW384	Sidegradient	Yes	1.04	NO	0.039	N/A
MW387	Downgradien	t Yes	1.25	NO	0.223	N/A
MW391	Downgradien	t Yes	0.793	NO	-0.232	N/A
MW394	Upgradient	Yes	0.887	NO	-0.120	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor**= 2.523

TL(1) = 475.063

LL(1)=N/A

Statistics-Transformed Background

X = 3.103 S = 1.145 CV(2) = 0.369

K factor=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	50	3.912
1/15/2003	10	2.303
4/10/2003	10	2.303
7/14/2003	10	2.303
10/13/2003	10	2.303
1/13/2004	10	2.303
4/13/2004	10	2.303
7/21/2004	10	2.303
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 672	3.912 6.510
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 50 672 50	3.912 6.510 3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 50 672 50 36.1	3.912 6.510 3.912 3.586
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 50 672 50 36.1 10	3.912 6.510 3.912 3.586 2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	5.8	N/A	1.758	NO	
MW221	Sidegradient	Yes	7.54	N/A	2.020	NO	
MW222	Sidegradient	Yes	8.78	N/A	2.172	NO	
MW223	Sidegradient	Yes	5.28	N/A	1.664	NO	
MW224	Sidegradient	Yes	6.04	N/A	1.798	NO	
MW369	Downgradien	t Yes	17.3	N/A	2.851	NO	
MW372	Downgradien	t Yes	7.08	N/A	1.957	NO	
MW384	Sidegradient	Yes	6.36	N/A	1.850	NO	
MW387	Downgradien	t Yes	19.4	N/A	2.965	NO	
MW391	Downgradien	t Yes	15.8	N/A	2.760	NO	
MW394	Upgradient	Yes	15.7	N/A	2.754	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-51

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 8.813
 S= 8.376
 CV(1)=0.951 K factor**= 2.523
 TL(1)=29.946 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.395
 S= 1.449
 CV(2)=1.039 K factor**= 2.523
 TL(2)=5.052 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1 0.000 0.0004/10/2003 7/14/2003 1 0.00010/13/2003 0.000 1 1/13/2004 1 0.000 4/13/2004 1 0.0007/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 19 7/16/2003 2.944 10/14/2003 20 2.996 1/13/2004 16 2.773

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	1	N/A	0.000	N/A	
MW221	Sidegradient	No	1	N/A	0.000	N/A	
MW222	Sidegradient	No	1	N/A	0.000	N/A	
MW223	Sidegradient	No	1	N/A	0.000	N/A	
MW224	Sidegradient	No	1	N/A	0.000	N/A	
MW369	Downgradien	t Yes	1.18	N/A	0.166	N/A	
MW372	Downgradien	t Yes	4.83	N/A	1.575	N/A	
MW384	Sidegradient	Yes	0.39	N/A	-0.942	N/A	
MW387	Downgradien	t Yes	1.01	N/A	0.010	N/A	
MW391	Downgradien	t Yes	8.05	NO	2.086	N/A	
MW394	Upgradient	Yes	2.89	N/A	1.061	N/A	
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.036
 S= 0.026
 CV(1)=0.722 K factor**= 2.523
 TL(1)=0.101 LL(1)=N/A

 Statistics-Transformed Background
 X= -3.485
 S= 0.525
 CV(2)=-0.151 K factor**= 2.523
 TL(2)=-2.162 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.025 -3.6891/15/2003 0.035 -3.3524/10/2003 0.035 -3.3527/14/2003 0.0389 -3.24710/13/2003 0.026 -3.6501/13/2004 0.02 -3.9124/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.3524/10/2003 0.035-3.352-3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.02	N/A	-3.912	N/A	
MW221	Sidegradient	No	0.02	N/A	-3.912	N/A	
MW222	Sidegradient	No	0.02	N/A	-3.912	N/A	
MW223	Sidegradient	No	0.02	N/A	-3.912	N/A	
MW224	Sidegradient	No	0.02	N/A	-3.912	N/A	
MW369	Downgradien	t Yes	0.00565	NO	-5.176	N/A	
MW372	Downgradien	t No	0.02	N/A	-3.912	N/A	
MW384	Sidegradient	No	0.02	N/A	-3.912	N/A	
MW387	Downgradien	t Yes	0.00453	NO	-5.397	N/A	
MW391	Downgradien	t No	0.02	N/A	-3.912	N/A	
MW394	Upgradient	No	0.02	N/A	-3.912	N/A	
N/A Pagu	Its identified as N	Jon Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** Antimony UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.054

S = 0.087

CV(1)=1.622

K factor**= 2.523

TL(1) = 0.274

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.376 S = 1.650 CV(2) = -0.377

K factor=** 2.523

TL(2) = -0.214

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/10/2003	0.005	-5.298
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.2 0.2 0.005	-1.609 -1.609 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.2 0.2 0.005 0.005	-1.609 -1.609 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.2 0.2 0.005 0.005 0.005	-1.609 -1.609 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No	o. Gradient l	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW37	0 Downgradient	No	0.003	N/A	-5.809	N/A		
MW37	3 Downgradient	Yes	0.00127	N/A	-6.669	NO		
MW38	5 Sidegradient	No	0.003	N/A	-5.809	N/A		
MW38	8 Downgradient	No	0.003	N/A	-5.809	N/A		
MW39	2 Downgradient	No	0.003	N/A	-5.809	N/A		
MW39	5 Upgradient	No	0.003	N/A	-5.809	N/A		
MW39	7 Upgradient	No	0.003	N/A	-5.809	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-54

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L LRGA Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1) = 1.238

K factor**= 2.523

TL(1)=2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030 CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 2 0.2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	0.933	N/A	-0.069	NO		
MW373	Downgradient	Yes	1.72	N/A	0.542	NO		
MW385	Sidegradient	Yes	0.0745	N/A	-2.597	NO		
MW388	Downgradient	Yes	0.0275	N/A	-3.594	NO		
MW392	Downgradient	Yes	0.0295	N/A	-3.523	NO		
MW395	Upgradient	Yes	0.0199	N/A	-3.917	NO		
MW397	Upgradient	Yes	0.00843	N/A	-4.776	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.000

S= 0.000 **CV(1)**=0.000

K factor**= 2.523

TL(1)= 1.000

LL(1)=N/A

Statistics-Transformed Background

X = 0.000

S= 0.000

CV(2)=#Num!

K factor=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	0.499	NO	-0.695	N/A		
MW373	Downgradient	Yes	0.642	NO	-0.443	N/A		
MW385	Sidegradient	Yes	0.291	NO	-1.234	N/A		
MW388	Downgradient	Yes	0.489	NO	-0.715	N/A		
MW392	Downgradient	Yes	0.639	NO	-0.448	N/A		
MW395	Upgradient	Yes	0.512	NO	-0.669	N/A		
MW397	Upgradient	Yes	0.412	NO	-0.887	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Calcium **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.103 S = 11.538 CV(1) = 0.499

K factor**= 2.523

TL(1)=52.213

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.357 S = 2.411 CV(2) = 1.023

K factor=** 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
-		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	29.9	NO	3.398	N/A		
MW373	Downgradient	Yes	62.9	YES	4.142	N/A		
MW385	Sidegradient	Yes	24.1	NO	3.182	N/A		
MW388	Downgradient	Yes	30.7	NO	3.424	N/A		
MW392	Downgradient	Yes	30.5	NO	3.418	N/A		
MW395	Upgradient	Yes	24.4	NO	3.195	N/A		
MW397	Upgradient	Yes	18.4	NO	2.912	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-57

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.313 S = 1.250

CV(1) = 0.035

K factor**= 2.523

TL(1) = 38.466

LL(1)=N/A

Statistics-Transformed Background

X = 3.564

S = 0.033 CV(2) = 0.009

K factor=** 2.523

TL(2) = 3.648

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Wel	ll No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MV	W370	Downgradient	Yes	13.3	NO	2.588	N/A	
MV	W373	Downgradient	No	20	N/A	2.996	N/A	
MV	W385	Sidegradient	No	20	N/A	2.996	N/A	
MV	W388	Downgradient	Yes	13.3	NO	2.588	N/A	
MV	W392	Downgradient	No	20	N/A	2.996	N/A	
MV	W395	Upgradient	No	20	N/A	2.996	N/A	
MV	W397	Upgradient	No	20	N/A	2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor**= 2.523

TL(1)= 81.242

LL(1)=N/A

Statistics-Transformed Background

X = 3.924 S

 $S= 0.229 \quad CV(2)=0.058$

K factor**= 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.661
Date Collected	Result	
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	39.7	NO	3.681	N/A		
MW373	Downgradient	Yes	38	NO	3.638	N/A		
MW385	Sidegradient	Yes	25.8	NO	3.250	N/A		
MW388	Downgradient	Yes	38.4	NO	3.648	N/A		
MW392	Downgradient	Yes	44.3	NO	3.791	N/A		
MW395	Upgradient	Yes	43.8	NO	3.780	N/A		
MW397	Upgradient	Yes	34.5	NO	3.541	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 5.000 S= 0.000 CV(1)=0.000 K factor**= 2.523 TL(1)=5.000 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.609 S= 0.000 CV(2)=0.000 K factor**= 2.523 TL(2)=1.609 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 5 9/30/2002 5 1.609 1.609 10/16/2002 5 1/13/2003 5 1.609 4/10/2003 5 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 5 1.609 5 4/8/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t No	1	N/A	0.000	N/A	
MW373	Downgradien	t No	1	N/A	0.000	N/A	
MW385	Sidegradient	No	1	N/A	0.000	N/A	
MW388	Downgradien	t No	1	N/A	0.000	N/A	
MW392	Downgradien	t Yes	1.24	NO	0.215	N/A	
MW395	Upgradient	No	1	N/A	0.000	N/A	
MW397	Upgradient	No	1	N/A	0.000	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Cobalt LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.011

CV(1)=1.515

K factor**= 2.523

TL(1) = 0.034

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.053 S = 1.416 CV(2) = -0.234

K factor=** 2.523

TL(2) = -2.480

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	No	0.001	N/A	-6.908	N/A		
MW373	Downgradient	No	0.001	N/A	-6.908	N/A		
MW385	Sidegradient	Yes	0.00063	9 N/A	-7.356	NO		
MW388	Downgradient	No	0.001	N/A	-6.908	N/A		
MW392	Downgradient	No	0.001	N/A	-6.908	N/A		
MW395	Upgradient	No	0.001	N/A	-6.908	N/A		
MW397	Upgradient	No	0.001	N/A	-6.908	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-61

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor**= 2.523

TL(1) = 509.326 LL(1) = N/A

Statistics-Transformed Background

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.775
Date Collected	Result	
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	492	NO	6.198	N/A		
MW373	Downgradient	Yes	834	YES	6.726	N/A		
MW385	Sidegradient	Yes	405	NO	6.004	N/A		
MW388	Downgradient	Yes	463	NO	6.138	N/A		
MW392	Downgradient	Yes	406	NO	6.006	N/A		
MW395	Upgradient	Yes	366	NO	5.903	N/A		
MW397	Upgradient	Yes	314	NO	5.749	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-62

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L LRGA Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

S = 0.013

CV(1) = 0.474

K factor**= 2.523

TL(1) = 0.061

LL(1)=N/A

Statistics-Transformed Background

X = -3.662 S = 0.406 CV(2) = -0.111

K factor=** 2.523

TL(2) = -2.638

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.0281	-3.572
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient l	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	0.00074	7 NO	-7.199	N/A		
MW373	Downgradient	Yes	0.00061	1 NO	-7.400	N/A		
MW385	Sidegradient	Yes	0.00084	1 NO	-7.081	N/A		
MW388	Downgradient	Yes	0.00082	1 NO	-7.105	N/A		
MW392	Downgradient	Yes	0.00054	1 NO	-7.522	N/A		
MW395	Upgradient	Yes	0.00052	1 NO	-7.560	N/A		
MW397	Upgradient	Yes	0.00050	5 NO	-7.591	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-63

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.520**K** factor**= 2.523 Statistics-Background Data X = 4.678S = 2.431TL(1)=10.812LL(1)=N/A **Statistics-Transformed Background**

X = 1.414 $S = 0.550 \quad CV(2) = 0.389$ **K factor**=** 2.523

TL(2) = 2.802

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 7.29 1.987 9/30/2002 4.03 1.394 10/16/2002 3.85 1.348 1/13/2003 2.36 0.859 4/10/2003 1.14 0.131 7/16/2003 1.76 0.565 10/14/2003 4.05 1.399 1/13/2004 4.26 1.449 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 11.56 2.448 9/16/2002 5.86 1.768 10/17/2002 5.94 1.782 1/13/2003 4.66 1.539 4/8/2003 3.77 1.327 7/16/2003 3.47 1.244 10/14/2003 5.34 1.675 1.707 1/13/2004 5.51

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	3.57	NO	1.273	N/A	
MW373	Downgradien	t Yes	1.33	NO	0.285	N/A	
MW385	Sidegradient	Yes	3.96	NO	1.376	N/A	
MW388	Downgradien	t Yes	3.97	NO	1.379	N/A	
MW392	Downgradien	t Yes	2.27	NO	0.820	N/A	
MW395	Upgradient	Yes	4.72	NO	1.552	N/A	
MW397	Upgradient	Yes	6.3	NO	1.841	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor**= 2.523

TL(1) = 305.301

LL(1)=N/A

Statistics-Transformed Background

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	271	NO	5.602	N/A	
MW373	Downgradient	Yes	484	YES	6.182	N/A	
MW385	Sidegradient	Yes	211	NO	5.352	N/A	
MW388	Downgradient	Yes	226	NO	5.421	N/A	
MW392	Downgradient	Yes	204	NO	5.318	N/A	
MW395	Upgradient	Yes	184	NO	5.215	N/A	
MW397	Upgradient	Yes	157	NO	5.056	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-65

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Magnesium **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.515**K** factor**= 2.523 Statistics-Background Data X = 9.102S = 4.685TL(1)=20.922LL(1)=N/A **Statistics-Transformed Background** X = 1.423S = 2.408CV(2) = 1.692**K factor**=** 2.523 TL(2) = 7.500LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 12.5 2.526 9/16/2002 13 2.565 10/16/2002 0.0127 -4.3661/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 13.4 2.595 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 0.00658 10/17/2002 -5.0241/13/2003 6.69 1.901 4/8/2003 1.985 7.28 7/16/2003 7.82 2.057 10/14/2003 7.94 2.072 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	12.9	NO	2.557	N/A	
MW373	Downgradient	Yes	24.7	YES	3.207	N/A	
MW385	Sidegradient	Yes	9.76	NO	2.278	N/A	
MW388	Downgradient	Yes	13.4	NO	2.595	N/A	
MW392	Downgradient	Yes	11.5	NO	2.442	N/A	
MW395	Upgradient	Yes	10.2	NO	2.322	N/A	
MW397	Upgradient	Yes	7.68	NO	2.039	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Manganese

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.131

CV(1) = 1.487S = 0.195

K factor**= 2.523

TL(1) = 0.624

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.104 S = 1.529 CV(2) = -0.493

K factor=** 2.523

TL(2) = 0.755

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.764
Date Collected	Result	
Date Collected 8/13/2002	Result 0.466	-0.764
Date Collected 8/13/2002 9/16/2002	Result 0.466 0.077	-0.764 -2.564
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.466 0.077 0.028	-0.764 -2.564 -3.576
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.466 0.077 0.028 0.0164	-0.764 -2.564 -3.576 -4.110
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.466 0.077 0.028 0.0164 0.0407	-0.764 -2.564 -3.576 -4.110 -3.202

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	No	0.005	N/A	-5.298	N/A	
MW373	Downgradient	Yes	0.00242	N/A	-6.024	NO	
MW385	Sidegradient	No	0.005	N/A	-5.298	N/A	
MW388	Downgradient	No	0.005	N/A	-5.298	N/A	
MW392	Downgradient	Yes	0.00844	N/A	-4.775	NO	
MW395	Upgradient	Yes	0.00113	N/A	-6.786	NO	
MW397	Upgradient	No	0.005	N/A	-5.298	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Nickel** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

S = 0.020

CV(1)=1.089

K factor**= 2.523

TL(1) = 0.068

LL(1)=N/A

Statistics-Transformed Background

X = -4.540 S = 1.020 CV(2) = -0.225

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	2.2
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	,
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.00502	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.005 0.00502 0.005	-2.996 -2.996 -5.298 -5.294 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current Quarter Data								
	Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
,	MW370	Downgradient	Yes	0.00128	N/A	-6.661	NO		
	MW373	Downgradient	Yes	0.00131	N/A	-6.638	NO		
	MW385	Sidegradient	Yes	0.00121	N/A	-6.717	NO		
	MW388	Downgradient	Yes	0.00131	N/A	-6.638	NO		
	MW392	Downgradient	Yes	0.00073	7 N/A	-7.213	NO		
	MW395	Upgradient	Yes	0.00089	5 N/A	-7.019	NO		
	MW397	Upgradient	Yes	0.00086	8 N/A	-7.049	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-68

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor**= 2.523

TL(1) = 289.395

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.003 S = 0.348 CV(2) = 0.069

K factor=** 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 4.745
Date Collected	Result	
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW370	Downgradient	Yes	435	YES	6.075	N/A	
MW373	Downgradient	Yes	407	YES	6.009	N/A	
MW385	Sidegradient	Yes	390	YES	5.966	N/A	
MW388	Downgradient	Yes	409	YES	6.014	N/A	
MW392	Downgradient	Yes	390	YES	5.966	N/A	
MW395	Upgradient	Yes	372	YES	5.919	N/A	
MW397	Upgradient	Yes	391	YES	5.969	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with	Exceedances
MW370	

MW373 MW385 MW388

MW392

MW395

MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-69

C-746-S/T Second Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.048 S = 0.248 CV(1) = 0.041 K factor**= 2.904 TL(1) = 6.767 LL(1) = 5.3289

Statistics-Transformed Background X = 1.799 S= 0.042 CV(2) = 0.023 K factor**= 2.904 TL(2) = 1.920 LL(2)=1.6782 Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/16/2002 1.792 5.47 1.699 10/16/2002 1/13/2003 6 1.792 4/10/2003 6.18 1.821 7/16/2003 6 1.792 10/14/2003 6.31 1.842 1/13/2004 6.24 1.831 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 5.84 1.765 9/30/2002 1.792 6 10/17/2002 5.75 1.749 1/13/2003 6 1.792 6.3 4/8/2003 1.841 7/16/2003 6.2 1.825 10/14/2003 6.36 1.850 1/13/2004 6.32 1.844

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
_				Kesuit \LL(1):		LN(Result) \LL(2)!
MW370	Downgradient	Yes	5.9	NO	1.775	N/A
MW373	Downgradient	Yes	6	NO	1.792	N/A
MW385	Sidegradient	Yes	6.03	NO	1.797	N/A
MW388	Downgradient	Yes	6.13	NO	1.813	N/A
MW392	Downgradient	Yes	6.06	NO	1.802	N/A
MW395	Upgradient	Yes	5.99	NO	1.790	N/A
MW397	Upgradient	Yes	6.02	NO	1.795	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Potassium** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.590

S = 0.642

CV(1)=0.404

K factor**= 2.523

TL(1) = 3.208

LL(1)=N/A

Statistics-Transformed Background

X = -0.306 S = 2.457 CV(2) = -8.028

K factor=** 2.523

TL(2) = 5.892

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 9/16/2002 2 0.693 0.00129 10/16/2002 -6.6531/13/2003 1.51 0.412 4/10/2003 1.67 0.513 7/16/2003 1.73 0.548 10/14/2003 1.7 0.531 1/13/2004 1.58 0.457 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 2.03 0.708 9/16/2002 0.693 2. 0.00145 10/17/2002 -6.5361/13/2003 1.69 0.5254/8/2003 1.73 0.5487/16/2003 2 0.693 10/14/2003 1.92 0.652 1/13/2004 1.87 0.626

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	2.47	NO	0.904	N/A	
MW373	Downgradient	Yes	2.5	NO	0.916	N/A	
MW385	Sidegradient	Yes	1.51	NO	0.412	N/A	
MW388	Downgradient	Yes	1.7	NO	0.531	N/A	
MW392	Downgradient	Yes	1.81	NO	0.593	N/A	
MW395	Upgradient	Yes	1.46	NO	0.378	N/A	
MW397	Upgradient	Yes	1.69	NO	0.525	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-71

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Sodium LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor**= 2.523

TL(1) = 64.616

LL(1)=N/A

Statistics-Transformed Background

X = 2.615 S = 2.411 CV(2) = 0.922

K factor=** 2.523

TL(2) = 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 3.296 2.7 9/16/2002 27.2 3.303 0.0253 10/16/2002 -3.6771/13/2003 22.6 3.118 4/10/2003 53.9 3.987 7/16/2003 30 3.401 10/14/2003 29.1 3.371 1/13/2004 26.4 3.273 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 35.2 3.561 9/16/2002 34.3 3.535 0.0336 10/17/2002 -3.3931/13/2003 31.3 3.444 4/8/2003 46.1 3.831 7/16/2003 38.4 3.648 10/14/2003 37.1 3.614 1/13/2004 34.3 3.535

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient l	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	47.4	NO	3.859	N/A	
MW373	Downgradient	Yes	55.4	NO	4.015	N/A	
MW385	Sidegradient	Yes	44.8	NO	3.802	N/A	
MW388	Downgradient	Yes	44.9	NO	3.804	N/A	
MW392	Downgradient	Yes	32.1	NO	3.469	N/A	
MW395	Upgradient	Yes	28.6	NO	3.353	N/A	
MW397	Upgradient	Yes	32.8	NO	3.490	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-72

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Sulfate** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1)=0.200**K** factor**= 2.523 TL(1)=16.173

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.356 S = 0.203 CV(2) = 0.086

K factor=** 2.523

TL(2) = 2.869

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.639
Date Collected	Result	
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	21.7	YES	3.077	N/A	
MW373	Downgradient	Yes	167	YES	5.118	N/A	
MW385	Sidegradient	Yes	22.5	YES	3.114	N/A	
MW388	Downgradient	Yes	22.8	YES	3.127	N/A	
MW392	Downgradient	Yes	18	YES	2.890	N/A	
MW395	Upgradient	Yes	12.4	NO	2.518	N/A	
MW397	Upgradient	Yes	11.3	NO	2.425	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

MW392

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-73

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.805**K** factor**= 2.523 Statistics-Background Data X = 11.359 S = 9.138TL(1) = 34.414LL(1)=N/A **Statistics-Transformed Background** X = 2.398S = 0.859 CV(2) = 0.358**K factor**=** 2.523 TL(2) = 3.246LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result)
Date Collected	Result	•
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

	Current Quarter Data						
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
•	MW370	Downgradient	Yes	44.2	YES	3.789	N/A
	MW373	Downgradient	No	17.5	N/A	2.862	N/A
	MW385	Sidegradient	No	18.8	N/A	2.934	N/A
	MW388	Downgradient	Yes	34	NO	3.526	N/A
	MW392	Downgradient	No	-17.3	N/A	#Error	N/A
	MW395	Upgradient	No	3.78	N/A	1.330	N/A
	MW397	Upgradient	No	14	N/A	2.639	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.554**K** factor**= 2.523 Statistics-Background Data X = 1.544S = 0.856TL(1) = 3.702LL(1)=N/A **Statistics-Transformed Background** X = 0.325S = 0.452 CV(2) = 1.393**K factor**=** 2.523 TL(2) = 1.465LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	` ′
Date Collected 8/13/2002	Result	0.000
Date Collected 8/13/2002 9/16/2002	Result 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	1.49	NO	0.399	N/A		
MW373	Downgradient	Yes	1.23	NO	0.207	N/A		
MW385	Sidegradient	Yes	1.11	NO	0.104	N/A		
MW388	Downgradient	Yes	0.969	NO	-0.031	N/A		
MW392	Downgradient	Yes	0.848	NO	-0.165	N/A		
MW395	Upgradient	Yes	0.909	NO	-0.095	N/A		
MW397	Upgradient	Yes	0.751	NO	-0.286	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-75

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 31.513 S = 18.609 CV(1) = 0.591

K factor**= 2.523

TL(1) = 78.462

LL(1)=N/A

Statistics-Transformed Background

X = 3.240

S = 0.707 CV(2) = 0.218

K factor=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	9.76	NO	2.278	N/A	
MW373	Downgradient	Yes	12	NO	2.485	N/A	
MW385	Sidegradient	Yes	8.98	NO	2.195	N/A	
MW388	Downgradient	Yes	11	NO	2.398	N/A	
MW392	Downgradient	Yes	22.4	NO	3.109	N/A	
MW395	Upgradient	Yes	5.5	NO	1.705	N/A	
MW397	Upgradient	Yes	3.82	NO	1.340	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Trichloroethene** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313

CV(1)=0.780

K factor**= 2.523

TL(1)=21.695

LL(1)=N/A

Statistics-Transformed Background

S = 5.701

X = 1.467 S = 1.213 CV(2) = 0.827

K factor=** 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 11 2.398 9/30/2002 14 2.639 10/16/2002 12 2.485 1/13/2003 14 2.639 4/10/2003 14 2.639 7/16/2003 13 2.565 10/14/2003 12 2.485 1/13/2004 11 2.398 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 1 0.000 1/13/2003 0.000 4/8/2003 0.0007/16/2003 1 0.000 10/14/2003 1 0.000 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	1.24	N/A	0.215	N/A	
MW373	Downgradient	Yes	5.74	NO	1.747	N/A	
MW385	Sidegradient	Yes	0.61	N/A	-0.494	N/A	
MW388	Downgradient	Yes	0.57	N/A	-0.562	N/A	
MW392	Downgradient	Yes	14.8	NO	2.695	N/A	
MW395	Upgradient	Yes	2.32	N/A	0.842	N/A	
MW397	Upgradient	No	1	N/A	0.000	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

C-746-S/T Second Quarter 2021 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.760**K** factor**= 2.523 Statistics-Background Data X = 0.044S = 0.034TL(1)=0.129LL(1)=N/A **Statistics-Transformed Background** X = -3.342 S = 0.659 CV(2) = -0.197**K factor**=** 2.523 TL(2) = -1.679LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/10/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	
Date Collected 8/13/2002	Result 0.1	-2.303
Date Collected 8/13/2002 9/16/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.1 0.1 0.025	-2.303 -2.303 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.1 0.1 0.025 0.035	-2.303 -2.303 -3.689 -3.352
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.1 0.1 0.025 0.035 0.035	-2.303 -2.303 -3.689 -3.352 -3.352

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data						
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
•	MW370	Downgradient	Yes	0.00333	NO	-5.705	N/A
	MW373	Downgradient	No	0.02	N/A	-3.912	N/A
	MW385	Sidegradient	No	0.02	N/A	-3.912	N/A
	MW388	Downgradient	No	0.02	N/A	-3.912	N/A
	MW392	Downgradient	No	0.02	N/A	-3.912	N/A
	MW395	Upgradient	No	0.02	N/A	-3.912	N/A
	MW397	Upgradient	No	0.02	N/A	-3.912	N/A

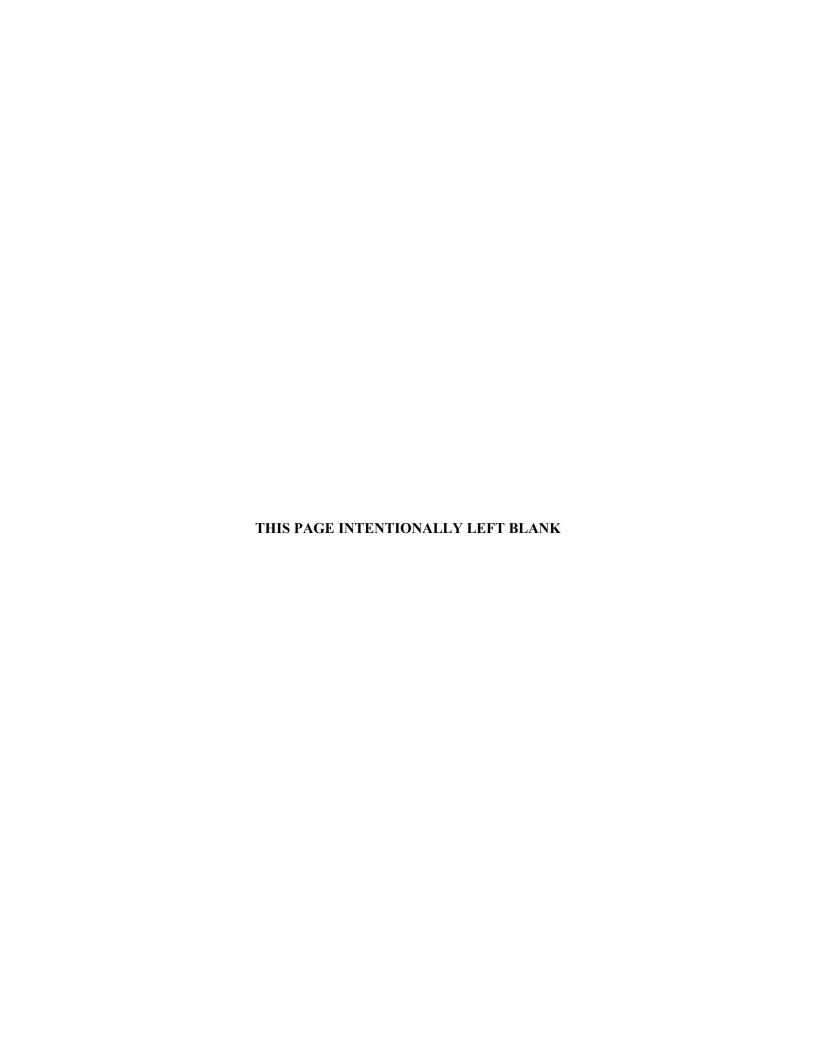
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5


LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-78

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Second Quarter 2021 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 278.875 S = 137.325 CV(1) = 0.492

K factor**= 3.188

TL(1)= 716.667 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.488 S = 0.619 CV(2) = 0.113

K factor**= 3.188

TL(2) = 7.461

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 4/22/2019 431 6.066 7/17/2019 6.028 415 10/10/2019 227 5.425 3/18/2020 127 4.844 4/22/2020 401 5.994 7/29/2020 346 5.846 10/22/2020 204 5.318 4.382 1/26/2021 80

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

l

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW386	Sidegradient	Yes	353	NO	5.866	N/A
MW390	Downgradien	t Yes	453	NO	6.116	N/A
MW393	Downgradien	t Yes	369	NO	5.911	N/A
MW396	Upgradient	Yes	332	NO	5.805	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.270

CV(1)=29.932

K factor**= 3.188

TL(1)= 25.986

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.771

S= 0.493 **CV(2)**=0.279

S = 8.067

K factor**= 3.188

TL(2) = 2.389

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
4/22/2019	5.89	1.773
7/17/2019	-0.714	#Func!
10/10/2019	-9.62	#Func!
1/27/2020	3.26	1.182
4/22/2020	5.69	1.739
7/29/2020	-0.35	#Func!
10/22/2020	-12.9	#Func!
1/26/2021	10.9	2.389

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradient	Yes	51.7	N/A	3.945	YES

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

d MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.998

CV(1)=0.520

K factor**= 2.523

TL(1)= 23.126

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.153

S = 0.597

S = 5.203

CV(2) = 0.278

K factor**= 2.523

TL(2) = 3.660

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/16/2019 8.19 2.103 7/16/2019 12.7 2.542 10/8/2019 2.939 18.9 1/22/2020 8.34 2.121 4/21/2020 16.5 2.803 7/28/2020 18.9 2.939 10/14/2020 13.7 2.617 1/25/2021 1.717 5.57

Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2019	2.82	1.037
7/17/2019	10.3	2.332
10/10/2019	8.14	2.097
1/27/2020	4.69	1.545
4/22/2020	5.27	1.662
7/29/2020	12	2.485
10/22/2020	10.9	2.389
1/26/2021	3.05	1.115

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW387	Downgradient	Yes	268	YES	5 591	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW387

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2021 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 25.188 **S**= 3.819

CV(1)=0.152

K factor**= 2.523

TL(1) = 34.823

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.216 S = 0.145

CV(2) = 0.045

K factor=** 2.523

TL(2) = 3.583

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/16/2019 35.8 3.578 7/16/2019 25.4 3.235 10/8/2019 20.9 3.040 1/22/2020 26.3 3.270 4/21/2020 28.8 3.360 7/28/2020 20.6 3.025 10/14/2020 19.9 2.991 1/25/2021 20.9 3.040

1,20,2021	_0.,	2.0.0
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2019	24.7	3.207
7/17/2019	25.4	3.235
10/10/2019	25.2	3.227
1/27/2020	25.3	3.231
4/22/2020	24.9	3.215
7/29/2020	26	3.258
10/22/2020	27.4	3.311
1/26/2021	25.5	3.239

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	62 3	YES	4 132	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2021 Statistical Analysis **Current Background Comparison Chemical Oxygen Demand (COD)** URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 29.056 S = 24.474 CV(1) = 0.842K factor**= 2.523 TL(1)= 90.804 **LL(1)=**N/A Statistics-Background Data **Statistics-Transformed Background** LL(2)=N/A

Data

X = 3.189S = 0.543CV(2)=0.170 K factor**= 2.523 TL(2) = 4.559

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/16/2019 16.4 2.797 7/16/2019 15.9 2.766 2.996 10/8/2019 20 1/22/2020 20 2.996 4/21/2020 114 4.736 7/28/2020 20 2.996 10/14/2020 12 2.485 1/25/2021

1/25/2021	22.7	3.122
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2019	20.3	3.011
7/17/2019	18.3	2.907
10/10/2019	40.8	3.709
1/27/2020	29.2	3.374
4/22/2020	31.1	3.437
7/29/2020	16	2.773
10/22/2020	46.4	3.837
1/26/2021	21.8	3.082

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	37.1	NO	3.614	N/A
MW221	Sidegradient	Yes	41.9	NO	3.735	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-7

C-746-S/T Second Quarter 2021 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 379.688 **S**= 30.648 **CV(1)**=0.081

K factor=** 2.523

TL(1)= 457.012 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.936

S = 0.079 CV(2) = 0.013

K factor=** 2.523

TL(2) = 6.135

Because CV(1) is less than or equal to

1, assume normal distribution and

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220	
Result	LN(Result)
424	6.050
377	5.932
346	5.846
441	6.089
435	6.075
354	5.869
338	5.823
344	5.841
	Result 424 377 346 441 435 354 338

continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	795	YES	6.678	N/A

Well Number:	MW394	
Date Collected	Result	LN(Result)
5/29/2019	383	5.948
7/17/2019	370	5.914
10/10/2019	382	5.945
1/27/2020	370	5.914
4/22/2020	367	5.905
7/29/2020	379	5.938
10/22/2020	375	5.927
1/26/2021	390	5.966

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2021 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 202.125 S = 34.341 CV(1) = 0.170

K factor**= 2.523

TL(1)= 288.768 LL

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.296 S = 0.165 CV(2) = 0.031

K factor**= 2.523

TL(2) = 5.713

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/16/2019 273 5.609 7/16/2019 176 5.170 10/8/2019 176 5.170 1/22/2020 256 5.545 4/21/2020 214 5.366 7/28/2020 191 5.252 10/14/2020 190 5.247 1/25/2021 161 5.081

Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2019	216	5.375
7/17/2019	167	5.118
10/10/2019	251	5.525
1/27/2020	200	5.298
4/22/2020	200	5.298
7/29/2020	213	5.361
10/22/2020	154	5.037
1/26/2021	196	5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	483	YES	6.180	N/A
MW387	Downgradient	Yes	324	YES	5.781	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2021 Statistical Analysis Current Background Comparison Magnesium UNITS: mg/L URGA

S = 0.114

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.311 S = 1.131

CV(1)=0.110

K factor**= 2.523

TL(1)= 13.164

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.327

CV(2) = 0.049

K factor**= 2.523

TL(2)= 2.615

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/16/2019	10.3	2.332
7/16/2019	10	2.303
10/8/2019	8.71	2.164
1/22/2020	10.9	2.389
4/21/2020	11.9	2.477
7/28/2020	8.24	2.109
10/14/2020	8.71	2.164
1/25/2021	8.72	2.166

1/23/2021	0.72	2.100
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2019	11	2.398
7/17/2019	10.8	2.380
10/10/2019	10.7	2.370
1/27/2020	10.6	2.361
4/22/2020	10.7	2.370
7/29/2020	11.2	2.416
10/22/2020	11.8	2.468
1/26/2021	10.7	2.370

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	23.2	YES	3.144	N/A
MW387	Downgradient	Yes	15.3	YES	2.728	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2021 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=417.625 S= 52.709 CV(1)=0.126

K factor**= 2.523

TL(1)= 550.610 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.027

S= 0.128 CV(2) = 0.021 K factor**= 2.523

TL(2) = 6.351

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
5/30/2019	523	6.260
7/16/2019	407	6.009
10/8/2019	414	6.026
3/18/2020	378	5.935
4/21/2020	435	6.075
7/28/2020	375	5.927
10/14/2020	385	5.953
1/25/2021	496	6.207
Well Number:	MW394	
Date Collected	Result	LN(Result)
5/29/2019	463	6.138
7/17/2019	435	6.075
10/10/2019	438	6.082
1/27/2020	440	6.087
4/22/2020	432	6.068
7/29/2020	356	5.875
10/22/2020	396	5.981

309

1/26/2021

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	410	NO	6.016	N/A
MW221	Sidegradient	Yes	451	NO	6.111	N/A
MW222	Sidegradient	Yes	429	NO	6.061	N/A
MW223	Sidegradient	Yes	440	NO	6.087	N/A
MW224	Sidegradient	Yes	418	NO	6.035	N/A
MW369	Downgradien	t Yes	444	NO	6.096	N/A
MW372	Downgradien	t Yes	411	NO	6.019	N/A
MW384	Sidegradient	Yes	401	NO	5.994	N/A
MW387	Downgradien	t Yes	417	NO	6.033	N/A
MW391	Downgradien	t Yes	409	NO	6.014	N/A

Conclusion of Statistical Analysis on Current Data

5.733

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-11

C-746-S/T Second Quarter 2021 Statistical Analysis Sodium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 37.356 S = 5.603

CV(1)=0.150

K factor**= 2.523

TL(1)= 51.492

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.610

S= 0.145 **CV(2)**=0.040

K factor**= 2.523

23 **T**

TL(2) = 3.977

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/16/2019	47.4	3.859
7/16/2019	43.4	3.770
10/8/2019	39.4	3.674
1/22/2020	47.6	3.863
4/21/2020	44	3.784
7/28/2020	38.3	3.645
10/14/2020	38.3	3.645
1/25/2021	36.1	3.586

1/25/2021	36.1	3.586
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2019	30.8	3.428
7/17/2019	31.9	3.463
10/10/2019	33	3.497
1/27/2020	34.1	3.529
4/22/2020	33.4	3.509
7/29/2020	33.7	3.517
10/22/2020	35.4	3.567
1/26/2021	30.9	3.431

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	59	YES	4.078	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2021 Statistical Analysis Current Sulfate UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 14.913 **S**= 4.236

CV(1)=0.284

K factor**= 2.523

TL(1)= 25.601

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.668

S= 0.263 **CV(2)**=0.099

K factor**= 2.523

TL(2) = 3.332

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/16/2019 24.1 3.182 7/16/2019 2.918 18.5 10/8/2019 15.6 2.747 1/22/2020 20.1 3.001 4/21/2020 22.2 3.100 7/28/2020 15.3 2.728

 10/14/2020
 13.9
 2.632

 1/25/2021
 15.9
 2.766

Well Number: MW394 Date Collected Result LN(Result) 4/22/2019 10.7 2.370 7/17/2019 11.1 2.407 10/10/2019 2.485 1/27/2020 12.1 2.493 4/22/2020 12.7 2.542 7/29/2020 11.7 2.460 10/22/2020 11.3 2.425

11.4

1/26/2021

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	24.4	NO	3.195	N/A
MW223	Sidegradient	Yes	19	NO	2.944	N/A
MW372	Downgradien	t Yes	157	YES	5.056	N/A
MW384	Sidegradient	Yes	19.4	NO	2.965	N/A
MW387	Downgradien	t Yes	28.1	YES	3.336	N/A

Conclusion of Statistical Analysis on Current Data

2.434

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2021 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 12.003
 S= 8.651
 CV(1)=0.721
 K factor**= 2.523
 TL(1)= 33.830
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.301
 S= 0.858
 CV(2)=0.373
 K factor**= 2.523
 TL(2)= 3.325
 LL(2)=N/A

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/16/2019	17.1	2.839
7/16/2019	27.8	3.325
10/8/2019	27	3.296
1/22/2020	12	2.485
4/21/2020	18.7	2.929
7/28/2020	19	2.944
10/14/2020	16.7	2.815
1/25/2021	10.3	2.332
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.936
Date Collected	Result	
Date Collected 4/22/2019	Result 2.55	0.936
Date Collected 4/22/2019 7/17/2019	Result 2.55 4.74	0.936 1.556
Date Collected 4/22/2019 7/17/2019 10/10/2019	Result 2.55 4.74 -2.22	0.936 1.556 #Func!
Date Collected 4/22/2019 7/17/2019 10/10/2019 1/27/2020	Result 2.55 4.74 -2.22 10.2	0.936 1.556 #Func! 2.322
Date Collected 4/22/2019 7/17/2019 10/10/2019 1/27/2020 4/22/2020	Result 2.55 4.74 -2.22 10.2 6.29	0.936 1.556 #Func! 2.322 1.839
Date Collected 4/22/2019 7/17/2019 10/10/2019 1/27/2020 4/22/2020 7/29/2020	Result 2.55 4.74 -2.22 10.2 6.29 9.21	0.936 1.556 #Func! 2.322 1.839 2.220

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	Yes	60.3	YES	4.099	N/A
MW372	Downgradient	Yes	51.3	YES	3.938	N/A
MW387	Downgradient	Yes	476	YES	6.165	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2021 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 21.638 S = 3.139

CV(1)=0.145

K factor**= 2.523

TL(1)= 29.558

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.064

S = 0.147CV(2) = 0.048 K factor**= 2.523

TL(2) = 3.435

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/22/2019	25.4	3.235
7/17/2019	24.2	3.186
10/10/2019	23.4	3.153
1/27/2020	24.4	3.195
4/22/2020	24	3.178
7/29/2020	24.7	3.207
10/22/2020	25.7	3.246
1/26/2021	24.8	3.211

1/26/2021	24.8	3.211
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/16/2019	16.9	2.827
7/16/2019	19.7	2.981
10/9/2019	18.8	2.934
1/27/2020	18.6	2.923
4/22/2020	18.1	2.896
7/27/2020	18.9	2.939
10/22/2020	19.8	2.986
1/25/2021	18.8	2.934

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	62 9	YES	4 142	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2021 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=337.188 **S**= 18.616 **CV(1)**=0.055

K factor**= 2.523

TL(1)= 384.156 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.819 S = 0.055 CV(2) = 0.009

K factor=** 2.523

TL(2) = 5.958

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 5/29/2019 367 5.905 7/17/2019 344 5.841 10/10/2019 5.878 357 5.852 1/27/2020 348 4/22/2020 350 5.858

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

7/29/2020	354	5.869
10/22/2020	358	5.881
1/26/2021	358	5.881
Well Number:	MW397	
Date Collected	Result	LN(Result)
5/29/2019	318	5.762
7/16/2019	316	5.756
10/9/2019	319	5.765
3/18/2020	321	5.771
4/22/2020	319	5.765
7/27/2020	322	5.775
10/22/2020	324	5.781

320

1/25/2021

Current	Quarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Ves	834	VES	6.726	N/A

Conclusion of Statistical Analysis on Current Data

5.768

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2021 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=166.786 **S**= 52.269 **CV(1)**=0.313

K factor**= 2.523

TL(1)= 298.660 L

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.976 S = 0.772

CV(2)=0.155

K factor**= 2.523

TL(2) = 6.922

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/22/2019	173	5.153
7/17/2019	184	5.215
10/10/2019	146	4.984
1/27/2020	257	5.549
4/22/2020	199	5.293
7/29/2020	173	5.153
10/22/2020	150	5.011
1/26/2021	8.57	2.148

1/20/2021	0.57	2.140
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/16/2019	229	5.434
7/16/2019	176	5.170
10/9/2019	173	5.153
1/27/2020	177	5.176
4/22/2020	160	5.075
7/27/2020	179	5.187
10/22/2020	133	4.890
1/25/2021	151	5.017

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Ves	484	YES	6.182	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2021 Statistical Analysis **Current Background Comparison** Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.258

S = 1.339CV(1)=0.145 K factor**= 2.523

TL(1)= 12.637

LRGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.216

S = 0.146CV(2) = 0.066 K factor**= 2.523

TL(2) = 2.583

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/22/2019 11.1 2.407 7/17/2019 10.6 2.361 10/10/2019 2.291 9.88 1/27/2020 10.3 2.332 4/22/2020 10.2 2.322 7/29/2020 10.4 2.342 10/22/2020 11.1 2.407

10/22/2020		2.107
1/26/2021	10.4	2.342
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/16/2019	7.65	2.035
7/16/2019	8.63	2.155
10/9/2019	8	2.079
1/27/2020	7.81	2.055
4/22/2020	7.81	2.055
7/27/2020	7.7	2.041
10/22/2020	8.61	2.153
1/25/2021	7.94	2.072

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	24 7	YES	3 207	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2021 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 394.688 S = 84.125 CV(1) = 0.213

K factor=** 2.523

TL(1)= 606.935

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.951

S = 0.257 CV(2) = 0.043

K factor**= 2.523

TL(2) = 6.598

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 5/29/2019 477 6.168 7/17/2019 449 6.107 10/10/2019 6.094 443 1/27/2020 457 6.125 4/22/2020 419 6.038 7/29/2020 366 5.903 10/22/2020 354 5.869 1/26/2021 334 5.811 Well Number: MW397 Date Collected Result LN(Result) 5/29/2019 488 6.190 5.979 7/16/2019 395 10/9/2019 439 6.084

246

420

360

190

478

3/18/2020

4/22/2020

7/27/2020

10/22/2020

1/25/2021

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	435	NO	6.075	N/A	
MW373	Downgradient	Yes	407	NO	6.009	N/A	
MW385	Sidegradient	Yes	390	NO	5.966	N/A	
MW388	Downgradient	Yes	409	NO	6.014	N/A	
MW392	Downgradient	Yes	390	NO	5.966	N/A	
MW395	Upgradient	Yes	372	NO	5.919	N/A	
MW397	Upgradient	Yes	391	NO	5.969	N/A	

Conclusion of Statistical Analysis on Current Data

5.505

6.040

5.886

5.247

6.170

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=11.325 **S**= 0.637

CV(1)=0.056

K factor=** 2.523

TL(1)= 12.933

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.426

S = 0.057

CV(2)=0.023

K factor=** 2.523

TL(2) = 2.569

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/22/2019	10.5	2.351
7/17/2019	10.9	2.389
10/10/2019	12.1	2.493
1/27/2020	11.7	2.460
4/22/2020	12.4	2.518
7/29/2020	12	2.485
10/22/2020	11.7	2.460
1/26/2021	11.6	2.451
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/16/2019	10	2.303
4/16/2019 7/16/2019	10 10.7	, ,
	10	2.303
7/16/2019	10.7	2.303 2.370
7/16/2019 10/9/2019	10.7 11.4	2.303 2.370 2.434

11.1

11.5

10/22/2020

1/25/2021

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW370	Downgradient	Yes	21.7	YES	3.077	N/A
MW373	Downgradient	Yes	167	YES	5.118	N/A
MW385	Sidegradient	Yes	22.5	YES	3.114	N/A
MW388	Downgradient	Yes	22.8	YES	3.127	N/A
MW392	Downgradient	Yes	18	YES	2.890	N/A

Conclusion of Statistical Analysis on Current Data

2.407

2.442

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells	with	Exceedances

MW370 MW373

MW385

MW388

MW392

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2021 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=11.013 **S**= 7.936

CV(1)=0.721

K factor**= 2.523

TL(1)=31.035

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.279

 $S = 0.664 \quad CV(2) = 0.291$

K factor**= 2.523

TL(2) = 3.469

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/22/2019	11.2	2.416
7/17/2019	4.92	1.593
10/10/2019	8.31	2.117
1/27/2020	3.14	1.144
4/22/2020	8.44	2.133
7/29/2020	12.2	2.501
10/22/2020	-1.04	#Func!
1/26/2021	14	2.639

1/20/2021	17	2.037
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/16/2019	32.1	3.469
7/16/2019	5.83	1.763
10/9/2019	15.3	2.728
1/27/2020	3.04	1.112
4/22/2020	15	2.708
7/27/2020	20.1	3.001
10/22/2020	8.46	2.135
1/25/2021	15.2	2.721

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Vec	44.2	YES	3 789	N/Δ

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

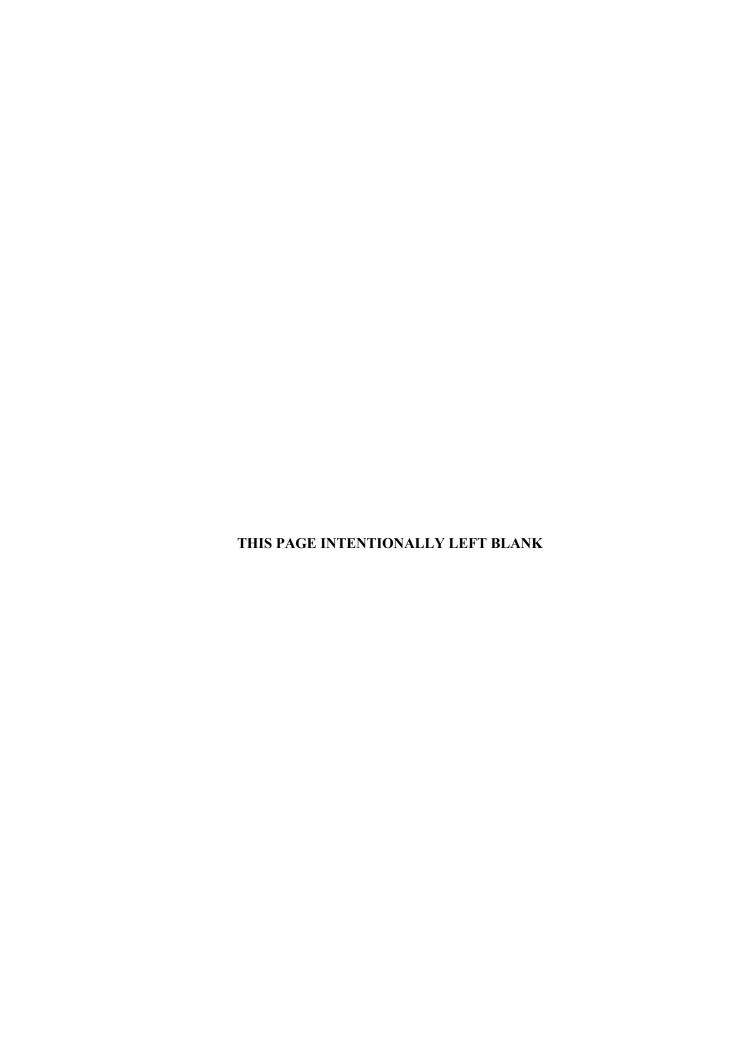
Four Rivers Nuclear Partnership, LLC

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

July 28, 2021

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:


As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the second quarter 2021 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Bryan Smith

My Di

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—QUARTERLY, 2nd CY 2021 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Numbers: SW07300014, SW07300015, SW07300045 F

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2021 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on April 16, 2021. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for a water level measurement and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. During April, RGA groundwater flow was directed inward and then northeast towards the Ohio River. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 4.51×10^{-4} ft/ft. Additional water level measurements in April (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 2.60×10^{-4} ft/ft, northward. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for April 2021, RGA groundwater flow from the landfill area was directed to the northeast.

_

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

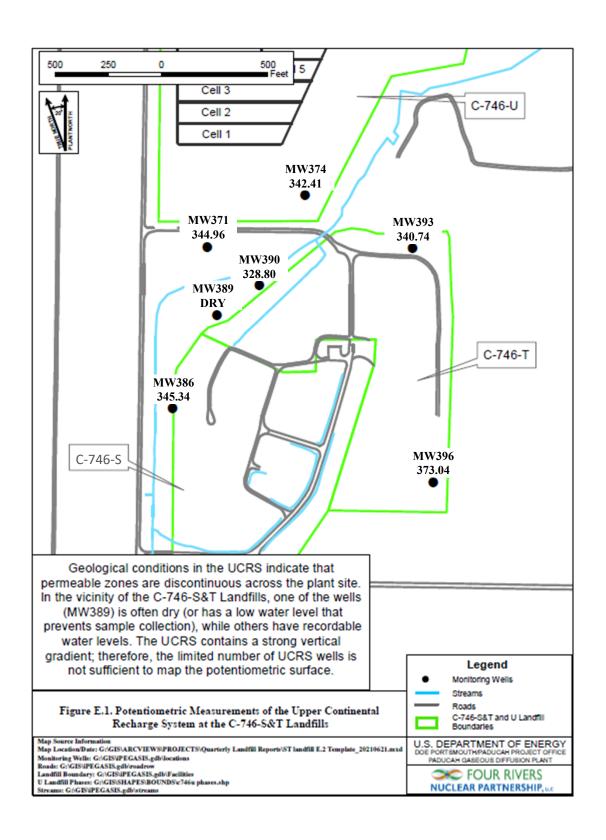


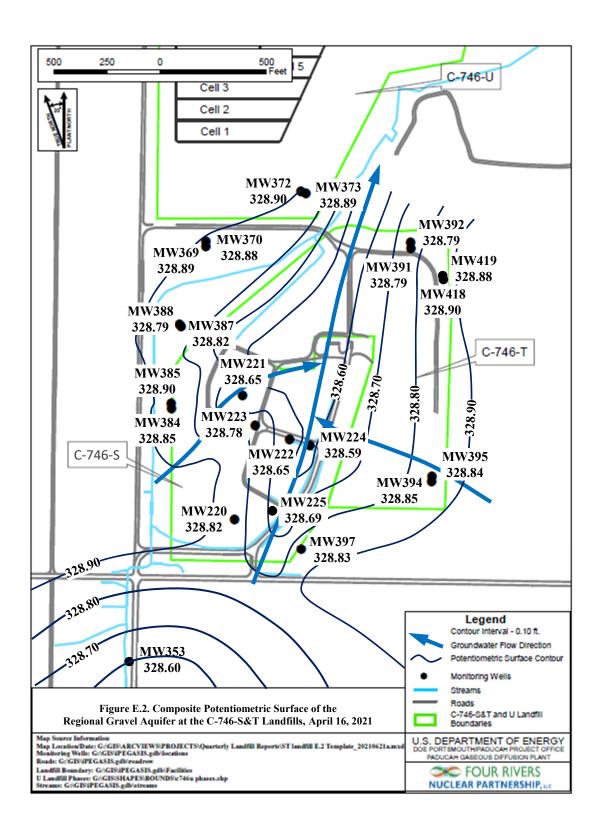
Table E.1. C-746-S&T Landfills Second Quarter 2021 (April) Water Levels

	C-746-S&T Landfills (April 2021) Water Levels									
							Rav	w Data	*Corre	cted Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/16/2021	7:54	MW220	URGA	382.01	30.00	0.00	53.19	328.82	53.19	328.82
4/16/2021	8:04	MW221	URGA	391.38	30.00	0.00	62.73	328.65	62.73	328.65
4/16/2021	8:00	MW222	URGA	395.27	30.00	0.00	66.62	328.65	66.62	328.65
4/16/2021	8:02	MW223	URGA	394.38	30.00	0.00	65.60	328.78	65.60	328.78
4/16/2021	7:58	MW224	URGA	395.69	30.00	0.00	67.10	328.59	67.10	328.59
4/16/2021	7:56	MW225	URGA	385.73	30.00	0.00	57.04	328.69	57.04	328.69
4/16/2021	8:13	MW353	LRGA	375.05	30.00	0.00	46.45	328.60	46.45	328.60
4/16/2021	7:43	MW384	URGA	365.29	30.00	0.00	36.44	328.85	36.44	328.85
4/16/2021	7:45	MW385	LRGA	365.74	30.00	0.00	36.84	328.90	36.84	328.90
4/16/2021	7:44	MW386	UCRS	365.32	30.00	0.00	19.98	345.34	19.98	345.34
4/16/2021	7:47	MW387	URGA	363.48	30.00	0.00	34.66	328.82	34.66	328.82
4/16/2021	7:48	MW388	LRGA	363.45	30.00	0.00	34.66	328.79	34.66	328.79
4/16/2021	7:49	MW389	UCRS	364.11			NA			
4/16/2021	7:50	MW390	UCRS	360.39	30.00	0.00	31.59	328.80	31.59	328.80
4/16/2021	7:30	MW391	URGA	366.67	30.00	0.00	37.88	328.79	37.88	328.79
4/16/2021	7:32	MW392	LRGA	365.85	30.00	0.00	37.06	328.79	37.06	328.79
4/16/2021	7:31	MW393	UCRS	366.62	30.00	0.00	25.88	340.74	25.88	340.74
4/16/2021	7:36	MW394	URGA	378.46	30.00	0.00	49.61	328.85	49.61	328.85
4/16/2021	7:38	MW395	LRGA	379.12	30.00	0.00	50.28	328.84	50.28	328.84
4/16/2021	7:37	MW396	UCRS	378.75	30.00	0.00	5.71	373.04	5.71	373.04
4/16/2021	7:40	MW397	LRGA	387.00	30.00	0.00	58.17	328.83	58.17	328.83
4/16/2021	7:34	MW418	URGA	367.21	30.00	0.00	38.31	328.90	38.31	328.90
4/16/2021	7:35	MW419	LRGA	367.05	30.00	0.00	38.17	328.88	38.17	328.88
Reference I	Baromet	ric Pressure	-		30.00					

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

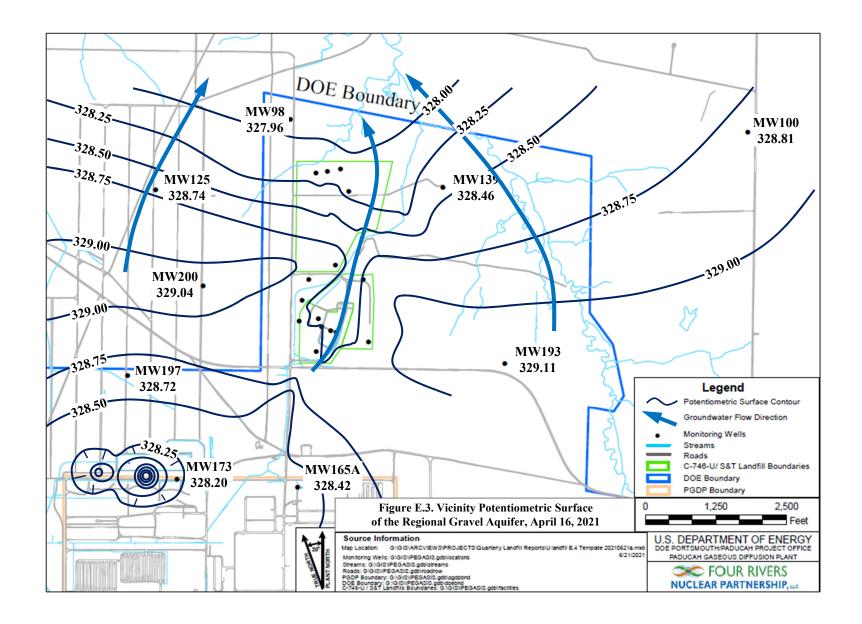


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	4.51×10^{-4}
Vicinity	2.60×10^{-4}

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Conductivity (K)		Specific Discharge (q)		Average Linear Velocity (v)						
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s					
Beneath Landfill Mound										
725	0.256	0.327	1.16 × 10 ⁻⁴	1.31	4.62 × 10 ⁻⁴					
425	0.150	0.192	6.77 × 10 ⁻⁵	0.767	2.71 × 10 ⁻⁴					
Vicinity										
725	0.256	0.188	6.65×10^{-5}	0.753	2.66 × 10 ⁻⁴					
425	0.150	0.110	3.89 × 10 ⁻⁵	0.441	1.56×10^{-4}					

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the second quarter 2021 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW372 MW369, MW372, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

5/17/2021

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS

SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4792	MW373	Trichloroethene	8260B	5.74	ug/L	5
8004-4815	MW387	Beta activity	9310	268	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	8.05	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	14.8	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

Groundwater Flow System			UCRS	S						1	URG	4							-	LRGA	A		_
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394		370		388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
Quarter 4, 2019																*							
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									-
Quarter 1, 2004			*				*	*			*												_
Quarter 2, 2004			-4-				*	-4-						*									_
Quarter 3, 2004	1		 				*	 				 	 	*	 								
Quarter 4, 2004	l —		*				·*	<u> </u>		_	_	<u> </u>	<u> </u>	-	<u> </u>		-						\vdash
	1		*					-				-	-		-								
Quarter 1, 2005							<u>.</u>																!
Quarter 2, 2005	-		*				*			ىد											ىد		<u> </u>
Quarter 3, 2005			*				*			*	11.										*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
•			*				*				*												Н.
Quarter 1, 2010			*				т.				*												Н.
Quarter 2, 2010														4			J			4			
Quarter 3, 2010			*				4				*			*			*			*			igspace
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				
Quarter 3, 2012							*																
Quarter 1, 2013		\Box					*				*					\Box	L	\Box	\Box	\Box			<u> </u>
Quarter 3, 2013			*																				
Quarter 1, 2014							*																
Quarter 2, 2014											*												
Quarter 4, 2014			*																				
Quarter 1, 2016							*																
Quarter 2, 2016														*									
Quarter 1, 2017							*																
Quarter 4, 2017																							*
Quarter 1, 2018							*																
Quarter 1, 2020													*										
BARIUM																							
Quarter 3, 2003																							
Quarter 4, 2003			1									1	1		1								
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003	1																						
													_				Ė						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	A								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 2, 2003			-														-						
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																		t					
Quarter 2, 2007										-			Ī										
Quarter 3, 2007										Ŧ			Ī				Ŧ			Ē			
Quarter 4, 2007										_			Ī										
Quarter 1, 2008														1									
Quarter 2, 2008										Ŧ			Ī				Ŧ			Ē			
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009										Ŧ		-	Ŧ				Ħ						
Quarter 2, 2009													Ī										
Quarter 3, 2009										Ŧ			Ŧ				Ħ						
Quarter 4, 2009										ī		-	Ŧ				Ħ			F			
Quarter 1, 2010										_							Η=						
Quarter 2, 2010										_		_					-						
Quarter 3, 2010			_							=			i				H			-			
Quarter 4, 2010										Ŧ							Ħ			-			
Quarter 1, 2011										┪		_	i				H			-			
Quarter 2, 2011										i			i				H			-			
Quarter 3, 2011			_							Ŧ													
Quarter 4, 2011										Ŧ			Ŧ				Ħ			┢═			
Quarter 1, 2012										Ē			ī				ī						
Quarter 2, 2012										Ŧ							Ħ			Ħ			
Quarter 3, 2012			_							Ŧ										┢═			
Quarter 4, 2012	-									i		-	i	\vdash			H	 					
Quarter 1, 2013										Ŧ			i	 			<u> </u>		i	Ħ			
Quarter 2, 2013										Ŧ		_	i	 					-	Ħ			
Quarter 3, 2013		1					1			Ŧ					1		Ħ			Ħ	1		\vdash
Quarter 4, 2013		1					 			Ŧ		=	Ī		 		H		-	H	 		\vdash
Quarter 1, 2014		 					1			Ŧ			Ŧ		1		Ħ		\vdash	H	1		\vdash
Quarter 2, 2014			_							Ŧ		_	i	 			H						
Quarter 3, 2014													Ī	1									
Quarter 4, 2014														1									
Quarter 1, 2015		1					1			Ŧ			Ŧ		1		Ħ		\vdash	Ħ	1		\vdash
Quarter 2, 2015										Ŧ			Ŧ				Ħ		 				
Quarter 3, 2015														1									
Quarter 4, 2015														1									
Quarter 1, 2016										Ŧ			Ŧ				Ħ		 				
Quarter 2, 2016										-			Ī						 				
Quarter 3, 2016		1					1								1				\vdash	Ħ	1		\vdash
Quarter 4, 2016	-									▔			i	\vdash			H	⊢	 	Ħ			<u> </u>
Quarter 1, 2017		1					1								 				\vdash		 		\vdash
Quarter 2, 2017	-												i	\vdash			H		 				<u> </u>
Quarter 3, 2017	-									=			i	\vdash			H		 	Ħ			<u> </u>
Vanie 3, 2011	_																	_		_			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

BETA ACTIVITY Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2017 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 2, 2021 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 3, 2006 CALCIUM Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2006 CALCIUM Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010		D D	* *	S	c	c 1	_											LRG/	-		
BETA ACTIVITY Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2004 Quarter 3, 2006 CAUCIUI 3, 2003 Quarter 3, 2006 CAUCIU 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2006 CAUCIU 5, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2006 CAUCIU 7, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 3, 2006 CAUCIU 1, 2007 Quarter 4, 2004 Quarter 3, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010	90 393	ם ם	U	ی	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 BROMIDE Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2010		389 390	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 BROMIDE Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2006 CALCIUM Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2006 CALCIUM Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2006 CALCIUM Quarter 3, 2006 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2004 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2004 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010																					
Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2021 BROMIDE Quarter 2, 2021 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2006 CALCIUM Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2006 CALCIUM Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2006 CALCIUM Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2009 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2010	_										_							_			
Quarter 3, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2021 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2006 CALCIUM Quarter 1, 2005 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2006 CALCIUM Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2009 Quarter 4, 2010								_			•							-			
Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2021 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2004 Quarter 3, 2006 ** CALCIUM Quarter 1, 2003 Quarter 4, 2003 Quarter 2, 2004 ** Quarter 1, 2005 Quarter 3, 2006 ** CALCIUM Quarter 1, 2005 Quarter 4, 2003 Quarter 2, 2004 ** Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010									-												
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 1, 2005 Quarter 3, 2006 X* Quarter 1, 2007 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 4, 2010	-							=							-	=		-			
Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 2, 2021 BROMIDE Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2006 CALCIUM Quarter 2, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2006 CALCIUM Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 1, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010	+							=		_						Ī		Ŧ			<u> </u>
Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2006 CALCIUM Quarter 2, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2005 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2009 Quarter 1, 2009 Quarter 4, 2010	+																				
Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2001 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2004 Quarter 1, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010	_		t																		
Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2003 Quarter 1, 2003 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010																					
Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 1, 2021 BROMIDE Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010																					
Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2021 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 1, 2005 Quarter 2, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010											•				•						
Quarter 1, 2021 Quarter 2, 2021 BROMIDE Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010																					
Quarter 2, 2021 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2006 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 1, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010											•										
BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 1, 2003 Quarter 3, 2006 CALCIUM Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010	4																				
Quarter 1, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010											•										_
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2006 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010																					
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2006 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010			\dashv																		\vdash
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010			\dashv																		
Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010			\dashv																		
Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			\dashv																		
Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010			\dashv																		
Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010			十																		
CALCIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 ** Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	F	*	7																		
Quarter 2, 2003																					
Quarter 3, 2003	ŧ	*																			
Quarter 4, 2003	F	*								*											
Quarter 1, 2004	F	*																			
Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010										*							*				
Quarter 3, 2004										*		*					*				
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010										*							*				
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010										*							*				
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	-	不								*							*				
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	_									*							*				
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	_									*							*				
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	+									*							*				
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	+									*							*				
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	+									*							*				
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	+									*							*				
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	-		-							*							*				
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	+									*							*				
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	+		\dashv							*							*				\vdash
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010	+		+							*							*				
Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010	\top		7							*							*				
Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010	\top		1							*							*				
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			T							*							*				
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			T							*							*				
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010		L1								*							*				
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010										*							*				
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010										*							*				
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010										*							*				
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010										*							*				
Quarter 3, 2010 Quarter 4, 2010		\bot								*							*				
Quarter 4, 2010		\perp								*							*				<u> </u>
		$\perp \downarrow \perp$								*							*				<u> </u>
	—	\rightarrow	_							*							*				<u> </u>
Quarter 1, 2011	—		_							*	4				Ш		*				<u> </u>
Quarter 2, 2011	—	\rightarrow	_							*	*						*				<u> </u>
Quarter 3, 2011	+	-	_							*							*				<u> </u>
Quarter 4, 2011	+	-	_							*							*				<u> </u>
Quarter 1, 2012	+	-	_							*							*				<u> </u>
Quarter 2, 2012	+	\dashv	_							*							*				<u> </u>
Quarter 3, 2012										*					Щ		木	_			_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*	L.						*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017		<u> </u>	<u> </u>		<u> </u>		<u> </u>	*		<u> </u>	<u> </u>	<u> </u>		<u> </u>	*	<u> </u>							
Quarter 3, 2017		<u> </u>	<u> </u>		<u> </u>		<u> </u>	*		<u> </u>	<u> </u>	<u> </u>		<u> </u>	*	<u> </u>							
Quarter 4, 2017			<u> </u>					<u> </u>			<u> </u>	*		<u> </u>	<u> </u>				*				
Quarter 1, 2018		<u> </u>	<u> </u>		<u> </u>		<u> </u>	*		<u> </u>	<u> </u>	<u> </u>		<u> </u>	*	<u> </u>			Щ				
Quarter 2, 2018		<u> </u>	<u> </u>		<u> </u>		<u> </u>	*		<u> </u>	<u> </u>	<u> </u>		<u> </u>	*	<u> </u>							
Quarter 4, 2018		<u> </u>	<u> </u>		<u> </u>		<u> </u>	*		<u> </u>	<u> </u>	<u> </u>		<u> </u>	*	<u> </u>			Щ				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*							*				
Quarter 4, 2019												*	*						*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*							*				
Quarter 3, 2020												*	*						*				
Quarter 4, 2020												*	*						*				
Quarter 1, 2021												*	*						*				
Quarter 2, 2021												*							*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*							-10		*		
Quarter 2, 2017												*	*						*				
CHEMICAL OXYGEN DEMAN	D			J.																			
Quarter 1, 2003				*																			
Quarter 2, 2003							*			*							-						
Quarter 3, 2003	-			*			*			*							!		<u> </u>				$\vdash \vdash$
Quarter 4, 2003 Quarter 1, 2004	*	-	-	*	-		-	-	-	-	-	-		-	-	-	_	-	-	-			$\vdash\vdash$
Quarter 1, 2004 Quarter 4, 2004	*			*													-						\vdash
Quarter 4, 2004 Quarter 1, 2005	*	-	_		-		-	_	-	-	_	-		_	_	-	-	-	-	-			\vdash
Quarter 2, 2005	*																-						\vdash
Quarter 3, 2005	*	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	*	<u> </u>	*		<u> </u>	<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	*		
Quarter 4, 2005	*	-	-		-		-	-	-	*	-	Ë		-	-	-	1	-	-	-	_		\vdash
Quarter 1, 2006	*	_	_		_		_	_	_	<u> </u>	_	_		_	_	_	_	_	_	_			H
Quarter 2, 2006	*	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>								
Quarter 2, 2006 Quarter 3, 2006	*	-	_		-		-	_	-	-	_	-		_	_	-	-	-	-	-			\vdash
Quarter 4, 2006	Ť	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>			$\vdash \vdash$					
Quarter 4, 2006 Quarter 1, 2007	*	-	_		-		-	_	-	*	_	-		_	_	-	Ë	-	-	-			1
Quarter 2, 2007	*									*							-						\vdash
Quarter 3, 2007	*	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	 	<u> </u>	-	<u> </u>			$\vdash \vdash$					
Quarter 4, 2007	*	-	_		-		-	_	-	-	_	-		_	_	-	-	-	-	-			\vdash
	*																						
Quarter 1, 2008	*																						Н
Quarter 2, 2008																	_		_				1
Quarter 3, 2008	*																!		<u> </u>				\vdash
Quarter 4, 2008																	_		_				1
Quarter 1, 2009	*	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	!	<u> </u>	<u> </u>	4			—					
Quarter 2, 2009	*	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	!	<u> </u>	<u> </u>	*			—					
Quarter 3, 2009	*					Ц_																	$ldsymbol{ldsymbol{ldsymbol{eta}}}$

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR	S						1	URG	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394		370		388	392	395	397
CHEMICAL OXYGEN DEMANI)																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014							*																
Quarter 2, 2015																*							
Quarter 3, 2015															*								
Quarter 3, 2016			*								*												
Quarter 4, 2016																	*						
Quarter 2, 2017							*																
Quarter 3, 2017	*														*								
Quarter 4, 2017						*																	
Quarter 2, 2018														*								*	
Quarter 3, 2018												*											
Quarter 4, 2018																							*
Quarter 2, 2019					*							*		*					*				
Quarter 3, 2019												*	*						*			*	*
Quarter 4, 2019	*			*				*			*	*				*							
Quarter 1, 2020					*				*												*		
Quarter 2, 2020															*								
Quarter 4, 2020																*							
Quarter 1, 2021												*											
Quarter 2, 2021						*									*								
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 1, 2003 Quarter 4, 2003			*																				
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003			*																				
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003			* *																				
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004			* * *																				
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004			* * * *																				
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004			* * * *																				
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004			* * * * *																				
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005			* * * * * *																				
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005			* * * * * *																				
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005			* * * * * * *																				
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005			* * * * * *															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006			* * * * * * * *															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006			* * * * * * * *															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006			* * * * * * * * *															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2006			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009			*******															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010			*****															*					
Quarter 1, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010			*****															*					

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR:	S						1	URG	A								LRGA	Λ		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394	385	370	_	388	392	395	397
CHLORIDE																							
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				
Quarter 3, 2013			*																				1
Quarter 4, 2013	-		*																				-
Quarter 4, 2014	 		*																				-
Quarter 2, 2019	 		**																		*		
																					т		
CHROMIUM Quarter 4, 2002	1																						
Quarter 1, 2003	 							i															-
Quarter 2, 2003	1							i														-	-
Quarter 3, 2009	1					-	-	_															-
Quarter 1, 2019	 	-	-							-	-	-	-		-					-			\vdash
COBALT	\vdash					Ē																	
Quarter 3, 2003							*																
							_ ~			_	_		_		_					_			_
CONDUCTIVITY Operator 4, 2002										*									*				
Quarter 4, 2002 Quarter 1, 2003	├	-	*	-			-			*	-	-	-		-				*	-			₩
	├	-	*	 		_	 			*		-							*				
Quarter 2, 2003 Quarter 3, 2003	├	-	*	 		_	 	*		*		-							*				
	-		*					Ť		*									*				
Quarter 4, 2003	├		~							Α.									*				-
Quarter 1, 2004	1									*									*				-
Quarter 2, 2004	-									*									*				
Quarter 3, 2004	1		*							*									*				-
Quarter 4, 2004	├		T							*		*							*				-
Quarter 1, 2005 Quarter 2, 2005	-									Ψ.		*							*				
Quarter 3, 2005	-											•							*				
	1									*		*							*				-
Quarter 4, 2005 Quarter 1, 2006	-									Ψ.		*							*				
	-											*							*				
Quarter 2, 2006	├											*							*				-
Quarter 3, 2006 Quarter 4, 2006	-											•					*		*				
Quarter 1, 2007	1											*					т —		*				-
Quarter 2, 2007	1											т-					*		*				-
	1																*		*				-
Quarter 3, 2007 Quarter 4, 2007	 	-	-							-	-	*	-		-		*		*	-			
Quarter 1, 2008	 			1			1					*			 				*	 			
Quarter 1, 2008 Quarter 2, 2008	 	-	-							-	-	*	-		-				*	-			\vdash
Quarter 3, 2008	 	-	-							-	-	*	-		-		*		*	-			\vdash
Quarter 4, 2008	 											*					-		*				
Quarter 1, 2009	 	-	-							-	-	*	-		-				*	-			\vdash
Quarter 1, 2009 Quarter 2, 2009	 	-	-							-	-	*	-		-				*	-			\vdash
Quarter 3, 2009	 			1			1					*			 				*	 			
Quarter 4, 2009	 	-	-							-	-	*	-		-		*		*	-			
Quarter 1, 2010	 	-	-							-	-	*	-		-		<u> </u>		*	-			\vdash
Quarter 2, 2010	 			1			1					*			 				*	 			
Quarter 3, 2010	 	-	-							-	-	*	-		-				*	-			\vdash
Quarter 4, 2010	 	-	-							-	-	*	-		-				*	-			\vdash
Quarter 1, 2011	 	-	-							*	-	*	-		-				*	-			\vdash
	├	-	-	-		-	-	_	_	~		*		_	<u> </u>				*	<u> </u>			_
Quarter 2, 2011 Quarter 3, 2011		-	-	 		_	 					*							*				
Quarter 4, 2011		-	-	 		_	 					*							*				
Quarter 1, 2012	├	-	-	-		-	-	_	_		*	*		_	<u> </u>				*	<u> </u>			_
Quarter 1, 2012 Quarter 2, 2012		-	-	 		_	 				~	*							*				₩
Quarter 3, 2012 Quarter 3, 2012		-	-	 		_	 					*							*				₩
Quarter 3, 2012	_			_	_	_	_	_	_	_	_		_	_		_	_		· T				_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	A								LRGA	Α		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394		370	373	388	392	395	397
CONDUCTIVITY		•					•						•					•	•				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014	-											*							*				
Quarter 4, 2014 Quarter 1, 2015												*							*				-
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				-
Quarter 1, 2016												*							*				
Quarter 2, 2016																			*				
Quarter 3, 2016												*							*				
Quarter 4, 2016																			*				
Quarter 1, 2017																			*				
Quarter 2, 2017						L											L		*				
Quarter 3, 2017																			*				
Quarter 4, 2017																			*				
Quarter 1, 2018																			*				
Quarter 2, 2018																			*				
Quarter 3, 2018																			*				
Quarter 4, 2018																			*				
Quarter 1, 2019																			*				<u> </u>
Quarter 2, 2019																			*				
Quarter 3, 2019												4							*				-
Quarter 4, 2019												*							*				
Quarter 1, 2020												*							*	- JE			-
Quarter 2, 2020	-											*							*	*			
Quarter 3, 2020 Quarter 4, 2020												*							*				-
Quarter 1, 2021												*							*				
Quarter 2, 2021												*							*				-
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																	L.	<u> </u>	*	L.			
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005		<u> </u>											<u> </u>				*	*	*	*	*		
Quarter 1, 2006		<u> </u>											<u> </u>				*	*	*	*	*		
Quarter 2, 2006		<u> </u>					<u> </u>						<u> </u>				*	*	*	*	*		
Quarter 3, 2006		<u> </u>					<u> </u>			al.		al.	<u> </u>				*	*	*	*	*		
Quarter 4, 2006		<u> </u>					<u> </u>			*		*	<u> </u>				*	<u> </u>	*				
Quarter 1, 2007		<u> </u>				<u> </u>						10	<u> </u>				<u> </u>		*				<u> </u>
Quarter 2, 2007						<u> </u>				*		*					<u> </u>		*				<u> </u>
Quarter 3, 2007							<u> </u>			*		*							*				
Quarter 4, 2007						<u> </u>						*					<u> </u>		*				<u> </u>
Quarter 1, 2008		<u> </u>										*	<u> </u>					<u> </u>	*				
Quarter 2, 2008		<u> </u>					<u> </u>					*	<u> </u>					<u> </u>	*				
Quarter 3, 2008		<u> </u>					<u> </u>			al.		*	<u> </u>				_	<u> </u>	*				
Quarter 4, 2008		<u> </u>					<u> </u>			*		*	<u> </u>					<u> </u>	*				
Quarter 1, 2009		<u> </u>					<u> </u>					*	L.					<u> </u>	*				
Quarter 2, 2009						_						*	*				_		*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR	S						1	URG	4								LRG	Α.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 3, 2009												*	*						*				
Quarter 4, 2009	1											*	*						*				
Quarter 1, 2010	1											*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011	1									*		*							*				
Quarter 2, 2011	1											*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011	1											*							*				
Quarter 1, 2012	1										*	*	*						*				
Quarter 2, 2012	1											*							*				
Quarter 3, 2012	+									*		*	*						*				
Quarter 4, 2012	1											*	*						*				
Quarter 1, 2013	1									*		*							*				
Quarter 2, 2013	1											*							*				
Quarter 3, 2013	1											*							*				
Quarter 4, 2013	1											*							*				
Quarter 1, 2014	+											*	*						*				\vdash
Quarter 2, 2014	+											*	<u> </u>						*				—
Quarter 3, 2014	+								*			*	*						*				-
Quarter 4, 2014	+-								-			*	*						*				┝
Quarter 1, 2015	+											*	т.						*				├
	+											*							*				├
Quarter 2, 2015	+											*							*				-
Quarter 3, 2015	+								ų.									4					-
Quarter 4, 2015	+								*			*						*	*				-
Quarter 1, 2016	-											*	4	4					*				<u> </u>
Quarter 2, 2016												*	*	*					*				Ь—
Quarter 3, 2016												*							*				<u> </u>
Quarter 4, 2016												*							*				<u> </u>
Quarter 1, 2017												*							*				Щ.
Quarter 2, 2017												*		L.,					*				Щ.
Quarter 3, 2017												*		*	*				*				<u> </u>
Quarter 4, 2017												*							*				<u> </u>
Quarter 1, 2018												*							*				<u> </u>
Quarter 2, 2018												*							*				<u> </u>
Quarter 3, 2018												*		*					*				
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019	1											*	*						*				
Quarter 4, 2019	1											*							*				
Quarter 1, 2020	1											*	*						*				
Quarter 2, 2020	1											*	*						*				
Quarter 3, 2020	1									*		*	*				*		*				
Quarter 4, 2020	1											*	*						*				
Quarter 1, 2021	1											*							*				
Quarter 2, 2021	1											*	*						*				
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003	\top	1	1			*																	
Quarter 3, 2003	T	t	t										*										\vdash
Quarter 1, 2004	+			*																			
Quarter 3, 2010	1																				*		
Quarter 2, 2013	+									*											H		\vdash
IRON										Ė													
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003	+	-	-	<u> </u>		-	**		_	*	*	*	*	<u> </u>	_		-	_			<u> </u>	_	\vdash
	+	-	-	 		_	*	*	*	*	*	*	~	 			_				 		_
Quarter 3, 2003	+	 	 			<u> </u>	木	不	*	*		不					<u> </u>						—
Quarter 4, 2003	+			<u> </u>							*			<u> </u>							<u> </u>		₩
Quarter 1, 2004	+			<u> </u>						412	*			<u> </u>							<u> </u>		₩
Quarter 2, 2004				<u> </u>						*	*			<u> </u>							<u> </u>		Щ
Quarter 3, 2004					<u> </u>		<u> </u>	<u> </u>		*		<u> </u>	<u> </u>							<u> </u>			Щ
Quarter 4, 2004				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	*		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>		丄

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Transferred Sa D D D D U S S S S S D D D D U U S D D D D	Groundwater Flow System			UCRS	S						1	URGA	4]	LRGA	A.		
Montrollery Well 808 389 390 393 396 221 222 237 248 369 372 387 391 201 348 385 370 373 388 392 395 396 396 398 3	Gradient	S				U	S	S	S	S			_	D	D	U	U	S	D				U	U
BON		386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Description	IRON																							
Descript 2,0005	Quarter 1, 2005												*											
Dauter 2, 2006 Dauter 3, 2006 Dauter 3, 2006 Dauter 4, 2007 Dauter 2, 2007 Dauter 2, 2008 Dauter 1, 2003 Dauter 1, 2003 Dauter 2, 2004 Dauter 2, 2004 Dauter 2, 2004 Dauter 2, 2005 Dauter 2, 2006 Dauter 2, 2006 Dauter 2, 2006 Dauter 2, 2006 Dauter 3, 2005 Dauter 3, 2005 Dauter 3, 2005 Dauter 3, 2006 Dauter 4, 2007 Dauter 4, 2007 Dauter 4, 2007 Dauter 4, 2009 Dauter 4, 2001 Dauter 4, 2009 Dauter 4, 2001 Dauter 5, 2007 Dauter 6, 2007 Dauter 7, 2007 Dauter 8, 2007 Dauter 8, 2007 Dauter 9, 2007	Quarter 2, 2005											*	*											
Deuter 2, 2006 Deuter 3, 2006 Deuter 4, 2007 Deuter 5, 2008 Deuter 5, 2008 Deuter 5, 2008 Deuter 6, 2009 Deuter 6, 2001 Deuter 6, 2001	Quarter 1, 2006							*																
Danter 3, 2006 Danter 1, 2007 Danter 2, 2007 Danter 2, 2008 Danter 3, 2008 Danter 1, 2003 MAGNESIUM Danter 1, 2003 Danter 4, 2003 Danter 4, 2003 Danter 4, 2003 Danter 4, 2004 Danter 2, 2004 Danter 3, 2005 Danter 3, 2005 Danter 4, 2006 Danter 4, 2007 Danter 4, 2008 Danter 1, 2007 Danter 1, 2009 Danter 2, 2009 Danter 3, 2009 Danter 4, 2001 Danter 5, 2007 Danter 6, 2007 Danter 6, 2007 Danter 7, 2007 Danter 8, 2008 Danter 9, 2008 Dan	,												*											
Description												*												
Dauter 2, 2007 Dauter 2, 2008 MAGNESTUM Dauter 1, 2003 MAGNESTUM Dauter 2, 2003 Dauter 4, 2003 Dauter 4, 2000 Dauter 2, 2004 Dauter 2, 2004 Dauter 2, 2005 Dauter 2, 2006 Dauter 2, 2006 Dauter 2, 2006 Dauter 3, 2006 Dauter 4, 2007 Dauter 4, 2009 Dauter 4, 2001 Dauter 4, 2001 Dauter 4, 2001 Dauter 4, 2001 Dauter 4, 2010 Dauter 4, 2011 Dauter 4, 2012 Dauter 4, 2012 Dauter 4, 2013												*	*											
Danter 2, 2008		+																						
Danter 3, 2008 MAGNESTIM Danter 1, 2003 ** Danter 2, 2003 ** Danter 2, 2003 ** Danter 3, 2008 ** Danter 4, 2003 Danter 4, 2005 Danter 1, 2006 Danter 1, 2006 Danter 2, 2006 Danter 2, 2006 Danter 3, 2007 Danter 3, 2006 Danter 4, 2007 Danter 4, 2008 Danter 4, 2009 Danter 4, 2001 Danter 4, 2001 Danter 4, 2011 Danter 4, 2011 Danter 4, 2012 Danter 4, 2013 Danter 4, 2013 Danter 4, 2013 Danter 4, 2013		+											*											
MAGNESIUM	` '	+																						
Pounter 2,0003	,												-											
Daurier 2, 2003 *		-		*																				
Dauter 3, 2003 *		+											*							*				
Pauriter 2,0003		+						*																—
Daurier 1, 2004 ** * * * * * * *		+																		*				
Section Sect		1	1												*									
Table Tabl		1	1												H									
Quarter 4, 2004		1	 																					
Quarter 1, 2005		1	 																					
Quarter 2, 2005		+																						_
Quarter 2,005		1	1	1											1									
Quarter 1,2006		1																						
Quarter 1,2006		+	-																					—
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 4, 2008 Quarter 1, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2012 Quarter 3, 2013 Quarter 4, 2013		+	-																					—
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 ** ** ** ** ** ** ** ** **		-																						
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 4, 2013		+	-																					
Quarter 1, 2007		1																						
Quarter 2, 2007		-																						—
Quarter 3, 2007		-																						—
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 ** ** ** ** ** ** ** ** **		-																						<u> </u>
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 6, 201		-	<u> </u>																					<u> </u>
Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013		-																						<u> </u>
Quarter 4, 2008		_																						<u> </u>
Duarter 4, 2008		4	ļ																					<u> </u>
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 4, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2010 ** ** ** ** ** ** ** ** **		4	ļ																					<u> </u>
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 W			<u> </u>																					<u> </u>
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 ** ** ** ** ** ** ** ** **																								
Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 5, 2013 Quarter 6, 2013 Quarter 6, 2013 Quarter 6, 2013 Quarter 6, 2013 Quarter 7, 2013 Quarter 6, 2013 Quarter 7, 201																								
Quarter 1, 2010 *														*										
Quarter 2, 2010																								
Quarter 3, 2010																								
Quarter 4, 2010	,													*										
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 5, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 5, 2013 Quarter 6, 2013 Quarter 7, 2013 Quarter 6, 2013 Quarter 7, 201																								
Quarter 2, 2011	Quarter 4, 2010		<u> </u>																					
Quarter 3, 2011 * * * * <	Quarter 1, 2011																							
Quarter 4, 2011 *	Quarter 2, 2011		<u> </u>										*	*						*				
Quarter 1, 2012	Quarter 3, 2011																							
Quarter 2, 2012 * * * Quarter 3, 2012 * * * Quarter 4, 2012 * * * Quarter 1, 2013 * * * Quarter 2, 2013 * * * Quarter 3, 2013 * * * Quarter 4, 2013 * * *	Quarter 4, 2011																							
Quarter 3, 2012 * * * Quarter 4, 2012 * * * Quarter 1, 2013 * * * Quarter 2, 2013 * * * Quarter 3, 2013 * * * Quarter 4, 2013 * * *	Quarter 1, 2012																							
Quarter 4, 2012 * * * * Quarter 1, 2013 * * * * Quarter 2, 2013 * * * * Quarter 3, 2013 * * * * Quarter 4, 2013 * * * *	Quarter 2, 2012												*											L
Quarter 1, 2013	Quarter 3, 2012												*	*										
Quarter 2, 2013	Quarter 4, 2012												*	*						*				L
Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * *	Quarter 1, 2013												*							*				
Quarter 3, 2013	Quarter 2, 2013	1	i –										*							*				
Quarter 4, 2013 * * *	Quarter 3, 2013	1	i –										*							*				
	Quarter 4, 2013	1											*							*				
	Quarter 1, 2014	1	t																*	*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	A								LRG	١.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 2, 2014												*	*						*				
Quarter 3, 2014												*	4						*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015 Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*		*					*				
Quarter 1, 2017												*		*					*				
Quarter 2, 2017												*											
Quarter 3, 2017												*		*									
Quarter 4, 2017												*							*				
Quarter 1, 2018												*	*						*				
Quarter 2, 2018												*											
Quarter 3, 2018												*											
Quarter 4, 2018												*	*	*					*				
Quarter 1, 2019												*		*					*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*	*						*				
Quarter 4, 2019												*	*						*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*	*						*				
Quarter 3, 2020												*	*						*				
Quarter 4, 2020												*	*						*				
Quarter 1, 2021												*	*						*				
Quarter 2, 2021												*	*						*				
MANGANESE																					*		
Quarter 4, 2002							*	*													不		
Quarter 3, 2003 Quarter 4, 2003							*	*															
Quarter 1, 2004							*	***															
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*				<u> </u>				<u> </u>		<u> </u>		<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 2, 2007			*				*						<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 3, 2007			*				*				<u> </u>		<u> </u>	-	<u> </u>		-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2007			*			-W			<u>ж</u>								_						
Quarter 1, 2008	*		*	4		*			*				- VE				<u> </u>		- VE	- VE			
Quarter 2, 2008	*		*	*		*							*				*		*	*			<u> </u>
Quarter 3, 2008 Quarter 4, 2008			*	*		*	*	*	*				*				*	*	*	*			
			*	*		*	*	*	*				*	*			_	*		*			
Quarter 1, 2009			*	*		*	不	*	*				不	不			*	*	*	*			
Quarter 3, 2009 Quarter 4, 2009			*	Α		*			*								⊢*	*	~	*			
Quarter 1, 2010	*		*			<u> </u>			*								-	_		*			
Quarter 2, 2010	*		*	*		_	_		*		_		*	 	_		*	*	_	*	_	_	_
Quarter 3, 2010	*		*	*		*	-		<u> </u>		-		H		-		*	*	*	*	 	 	
Z	Ë					Ë											Ë	Ė	Ė	Ė			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Graeffect See See See See See See See See See Se	Groundwater Flow System		,	UCRS	S						1	JRGA	4]	LRGA	Λ		
DNIADATION-REPUICTION POTENTIAL	Gradient	S				U	S	S	S	S				D	D	U	U	S	D				U	U
Quanter 4, 2010 Quanter 4, 2011 Quanter 2, 2011 Quanter 3, 2011 Quanter 3, 2011 Quanter 3, 2011 Quanter 4, 2012 Quanter 3, 2012 Quanter 3, 2012 Quanter 3, 2012 Quanter 4, 2013 Quanter 4, 2013 Quanter 4, 2013 Quanter 4, 2013 Quanter 4, 2014 Quanter 6, 2014 Quanter 7, 2014 Quanter 6, 2014 Quanter 6, 2014 Quanter 7, 2014 Quanter 6, 2014 Quanter 7, 2	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2011	OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 2, 2011	Quarter 4, 2010			*					*			*			*			*	*	*	*			
Damer 4, 2011 Damer 4, 2011 Damer 5, 2012 Damer 6, 2013 Damer 6, 2014 Damer 6, 2013 Damer 6, 2014 Damer	Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Deuter 1, 2011	Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Dauter 1, 1912	Quarter 3, 2011	*		*	*			*	*		*			*		*		*	*	*	*			
Desirer 2, 2012	Quarter 4, 2011	*		*				*				*						*	*		*			
Desire 1, 2012 Desire 1, 2013 Desire 1, 2013 Desire 2, 2014 Desire	Quarter 1, 2012				*		*		*		*													
Double 4, 2012 Double 4, 2013 Double 2, 2013 Double 2, 2013 Double 3, 2013 Double 3, 2013 Double 4, 2013 Double 4, 2013 Double 2, 2013 Double 4, 2013 Double 4, 2014 Double	Quarter 2, 2012											*												
Danter 1, 2013		*		*				*																
Damer 2, 2013											*							*		*				
Damer 2013	, ,						*	4	*						*			4		4				
Quarter 1, 2013	· ·			.			.		ı.		ı.	*										*		
Danter 1, 2014		本										- JL	- JE		4							- W		
Danter 2, 2014		JE.							不		不													
Quarter 3, 2014													不		*									
Daumer 4, 2014								т.		т		т		т-								т —		
Quarter 1, 2015 *** * * * * * * * * * * * * * * * * *							-					*		*								*		
Quarter 2, 2015 ** * * * * * * * * * * * * * * * * *	, ,		 			*	*	*	*	*			*		*	*	*						*	*
Quarter 3, 2015									<u> </u>	<u> </u>			<u> </u>	Ė										
Quarter 4, 2015 ## # # # # # # # # # # # # # # # # #	Quarter 3, 2015								*	*	*			*										
Quarter 1, 2016	,											Ė			Ė									
Quarter 2, 2016 * * * * * * * * * * * * * * * * * * *	Quarter 1, 2016											*												
Quarter 3, 2016	Quarter 2, 2016			*											*		*				*	*		
Quarter 1, 2017	Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 2, 2017 * * * * * * * * * * * * * * * * * * *	Quarter 4, 2016	*		*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 4, 2017 ** * * * * * * * * * * * * * * * * *	Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
Quarter 1, 2017 * * * * * * * * *	Quarter 2, 2017	*		*	*	*												*			*	*		
Quarter 1, 2018 * * * * * * * * * * * * * * * * * * *	Quarter 3, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 2, 2018	Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	l
Quarter 3, 2018	Quarter 1, 2018	*		*	*	*	*												*		*	*		
Quarter 4, 2018	Quarter 2, 2018	*		*		*												*	*		*	*	*	
Quarter 1, 2019	Quarter 3, 2018							*	*	*													*	
Quarter 2, 2019	Quarter 4, 2018										*			*		*								
Quarter 3, 2019												*												
Quarter 4, 2019	, ,												*											
Quarter 1, 2020							*	*	*			*			*									
Quarter 2, 2020							4	<u>.</u>	¥		不					不								*
Quarter 3, 2020											*				*	*								*
Quarter 4, 2020								~	•	•	•			~	*	~	•							
Quarter 1, 2021									*						*									<u> </u>
Quarter 2, 2021						-		*		*	*			*	-	*						т —		*
PCB-1016 Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010	· / ·					*						*	*		*							*		
Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010	-			-			-	-	-	-	-		-	-				-	-			-	-	
Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 ** ** ** ** ** ** ** *								*	*	*		*							*					
Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 ** ** ** ** ** ** ** *																								
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 ** Quarter 2, 2010	Quarter 3, 2005							*				*												
Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 ** Quarter 3, 2010 ** Quarter 3, 2010 ** Quarter 3, 2010 ** Quarter 3, 2010	Quarter 1, 2006											*												
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2010 Quarter 3, 2010 ** Quarter 3, 2010 ** Quarter 3, 2010 ** Quarter 3, 2010	Quarter 2, 2006											*												
Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 ** Quarter 4, 2009 Quarter 3, 2010 ** Quarter 3, 2010	Quarter 4, 2006											*												
Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 ** Quarter 3, 2010 ** Quarter 3, 2010	Quarter 1, 2007											*	*											
Quarter 2, 2008	Quarter 2, 2007												*											
Quarter 3, 2008	Quarter 3, 2007											*												
Quarter 4, 2008	Quarter 2, 2008												*											
Quarter 1, 2009	Quarter 3, 2008																							
Quarter 2, 2009	Quarter 4, 2008																							
Quarter 3, 2009	Quarter 1, 2009																							
Quarter 4, 2009	Quarter 2, 2009											*												
Quarter 1, 2010	Quarter 3, 2009											*												
Quarter 2, 2010	Quarter 4, 2009											*												
Quarter 3, 2010 *	Quarter 1, 2010											*												
	Quarter 2, 2010											*												
Quarter 4, 2010 *	Quarter 3, 2010											*												
	Quarter 4, 2010											*												
		_																						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	Α.								LRGA	A.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394	385	370	_	388	392	395	
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006																		*					
pH																							
Quarter 4, 2002																	*						
Quarter 2, 2003																	*						1
Quarter 3, 2003	i																*						
Quarter 4, 2003							*										*						<u> </u>
Quarter 1, 2004							*										*						1
Quarter 2, 2004																	*						<u> </u>
Quarter 3, 2004	i																*						
Quarter 4, 2004																	*						<u> </u>
Quarter 3, 2005	1									*							*				*		
Quarter 4, 2005										*							*						
Quarter 1, 2006	Ī																*						
Quarter 2, 2006	1																*						
Quarter 3, 2006	1																*						
Quarter 3, 2007	1																*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
Quarter 4, 2014																					*		
Quarter 2, 2016																		*	*				
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				Щ
Quarter 3, 2013																			*				Щ
RADIUM-226																							
Quarter 4, 2002	<u> </u>		*										*	*							*		<u> </u>
Quarter 2, 2004	1																		*				Щ
Quarter 2, 2005	<u> </u>								*		L.												<u> </u>
Quarter 1, 2009	<u> </u>	<u> </u>									*												Щ
Quarter 3, 2014	<u> </u>		L.						*		L.	*											<u> </u>
Quarter 4, 2014	<u> </u>		*				914			414	*	41.						*					<u> </u>
Quarter 1, 2015	<u> </u>		*				*			*		*						*					Щ
Quarter 2, 2015	<u> </u>		*				*			*		*						*					Щ
Quarter 3, 2015	1	1	*				l				I		l		l								l

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		,	UCRS	S						1	URGA	4							_	LRG	Α.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
RADIUM-226																							
Quarter 4, 2015					*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016																		*					
Quarter 4, 2016	*		*			*			*				*		*					*		*	
Quarter 1, 2017			*							*	*							*					
Quarter 2, 2017																	*	*		*	*		
Quarter 3, 2017					*				*	*	*									*			
Quarter 4, 2017																		*		*			
Quarter 1, 2018												*						*		*			
Quarter 4, 2018													*				*						
Quarter 1, 2020																	*						
Quarter 2, 2020															*								
RADIUM-228																							
Quarter 2, 2005																							$\overline{}$
Quarter 3, 2005																							1
Quarter 4, 2005																							t
Quarter 1, 2006																							t
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							t
Quarter 2, 2003																							t
Quarter 3, 2003																			<u> </u>				+
Quarter 4, 2003																							+
SODIUM																							
Quarter 4, 2002																			*		*		_
Quarter 1, 2003				*					*	*	*												+
Quarter 2, 2003				*						*	*		*										+
Quarter 3, 2003							*	*		*													+
Quarter 4, 2003							*		*	*													+-
Quarter 1, 2004									*	*				*									+-
Quarter 2, 2004										*													+-
Quarter 3, 2004										*									┢				₩
Quarter 4, 2004									*	*									├─				₩
Quarter 1, 2005										*									*				₩
										*									*				₩
Quarter 2, 2005									*	*									*				₩
Quarter 3, 2005																			*				₩
Quarter 4, 2005									*	*									<u> </u>				Ь
Quarter 1, 2006									*	*									Ь—				—
Quarter 2, 2006									*										<u> </u>				Щ
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						Ш
Quarter 1, 2007									*			*											
Quarter 2, 2007									*	*													
Quarter 3, 2007									*														
Quarter 4, 2007									*														
Quarter 1, 2008									*														
Quarter 3, 2008												*											
Quarter 4, 2008									*	*													T
Quarter 1, 2009									*			*							*				t
Quarter 3, 2009												*											+
Quarter 4, 2009		 	 	 	-		-		*			*				-			\vdash	-	1		+
Quarter 1, 2010									_			*							\vdash				\vdash
Quarter 2, 2010		1	1	1						*		*							\vdash		1		+-
		-	-	-		-				*		٠,٠					-		\vdash		-		₩
Quarter 3, 2010						<u> </u>			JI.					<u> </u>			<u> </u>		—				₩
Quarter 4, 2010									*	*									—				₩
Quarter 1, 2011				<u> </u>					ų.	*									—		<u> </u>		₩
																			1			i	1
Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2011									*										*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Monitoring Well 386 389 390 393 396 221 222 223 224 384 369 372 387 391 220 394 385 370 373 388 392 395 39	Groundwater Flow System			UCRS	S						1	URG	A								LRGA	Λ		
SODIEN	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2001 Quarter 2,	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Owner 3, 2012 Owner 4, 2012 Owner 1, 2013 Owner 2, 2013 Owner 2, 2013 Owner 3, 2013 Owner 3, 2013 Owner 3, 2013 Owner 3, 2013 Owner 4, 2014 Owner 4, 2015 Owner 4, 2015 Owner 5, 2016 Ow	SODIUM																							
Quarter 1, 2012 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2019 Quarter 2, 2009 Quarter 2, 200	Quarter 1, 2012											*												
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 201	Quarter 3, 2012												*							*				
Owner 2, 2013 Owner 4, 2013 Owner 4, 2014 Owner 2, 2015 Owner 3, 2016 Owner 2, 2015 Owner 2, 2016 Owner 2, 2017 Owner 2, 2016 Owner 2, 2017 Owner 2, 2019 Owner 2, 2007 Ow	Quarter 4, 2012												*											
Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2010 Quarter 2, 2000 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 200	Quarter 1, 2013										*		*							*				
Ounter 4, 2013 Ounter 2, 2014 Ounter 2, 2015 Ounter 2, 2016 Ounter 2, 2017 Ounter 2, 2018 Ounter 2, 2018 Ounter 2, 2017 Ounter 2, 2018 Ounter 2, 2017 Ounter 2, 2018 Ounter 2, 2019 Ounter 2, 2010 Ounter 2, 2000 Ounter 2, 2001 Ounter 2, 2000 Ounter	Quarter 2, 2013												*											
Ounter 1, 2014 Ounter 2, 2014 Ounter 3, 2014 Ounter 3, 2014 Ounter 3, 2014 Ounter 3, 2015 Ounter 2, 2015 Ounter 2, 2015 Ounter 2, 2015 Ounter 2, 2015 Ounter 3, 2015 Ounter 3, 2016 Ounter 2, 2016 Ounter 2, 2017 Ounter 2, 2019 Ounter 3, 2018 Ounter 4, 2019 Ounter 4, 2010 Ounter 4, 2020 Ounter 5, 2020 Ounter 6, 2020 Ounter 7, 2020 Ounter	Quarter 3, 2013												*							*				
Ounter 2, 2014 Ounter 2, 2014 Ounter 3, 2014 Ounter 4, 2014 Ounter 4, 2015 Ounter 2, 2016 Ounter 2, 2017 Ounter 2, 2017 Ounter 2, 2018 Ounter 2, 2018 Ounter 2, 2019 Ounter 2, 2009 Ounter	Quarter 4, 2013																			*				
Ounter 4, 2014 Ounter 1, 2015 Ounter 2, 2016 Ounter 3, 2016 Ounter 2, 2016 Ounter 2, 2016 Ounter 3, 2016 Ounter 2, 2017 Ounter 2, 2019 Ounter 3, 2018 Ounter 4, 2019 Ounter 4, 2000 Ounter 6, 2000 Ounter	Quarter 1, 2014																							
Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2009 Quarter 2,	Quarter 2, 2014									*		*												
Quarter 1, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2018 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4,	Quarter 3, 2014												*							*				
Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 2, 2016 Quarter 1, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 1, 2019 Quarter 2, 2018 Quarter 1, 2019 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2020 Quarter 3, 2009 Quarter 2, 2020 Quarter 2, 2035 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 200										*	*		*											
Quarter 3, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2020 Quarter 4, 2020 Quarter 2, 2021 Quarter 3, 2020 Quarter 4, 2030 Quarter 2, 2030 Quarter 4, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2000 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2009 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2009 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000													L.	*										
Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2009 Quarter 1, 2020 Quarter 2, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2000 Quarter 4, 200																								
Quanter 2, 2016 Quanter 3, 2016 Quanter 1, 2017 Quanter 2, 2018 Quanter 3, 2018 Quanter 3, 2018 Quanter 3, 2018 Quanter 2, 2019 Quanter 3, 2020 Quanter 3, 2020 Quanter 4, 2020 Quanter 4, 2020 Quanter 3, 2020 Quanter 3, 2020 Quanter 4, 2020 Quanter 5, 2021 Quanter 6, 2021 Quanter 7, 2021 Quanter 7, 2021 Quanter 7, 2021 Quanter 7, 2021 Quanter 8, 2020 Quanter 9, 2021 Quanter 9, 202										- JL														
Quarter 1, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 1, 2017 Quarter 2, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2018 Quarter 1, 2019 Quarter 2, 2020 Quarter 2, 2021 Quarter 2, 2020 Quarter 2,										*	*	4	*											<u> </u>
Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 2, 2019 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 2, 2005 Quarter 4, 2000 Quarter 2, 2001 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 200																								*
Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 1, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 4, 2020 Quarter 1, 2021 Quarter 4, 2020 Quarter 1, 2021 Quarter 4, 2020 Quarter 2, 2021 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2021 Quarter 3, 2021 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2020 Quarter 2, 2021 Quarter 3, 2021 Quarter 3, 2021 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2003 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2003 Quarter 6, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 9, 202											.			- NE					- W					不
Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 1, 2019 Quarter 1, 2020 Quarter 4, 2020 Quarter 5, 2021 Quarter 6, 2021 Quarter 7, 2021 Quarter 7, 2021 Quarter 7, 2021 Quarter 7, 2021 Quarter 8, 2020 Quarter 9, 2021 Quarter 9, 2022 Quarter 9, 202										*				*					*					
Quarter 3, 2018 Quarter 1, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 1, 2021 Quarter 2, 2020 Quarter 1, 2021 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 202			<u> </u>	<u> </u>	<u> </u>			<u> </u>		*	_	~		*		<u> </u>			<u> </u>		<u> </u>			\vdash
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 3, 2020 Quarter 2, 2021 Quarter 1, 2021 Quarter 2, 2021 Quarter 1, 2021 Quarter 2, 2021 Quarter 3, 2020 Quarter 3, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2023 Quarter 1, 2004 Quarter 2, 2003 Quarter 1, 2004 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 200														т-	*									
Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 2, 2021 Quarter 3, 2021 Quarter 2, 2021 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2003 Quarter 1, 2004 Quarter 2, 2003 Quarter 1, 2004 Quarter 2, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2003 Quarter 1, 2004 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 200				_	_			_						*	<u> </u>	_			_		_			\vdash
Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 2, 2021 Quarter 2, 2023 Quarter 1, 2004 Quarter 2, 2003 Quarter 1, 2004 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 200			 	-	-		-	-				 			-	-		-	-		-			\vdash
Quarter 1,2020 Quarter 2,2020 Quarter 3,2020 Quarter 4,2020 Quarter 4,2020 Quarter 4,2020 Quarter 3,2020 Quarter 4,2020 Quarter 2,2021 Quarter 2,2021 Quarter 2,2001 Quarter 1,2004 Quarter 1,2004 Quarter 1,2003 Quarter 1,2004 Quarter 1,2003 Quarter 2,2003 Quarter 1,2004 Quarter 2,2003 Quarter 2,2003 Quarter 2,2003 Quarter 2,2003 Quarter 1,2004 Quarter 1,2004 Quarter 1,2004 Quarter 1,2004 Quarter 1,2005 Quarter 2,2006 Quarter 2,2007 Quarter 2,2007 Quarter 2,2006 Quarter 2,2007 Quarter 2,2007 Quarter 2,2006 Quarter 3,2006 Quarter 3,2006 Quarter 3,2006 Quarter 2,2007 Quarter 2,2007 Quarter 2,2007 Quarter 2,2007 Quarter 3,2006 Quarter 3,2008 Quarter 3,2009 Quarter 2,2009 Quarter 2,2009 Quarter 3,2009													*											
Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 1, 2021 Quarter 1, 2021 Quarter 2, 2003 Quarter 1, 2004 Quarter 2, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 200												*								*				\vdash
Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2021 Quarter 2, 2021 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009														*										
Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2002 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 2, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 200												*	*											
Quarter 2, 2021 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2003 Quarter 1, 2004 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 4, 2007 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 200													*											
STRONTIUM-90 Quarter 2, 2003 Quarter 4, 2002 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 1, 2005 Quarter 1, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Q	Quarter 1, 2021												*	*										
Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009	Quarter 2, 2021												*											
Quarter 1, 2004	STRONTIUM-90																							
SULFATE Quarter 4, 2002 Quarter 1, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 2, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 5, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 9, 2007 Quarter 9, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarte	Quarter 2, 2003																							
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2007 Quarter 4, 2006 Quarter 5, 2007 Quarter 5, 2007 Quarter 5, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 200	Quarter 1, 2004																							
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2007 Quarter 6, 2007 Quarter 7, 2007 Quarter 7, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 5, 2008 Quarter 4, 2008 Quarter 5, 2009 Quarter 6, 200																								
Quarter 2, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009																								
Quarter 3, 2003																		*						
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009																			*					<u> </u>
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 ** ** ** ** ** ** ** ** **																								
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 ** ** ** ** ** ** ** ** ** ** ** ** *																			- W					-
Quarter 3, 2004																		*			*			
Quarter 4, 2004										*								_			Ψ.			
Quarter 1, 2005										т —														
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 ** ** ** ** ** ** ** ** ** ** ** ** **	•																	*						
Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 ** * * * * * * * * * * * * * * * * *																								
Quarter 4, 2005											•		4	.				*	.	ŧ				
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 ** * * * * * * * * * * * * * * * * *																					*			
Quarter 2, 2006																		*						
Quarter 3, 2006										*														
Quarter 4, 2006 * * * * * * * * * * * * * * * * * * *			 	-	-			-				 			 	-								\vdash
Quarter 1, 2007 * * * * * * * * * * * * * * * * * * *																								
Quarter 2, 2007																					*			
Quarter 3, 2007 * * * * * * * * * * * * * * * * * * *																								
Quarter 4, 2007			 	-	-		-	-				 			-	-			-					\vdash
Quarter 1, 2008			 	-	-		-	-				 			-	-			*					\vdash
Quarter 2, 2008 * * * * * * * * * * * * Quarter 3, 2008 * * * * * * * * * * * * * Quarter 4, 2008 * * * * * * * * * * * * * * * * * * * Quarter 1, 2009 * * * * * * * * * * * * * * * * * * *																								\vdash
Quarter 3, 2008 * * * * * * * * Quarter 4, 2008 * * * * * * * * * * Quarter 1, 2009 * * * * * * * * * * * * * Quarter 2, 2009 * * * * * * * * * * * * * * * * * * Quarter 3, 2009 * * * * * * * * * * * * * * * * * * *	` '								*			*			*									\vdash
Quarter 4, 2008 * * * * * * * * Quarter 1, 2009 * * * * * * * * * Quarter 2, 2009 * * * * * * * * * * * * * Quarter 3, 2009 * * * * * * * * * * * * * * * * * * *																								\vdash
Quarter 1, 2009 * * * * * * * * Quarter 2, 2009 * * * * * * * * * * Quarter 3, 2009 * * * * * * * * * * * * * * * * * * *																								\vdash
Quarter 2, 2009 * * * * * * * * Quarter 3, 2009 * * * * * * * * Quarter 4, 2009 * * * * * * * * * * * * * * * * * * *			 	-	-		-	-				 			-	-			*		-			\vdash
Quarter 3, 2009 * * * * * * Quarter 4, 2009 * * * * * *										*											*			\vdash
Quarter 4, 2009 * * * * * * * * *																								\vdash
		*	-	-	-			-				-			-	-					-			
										*														\vdash
															_									

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Monitoring Well Side Side Side Side Side Side Side Side	Groundwater Flow System			UCRS	S						1	URGA	A								LRGA	Α.		
SULEATE	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Quanter 2, 2010 Q	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2010 Q	SULFATE																							
Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 201	Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quanter 4, 2010 Quanter 1, 2011 Quanter 2, 2011 Quanter 2, 2011 Quanter 3, 2011 Quanter 4, 2011 Quanter 4, 2012 Quanter 4, 2012 Quanter 4, 2012 Quanter 4, 2013 Quanter 4, 2014 Quanter 4, 2014 Quanter 4, 2014 Quanter 4, 2014 Quanter 4, 2015 Quanter 4, 2014 Quanter 4, 2014 Quanter 4, 2015 Quanter 4, 2016 Quanter 4, 2017 Quanter 4, 2016 Quanter 4, 2017 Quanter 4, 2016 Quanter 4, 2016 Quanter 4, 2017 Quanter 4, 2017 Quanter 4, 2017 Quanter 4, 2016 Quanter 4, 2017 Quanter 4, 2017 Quanter 4, 2017 Quanter 4, 2016 Quanter 4, 2017 Quanter 4, 2017 Quanter 4, 2017 Quanter 4, 2016 Quanter 4, 201	Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 1, 2011		*									*		*	*				*	*	*				
Ounter 2, 2011																								
Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2007 Quarter 2, 200	` '														*						*			
Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2018 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2018 Quarter 1, 2017 Quarter 2, 2018 Quarter 1, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2010 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2001 Quarter 2, 2000 Quarter 2, 200																								
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2019 Quarter 2, 201																								
Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 1, 2016 Quarter 3, 2017 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2016 Quarter 4, 2017 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2016 Quarter 4, 2017 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2000 Quarter 6, 200																								
Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005																								
Ounter 1, 2013 Ounter 1, 2013 Ounter 2, 2013 Ounter 3, 2014 Ounter 3, 2014 Ounter 3, 2014 Ounter 3, 2014 Ounter 4, 2015 Ounter 4, 2015 Ounter 4, 2016 Ounter 2, 2016 Ounter 2, 2016 Ounter 3, 2016 Ounter 3, 2016 Ounter 4, 2017 Ounter 4, 2017 Ounter 4, 2017 Ounter 4, 2016 Ounter 4, 2017 Ounter 5, 2017 Ounter 6, 2017 Ounter 7, 2018 Ounter 7, 2018 Ounter 7, 2019 Ounter 7, 2009 Ounter																								
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 6, 200	-	*																						
Quarter 2, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2015 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2009 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 200																								
Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 1, 2016 Quarter 4, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 1, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 200	Quarter 1, 2013													*				*	*					
Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2019 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 6, 2000 Quarter 7, 2000 Quarter 7, 2000 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2006 Quarter 6, 2006 Quarter 6, 200	Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2000 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 5, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 7, 2006 Quarter 8, 2006 Quarter 8, 2006 Quarter 9, 200	Quarter 3, 2013										*		*	*	*			*	*	*	*			
Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 200	Quarter 4, 2013										*		*	*				*	*	*	*			
Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 6, 200	Quarter 1, 2014								*		*		*	*				*	*	*	*			
Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2020 Quarter 4, 2030 Quarter 5, 2030 Quarter 6, 2030 Quarter 6, 2030 Quarter 6, 2030 Quarter 7, 2030 Quarter 6, 2030 Quarter 7, 2030 Quarter 7, 2030 Quarter 1, 2030 Quarter 1, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 6, 203	Quarter 2, 2014										*		*	*	*			*	*	*	*			
Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 201	Quarter 3, 2014								1	1	*	1	*	*	*	1		*	*	*	*			
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 4, 2030 Quarter 5, 2030 Quarter 6, 2030 Quarter 6, 2030 Quarter 7, 2030 Quarter 1, 2030 Quarter 1, 2030 Quarter 2, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 1, 2030 Quarter 1, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 203	, ,		t										*											
Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 8, 2006 Quarter 8, 200								-	1	1		1			1	1								
Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2010 Quarter 6, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 1, 2021 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2005 Quarter 3, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 200												*			*	*								
Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2004 Quarter 5, 2004 Quarter 6, 2005 Quarter 7, 2004 Quarter 7, 2005 Quarter 7, 2005 Quarter 7, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 8, 2006 Quarter 8, 2006 Quarter 8, 2006 Quarter 9, 2006 Quar									*															
Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2010 Quarter 3, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 1, 2010 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 200			1						-	 		 				-			-					
Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 ***********************************									*										*					
Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 4, 2016 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2000 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 200																*								
Quarter 4, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 ** ** ** ** ** ** ** ** ** ** ** ** **																								
Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 1, 2018 Quarter 2, 2019 Quarter 1, 2018 Quarter 2, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 1, 2020 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 ** ** ** ** ** ** ** ** ** ** ** ** **									不															
Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 ** * * * * * * * * * * * * * * * * *																								
Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2021 Quarter 2, 2021 TECHNETIUM-99 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 1, 2000 Quarter 2, 2001 TECHNETIUM-90 Quarter 1, 2000 Quarter 1, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2001 ** ** ** ** ** ** ** ** **									46															
Quarter 1, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 1, 2019 Quarter 2, 2019 ** * * * * * * * * * * * * * * * * *																								
Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 ** * * * * * * * * * * * * * * * * *									*															
Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 ** * * * * * * * * * * * * * * * * *																*								
Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2019 ** * * * * * * * * * * * * * * * * *																								
Quarter 1, 2018												*		*										
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 ## ## ## ## ## ## ## ## ## ## ## ## ##									*							*								
Quarter 2, 2019																								
Quarter 3, 2019	,																							
Quarter 4, 2019	Quarter 2, 2019																							
Quarter 1, 2020	Quarter 3, 2019								*							*								
Quarter 2, 2020	Quarter 4, 2019			*																				
Quarter 3, 2020	Quarter 1, 2020								*		*		*	*	*	*		*	*	*	*	*		
Quarter 4, 2020	Quarter 2, 2020								*		*		*	*	*	*		*	*	*	*	*		
Quarter 1, 2021	Quarter 3, 2020			*							*		*	*				*	*	*	*	*		
Quarter 2, 2021	Quarter 4, 2020										*		*	*				*	*	*	*			
TECHNETIUM-99 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 * * * * * * * * * * * * * * * * * *	Quarter 1, 2021										*		*	*				*	*	*	*			
Quarter 4, 2002	Quarter 2, 2021								*		*		*	*		*		*	*	*	*	*		
Quarter 1, 2003	TECHNETIUM-99																							
Quarter 2, 2003	Quarter 4, 2002																			*				
Quarter 3, 2003 *	Quarter 1, 2003													*				*		*				
Quarter 4, 2003	Quarter 2, 2003	*		*							*			*				*						
Quarter 4, 2003 *	Quarter 3, 2003			*										*				*			*			
Quarter 1, 2004 *	Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 2, 2004 *	Quarter 1, 2004			*									*	*				*		*				
Quarter 3, 2004 *				*									*	*				*		*	*			
Quarter 4, 2004 *				*					1	1		1			1	1			1					
Quarter 1, 2005 *			t								*			*					*					
Quarter 2, 2005 * <td></td> <td>*</td> <td></td> <td></td> <td></td>																					*			
Quarter 3, 2005 * <td>` '</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td> </td> <td></td> <td>1</td> <td>_</td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td>	` '		1						 	 		1	_		1	1			*	*				
Quarter 4, 2005 * <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>—</td> <td>-</td> <td></td> <td><u> </u></td> <td><u> </u></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td><u> </u></td> <td><u> </u></td> <td>—</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-			—	-		<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>	—							
Quarter 1, 2006 * * * * * * Quarter 2, 2006 * * * * * * * * Quarter 3, 2006 *		-	-				-	-	-	-		-	*		-	-			<u> </u>					
Quarter 2, 2006 * * * * * * * Quarter 3, 2006 *				不					<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>		*	<u> </u>					
Quarter 3, 2006 * * * * * * Quarter 4, 2006 * * * * * *		<u> </u>		L					<u> </u>	<u> </u>		<u> </u>	*		<u> </u>	<u> </u>		L	<u> </u>					
Quarter 4, 2006 * * * * * * *									ļ	ļ		ļ			ļ	ļ								
				*														*	*					
Quarter 1, 2007 * * * * * * *		*											*											
	Quarter 1, 2007			*							*			*				*		*	*			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*		-	*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*	-	*	*				*						
	 	-	т .			 	-			*	_		*	-	_		*		-		_		
Quarter 1, 2011		-	*				-			*	-		*	-	-		*	-	<u> </u>	*	-		
Quarter 2, 2011	-	<u> </u>	*			-	<u> </u>			*	 		*	-	 		*		<u> </u>	*	 		
Quarter 3, 2011		-	*				-			*	*	*	*	-	-		*	-	<u> </u>	*	-		
Quarter 4, 2011	_					_				*	*	不		-					_	JE.			
Quarter 1, 2012	-	<u> </u>	*			-	<u> </u>				<u> </u>		*	-	<u> </u>		*		<u> </u>	*	<u> </u>		
Quarter 2, 2012	-	<u> </u>	*			-	<u> </u>			*	<u> </u>	Ψ.	*	-	<u> </u>		*		*	*	<u> </u>		
Quarter 3, 2012	<u> </u>	<u> </u>	*			<u> </u>	<u> </u>			*		*	*				*		44.	4.			
Quarter 4, 2012										*	<u> </u>	*	*		<u> </u>		*		*	*	<u> </u>		
Quarter 1, 2013	<u> </u>					<u> </u>				*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			
Quarter 1, 2015			*							*	*	*	*				*			*			
Quarter 2, 2015			*							*	*		*				*			*			
Quarter 3, 2015			*							*	*	*	*				*	*	*	*			
Quarter 4, 2015			*							*	*	*	*				*	*		*			
Quarter 1, 2016			*							*	*		*				*		*	*			
Quarter 2, 2016			*			*				*			*				*	*		*			
Quarter 3, 2016			*							*		*	*				*	*		*			
Quarter 4, 2016			*							*	*		*				*			*			
Quarter 1, 2017			*							*			*				*	*		*			
Quarter 2, 2017			*							*			*				*	*		*			
Quarter 3, 2017			*							*	*		*				*	*		*			
Quarter 4, 2017			*							*		*	*				*	*		*			
Quarter 1, 2018			*							*	*		*				*	*		*			
Quarter 2, 2018			*							*	*	*	*				*	*		*			
Quarter 3, 2018			*							*		*	*				*	*		*			
Quarter 4, 2018			*							*	*	*	*				*	*		*			
Quarter 1, 2019			*							*	*	*	*				*	*		*			
Quarter 2, 2019			*							*	*	*	*	1			*	*		*			
Quarter 3, 2019			*							*	*	*	*	1			*	*		*			
Quarter 4, 2019	-	 	*			-	 			*	H	*	*		-		*	*	*	*	-		
Quarter 1, 2020			*							*		*	*	†			*	*	Ė	*			
Quarter 1, 2020 Quarter 2, 2020	_	-	*			_	-			*	-	*	*		-		*	*	-	*	-		
Quarter 3, 2020	_	-	*			_	-			*	-	*	*		-		*	*	-	*	-		
Quarter 4, 2020	_	-	*			_	-			*	-	*	*		-		*	*	-	<u>,,,</u>	-		
Quarter 1, 2021	 	-	*			 	-			*	*	*	*	-	_		*	*	-		_		
Quarter 1, 2021 Quarter 2, 2021		_	*				_			*	*	*	*					*	_				
			*								*	ボ	*					ボ					
THORIUM-230	*								*					*									
Quarter 1, 2012			- NE			_			*	_				*			<u> </u>	-	<u> </u>	-			_
Quarter 4, 2014	*	-	*				-		*	*	-		*	-	*		-	-	<u> </u>	-	-		
Quarter 3, 2015	_	-	*				-		*	*	-		*	-	*		*	-	<u> </u>	-	-		
Quarter 1, 2017			*							*							*						
THORIUM-234 Quarter 2, 2003						*			*					*									
						_			*					1			_	-	_	-			_
Quarter 4, 2007									Τ.								_						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Secondary Seco	Groundwater Flow System	Г	UCRS	3						1	URG	A								LRGA	A.		
Monifornia Well	Gradient	S			U	S	S	S	S				D	D	U	U	S	D				U	U
DOUTENE	Monitoring Well																						397
Description	TOLUENE																						
Descript (2, 2002 10	Quarter 2, 2014									*	*		*										
Descript (2, 2002 10	TOTAL ORGANIC CARBON																						
Danter 2, 2003	Quarter 4, 2002																				*		
2000 2000	Quarter 1, 2003			*						*	*							*	*		*		
Danter 4, 2003 Danter 1, 2004 Danter 1, 2004 Danter 2, 2004 Danter 1, 2004 Danter 1, 2005 Danter 2, 2005 Danter 2, 2005 Danter 2, 2006 Danter 3, 2007 Danter 3, 2001 Danter 3, 2001 Danter 3, 2001 Danter 3, 2001 Danter 4, 2005 Danter 4, 2005 Danter 4, 2005 Danter 5, 2006 Danter 1, 2007 Danter 6, 2006 Danter 1, 2007 Danter 2, 2006 Danter 1, 2007 Danter 2, 2006 Danter 1, 2007 Danter 2, 2006 Danter 3, 2001 Danter 3, 2001 Danter 3, 2001 Danter 3, 2001 Danter 4, 2005 Danter 4, 2006 Danter 4, 2008 Danter 4, 2009 Danter 6, 2009 Danter 7, 2009 Danter 6, 2009 Danter 7, 2009 Danter 7, 2009 Danter 7, 2009 Danter 8, 2009 Danter 8, 2009 Danter 9, 2009 Danter	Quarter 2, 2003									*	*		*								*		
Danter 1, 2004	Quarter 3, 2003						*	*	*	*	*	*											
Danter 2, 2004 Danter 3, 2004 Danter 9, 2005 Danter 1, 2005 Danter 1, 2005 Danter 1, 2006 Danter 1, 2006 Danter 1, 2006 Danter 1, 2006 Danter 2, 2006 Danter 3, 2007 Danter 3, 2007 Danter 3, 2007 Danter 3, 2007 Danter 4, 2005 Danter 4, 2006 Danter 4, 2008 Danter 4, 2008 Danter 4, 2008 Danter 4, 2009 Danter 6, 2001 Danter 6, 2001	Quarter 4, 2003						*		*	*													
Danter 3, 2004 Danter 4, 2004 Danter 2, 2005 Danter 2, 2005 Danter 3, 2006 Danter 4, 2005 Danter 4, 2006 Danter 3, 2007 Danter 3, 2007 Danter 3, 2007 Danter 3, 2007 Danter 4, 2008 Danter 4, 2009 Danter 5, 2009 Danter 6, 2009 Danter 6, 2009 Danter 7, 2001 Danter 7, 2001 Danter 8, 2009 Danter 9, 2009	Quarter 1, 2004									*													
Dauter 4, 2004 Dauter 1, 2005 Dauter 2, 2005 Dauter 3, 2005 Dauter 3, 2006 Dauter 4, 2006 Dauter 5, 2006 Dauter 5, 2006 Dauter 5, 2006 Dauter 6, 2006 Dauter 6, 2006 Dauter 7, 2006 Dauter 7, 2006 Dauter 8, 2006 Dauter 9, 2007 Dauter 9, 2008 Dauter 9, 2009 Dauter 9, 2001 Dauter 9, 2001	Quarter 2, 2004									*	*												
Daurier 1, 2005 Daurier 2, 2005 Daurier 3, 2005 Daurier 3, 2006 Daurier 4, 2006 Daurier 5, 2006 Daurier 6, 2006 Daurier 7, 2006 Daurier 7, 2006 Daurier 7, 2006 Daurier 8, 2007 Daurier 9, 2006 Daurier 1, 2006 Daurier 1, 2006 Daurier 1, 2007 Daurier 1, 2008 Daurier 1, 2009 Daurier 2, 2009 Daurier 1, 2009 Daurier 1, 2009 Daurier 2, 2009 Daurier 2, 2009 Daurier 1, 2009 Daurier 2, 2009 Daurier 3, 2009 Daurier 3, 2009 Daurier 4, 2009 Daurier 2, 2009 Daurier 2, 2009 Daurier 3, 2009 Daurier 3, 2009 Daurier 3, 2009 Daurier 4, 2009 Daurier 4, 2009 Daurier 4, 2009 Daurier 5, 2001 Daurier 6, 2009 Daurier 6, 2001 Daurier 8, 2009 Daurier 9, 2001 Daurier 9, 2005 Daurier 9, 2007 Daurier 9, 2006 Daurier 9, 2007 Daurier 9, 2008 Daurie	Quarter 3, 2004									*													
Damer 2,2005	Quarter 4, 2004									*													
Total Continue Tota	Quarter 1, 2005									*													
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 ** ** ** ** ** ** ** ** ** ** ** ** **	Quarter 2, 2005									*											*		
Particle 2,0006 Particle	Quarter 3, 2005									*		*									*		
Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2007 Report 1, 2007 Report 2, 2006 Quarter 3, 2007 Report 2, 2006 Report 2, 2007 Report 2, 2007 Report 2, 2008 Report 2, 2009 Report 2, 2006 Report 2, 2008 Report 2, 200	Quarter 4, 2005									*											*		
Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Region Quarter 3, 2012 Region Quarter 3, 2012 Region Quarter 3, 2012 Region Quarter 3, 2012 Region Quarter 3, 2016 Region Quarter 3, 2003 Region Region Quarter 3, 2003 Region Region Quarter 3, 2003 Region Region Quarter 3, 2004 Region Quarter 3, 2004 Region Region Quarter 3, 2005 Region Region Quarter 3, 2005 Region Region Quarter 3, 2005 Region Region Quarter 3, 2006 Region R	Quarter 1, 2006									*													
Quarter 1,2006	Quarter 2, 2006									*		*											
Quarter 1,2007	Quarter 4, 2006																*						
Quarter 2, 2010	Quarter 1, 2007	*								*													
Quarter 3, 2011	Quarter 3, 2007	*				*	*	*	*				*	*			*						
Quarter 3, 2012											*												
Quarter 3, 2016		*																					
COTAL ORGANIC HALIDES		<u> </u>																	*				
Quarter 4, 2002 Quarter 1, 2003	-																						
*																		*	*		*		
Quarter 3, 2003				*															-				
Quarter 2, 2004																							
Quarter 3, 2004	,																						
Quarter 1, 2005		*																					
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 1, 2006																							
Quarter 1, 2006																							
Quarter 2, 2006		*																					
Quarter 3, 2006																							
Quarter 1, 2006 Quarter 2, 2007 * Quarter 3, 2007 * Quarter 3, 2007 * Quarter 4, 2008 * Quarter 1, 2008 * Quarter 1, 2008 * Quarter 1, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 4, 2010 * Quarter 1, 2011 * Quarter 1, 2011	Quarter 3, 2006																						
Quarter 1, 2007	Quarter 4, 2006																*						
Quarter 2, 2007	Quarter 1, 2007	*																					
Quarter 3, 2007	Quarter 2, 2007	*																					
Quarter 4, 2007	Quarter 3, 2007	*																					
Quarter 1, 2008	Quarter 4, 2007	*																			*		
Quarter 4, 2008	Quarter 1, 2008	*																					
Puarter 4, 2008	Quarter 4, 2008	*																					
Quarter 1, 2009	Quarter 4, 2008	*																					
Puarter 2, 2009	Quarter 1, 2009	*																					
Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 4, 2010 * Quarter 1, 2011 *	Quarter 2, 2009	*																			*		
Quarter 1, 2010	Quarter 3, 2009	*																					
Quarter 1, 2010	Quarter 4, 2009	*																					
Quarter 3, 2010	Quarter 1, 2010	*																					
Quarter 4, 2010 *	Quarter 2, 2010	*																					
Quarter 1, 2011 *	Quarter 3, 2010	*																					
Quarter 1, 2011 *	Quarter 4, 2010	*																					
Quarter 3, 2013 *	Quarter 1, 2011	*																					
	Quarter 3, 2013																				*		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Graffeet S D D D U S S S S S S D D D D U S S S S	Groundwater Flow System			UCRS	3						1	URGA	4								LRGA	A		
TRICHINOSCHIENE Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2,	Gradient	S		_		U	S	S	S	S			_	D	D	U	U	S	D			_	U	U
Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 200	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 4, 2005 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2006 Quarter 2, 2007 Quarter 1, 2008 Quarter 2, 2007 Quarter 1, 2008 Quarter 2, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2007 Quarter 3, 2009 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2011 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2017	TRICHLOROETHENE																							
Quarter 2, 2003 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2	Quarter 4, 2002																							
Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 201	Quarter 1, 2003																							
Quanter 4, 2003 Quanter 2, 2004 Quanter 2, 2004 Quanter 3, 2005 Quanter 4, 2005 Quanter 3, 2005 Quanter 3, 2005 Quanter 1, 2006 Quanter 2, 2006 Quanter 2, 2006 Quanter 2, 2008 Quanter 3, 2005 Quanter 4, 2009 Quanter 4, 2009 Quanter 4, 2009 Quanter 2, 2006 Quanter 2, 2006 Quanter 2, 2006 Quanter 2, 2006 Quanter 2, 2007 Quanter 3, 2007 Quanter 4, 2008 Quanter 4, 2009 Quanter 2, 2009 Quanter 2, 2009 Quanter 3, 2008 Quanter 4, 2009 Quanter 2, 2009 Quanter 3, 2009 Quanter 4, 2009 Quanter 5, 2009 Quanter 6, 2009 Quanter 6, 2009 Quanter 7, 2009 Quanter 7, 2009 Quanter 8, 2009 Quanter 9, 200	Quarter 2, 2003																							
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 1, 2006 Quarter 3, 2007 Quarter 1, 2008 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017	Quarter 3, 2003																							
Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017	Quarter 4, 2003																							
Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 201	Quarter 1, 2004																							
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2014 Quarter 3, 2016 Quarter 3, 2017	Quarter 2, 2004																							
Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 9, 201	Quarter 3, 2004																							
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 6, 2010 Quarter 6, 201	Quarter 4, 2004																							
Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2019 Quarter 6, 2019 Quarter 7, 2010 Quarter 7, 201	Quarter 1, 2005																							
Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 2, 2016 Quarter 4, 2011 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 7, 2010 Quarter 7, 201	Quarter 2, 2005																							
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 3, 2017	Quarter 3, 2005																							
Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 7, 2012 Quarter 6, 2012 Quarter 6, 2012 Quarter 7, 2013 Quarter 7, 2013 Quarter 7, 2014 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2018 Quarter 1, 2019 Quarter 7, 2019 Quarter 7, 2010 Quarter 7, 2010 Quarter 7, 2011 Quarter 7, 2011 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017	Quarter 4, 2005																							
Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 7, 2014 Quarter 7, 2014 Quarter 7, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017	Quarter 1, 2006																							
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2014 Quarter 4, 2015 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 1, 2015 Quarter 2, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017	Quarter 2, 2006																							
Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017	Quarter 2, 2007							1																
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 5, 2014 Quarter 5, 2014 Quarter 6, 2013 Quarter 7, 2014 Quarter 7, 2014 Quarter 7, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017		Г	t																		t			
Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017		Г	t																		t			
Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 5, 2013 Quarter 4, 2013 Quarter 5, 2013 Quarter 5, 2013 Quarter 4, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 3, 2016 Quarter 1, 2017 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017																							\vdash	
Quarter 2, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2010 Quarter 1, 2017 Quarter 3, 2017		┢						1						-									$\vdash \vdash$	
Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 2, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 2, 2015 Quarter 4, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 7, 2016 Quarter 3, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017		-																					\vdash	
Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017																							\vdash	
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2016 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2015 Quarter 3, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017		\vdash																					$\vdash\vdash$	
Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2015 Quarter 4, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 201		\vdash																					$\vdash\vdash$	
Quarter 1, 2019 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017		\vdash																					$\vdash\vdash$	
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 5, 2013 Quarter 6, 2013 Quarter 6, 2013 Quarter 7, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 3, 2017																							$\vdash \vdash$	
Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 7, 2017 Quarter 7, 2017 Quarter 7, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 7, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 7, 2016 Quarter 6, 2016 Quarter 6, 2017 Quarter 7, 2017 Quarter 6, 201												-											$\vdash \vdash$	
Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 3, 2017																							$\vdash\vdash$	
Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2017		-																						
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 5, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 1, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017																								
Quarter 3, 2011 Quarter 4, 2011 Quarter 7, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 5, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017																								
Quarter 4, 2011 Quarter 7, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017																							-	
Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017																							ш	
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017																								
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017																								
Quarter 3, 2012													_				-						-	
Quarter 4, 2012																								
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017																								
Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017																							ш	
Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017																							ш	
Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017																							ш	
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017																							ш	
Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017	Quarter 4, 2013																						ш	
Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017	Quarter 1, 2014																						Ш	
Quarter 4, 2014	,																						Ш	
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 5, 2017 Quarter 6, 2017 Quarter 9, 2017 Quarter 9, 2017 Quarter 9, 2017	Quarter 3, 2014																						\square	
Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 5, 2017 Quarter 3, 2017 Quarter 3, 2017	Quarter 4, 2014	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}}$																					\square	
Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 5, 2017 Quarter 7, 2017 Quarter 9, 2017 Quarter 9, 2017 Quarter 9, 2017 Quarter 1, 2017	Quarter 1, 2015																							
Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 5, 2017 Quarter 7, 2017 Quarter 9, 2017	Quarter 2, 2015																							
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017	Quarter 3, 2015																							
Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017	Quarter 4, 2015																						L	
Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017	Quarter 1, 2016																							
Quarter 4, 2016	Quarter 2, 2016																							
Quarter 1, 2017	Quarter 3, 2016																							
Quarter 2, 2017	Quarter 4, 2016																							
Quarter 2, 2017	Quarter 1, 2017																							
Quarter 3, 2017	Quarter 2, 2017																						\Box	
	Quarter 3, 2017							1															М	
	,	Г	t																		t		H	
	,		_	_		_		_	_	_			_	_		_	_	_			_	_		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG/	Α.								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019																							
Quarter 3, 2019																							
Quarter 4, 2019																							
Quarter 1, 2020																							
Quarter 2, 2020																							
Quarter 3, 2020																							
Quarter 4, 2020																							
Quarter 1, 2021																							
Quarter 2, 2021																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007		* * *																					

^{*} Statistical test results indicate an elevated concentration (i.e., a statistically significant increase).

MCL Exceedance

Previously reported as an MCL exceedance; however, result was equal to MCL.

UCRS = Upper Continental Recharge System

URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer

S = Sidegradient; D = Downgradient; U = Upgradient

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	June 1	6, 20	021				Tin	ne:	09	900				Mc	nito	r:	R	obe	ert Kirby
Weather Co	ndition	s: Sı	ınny	, 85	degi	rees	, mc	dera	te/lo	ow h	umid	lity							
Monitoring	Equipm	ent:	:Mul	ti RA	λE –	Seri	al#	1188	31										
					ľ	loni	torir	ng Lo	ocati	on									Reading (% LEL)
Ogden Landi Road Entran		Che	ecked	l at g	round	l leve	el										******************************		0
North Landfi	II Gate	Che	eckec	d at g	round	d leve	el												0
West Side of Landfill: North 37° West 88°	07.652	Che	ecked	d at g	round	i leve	el												0
East Side of Landfill: North 37° West 88°	07.628	Che	ecked	d at g	round	d leve	:												0
Cell 1 Gas Ve	ent (17)	1 0	2 0	3 0	4 0	5 0	6 0	7 0	8 0	9 .0	10 0	11 0	12 0	13 0	14 0	15 0	16 0	17 0	_
Cell 2 Gas V	'ent (3)	1 0	2 0	3 0															0
Cell 3 Gas V	'ent (7)	1 0	2 0	3 0	4 0	5 0	6 0	7 0											0
	II Office	Che	ecked	d at fl	oor le	vel													0
Suspect or P	Problem Areas	Nor	ne no	ted															N/A
Remarks:																			
All gas ven	ts chec	ked	1" fr	om (oper	ing.													
					/														
Performed	by:	(v	1	14	2				(37,	10-	1/7) 						
	Signature Date											12	7-			~~~			

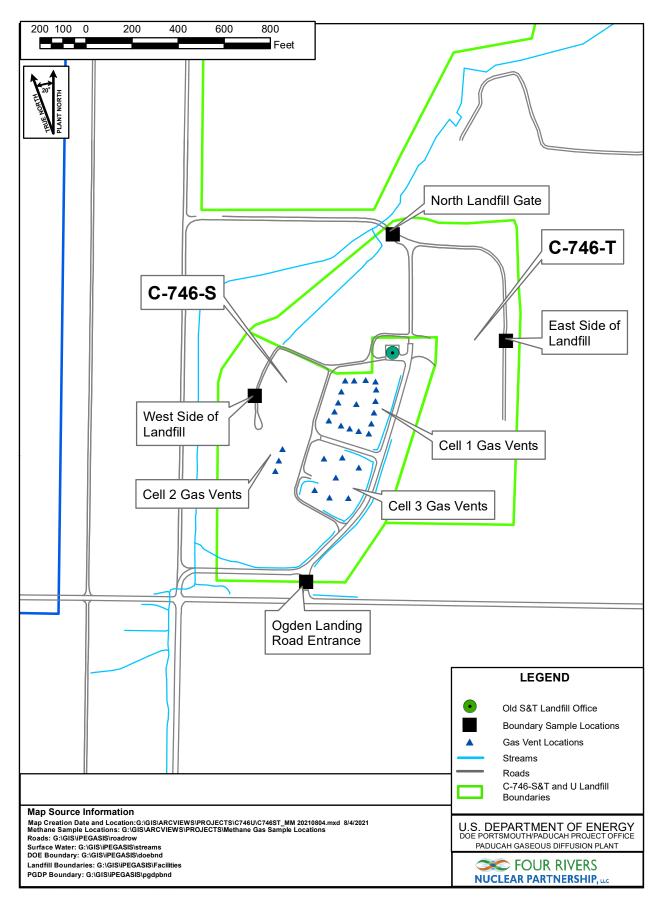


Figure H.1. C-746-S&T Landfill Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNSTF	REAM	L136 AT SI	TE	\	
Sample Seque	nce	#				1		1		1			
If sample is	а В	lank, specify Type: (F)ield, (T) r	ip, (M) ethod	, or (E)quipment	NA		NA		NA			
Sample Date	and	Time (Month/Day/Year hour: m	inu	tes)		4/29/2021 08:	22	4/29/2021 07	:42	4/29/2021 08	3:11		
Duplicate ("	Y" (or "N") ¹				N		N		N			
Split ('Y' o	r "1	N") ²				N		N		N			
Facility Samp	ple	ID Number (if applicable)				L135SS3-2	1	L154US3-2	1	L136SS3-2	21	\ /	
Laboratory Sa	amp	le ID Number (if applicable)				542560001		542563002		54256000	2		
Date of Analy	ysi	s (Month/Day/Year)				5/13/2021		5/13/2021		5/13/2021	1	\ /	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	Т	MGD	Field		*		*		*		
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	4.14	В	3	*	1.21	В	/ \	
14808-79-8	0	Sulfate	Т	MG/L	300.0	2.05		1.82		4.76			
7439-89-6	0	Iron	Т	MG/L	200.8	1.25		1.61		0.405			
7440-23-5	0	Sodium	Т	MG/L	200.8	3.99		3.45		2.09			
S0268	0	Organic Carbon ⁶	Т	MG/L	9060	19.7		18.8		15.7			
S0097	0	BOD ⁶	Т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.4	137		96.6		215			

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

						T		i		T		
Monitoring Po	oint	(KPDES Discharge Number, or	r "(JPSTREAM" or	"DOWNSTREAM")	L135 UPSTRE	EAM	L154 DOWNSTE	REAM	L136 AT SI	TE	<u> </u>
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵
S0145	1	Specific Conductance	т	µнмs/см	Field	105		112		202		
s0270	0	Total Suspended Solids	т	MG/L	160.2	61.6		60.8		5.2	J	\ /
s0266	0	Total Dissolved Solids	т	MG/L	160.1	121		103		120		
S0269	0	Total Solids	т	MG/L	SM-2540 B 17	184		173		138		\ /
s0296	0	рН	т	Units	Field	6.97		7.02		6.74		\ /
7440-61-1		Uranium	Т	MG/L	200.8	0.00146		0.00174		0.000624		\ /
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	2.99	*	6.71	*	1.89	*	\/
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	-3.85	*	17.6	*	-0.523	*	Х
												/\
												/ \
												/
												/
												/

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit:	KY8-890-008-982/
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitorii Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135SS3-21	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.76. Rad error is 4.74.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.65. Rad error is 5.65.
L154	L154US3-21	Flow Rate		Analysis of constituent not required and not performed
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.97. Rad error is 5.86.
		Beta activity		TPU is 7.45. Rad error is 6.87.
L136	L136SS3-21	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.48. Rad error is 4.47.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.3. Rad error is 5.3.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DOD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

APPENDIX K LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and 1,2,3-
		Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L MICROPURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-S&T Landfills

			July Strate Stra	m /	d of the life in				July Bullet	Jeil Jestel	_
			half	~ /	(A)	» / /			nde	× /	
		[®	(diff.		Adeli .				(Jiff)	<u>/</u> a .	Agen
		MILIE /	TATES !	Unit.	30T.	ZZ, /			idites !	Our /	,00F.
		, July	y Sign	, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, Xidi	·· /		, July		, \ _g\x	
	1401	Sorte Condition	Strict Legis	Dig	od od vige int		1/GEL	Conduction Conduction	Jenetha Sta	Dig	Zurid Zurid
MW220											
Pate Collected: 4/15/2021						Date Collected: 4/15/2021					
934	59.9	440	6.31	4.80	0.0	0643	58.4	412	6.25	5.34	0.0
937	60.0	438	6.14	3.90	26.79	0646	57.3	407	6.13	5.06	0.0
940	60.1	438	6.12	3.85	28.01	0649	56.8	406	6.14	5.05	0.0
IW222						MW223					
ate Collected: 4/15/2021	60.1	385	6.39	4.68	0.0	Date Collected: 4/15/2021 0738	59.6	395	6.25	5.03	0.0
818 821	60.1	379	6.12	4.08	0.0	0741	59.8	395	6.11	4.47	0.0
324	60.4	379	6.12	3.97	0.0	0741	59.8	393	6.10	4.47	0.0
W224	00.4	3/8	0.10	3.97	0.0	MW369	39.1	393	0.10	4.44	0.0
ate Collected: 4/15/2021						Date Collected: 4/13/2021					
357	59.6	423	6.45	6.07	0.0	0631	59.6	413	6.35	1.64	0.0
900	60.6	424	6.15	6.15	0.0	0634	59.1	383	6.02	0.85	0.0
903	60.7	422	6.13	6.15	0.0	0637	59.0	383	6.02	0.86	0.0
IW370	00.7	722	0.13	0.13	0.0	MW372	37.0	202	0.01	0.00	0.0
ate Collected: 4/13/2021						Date Collected: 4/13/2021					
713	59.6	471	6.16	4.80	0.0	0819	60.2	788	6.12	2.68	0.0
716	59.8	487	5.92	3.61	0.0	0822	60.3	796	6.00	1.79	0.0
19	59.9	492	5.90	3.57	0.0	0825	60.7	795	6.00	1.75	0.0
W373	57.7	.,,2	2.70	3.57	0.0	MW384	0017	1,70	0.00	1175	0.0
te Collected: 4/13/2021						Date Collected: 4/14/2021					
52	60.6	832	6.06	2.30	0.0	0808	58.9	389	6.27	5.01	0.12
55	61.6	834	6.00	1.31	0.0	0811	58.6	385	6.07	4.43	4.33
58	61.5	834	6.00	1.33	0.0	0814	58.5	384	6.06	4.40	4.72
W385						MW386					
te Collected: 4/14/2021						Date Collected: 4/14/2021					
12	59.0	406	6.07	4.11	0.0	0912	58.5	532	6.78	4.71	1.34
.5	58.9	404	6.04	3.99	0.0	0915	58.4	535	6.84	4.33	1.10
8	58.7	405	6.03	3.96	0.0	0918	58.3	534	6.85	4.30	1.16
V387						MW388					
te Collected: 4/14/2021						Date Collected: 4/14/2021					
50	58.8	584	6.28	3.30	0.91	0733	59.2	460	6.20	4.41	0.80
53	58.1	581	6.21	2.29	0.72	0736	58.4	463	6.13	4.00	3.58
56	58.0	580	6.21	2.27	0.70	0739	58.6	463	6.13	3.97	3.70
W390						MW391					
ate Collected: 4/14/2021				<u> </u>		Date Collected: 4/14/2021					L
15	59.0	637	6.79	3.14	0.0	1204	59.5	375	6.24	4.29	0.0
18	59.0	647	6.36	3.64	0.0	1207	59.5	373	6.07	3.84	1.02
21	58.9	649	6.35	3.59	0.0	1210	59.6	374	6.06	3.80	1.06
W392						MW393					
te Collected: 4/14/2021		40.		4.00	0.0	Date Collected: 4/14/2021	50.0	460		2	
40	59.5	404	6.23	4.02	0.0	1309	59.9	460	6.44	2.55	0.0
43	59.7	406	6.08	2.31	0.0	1312	60.5	453	6.32	2.15	0.0
16 V204	59.8	406	6.06	2.27	0.0	1315	60.6	454	6.32	2.10	0.0
W394						MW395					
te Collected: 4/14/2021	50.6	205	(22	5.00	0.0	Date Collected: 4/14/2021	50.5	261	(10	5.00	0.0
51	58.6	395	6.23	5.99	0.0	1025	58.5	364	6.10	5.80	0.0
54	58.4	394	6.12	5.57	0.0	1028	58.4	362	5.98	4.74	0.0
57	58.5	392	6.08	5.50	0.0	1031	58.5	366	5.99	4.72	0.0
						MW397					
						Date Collected: 4/14/2021				Ī	i
ate Collected: 4/14/2021	50.5	(0.4	6.50	2.11	0.00		60.1	212	6.15		0.0
MW396 Date Collected: 4/14/2021	58.7	694	6.50	3.11	8.80	1348	60.1	313	6.17	6.57	0.0
ate Collected: 4/14/2021	58.7 58.4 58.4	694 688 686	6.50 6.56 6.57	3.11 2.77 2.83	8.80 15.50 15.85		60.1 60.4 60.4	313 313 314	6.17 6.07 6.02	6.57 6.38 6.30	0.0 0.0 0.0

