

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

May 20, 2021

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Ms. Jamie Nielsen
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-S&T LANDFILLS FIRST QUARTER CALENDAR YEAR 2021 (JANUARY-MARCH) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0193/V1, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the first quarter calendar year (CY) 2021 has been uploaded to the KY eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). The report includes groundwater analytical data, surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the first quarter CY 2021 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Monitoring Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance (1989). This report also serves as the statistical increase notification for the first quarter CY 2021, in accordance with Monitoring Condition GSTR0003, Standard Requirement 5, of the Permit.

PPPO-02-10010525-21B

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Jennifer Woodard Paducah Site Lead

Portsmouth/Paducah Project Office

unifer Woodard

Enclosure:

C-746-S&T Landfills First Quarter Calendar Year 2021 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0193/V1

cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.webb@ky.gov, KDEP arcorrespondence@pad.pppo.gov brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.woodard@pppo.gov, PPPO joel.bradburne@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov robert.edwards@pppo.gov, PPPO stephaniec.brock@ky.gov, KYRHB tracey.duncan@pppo.gov, PPPO

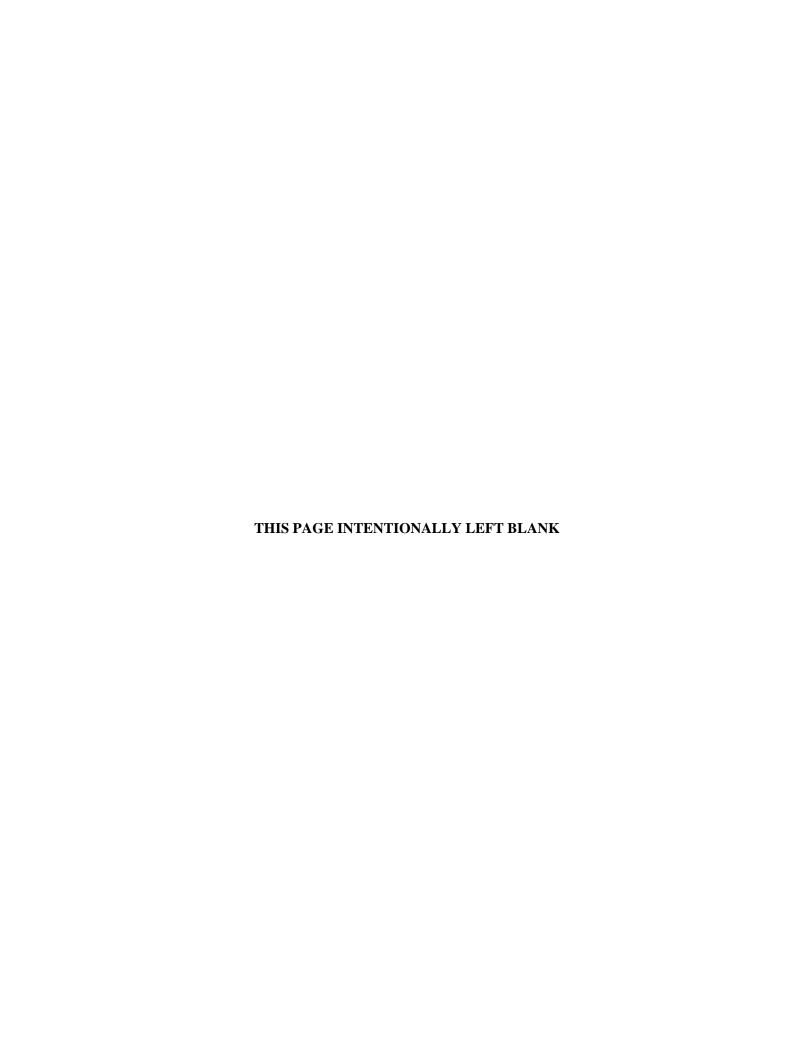
cc via KY eForms portal: jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP

C-746-S&T Landfills First Quarter Calendar Year 2021 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

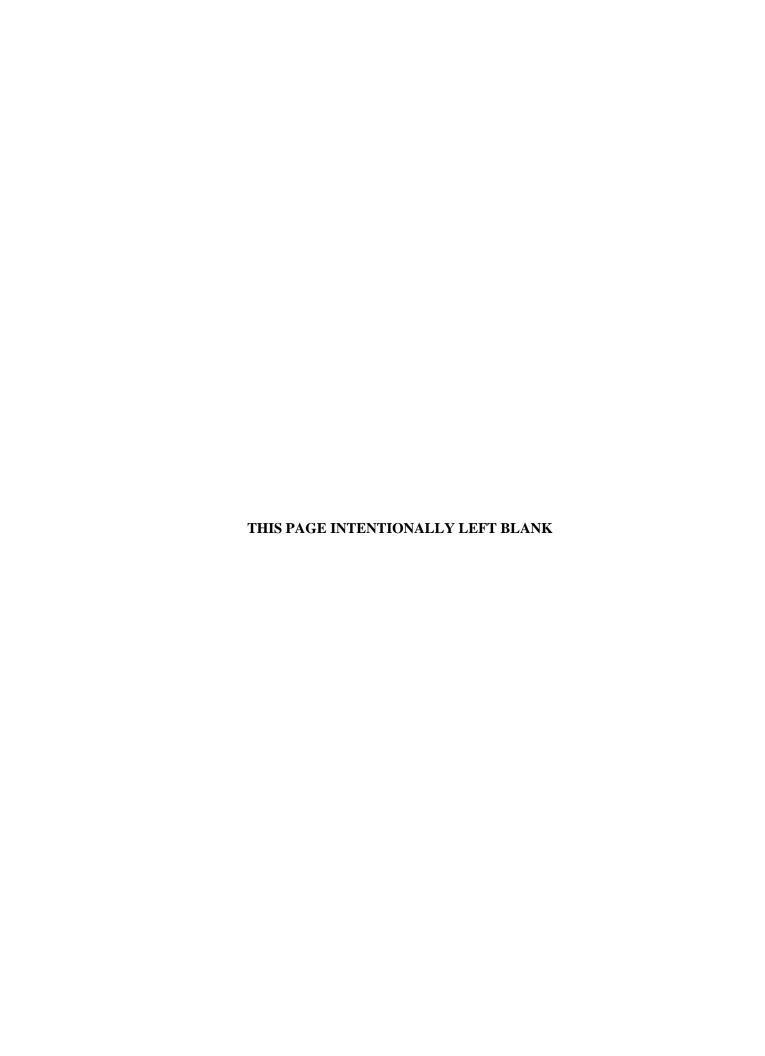
David Hayden
FRNP Classification Sypport

05/18/2021

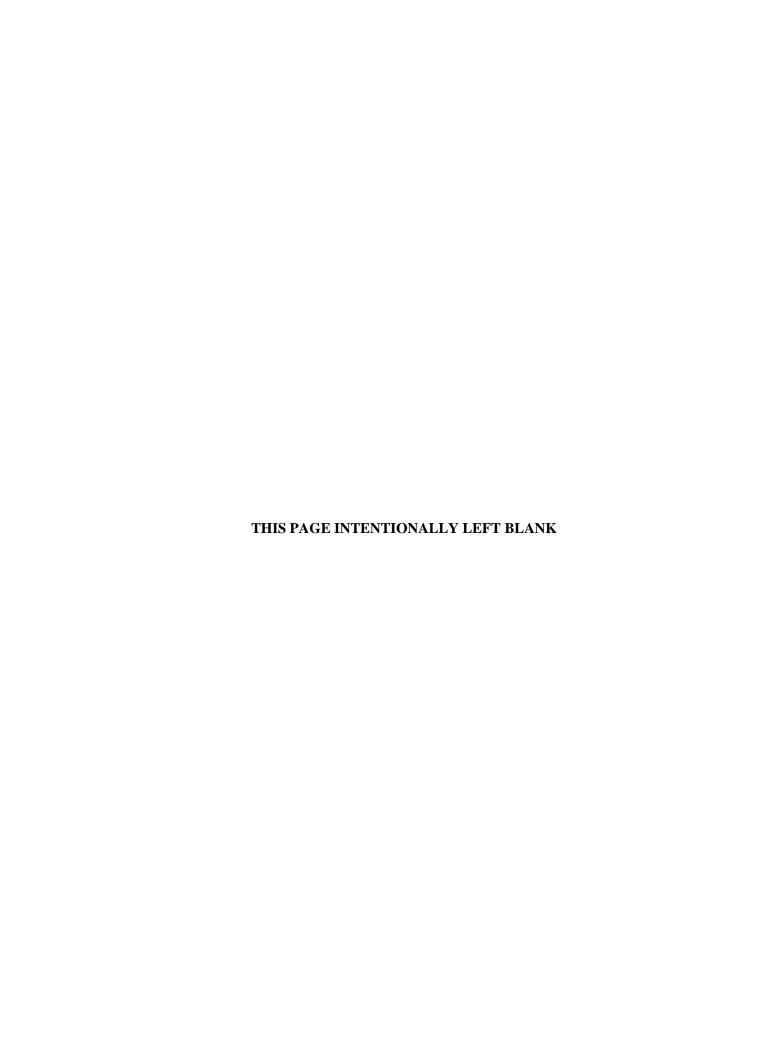

FRNP-RPT-0193/V1

C-746-S&T Landfills
First Quarter Calendar Year 2021
(January–March)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—May 2021


U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895


CONTENTS

FI	GURE	S		v
ΤA	ABLES	S		v
A(CRON	YMS		vii
1.	INTI	RODUC	TION	1
	1.1		GROUND	
	1.2		TORING PERIOD ACTIVITIES	
		1.2.1	Groundwater Monitoring	1
		1.2.2	Methane Monitoring	3
		1.2.3	Surface Water Monitoring	
	1.3	KEY I	RESULTS	5
2.	DAT		LUATION/STATISTICAL SYNOPSIS	
	2.1	STAT	STICAL ANALYSIS OF GROUNDWATER DATA	
		2.1.1	Upper Continental Recharge System	
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	
	2.2	DATA	VERIFICATION AND VALIDATION	11
3.	PRO	FESSIC	NAL GEOLOGIST AUTHORIZATION	13
4.	REF	ERENC	ES	15
Αŀ	PPENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE	
			MONITORING SAMPLE DATA REPORTING FORM	A-1
Αŀ	PPENI	OIX B:	FACILITY INFORMATION SHEET	B-1
Αŀ	PPENI	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
Αŀ	PPENI	OIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
Αŀ	PPENI	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
Αŀ	PPENI	OIX F:	NOTIFICATIONS	F-1
Αŀ	PPENI	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
Αŀ	PPENI	OIX H:	METHANE MONITORING DATA	H-1
Αŀ	PPENI	OIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
Αŀ	PPENI	OIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1
Αŀ	PPENI	OIX K:	LABORATORY ANALYTICAL METHODS	K-1
ΔΙ	PPFNI	JIX I ·	MICRO-PURGING STABILITY PARAMETERS	I -1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
2.	C-746-S&T Landfills Surface Water Monitoring Locations	4
	TABLES	
1.	Summary of MCL Exceedances	5
2.	Exceedances of Statistically Derived Historical Background Concentrations	5
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	6
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	8
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

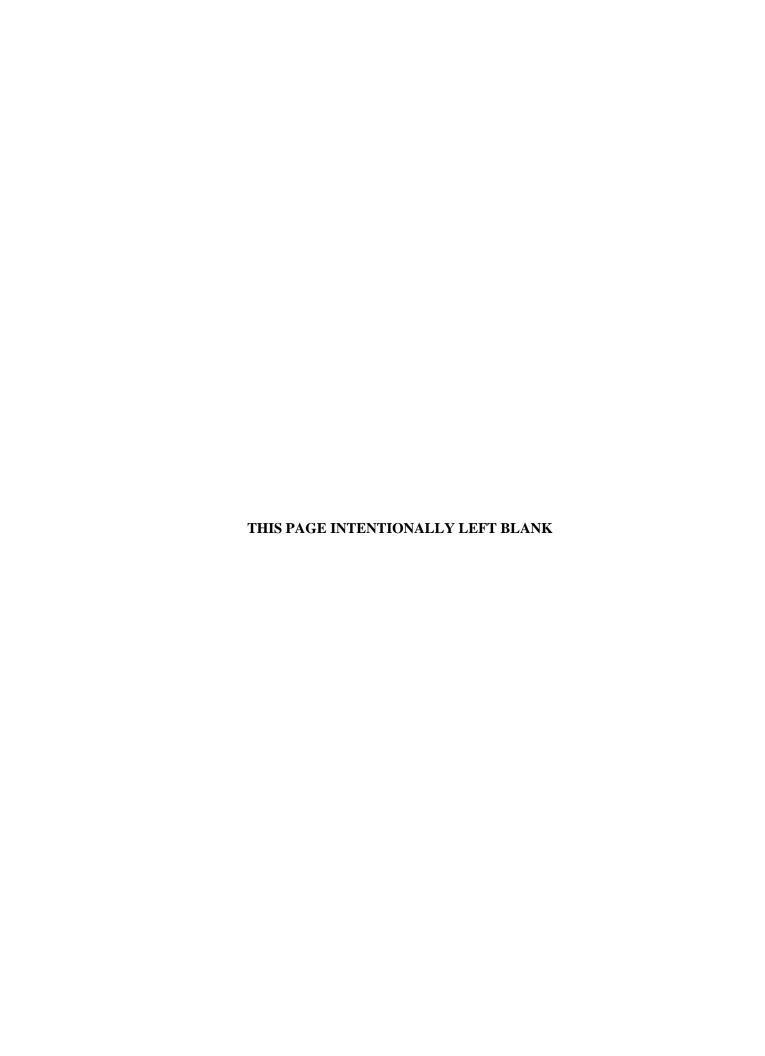
CFR Code of Federal Regulations
COD chemical oxygen demand

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit


MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills First Quarter Calendar Year 2021 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND

The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter,

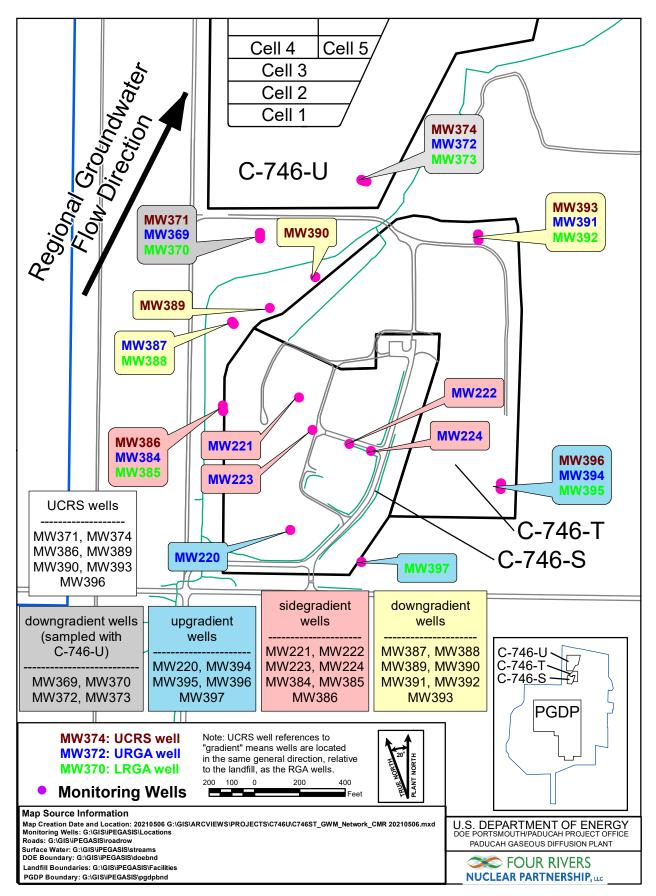


Figure 1. C-746-S&T Landfills Groundwater Monitoring Well Network

except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2021 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the first quarter 2021 was conducted in January 2021. The laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 25, 2021, in MWs of the C-746-S&T Landfills (see Appendix E, Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Appendix E, Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During January, RGA groundwater flow was directed inward and then northeast towards the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in January was 5.31×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was approximately 4.73×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.803 to 1.54 ft/day (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the Solid Waste Landfill Permit. Industrial Hygiene staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on March 22, 2021. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills: (1) upstream location, L135; (2) downstream location, L154; and (3) L136, a location capturing

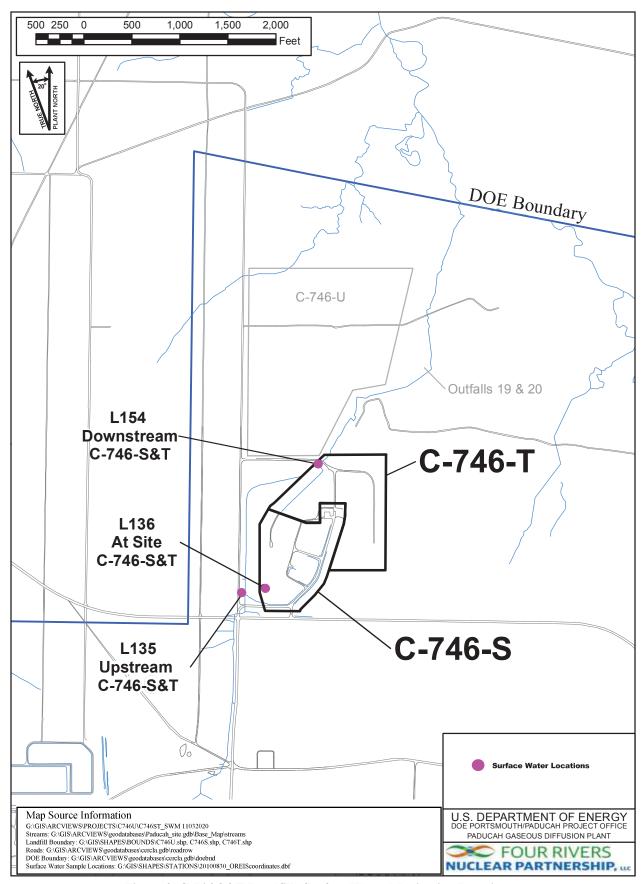


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

runoff from the landfill surface. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application, Attachment 24, of the Solid Waste Landfill Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters that exceeded their MCL and also exceeded their historical background UTL, as well as other parameters that do not have MCLs but have concentrations that exceeded the statistically derived historical background UTL¹ during the first quarter 2021. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells designated as background wells (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW387: Beta activity	MW392: Trichloroethene
	MW391: Trichloroethene	

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW220: Oxidation-reduction	MW370: Oxidation-reduction
potential	potential	potential, sulfate, technetium-99
MW390: Oxidation-reduction	MW221: Oxidation-reduction	MW373: Calcium, conductivity,
potential, technetium-99	potential	dissolved solids, magnesium,
		oxidation-reduction potential,
		sulfate
MW393: Oxidation-reduction	MW222: Oxidation-reduction	MW385: Oxidation-reduction
potential	potential	potential, sulfate, technetium-99
	MW223: Oxidation-reduction	MW388: Oxidation-reduction
	potential	potential, sulfate
	MW224: Oxidation-reduction	MW395: Oxidation-reduction
	potential	potential
	MW369: Technetium-99	MW397: Oxidation-reduction
		potential
	MW372: Calcium, chemical	
	oxygen demand (COD),	
	conductivity, dissolved solids,	
	magnesium, sodium, sulfate,	
	technetium-99	
	MW384: Oxidation-reduction	
	potential, sulfate, technetium-99	

.

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL.

Table 2. Exceedances of Statistically Derived Historical Background Concentrations (Continued)

UCRS*	URGA	LRGA
	MW387: Beta activity, calcium,	
	magnesium, oxidation-reduction	
	potential sodium, sulfate,	
	technetium-99	

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Background wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate, technetium-99
MW372: Calcium, conductivity, dissolved	MW373: Calcium, conductivity, dissolved
solids, magnesium, sodium, sulfate,	solids, magnesium, sulfate
technetium-99	
MW387: Beta activity, calcium,	MW388: Sulfate
magnesium, sodium, sulfate, technetium-99	

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), the MCL exceedances for TCE in MW391 and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedance for beta activity in MW387 (downgradient well) was shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily this exceedance was considered to be a Type 2 exceedance. To evaluate this preliminary Type 2 exceedance further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. The MW387 beta activity did not show an increasing Mann-Kendall trend and is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary **Utilizing the Previous Eight Quarters**

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
C-746-	MW369	Technetium-99	8	0.05	0.031	-16	Decreasing
S&T	MW370	Sulfate	8	0.05	0.274	7	No Trend
Landfill	1V1 VV 3 / U	Technetium-99	8	0.05	0.016	-18	Decreasing

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarter (Continued)

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
		Calcium	8	0.05	0.016	19	Increasing
		Conductivity	8	0.05	0.001	24	Increasing
		Dissolved Solids	8	0.05	0.36	4	No Trend
	MW372	Magnesium	8	0.05	0.002	22	Increasing
		Sodium	8	0.05	0.054	14	No Trend
		Sulfate	8	0.05	0.001	24	Increasing
		Technetium-99	8	0.05	0.138	-10	No Trend
	MW373	Calcium	8	0.05	0.089	12	No Trend
C-746-		Conductivity	8	0.05	0.007	20	Increasing
S&T		Dissolved Solids	8	0.05	0.138	10	No Trend
Landfill		Magnesium	8	0.05	0.36	5	No Trend
		Sulfate	8	0.05	0.054	14	No Trend
		Beta activity	8	0.05	0.452	2	No Trend
		Calcium	8	0.05	0.016	19	Increasing
	MW387	Magnesium	8	0.05	0.031	16	Increasing
	WI W 36 /	Sodium	8	0.05	0.548	0	No Trend
		Sulfate	8	0.05	0.274	6	No Trend
		Technetium-99	8	0.05	0.36	-4	No Trend
	MW388	Sulfate	8	0.05	0.054	-14	No Trend

¹ An alpha of 0.05 represents a 95% confidence interval.

Note: Statistics generated using ProUCL.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL to identify if the current downgradient well concentrations are consistent with current background values. The current background UTL was developed using the most recent eight quarters of data from wells identified as background wells. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-S&T Landfills source; therefore, they are a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

 $^{^2}$ The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses; the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL and do not have an identified source are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan (LATA Kentucky 2014). To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. Fifteen of the 22 preliminary Type 2 exceedances in downgradient wells do not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Seven of the 22 preliminary Type 2 exceedances in downgradient wells have an increasing trend. Specifically, the Mann-Kendall statistical test indicates that there are increasing trends of groundwater constituents in MW372, MW373, and MW387 over the past eight quarters. Constituents in MW372 that showed increasing trends were calcium, conductivity, magnesium, and sulfate. One constituent, conductivity, showed an increasing trend in MW373. Calcium and magnesium concentrations showed increasing trends in MW387.

Conductivity in both MW372 and MW373, and calcium, magnesium, and sulfate in MW372 all exceed the UTLs for historical and current background and exhibit similar increasing trends. These occurrences are indicators of high ionic strength of the area groundwater. Because levels of calcium, conductivity, magnesium, sulfate, and dissolved solids are lower in MW372 (URGA) than in MW373 (LRGA), these trends do not appear to be associated with the C-746-S&T Landfills (influence of the landfill should have a greater impact on the URGA well). Trends of these ions and indicator parameters should be considered Type 1 exceedances—not attributable to the C-746-S&T Landfills.

In MW387, levels of calcium and magnesium have similar trends, with the current concentrations reduced from the previous quarter; however the current concentrations remain near or above historic levels. The January 2021 levels of calcium and magnesium will require further assessment in upcoming reports to determine if a release from the C-746-S&T Landfills is indicated. In accordance with the Groundwater Monitoring Plan, these trends are considered to be a Type 2 exceedance—source unknown.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS well MW390 with a technetium-99 value that exceeded both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T Landfills sources and is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW390: Technetium-99
*In the same direction (relative to the landfill) as RGA wells.

in the same chector (country to the faller) as 1.612 wents

With the exception of calcium and magnesium in MW387, all MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2021 groundwater data collected from the C-746-S&T Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as downgradient wells) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient well concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance—could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

To calculate the UTL, the data were divided into censored (non-detects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs historically included in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis^a

UCRS	URGA	LRGA
MW386	MW220 (background)	MW370
MW389 ^b	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396 ^c	MW224	MW392
	MW369	MW395 (background)
	MW372	MW397 (background)
	MW384	
	MW387	
	MW391	
	MW394 (background)	

^a Map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient well concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL in a downgradient well and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

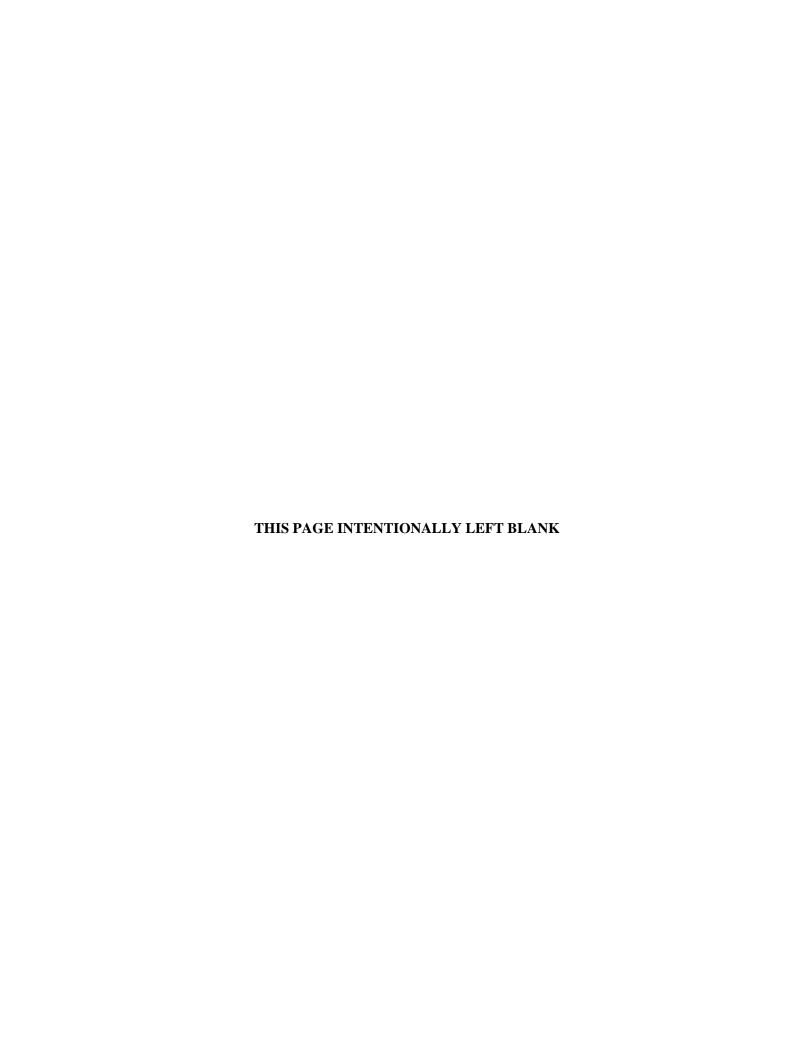
In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, beta activity, calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^b Well had insufficient water to permit a water sample for laboratory analysis.

^c In the same direction (relative to the landfill) as RGA wells considered to be background.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.


2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

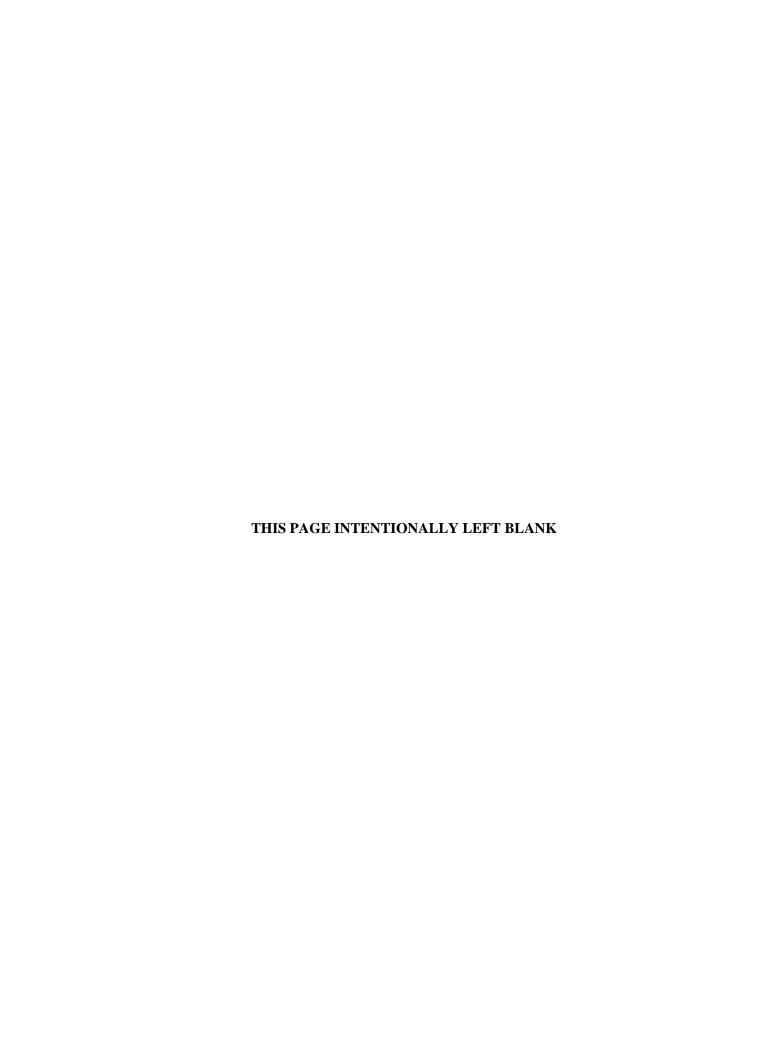
C-746-S&T Landfills

First Quarter Calendar Year 2021 (January-March)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

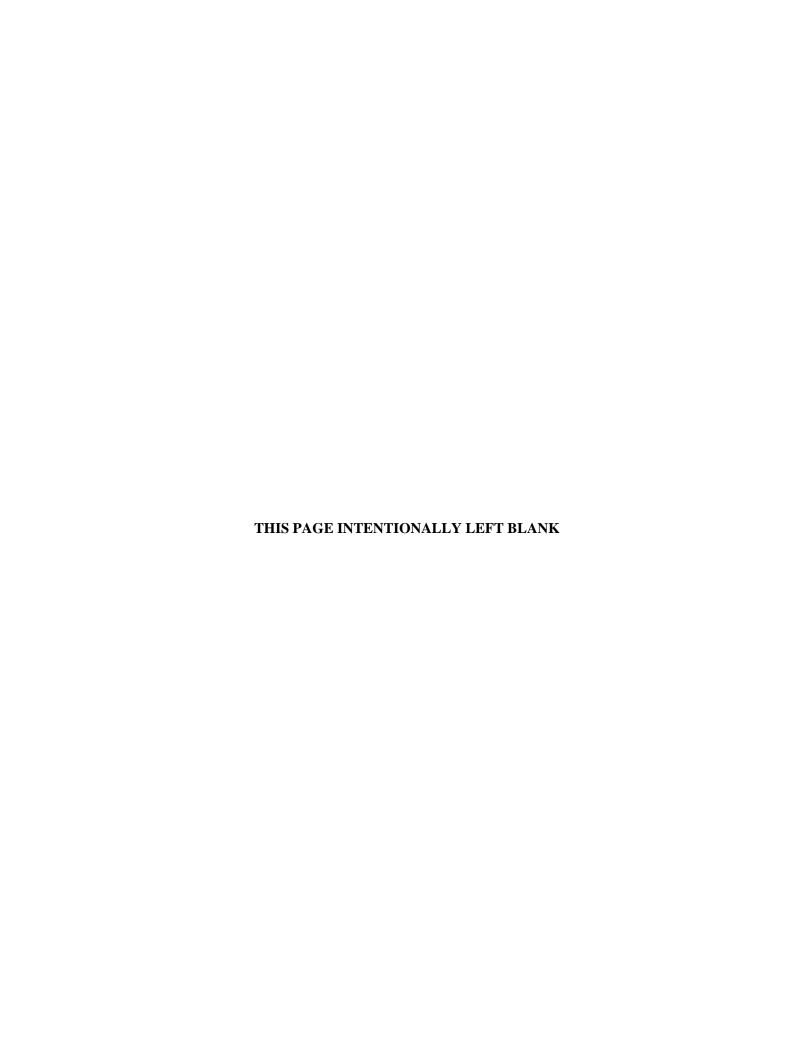
Paducah, Kentucky (FRNP-RPT-0193/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

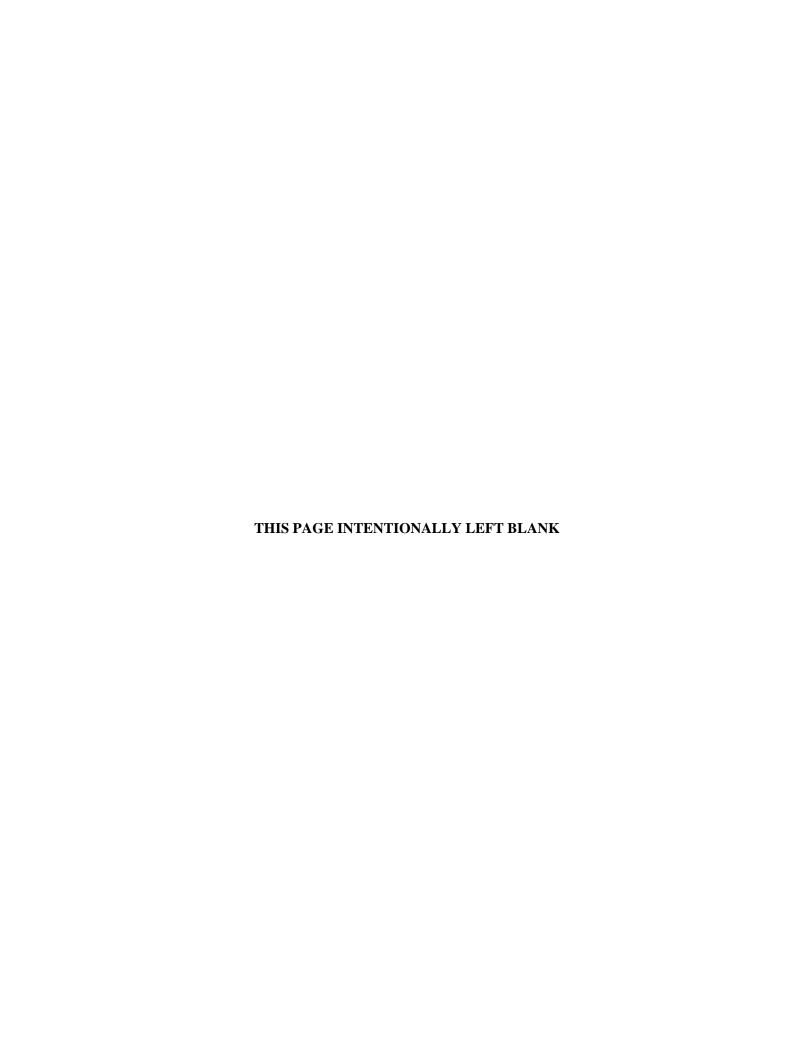

PG TISA PG TIS

PG 113927 K. Davis Ø5-18-2921

Kenneth R. Davis

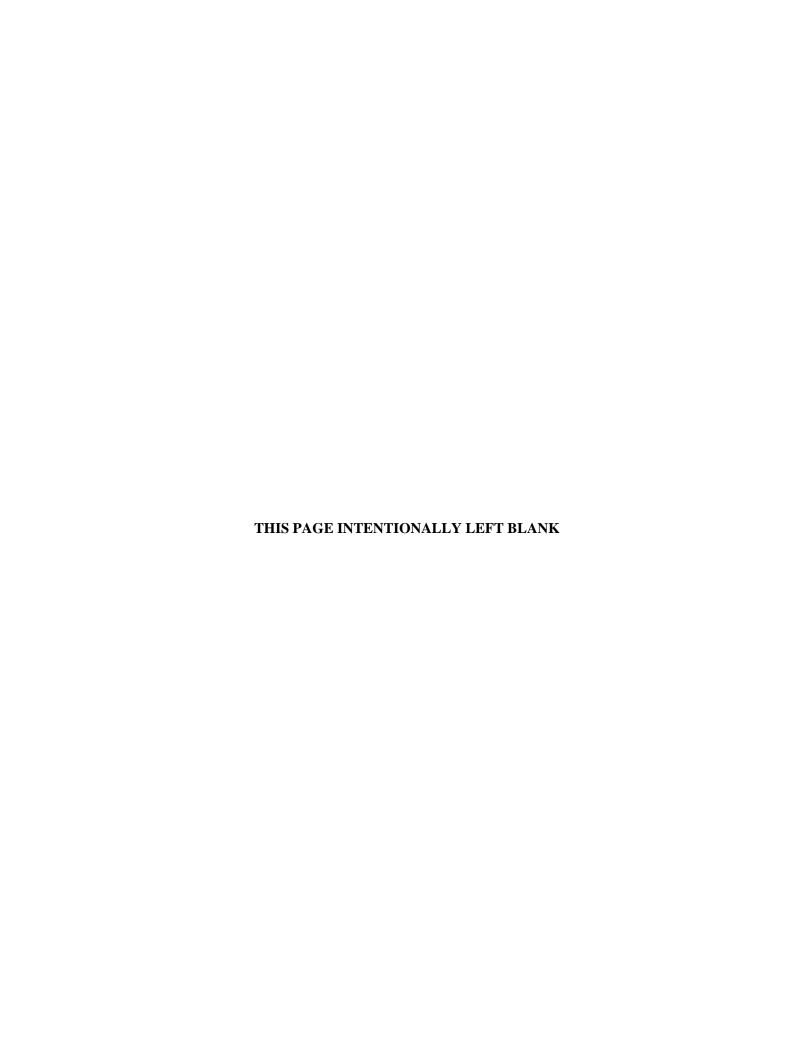

PG113927

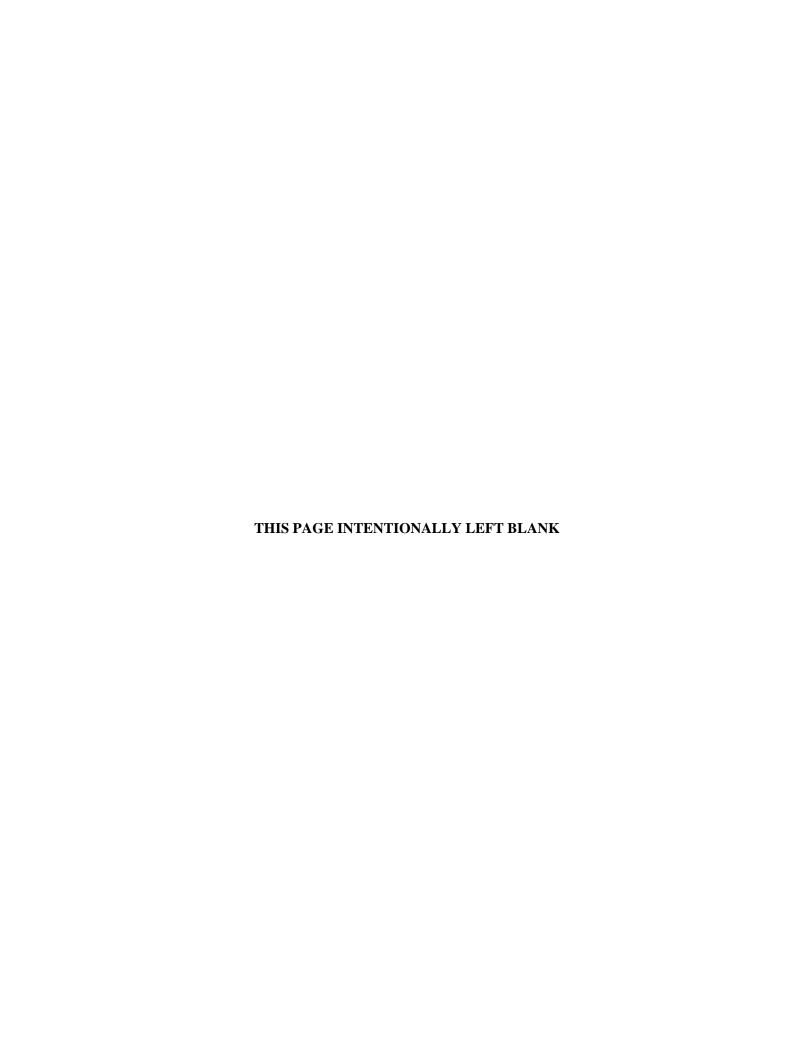
May 18, 2021 Date


4. REFERENCES

- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

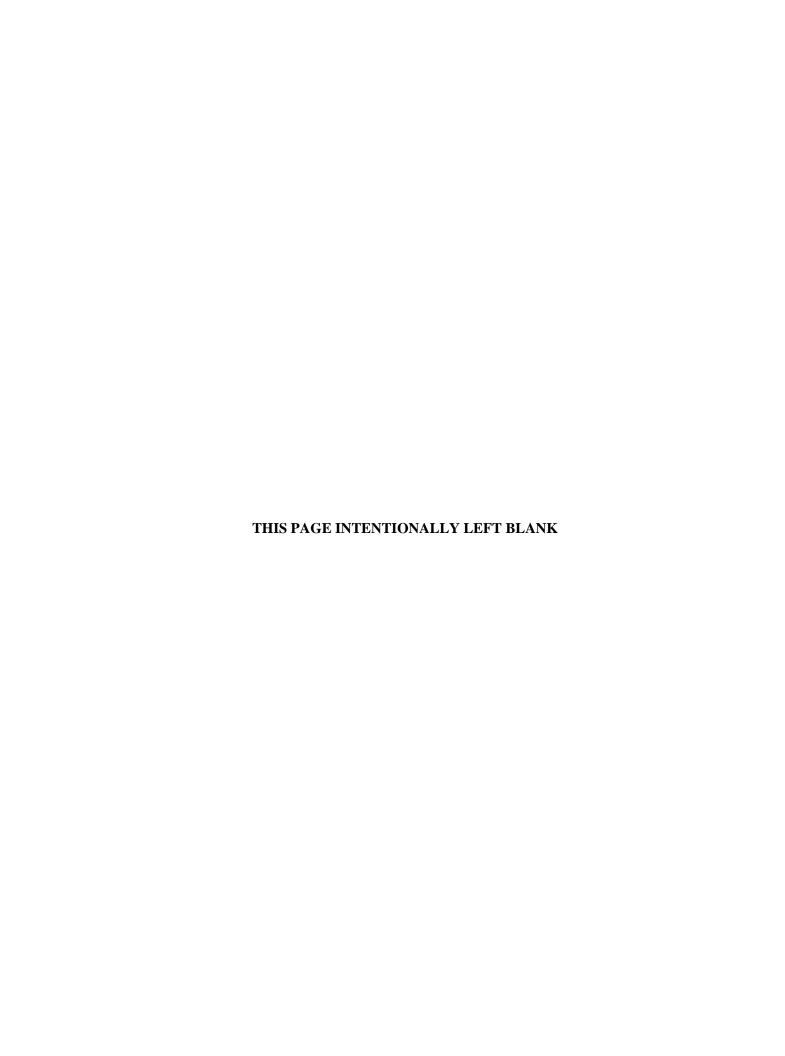
APPENDIX A


GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

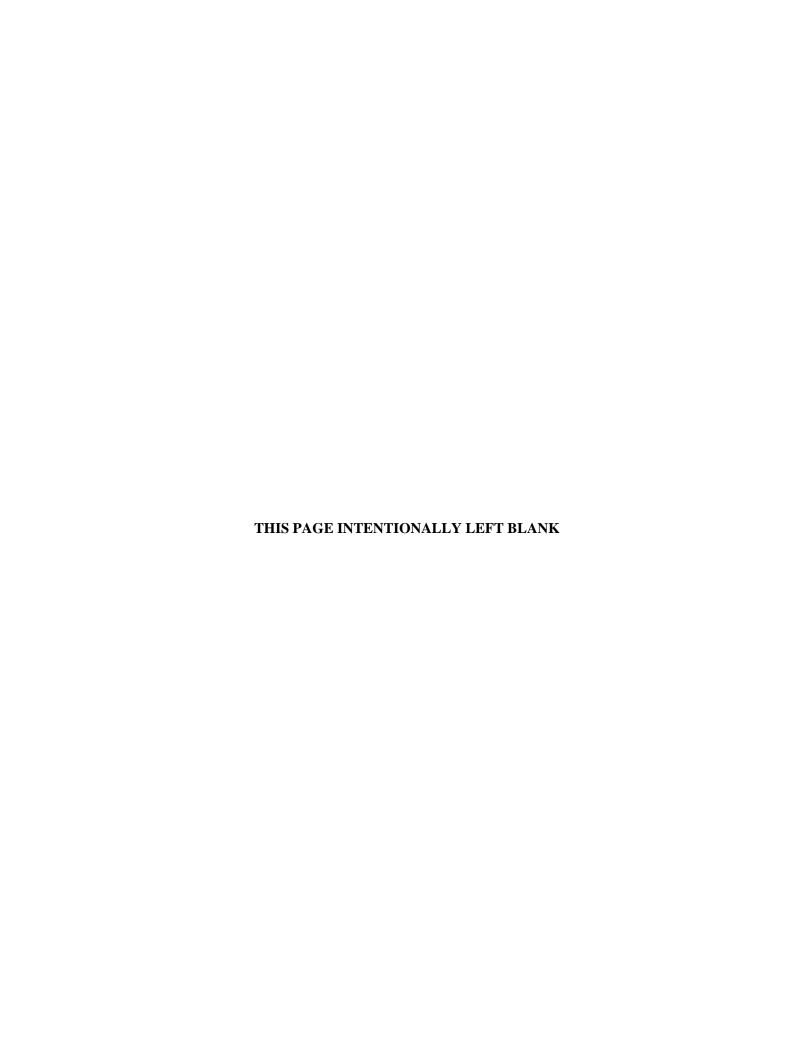

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah Gaseous Diffusion Plant				Activity:	C-746-S&T Landfills
	(As o	officially s	shown on DWM	I Permit Face)		
Permit No:	SW0730 SW0730 SW0730	00015,	Fir	nds/Unit No:	Quarter & Y	Year 1st Qtr. CY 2021
Please check the	following a	s applic	able:			
Character	rization	X	Quarterly	Semiannu	al Ann	ual Assessment
Please check app	licable sub	mittal(s)): <u>X</u>	Groundwater	X	_ Surface Water
				Leachate	X	Methane Monitoring
ab report is NOT concerning the certify under penalty with a system design equiry of the person	ty of law that ned to assure or persons of, true, accur	this doc that qu directly rate, and	ument and all alified person responsible fo complete. I ar	s for completing the for attachments were prepared properly gather are r gathering the information aware that there are	orm are attached. Do not pared under my direct and evaluate the information, the information	lar techniques. Submitting the not submit the instruction pages ion or supervision in accordance nation submitted. Based on my a submitted is, to the best of my for submitting false information
Myrna E. Redfi Four Rivers Nu	_		•		Da	te
Jennifer Wooda U.S. Departmen	•		Lead		Da	te



APPENDIX B FACILITY INFORMATION SHEET



FACILITY INFORMATION SHEET

	Groundwater: January 202 Surface water: January 20				SW07300014, SW07300015,
Sampling Date:	Methane: March 2021		unty: McCracken	Permit Nos.	SW07300045
Facility Name: U.S. DOE—Paducah Gaseous Diffusion Plant					
(As officially shown on DWM Permit Face)					
Site Address:	5600 Hobbs Road	Kevil, Kent			42053
	Street	City/Stat			Zip
Phone No:	(270) 441-6800	Latitude: N 37° (07' 37.70"	Longitude:	W 88° 47' 55.41"
OWNER INFORMATION					
Facility Owner:	U.S. DOE, Robert E. Edwards III, Manager			Phone No:	(859) 227-5020
Contact Person:	Bruce Ford			Phone No:	(270) 441-5357
Contact Person Title: Director, Environmental Services, Four Rivers Nuclear Partnership, LLC					
Mailing Address:	5511 Hobbs Road Kevil, Kentucky		tucky		42053
	Street	City/Sta	te		Zip
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)					
Company:	GEO Consultants Corpor	ration			
Contact Person:	Jason Boulton			Phone No:	(270) 816-3415
Mailing Address:	199 Kentucky Avenue	Kevil, Ken			42053
	Street City/State				Zip
LABORATORY RECORD #1					
Laboratory:	GEL Laboratories, LLC	ries, LLC Lab ID No: KY90			
Contact Person:	Valerie Davis			Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charleston, Sou			29407
	Street	City/Sta	te		Zip
LABORATORY RECORD #2					
Laboratory:	N/A		Lab ID No:	N/A	
Contact Person:	N/A			Phone No:	N/A
Mailing Address:	N/A				
	Street	City/Sta	te		Zip
LABORATORY RECORD #3					
Laboratory:	N/A		Lab ID No:	N/A	
Contact Person:	N/A			Phone No:	N/A
Mailing Address:	N/A				
	Street	City/Sta	te		Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	42	8000-524	13
Facility's Lo	cal Well or Spring Number (e.g., N	4W−1	, MW-2, etc	:.)	220		221		222		223	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/25/2021 08	8:59	1/25/2021	06:28	1/25/2021	07:40	1/25/2021 0	7:09
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW220SG2	2-21	MW221S	G2-21	MW222S0	G2-21	MW223SG2	2-21
Laboratory San	mple ID Number (if applicable)				53297700)1	532977	003	5329770	005	53297700	07
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis.	1/28/2021	1	1/28/20)21	1/28/20	21	1/28/202	1
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.194	J	0.456		0.338		0.393	
16887-00-6	Chloride(s)	т	mg/L	9056	17.8	*	35.4	*	23.3	*	28.6	*
16984-48-8	Fluoride	т	mg/L	9056	0.192		0.223		0.33		0.293	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.893	*	1.1	*	2.44	*	1.26	*
14808-79-8	Sulfate	т	mg/L	9056	15.9		13.5		9.23		11.8	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.71		29.81		29.8		29.8	
S0145	Specific Conductance	Т	μ M H0/cm	Field	344		388		287		387	_

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242) =	8000-5243	
Facility's Loc	al Well or Spring Number (e.g., MW-	-1, N	√W-2, BLANK-I	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	325.09		324.87		325.1		325.18	
N238	Dissolved Oxygen	Т	mg/L	Field	5.29		5.09		5.11		4.7	
s0266	Total Dissolved Solids	T	mg/L	160.1	161	*	184	*	150	*	190	*
s0296	рН	T	Units	Field	5.76		5.67		6.14		6.1	
NS215	Eh	T	mV	Field	496		496		492		500	
s0907	Temperature	T	°C	Field	15.39		14.89		15.06		15	
7429-90-5	Aluminum	T	mg/L	6020	<0.05		<0.05		0.204		<0.05	
7440-36-0	Antimony	T	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	T	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	T	mg/L	6020	0.196		0.201		0.201		0.244	
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	T	mg/L	6020	0.00782	J	0.015		0.00718	J	<0.015	
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	20.9		20.5		11.2		20	
7440-47-3	Chromium	T	mg/L	6020	0.00329	J	<0.01		<0.01		0.0194	
7440-48-4	Cobalt	T	mg/L	6020	<0.001		<0.001		0.000601	J	0.000314	J
7440-50-8	Copper	T	mg/L	6020	0.000965	J	0.00148	J	0.000792	J	0.00147	J
7439-89-6	Iron	T	mg/L	6020	<0.1		<0.1		0.224		<0.1	
7439-92-1	Lead	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	T	mg/L	6020	8.72		8.92		4.9		7.88	
7439-96-5	Manganese	T	mg/L	6020	<0.005		<0.005		0.00217	J	0.00258	J
7439-97-6	Mercury	T	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number			8000-520	01	8000-52	:02	8000-524	42	8000-52	43	
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.000529	J	0.00248		0.00103		0.0072	
7440-02-0	Nickel	т	mg/L	6020	0.00807		0.0107		0.022		0.0556	
7440-09-7	Potassium	т	mg/L	6020	1.14		1.07		0.731		6.18	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	36.1		42.9		39.5		41.4	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		0.00346	J	<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

C-6

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-52	243
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	220		221		222		223	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	12	8000-524	43
Facility's Loc	cal Well or Spring Number (e.g., N	1 ₩−1	L, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	0.00299	BJ	0.00298	BJ	0.00287	BJ	0.00287	BJ
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.000019		<0.0000188		<0.0000188		<0.0000192	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	L, MW-2, et	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	4.59	*	3.33	*	-0.738	*	3.23	*
12587-47-2	Gross Beta	Т	pCi/L	9310	5.57	*	15	*	0.46	*	8.2	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.491	*	0.626	*	0.098	*	0.303	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.505	*	-2.02	*	-2.8	*	2.93	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	10.3	*	4.72	*	4.1	*	2.02	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.438	*	-0.504	*	0.804	*	-0.345	*
10028-17-8	Tritium	Т	pCi/L	906.0	4.97	*	28.2	*	68.1	*	-13.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	22.7		20.2		22.7		22.7	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	1.05	J	0.985	J	0.837	J	0.914	J
s0586	Total Organic Halides	Т	mg/L	9020	<0.01		0.00608	J	0.00548	J	<0.01	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	18	8004-480	08
Facility's Lo	cal Well or Spring Number (e.g., N	4W−1	., MW-2, etc	:.)	224		369		370		372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/25/2021 08	8:21	1/20/2021	07:19	1/20/2021	08:17	1/20/2021 0	9:37
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW224SG2	2-21	MW369U	G2-21	MW370U0	G2-21	MW372UG	2-21
Laboratory Sa	mple ID Number (if applicable)				53297700	9	532565	001	5325650	003	53256500	07
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/28/2021	1	1/26/20)21	1/26/20	21	1/26/202	:1
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	OWN)	SIDE		DOW	N	DOWI	7	DOWN	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.32		0.343		0.464		0.51	
16887-00-6	Chloride(s)	т	mg/L	9056	19.8	*	29.8	*	36.7	*	38.4	*
16984-48-8	Fluoride	т	mg/L	9056	0.31		0.232		0.219		0.194	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.877	*	0.838		1.12		1.19	
14808-79-8	Sulfate	т	mg/L	9056	10.4		5.86		20.9		156	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.75		30.37		30.38		30.39	
S0145	Specific Conductance	т	μ M H0/cm	Field	410		373		464		822	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	√W-2, BLANK-I	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	325.34		324.58		324.81		324.68	
N238	Dissolved Oxygen	Т	mg/L	Field	1.91		1.88		4.3		2.13	
s0266	Total Dissolved Solids	Т	mg/L	160.1	187	*	191	*	210	*	447	*
s0296	рн	Т	Units	Field	5.88		5.98		5.79		6.04	
NS215	Eh	Т	mV	Field	503		350		395		362	
s0907	Temperature	т	°C	Field	15.28		13.72		14.5		14.89	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0351	J	<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.193		0.354		0.241		0.0638	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00879	J	0.0147	J	0.27		1.39	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	19.9		15.4		28.3		67.5	
7440-47-3	Chromium	т	mg/L	6020	0.00313	J	<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.000351	J	0.00382		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00105	J	0.00341		0.00128	J	0.00142	J
7439-89-6	Iron	Т	mg/L	6020	0.086	J	0.167		<0.1		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	8.64		6.85		12.9		24.1	
7439-96-5	Manganese	Т	mg/L	6020	0.00191	J	0.0167		0.00196	J	<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.000656	J	0.000208	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.0205		0.00505		0.00254		0.00145	J
7440-09-7	Potassium	т	mg/L	6020	0.818		0.505		2.69		2.21	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	57		53.9		43.1		64	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		0.00332	٦	<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		0.00591	J	<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	308
Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.00147		0.00086	J	0.00341	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-4820)	8004-48	18	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00295	BJ	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000189		<0.0000204		<0.0000205		<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.1		<0.0982		<0.0981	
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.1		<0.0982		<0.0981	
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.1		<0.0982		<0.0981	
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.1		<0.0982		<0.0981	
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.1		<0.0982		<0.0981	
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.1		<0.0982		<0.0981	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.1		<0.0982		<0.0981	
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.1		<0.0982		<0.0981	
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.1		<0.0982		<0.0981	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.027	*	2.32	*	-1.4	*	1.68	*
12587-47-2	Gross Beta	Т	pCi/L	9310	4.33	*	23.2	*	35	*	27.6	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	AN-1418	0.537	*	0.151	*	0.447	*	0.114	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.29	*	2.91	*	-2.04	*	0.0329	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-0.72	*	47.7	*	58.8	*	43.5	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.526	*	-0.0188	*	-0.142	*	0.2	*
10028-17-8	Tritium	Т	pCi/L	906.0	-12.7	*	86.3	*	91.9	*	100	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	12.9	J	<20		17.8	J	39.7	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	1.01	J	1.32	J	1.13	J	1.29	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00466	J	0.0246		0.00702	J	0.014	

C-14

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	10	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g., N	4W−1	, MW-2, etc	:.)	373		384		385		386	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/20/2021 10	D:17	1/21/2021	08:27	1/21/2021	09:22	1/21/2021 0	9:55
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG2	2-21	MW384S0	G2-21	MW385S0	G2-21	MW386SG2	2-21
Laboratory San	mple ID Number (if applicable)				53256500	9	532724	003	5327240	005	53272400	07
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis.	1/26/2021		1/27/20	21	1/27/20	21	1/27/202	1
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.565		0.278	*	0.266	*	0.146	*J
16887-00-6	Chloride(s)	т	mg/L	9056	39	*	23.9		23.4		11.3	
16984-48-8	Fluoride	т	mg/L	9056	0.196		0.153		0.157		0.62	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.12		0.984	*	0.638	*	<0.1	
14808-79-8	Sulfate	т	mg/L	9056	170		20		20.7		45.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.4		29.98		29.98		30	
S0145	Specific Conductance	Т	μ M H0/cm	Field	854		390	_	452		558	_

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	324.65		324.66		324.69		345.23	
N238	Dissolved Oxygen	Т	mg/L	Field	1.8		4.3		0.82		1.55	
s0266	Total Dissolved Solids	Т	mg/L	160.1	484	*	173		180		313	
s0296	рн	Т	Units	Field	6.05		5.65		5.89		6.32	
NS215	Eh	Т	mV	Field	372		448		433		360	
s0907	Temperature	т	°c	Field	15.28		14.22		14.72		15.33	
7429-90-5	Aluminum	т	mg/L	6020	0.0399	J	<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0308		0.202		0.258		0.198	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	2.1		0.0421		0.0529		0.00744	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	71		22.1		32.5		20.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000536	J	<0.001		0.000352	J	0.0124	
7440-50-8	Copper	Т	mg/L	6020	0.00115	J	0.00102	J	0.000698	J	0.000927	J
7439-89-6	Iron	Т	mg/L	6020	0.0362	J	0.0701	J	<0.1		0.63	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	27.2		9.29		12.9		8.51	
7439-96-5	Manganese	Т	mg/L	6020	0.0185		0.00232	J	0.00152	J	1.44	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.000584	J	<0.001		0.000328	J	0.000636	J
7440-02-0	Nickel	т	mg/L	6020	0.0027		0.00106	J	0.0014	J	0.00283	
7440-09-7	Potassium	т	mg/L	6020	2.78		1.33		1.65		0.274	J
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	64		41.3		37.5		99.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	0.000068	J	<0.0002		0.00014	J	0.000083	J
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		0.02	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-48	310	8004-48	304
Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00454		0.00043	J	0.00037	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-48	10	8004-48	04
Facility's Loc	cal Well or Spring Number (e.g., N	1 ₩−1	l, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000201		<0.0000189		<0.0000189		<0.0000187	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.1			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.1			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.1			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.1			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.1			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.1			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None
For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809		8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.1			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.1			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.1			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.43	*	-0.662	*	1.03	*	2.83	*
12587-47-2	Gross Beta	Т	pCi/L	9310	0.285	*	12.3	*	22.4	*	0.647	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.294	*	0.491	*	0.557	*	0.269	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.24	*	-2.36	*	0.791	*	3.11	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	9.89	*	40.8	*	40.6	*	4.8	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.208	*	-0.0732	*	-0.351	*	0.737	*
10028-17-8	Tritium	Т	pCi/L	906.0	89.8	*	82.3	*	27.9	*	135	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		<20		15.3	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	1.3	J	1.25	J	1.26	J	5	
S0586	Total Organic Halides	Т	mg/L	9020	0.00952	J	0.00852	J	0.0082	J	0.106	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	312	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	387		388		389		390	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/21/2021 07	7:13	1/21/2021	07:49	NA		1/21/2021 0	6:27
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)			MW387SG2	!-21	MW388S	G2-21	NA		MW390SG2-2	21	
Laboratory Sa	mple ID Number (if applicable)				53272400	9	532724	011	NA		532724013	3
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/27/2021	1	1/27/20)21	NA		1/27/2021	1
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.574	*	0.444	*		*	<0.2	*
16887-00-6	Chloride(s)	т	mg/L	9056	40.8		36			*	25.2	
16984-48-8	Fluoride	т	mg/L	9056	0.58		0.178			*	0.29	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.42	*	1.12	*		*	1.42	*
14808-79-8	Sulfate	Т	mg/L	9056	33.6		18.6			*	32.5	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.97		29.97			*	29.96	
S0145	Specific Conductance	т	μ MH 0/cm	Field	588		390			*	643	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	ocal Well or Spring Number (e.g., M	7-1, i	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.71		324.65			*	324.93	
N238	Dissolved Oxygen	т	mg/L	Field	3.71		3.98			*	2.01	
s0266	Total Dissolved Solids	т	mg/L	160.1	284		189			*	371	
s0296	рн	T	Units	Field	5.77		5.63			*	5.96	
NS215	Eh	T	mV	Field	439		432			*	408	
s0907	Temperature	т	°C	Field	13.89		14.28			*	13.89	
7429-90-5	Aluminum	T	mg/L	6020	<0.05		<0.05			*	0.0359	J
7440-36-0	Antimony	T	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	T	mg/L	6020	0.00307	J	<0.005			*	<0.005	
7440-39-3	Barium	T	mg/L	6020	0.166		0.174			*	0.262	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.03		0.0237			*	0.0219	
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	43.2		24.2			*	30.9	
7440-47-3	Chromium	T	mg/L	6020	0.0103		<0.01			*	<0.01	
7440-48-4	Cobalt	T	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-50-8	Copper	T	mg/L	6020	0.00116	J	0.00107	J		*	0.00155	J
7439-89-6	Iron	т	mg/L	6020	0.0951	J	0.0366	J		*	0.0458	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	17.8		10.4			*	13	
7439-96-5	Manganese	т	mg/L	6020	0.00763		0.00157	J		*	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-481	1
Facility's L	ocal Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		0.000228	J		*	0.000247	J
7440-02-0	Nickel	т	mg/L	6020	0.00181	J	0.00143	J		*	0.0023	
7440-09-7	Potassium	т	mg/L	6020	1.77		1.78			*	0.335	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	Т	mg/L	6020	60.3		39			*	103	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.00011	J		*	0.000245	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02			*	0.00377	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	16	8004-48	312	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00087	J	0.00046	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None
For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4816	3	8004-48	12	8004-4811	
Facility's Loc	al Well or Spring Number (e.g., M	1 ₩−1	1, MW-2, et	cc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000186		<0.0000188			*	<0.0000188	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB, Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816	ì	8004-481	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.26	*	1.74	*		*	0.168	*
12587-47-2	Gross Beta	Т	pCi/L	9310	186	*	10.6	*		*	34.5	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.779	*	0.225	*		*	0.815	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.9	*	1.85	*		*	-1.48	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	308	*	14.9	*		*	59.9	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.0365	*	0.0114	*		*	0.483	*
10028-17-8	Tritium	Т	pCi/L	906.0	80.5	*	141	*		*	172	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		12.9	J		*	15.3	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.43	J	1.19	J		*	2.56	
S0586	Total Organic Halides	Т	mg/L	9020	<0.01		0.00552	J		*	0.016	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	307	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g., N	4W−1	., MW-2, etc	.)	391		392		393		394	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	ites)			1/26/2021 08	3:26	1/26/2021 09:13		1/26/2021	09:45	1/26/2021 0	6:35
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW391SG2	-21	MW392SG2-21		MW393S0	G2-21	MW394SG	2-21
Laboratory San	mple ID Number (if applicable)				533248001		533248003		533248005		5332480	07
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	e Or	ganics Anal	ysis	1/29/2021		1/29/2021		1/29/2021		1/29/202	:1
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOWN		DOWN		UP	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.568		0.583		<0.2		0.584	
16887-00-6	Chloride(s)	т	mg/L	9056	41.4		43		10.8		44.3	
16984-48-8	Fluoride	т	mg/L	9056	0.165		0.187		0.166		0.134	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.31		0.956	J	<0.5		1.47	
14808-79-8	Sulfate	т	mg/L	9056	14.2		10.5		19.4		11.4	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.83		29.85		29.85		29.77	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	384		357	_	420		390	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	,	8004-4802	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-E	f, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.94		324.86		340.43		325.22	
N238	Dissolved Oxygen	Т	mg/L	Field	4.07		1.69		1.9		5.22	
s0266	Total Dissolved Solids	Т	mg/L	160.1	166	*	160	*	216	*	196	*
s0296	рН	Т	Units	Field	5.73		5.83		5.9		5.82	
NS215	Eh	Т	mV	Field	264		286		180		309	
s0907	Temperature	Т	°C	Field	14.17		14.61		15.22		14	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.024	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		0.00261	J	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.182		0.243		0.158		0.248	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0454		0.0259		0.0223		0.0199	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	25.8		25.5		15.2		25.5	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000638	J	0.000643	J	0.000523	J	0.00266	
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.0392	J	1.76		0.0771	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.9		10.7		4.04		10.7	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.00949		0.0555		0.00113	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-480	05	8004-48	06	8004-480	07	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		0.000339	BJ	<0.001		<0.001	
7440-02-0	Nickel	Т	mg/L	6020	0.00105	J	0.00163	J	0.000834	J	0.00878	
7440-09-7	Potassium	т	mg/L	6020	1.44		1.9		0.454		1.31	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	29.5		25.3		90.2		30.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	0.00519	J	<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	307	8004-48	302
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		0.0006	J	<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0075		0.0131		<0.001		0.00284	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	3	8004-480)7	8004-48	02
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196		<0.000019		<0.0000188		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805		8004-4806		8004-480	7	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	4	*	7.02	*	3.24	*	-0.891	*
12587-47-2	Gross Beta	Т	pCi/L	9310	-3.48	*	1.93	*	4.98	*	3.05	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.244	*	0.317	*	0.457	*	0.598	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	4.91	*	0.712	*	4.05	*	0.889	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	7.92	*	-2.19	*	7.48	*	11.4	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.578	*	-0.308	*	-0.269	*	0.307	*
10028-17-8	Tritium	Т	pCi/L	906.0	-39.9	*	19.2	*	67.8	*	21.3	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	24.2		19.4	J	26.5		21.8	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	т	mg/L	9060	0.916	J	0.862	J	2.73		0.934	J
s0586	Total Organic Halides	т	mg/L	9020	0.00712	J	0.0126		0.0113		0.00672	J

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-48	303	8004-48	317	0000-000)0
Facility's Loca	al Well or Spring Number (e.g., N	/W−1	l, MW-2, etc	:.)	395		396		397		E. BLAN	K
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		E	
Sample Date and		1/26/2021 07	7:12	1/26/2021	07:47	1/25/2021	09:39	1/21/2021 0	5:45			
Duplicate ("Y"		N		N		N		N				
Split ("Y" or		N		N		N		N				
Facility Sample	Facility Sample ID Number (if applicable)						MW396S	G2-21	MW397S0	G2-21	RI1SG2-2	21
Laboratory Samp	ple ID Number (if applicable)				533248009		533248011		532977012		53272401	16
Date of Analys:	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	1/29/2021		1/29/2021		1/28/2021		1/27/202	.1
Gradient with	respect to Monitored Unit (UP, DO	, NW	SIDE, UNKN	UP		UP		UP		NA		
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.512		0.927		0.41			*
16887-00-6	Chloride(s)	т	mg/L	9056	40.3		57.2		33.9	*		*
16984-48-8	Fluoride	Т	mg/L	9056	0.12		0.558		0.146			*
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.6		<0.4		1.17	*		*
14808-79-8	Sulfate	Т	mg/L	9056	11.6		25.9		11.5			*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.81		29.81		29.71			*
S0145	S0145 Specific Conductance T µMH0/cm Field				358		717		320			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	7	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MW	r-1, 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.56		371.08		325.33			*
N238	Dissolved Oxygen	т	mg/L	Field	5.22		0.58		6.3			*
s0266	Total Dissolved Solids	т	mg/L	160.1	8.57	*J	456	*	151	*		*
s0296	рн	Т	Units	Field	5.7		6.23		5.73			*
NS215	Eh	Т	mV	Field	334		80		478			*
s0907	Temperature	т	°C	Field	14.11		14.39		14.5			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.242		0.387		0.14		0.00184	J
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0205		0.00803	J	0.00841	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	24.8		33.5		18.8		0.277	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00317		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00173	J	0.000686	J	0.000965	J	0.0003	J
7439-89-6	Iron	т	mg/L	6020	<0.1		1.78		<0.1		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.4		14.6		7.94		0.0755	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.46		<0.005		<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	395		396		397		E. BLAN	1K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		0.000423	BJ	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.00178	J	0.00235		0.0018	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.46		0.706		1.73		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	28.3		111		32.5		0.427	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	T	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		0.00655	В
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-480	1	8004-480	03	8004-48	317	0000-00	000		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00228		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	L, MW-2, et	cc.)	395		396		397		E. BLAN	1K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		0.00283	BJ	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193		<0.0000195		<0.0000185		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803		8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	1.59	*	0.333	*	2.62	*	-0.509	*
12587-47-2	Gross Beta	т	pCi/L	9310	0.657	*	2.08	*	13.5	*	0.56	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.596	*	0.492	*	0.57	*	0.0587	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.08	*	-1.63	*	1.09	*	-0.426	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	14	*	10.9	*	15.2	*	4.41	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.256	*	0.464	*	0.104	*	0.2	*
10028-17-8	Tritium	т	pCi/L	906.0	9.73	*	20.9	*	11.7	*	144	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	24.2		26.5		15.3	J		*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	0.594	*	<0.5	*	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.89	J	4.72		0.846	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.0047	J	0.0419		0.00536	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., N	⁄w-1	l, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLANK	(2	T. BLANK	(3
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	F		Т		Т		Т	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		1/21/2021 0	8:30	1/21/2021	05:40	1/25/2021 0	5:40	1/26/2021 0	5:50
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				FB1SG2-	21	TB1SG2	-21	TB2SG2-	21	TB3SG2-2	21
Laboratory Sam	boratory Sample ID Number (if applicable)						5327240	17	5329770	11	53324801	13
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					1	1/27/20	21	1/28/202	<u>'</u> 1	1/29/202	.1
Gradient with	respect to Monitored Unit (UP, DC	NWC,	, SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595						*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	μ M H0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	F. BLAN	<	T. BLANK	1	T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.004			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	Т	mg/L	6020	<0.002			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	Т	mg/L	6020	0.0126	J		*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	Т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/L	6020	0.0909	J		*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	Т	mg/L	6020	<0.02			*		*		*
7440-66-6	Zinc	Т	mg/L	6020	<0.02			*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		0.00401	J	0.00521	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-000	00	0000-00	000	0000-00	000
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	F. BLAN	<	T. BLAN	(1	T. BLAN	IK 2	T. BLAN	IK 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	L, MW-2, et	cc.)	F. BLANK	(T. BLANK	1	T. BLAN	< 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		0.00292	BJ	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000189		<0.0000193		<0.0000192		<0.000019	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

C-43

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000		000-000	0	0000-000)0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	F. BLANK		T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.5	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	-3.76	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.251	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	2.92	*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-2.54	*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.898	*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0	119	*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0	<0.5			*		*		*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4809	9						
Facility's Loc	al Well or Spring Number (e.g., M	ſW−1	, MW-2, etc	:.)	384							
Sample Sequenc	e #				2						/	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA							
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/21/2021 08	3:27	`					
Duplicate ("Y"	or "N") ²				Y			$\overline{}$				
Split ("Y" or	"N") ³				N							
Facility Sampl	ility Sample ID Number (if applicable)					2-21				/		
Laboratory Sam	poratory Sample ID Number (if applicable)					1						
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					1				$\overline{/}$		
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	SIDE				\searrow			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.275	*						
16887-00-6	Chloride(s)	т	mg/L	9056	24.1							
16984-48-8	Fluoride	Т	mg/L	9056	0.154			$\overline{/}$				
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.998	*						
14808-79-8	Sulfate	Т	mg/L	9056	19.9							
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*						
S0145	Specific Conductance	т	μ MH0/cm	Field		*						

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

			(00:::0									
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	9						
Facility's Loc	al Well or Spring Number (e.g., MW	-1, N	W−2, BLANK-	F, etc.)	384							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*						
N238	Dissolved Oxygen	т	mg/L	Field		*						
s0266	Total Dissolved Solids	т	mg/L	160.1	176							
S0296	рН	Т	Units	Field		*						
NS215	Eh	Т	mV	Field		*				/		
s0907	Temperature	т	°C	Field		*						
7429-90-5	Aluminum	Т	mg/L	6020	0.0997					/		
7440-36-0	Antimony	Т	mg/L	6020	<0.003							
7440-38-2	Arsenic	Т	mg/L	6020	0.0021	J			X			
7440-39-3	Barium	Т	mg/L	6020	0.209							
7440-41-7	Beryllium	т	mg/L	6020	0.000623							
7440-42-8	Boron	т	mg/L	6020	0.0464							
7440-43-9	Cadmium	Т	mg/L	6020	0.00133							
7440-70-2	Calcium	т	mg/L	6020	22.9			/				
7440-47-3	Chromium	Т	mg/L	6020	<0.01							
7440-48-4	Cobalt	Т	mg/L	6020	0.00105							
7440-50-8	Copper	Т	mg/L	6020	0.00214							
7439-89-6	Iron	Т	mg/L	6020	0.162							
7439-92-1	Lead	Т	mg/L	6020	0.00284						\	
7439-95-4	Magnesium	т	mg/L	6020	9.64							
7439-96-5	Manganese	т	mg/L	6020	0.00368	J						
7439-97-6	Mercury	Т	mg/L	7470	<0.0002							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	09						/
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	384							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001							
7440-02-0	Nickel	Т	mg/L	6020	0.00264							
7440-09-7	Potassium	т	mg/L	6020	1.44							
7440-16-6	Rhodium	Т	mg/L	6020	<0.005						/	
7782-49-2	Selenium	т	mg/L	6020	0.00203	J				/		
7440-22-4	Silver	т	mg/L	6020	0.000596	J						
7440-23-5	Sodium	т	mg/L	6020	41.9					/		
7440-25-7	Tantalum	т	mg/L	6020	<0.005							
7440-28-0	Thallium	т	mg/L	6020	0.000628	J			X			
7440-61-1	Uranium	т	mg/L	6020	<0.0002							
7440-62-2	Vanadium	т	mg/L	6020	<0.02							
7440-66-6	Zinc	т	mg/L	6020	0.00412	J						
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005							
67-64-1	Acetone	т	mg/L	8260	<0.005			,				
107-02-8	Acrolein	т	mg/L	8260	<0.005			7				
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005							
71-43-2	Benzene	т	mg/L	8260	<0.001		/					
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001							
1330-20-7	Xylenes	Т	mg/L	8260	<0.003							
100-42-5	Styrene	Т	mg/L	8260	<0.001							
108-88-3	Toluene	Т	mg/L	8260	<0.001							
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		/					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

11NDS/0N11: 110 09

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	9						
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	384							
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		,					
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001							
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005						/	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005					/		
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005							
75-00-3	Chloroethane	Т	mg/L	8260	<0.001							
67-66-3	Chloroform	т	mg/L	8260	<0.001							
74-87-3	Methyl chloride	т	mg/L	8260	<0.001				X			
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001				/ \	\setminus		
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001							
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001							
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001							
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001	*						
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		/					
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001							
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001							
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0005	J	<u> </u>					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number											
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)											
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		\					
74-88-4	Iodomethane	т	mg/L	8260	<0.005							
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001					/		
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005							
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192							
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				X			
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001						\	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001							
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001							
1336-36-3	PCB,Total	т	ug/L	8082		*						
12674-11-2	PCB-1016	Т	ug/L	8082		*						
11104-28-2	PCB-1221	т	ug/L	8082		*						
11141-16-5	PCB-1232	Т	ug/L	8082		*						
53469-21-9	PCB-1242	т	ug/L	8082		*						
12672-29-6	PCB-1248	т	ug/L	8082		*						

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

					(00110.	<u> </u>						
AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number											/
Facility's Lo	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)											
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DE RECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*						
11096-82-5	PCB-1260	т	ug/L	8082		*						
11100-14-4	PCB-1268	т	ug/L	8082		*						
12587-46-1	Gross Alpha	т	pCi/L	9310	7.55	*						
12587-47-2	Gross Beta	т	pCi/L	9310	20	*						
10043-66-0	Iodine-131	Т	pCi/L			*						
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.329	*						
10098-97-2	Strontium-90	т	pCi/L	905.0	2.32	*						
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	31.4	*						
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.26	*						
10028-17-8	Tritium	т	pCi/L	906.0	56	*						
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20				/			
57-12-5	Cyanide	Т	mg/L	9012	<0.2							
20461-54-5	Iodide	т	mg/L	300.0	<0.5							
s0268	Total Organic Carbon	Т	mg/L	9060	1.2	J						
s0586	Total Organic Halides	Т	mg/L	9020	<0.01		/					
		\Box										

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW22	20 MW220SG2-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.85. Rad error is 4.79.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.07. Rad error is 7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.567. Rad error is 0.567.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.31. Rad error is 1.31.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.4. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.96. Rad error is 0.954.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 115. Rad error is 115.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW22	21 MW221SG2-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.92. Rad error is 4.89.
		Gross beta		TPU is 7.99. Rad error is 7.57.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.603. Rad error is 0.602.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.47. Rad error is 2.47.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.3. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.359. Rad error is 0.359.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 100. Rad error is 100.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5242 MW22	22 MW222SG2-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.57. Rad error is 3.57.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.51. Rad error is 4.51.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.338. Rad error is 0.337.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.21. Rad error is 2.21.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.05. Rad error is 1.04.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 112. Rad error is 111.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5243 MW22	23 MW223SG2-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.32. Rad error is 4.29.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 7.49. Rad error is 7.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.419. Rad error is 0.419.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.08. Rad error is 4.06.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.446. Rad error is 0.445.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 99.2. Rad error is 99.1.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

•	cility Imple ID	Constituent	Flag	Description
8000-5244 MW224 MW2	224SG2-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.91. Rad error is 1.91.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 7.59. Rad error is 7.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.557. Rad error is 0.557.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 3.19. Rad error is 3.15.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 12.7. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.12. Rad error is 1.11.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 102. Rad error is 102.
		lodide	W	Post-digestion spike recovery out of control limits.
004-4820 MW369 MW3	869UG2-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 4.04. Rad error is 4.02.
		Gross beta		TPU is 9.29. Rad error is 8.45.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.324. Rad error is 0.324.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.82. Rad error is 2.78.
		Technetium-99		TPU is 14. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.682. Rad error is 0.68.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 126. Rad error is 125.
		Iodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4818 MW37	0 MW370UG2-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.91. Rad error is 1.91.
		Gross beta		TPU is 11.2. Rad error is 9.57.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.541. Rad error is 0.541.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.03. Rad error is 2.03.
		Technetium-99		TPU is 14.9. Rad error is 13.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.776. Rad error is 0.776.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 124. Rad error is 123.
		lodide	W	Post-digestion spike recovery out of control limits.
004-4808 MW37	2 MW372UG2-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.09. Rad error is 4.08.
		Gross beta		TPU is 9.69. Rad error is 8.51.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.496. Rad error is 0.496.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.62. Rad error is 2.62.
		Technetium-99		TPU is 13.2. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.745. Rad error is 0.742.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 123. Rad error is 121.
		Iodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

•	Facility Sample ID	Constituent	Flag	Description
004-4792 MW373 M\	N373UG2-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.5. Rad error is 4.5.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.61. Rad error is 5.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.344. Rad error is 0.343.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3. Rad error is 2.96.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.594. Rad error is 0.593.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 127. Rad error is 126.
		lodide	W	Post-digestion spike recovery out of control limits.
04-4809 MW384 MV	N384SG2-21	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		1,1,2,2-Tetrachloroethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.56. Rad error is 1.56.
		Gross beta		TPU is 7.35. Rad error is 7.06.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.46. Rad error is 0.459.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.92. Rad error is 2.92.
		Technetium-99		TPU is 12.8. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.638. Rad error is 0.638.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 123. Rad error is 122.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4810 MW38	35 MW385SG2-21	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		1,1,2,2-Tetrachloroethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.16. Rad error is 4.16.
		Gross beta		TPU is 9.33. Rad error is 8.58.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.699. Rad error is 0.698.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.45. Rad error is 2.45.
		Technetium-99		TPU is 13.4. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.537. Rad error is 0.537.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 125. Rad error is 125.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4804 MW38	36 MW386SG2-21	Bromide	W	Post-digestion spike recovery out of control limits.
		1,1,2,2-Tetrachloroethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.91. Rad error is 3.88.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.97. Rad error is 7.97.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.375. Rad error is 0.375.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.8. Rad error is 2.76.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.902. Rad error is 0.893.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 129. Rad error is 127.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW38	7 MW387SG2-21	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		1,1,2,2-Tetrachloroethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.38. Rad error is 5.34.
		Gross beta		TPU is 35.3. Rad error is 17.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.754. Rad error is 0.753.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.12. Rad error is 3.12.
		Technetium-99		TPU is 39.9. Rad error is 20.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.555. Rad error is 0.554.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 127. Rad error is 127.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4816 MW388 MW388SG2-21		Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		1,1,2,2-Tetrachloroethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.99. Rad error is 2.97.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 8.28. Rad error is 8.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.825. Rad error is 0.825.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.19. Rad error is 4.18.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.2. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.822. Rad error is 0.821.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 130. Rad error is 127.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample w collected.
		Temperature		During sampling, the well was dry; therefore, no sample w collected.
		Aluminum		During sampling, the well was dry; therefore, no sample w collected.
		Antimony		During sampling, the well was dry; therefore, no sample w collected.
		Arsenic		During sampling, the well was dry; therefore, no sample w collected.
		Barium		During sampling, the well was dry; therefore, no sample w collected.
		Beryllium		During sampling, the well was dry; therefore, no sample w collected.
		Boron		During sampling, the well was dry; therefore, no sample w collected.
		Cadmium		During sampling, the well was dry; therefore, no sample w collected.
		Calcium		During sampling, the well was dry; therefore, no sample w collected.
		Chromium		During sampling, the well was dry; therefore, no sample w collected.
		Cobalt		During sampling, the well was dry; therefore, no sample w collected.
		Copper		During sampling, the well was dry; therefore, no sample w collected.
		Iron		During sampling, the well was dry; therefore, no sample w collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample w collected.
		Manganese		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Mercury		During sampling, the well was dry; therefore, no sample wa collected.
		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample wa collected.
		Silver		During sampling, the well was dry; therefore, no sample wa collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample wa collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample was collected.
		Vanadium		During sampling, the well was dry; therefore, no sample w collected.
		Zinc		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample w collected.
		Acetone		During sampling, the well was dry; therefore, no sample w collected.
		Acrolein		During sampling, the well was dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample w collected.
		Benzene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		Xylenes		During sampling, the well was dry; therefore, no sample was collected.
		Styrene		During sampling, the well was dry; therefore, no sample was collected.
		Toluene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample we collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample we collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample w collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Carbon disulfide		During sampling, the well was dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample was collected.
		Chloroform		During sampling, the well was dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well was dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well was dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well was dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample wa collected.
		Tritium		During sampling, the well was dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well was dry; therefore, no sample wa collected.
		lodide		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4811 MW39	0 MW390SG2-21	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		1,1,2,2-Tetrachloroethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.52. Rad error is 2.52.
		Gross beta		TPU is 10.8. Rad error is 9.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.38. Rad error is 1.37.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.43. Rad error is 3.43.
		Technetium-99		TPU is 14.6. Rad error is 13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.889. Rad error is 0.883.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 135. Rad error is 131.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4805 MW391	MW391SG2-21	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.01. Rad error is 4.97.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.51. Rad error is 5.51.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.552. Rad error is 0.552.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.38. Rad error is 3.29.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 13.8. Rad error is 13.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.807. Rad error is 0.8.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 99.7. Rad error is 99.7.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4806 MW39	2 MW392SG2-21	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.53. Rad error is 6.42.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.33. Rad error is 4.31.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 0.413.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.2. Rad error is 3.2.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.553. Rad error is 0.552.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 104. Rad error is 104.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4807 MW39	3 MW393SG2-21	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.84. Rad error is 4.81.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.56. Rad error is 7.52.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.695. Rad error is 0.695.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.39. Rad error is 4.35.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.8. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.526. Rad error is 0.526.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 117. Rad error is 116.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4802 MW394	MW394SG2-21	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.14. Rad error is 3.13.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.17. Rad error is 5.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.54. Rad error is 0.539.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3. Rad error is 3.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.8. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.901. Rad error is 0.897.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 113. Rad error is 113.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4801 MW39	5 MW395SG2-21	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.53. Rad error is 4.52.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.7. Rad error is 4.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.539. Rad error is 0.538.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.37. Rad error is 2.37.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.7. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.621. Rad error is 0.62.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 103. Rad error is 103.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4803 MW396 MW396SG2-21		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.36. Rad error is 3.35.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.69. Rad error is 6.68.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.477. Rad error is 0.476.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.49. Rad error is 2.49.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.4. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.897. Rad error is 0.891.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 113. Rad error is 113.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4817 MW3	97 MW397SG2-21	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.88. Rad error is 6.87.
		Gross beta		TPU is 7.8. Rad error is 7.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.549. Rad error is 0.548.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.82. Rad error is 2.82.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.4. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.605. Rad error is 0.603.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 107. Rad error is 107.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG2-21	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		1,1,2,2-Tetrachloroethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 2.36. Rad error is 2.35.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 6.42. Rad error is 6.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.263. Rad error is 0.263.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 2.62. Rad error is 2.62.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 10.9. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 0.61. Rad error is 0.607.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 129. Rad error is 126.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG2-21	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		1,1,2,2-Tetrachloroethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.97. Rad error is 2.97.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 5.72. Rad error is 5.72.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.373. Rad error is 0.372.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 3.32. Rad error is 3.28.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 9.97. Rad error is 9.97.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.23. Rad error is 1.22.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 122. Rad error is 119.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG2-21	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG2-21	Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		1,1,2,2-Tetrachloroethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		Iodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG2-21	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG2-21	Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG2-21	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

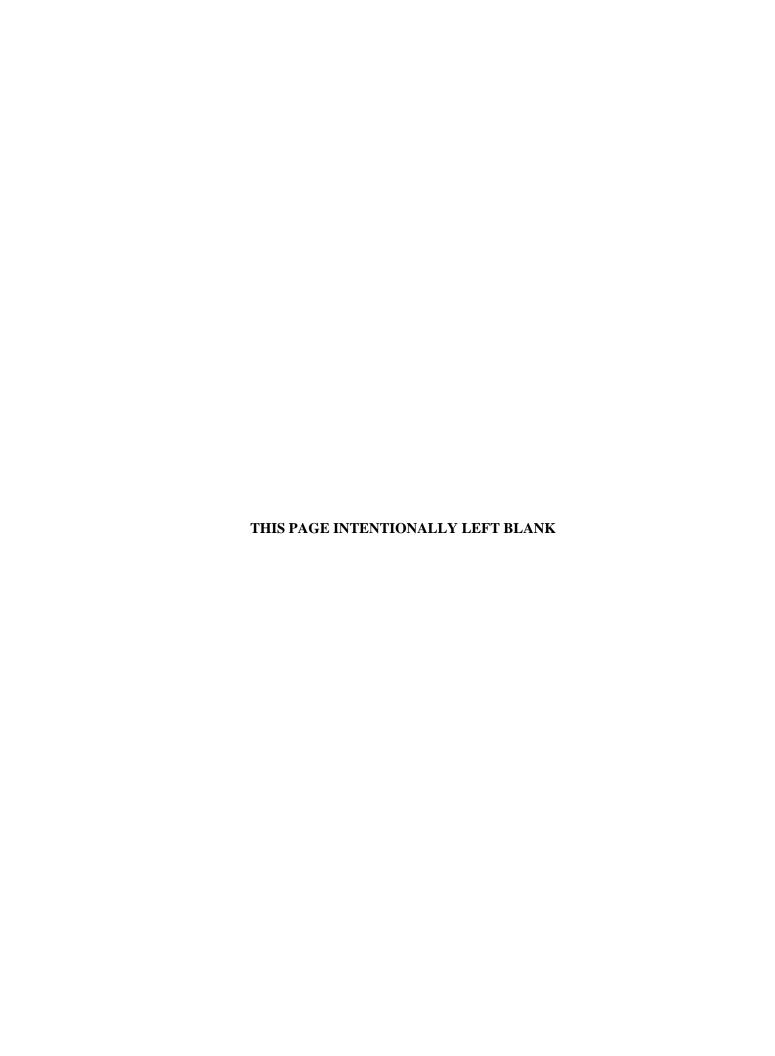
Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG2-21	Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045


Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4809 MW384	MW384DSG2-21	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		1,1,2,2-Tetrachloroethane	L	LCS or LCSD recovery outside of control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. This 8.14. Rad error is 8.03.
		Gross beta		TPU is 8.7. Rad error is 8.07.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.4. Rad error is 0.4.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 2.82. Rad error is 2.8.
		Technetium-99		TPU is 12.6. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. This 1.45. Rad error is 1.43.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 129. Rad error is 128.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2021

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u>

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2021 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The first quarter 2021 data used to conduct the statistical analyses were collected in January 2021. The statistical analyses for this report first used data from the initial eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one compliance well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Temo	Groundwater
Station	Туре	Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW3891*	TW	UCRS
$MW390^{1}$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

¹ **NOTE:** The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: compliance or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

^{*}Well was dry this quarter and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the background wells (identified as "BG"), the compliance or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2021. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

lower $TL = X - (K \times S)$

-

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations.

 $upper TL = X + (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Aluminum Beryllium Beta Activity Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride cis-1,2-Dichloroethene Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iodide Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential рН* Potassium Sodium Sulfate Technetium-99 Thallium Total Organic Carbon (TOC) Total Organic Halides (TOX) Trichloroethene Vanadium Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

1.1.1.2-Tetrachlorocthane	Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,2-Trichloroethane	1,1,1,2-Tetrachloroethane	4	4	0	No
1,1-Dichloroethane	1,1,2,2-Tetrachloroethane	4	4	0	No
1,2,3-Trichloropropane	1,1,2-Trichloroethane	4	4	0	No
1,2-Dibromo-3-chloropropane	1,1-Dichloroethane	4	4	0	No
1,2-Dibromoethane	1,2,3-Trichloropropane	4	4	0	No
1,2-Dichlorobenzene	1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dichloropropane	1,2-Dibromoethane	4	4	0	No
2-Butanone	1,2-Dichlorobenzene	4	4	0	No
2-Hexanone	1,2-Dichloropropane	4	4	0	No
4-Methyl-2-pentanone 4 4 0 No Acctone 4 4 0 No Acrolein 4 4 0 No Acrylonitrile 4 4 0 No Aluminum 4 2 2 Yes Antimony 4 4 0 No Beryllium 4 4 0 No Beron 4 4 0 No Bromochloromethane 4 2 2 Yes Bromochloromethane 4 4 0 No Bromoform 4 4 0 No Bromomethane 4 4 0 No Carbon disulfide 4 4 0 No Carbon disulfide 4 4 0 No Chlorode A 4 4 0 No Chlorode Descree 4 4 0 No Chlo	2-Butanone	4	4	0	No
Acetone 4 4 0 No Acrolein 4 4 0 No Acrylonitrile 4 4 0 No Aluminum 4 2 2 Yes Antimony 4 4 0 No Beryllium 4 4 0 No Bromo 4 0 4 Yes Bromide 4 2 2 Yes Bromochloromethane 4 4 0 No Carbon disulfide 4 4 0 No Carbon disulfide 4 4 0 No Chloride 4 0 4 Yes	2-Hexanone	4	4	0	No
Acrolein	4-Methyl-2-pentanone	4	4	0	No
Acrylonitrile 4 4 2 2 Yes Aluminum 4 2 2 Yes Antimony 4 4 0 No Beryllium 4 4 0 No Boron 4 0 4 Yes Bromide 4 2 2 Yes Bromochloromethane 4 4 0 No Bromodichloromethane 4 4 0 No Bromoform 4 4 0 No Bromomothane 4 4 0 No Bromomethane 4 4 0 No Calcium 4 4 0 No Carbon disulfide 4 4 0 No Chemical Oxygen Demand (COD) 4 4 4 0 No Chloride 4 4 4 0 No No Chlorobenzene 4 4<	Acetone	4	4	0	No
Aluminum 4 2 2 Yes Antimony 4 4 0 No Beryllium 4 4 0 No Boron 4 0 4 Yes Bromide 4 2 2 Yes Bromochloromethane 4 4 0 No Bromodichloromethane 4 4 0 No Bromoform 4 4 0 No Bromoform 4 4 0 No Bromofethane 4 4 0 No Bromomethane 4 4 0 No Calcium 4 4 0 No Carbon disulfide 4 4 0 No Chemical Oxygen Demand (COD) 4 0 4 Yes Chloride 4 4 0 No Chlorobenzene 4 4 0 No Chloro	Acrolein	4	4	0	No
Antimony 4 4 0 No Beryllium 4 4 0 No Boron 4 0 4 Yes Bromode 4 0 No Bromochloromethane 4 4 0 No Bromochloromethane 4 4 0 No Bromofichloromethane 4 4 0 No Bromofichloromethane 4 4 0 No Bromoform 4 4 0 No Bromofichloromethane 4 4 0 No Calcium 4 4 0 No Chemical Oxygen Demand (COD) 4 4 0 No Chloride 4 0 4 Yes Chlorobenzene 4 4 0 No Chlorocethane 4 4 0 No Chlorodethane 4 4 0 No	Acrylonitrile	4	4	0	No
Beryllium	-	4	2	2	Yes
Boron 4 0 4 Yes Bromide 4 2 2 Yes Bromochloromethane 4 4 0 No Bromodichloromethane 4 4 0 No Bromoform 4 4 0 No Bromomethane 4 4 0 No Calcium 4 4 0 No Carbon disulfide 4 4 0 No Carbon disulfide 4 4 0 No Chemical Oxygen Demand (COD) 4 0 4 Yes Chloride 4 0 4 Yes Chlorobenzene 4 4 0 No Chlorocethane 4 4 0 No Chlorocethane 4 4 0 No Chlorocethane 4 4 0 No cis-1,3-Dichlorocethene 4 4 0 No <	Antimony	4	4	0	No
Bromide 4 2 2 Yes Bromochloromethane 4 4 0 No Bromodichloromethane 4 4 0 No Bromoform 4 4 0 No Bromomethane 4 4 0 No Bromomethane 4 4 0 No Calcium 4 0 4 Yes Carbon disulfide 4 4 0 No Chemical Oxygen Demand (COD) 4 4 0 No Chloride 4 0 4 Yes Chlorobenzene 4 4 0 No Chloroethane 4 4 0 No Chloroform 4 4 0 No Chloroethane 4 4 0 No Chloromethane 4 4 0 No cis-1,2-Dichloroethene 4 4 0 No <td>Beryllium</td> <td>4</td> <td>4</td> <td>0</td> <td>No</td>	Beryllium	4	4	0	No
Bromochloromethane 4 4 0 No Bromodichloromethane 4 4 0 No Bromoform 4 4 0 No Bromomethane 4 4 0 No Carbon disulfide 4 4 0 No Chemical Oxygen Demand (COD) 4 0 4 Yes Chloride 4 0 4 Yes Chlorobenzene 4 4 0 No Chlorobenzene 4 4 0 No Chloroform 4 4 0 No Chloroform 4 4 0 No Chloromethane 4 4 0 No Cis-1,2-Dichloroethene 4 4 0 No cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Copper 4 0 No No	Boron	4	0	4	Yes
Bromodichloromethane 4 4 0 No Bromoform 4 4 0 No Bromomethane 4 4 0 No Calcium 4 0 4 Yes Carbon disulfide 4 4 0 No Chemical Oxygen Demand (COD) 4 0 4 Yes Chloride 4 0 4 Yes Chlorodende 4 4 0 No Chloroethane 4 4 0 No Chloroform 4 4 0 No Chloroethane 4 4 0 No Chloromethane 4 4 0 No Cis-1,2-Dichloroethene 4 4 0 No Cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes	Bromide	4	2	2	Yes
Bromoform 4 4 0 No Bromomethane 4 4 0 No Calcium 4 0 4 Yes Carbon disulfide 4 4 0 No Chemical Oxygen Demand (COD) 4 0 4 Yes Chloride 4 0 4 Yes Chlorobenzene 4 4 0 No Chloropform 4 4 0 No Chloroform 4 4 0 No Chloromethane 4 4 0 No Chloromethane 4 4 0 No Cis-1,2-Dichloroethene 4 4 0 No cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Copper 4 0 No No <	Bromochloromethane	4	4	0	No
Bromomethane 4 4 0 No Calcium 4 0 4 Yes Carbon disulfide 4 4 0 No Chemical Oxygen Demand (COD) 4 0 4 Yes Chloride 4 0 4 Yes Chlorobenzene 4 4 0 No Chloroethane 4 4 0 No Chloromethane 4 4 0 No Chloromethane 4 4 0 No Cis-1,2-Dichloroethene 4 4 0 No cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Copper 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No </td <td>Bromodichloromethane</td> <td>4</td> <td>4</td> <td>0</td> <td>No</td>	Bromodichloromethane	4	4	0	No
Calcium 4 0 4 Yes Carbon disulfide 4 4 0 No Chemical Oxygen Demand (COD) 4 0 4 Yes Chloride 4 0 4 Yes Chlorobenzene 4 4 0 No Chloroethane 4 4 0 No Chloromethane 4 4 0 No Chloromethane 4 4 0 No Cis-1,2-Dichloroethene 4 4 0 No cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Copper 4 0 No No Oibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 <	Bromoform	4	4	0	No
Carbon disulfide 4 4 0 No Chemical Oxygen Demand (COD) 4 0 4 Yes Chloride 4 0 4 Yes Chlorobenzene 4 4 0 No Chloroethane 4 4 0 No Chloroform 4 4 0 No Chloromethane 4 4 0 No Cis-1,2-Dichloroethene 4 4 0 No cis-1,2-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Copper 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dibromochloromethane 4 4 0 No<	Bromomethane	4	4	0	No
Chemical Oxygen Demand (COD) 4 Ves Chloride 4 0 4 Yes Chlorobenzene 4 4 0 No Chloroethane 4 4 0 No Chloromethane 4 4 0 No Chloromethane 4 4 0 No Chloromethane 4 4 0 No Cis-1,2-Dichloroethene 4 4 0 No Cis-1,2-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Copper 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dibromomethane 4 4 0 No Dissolve	Calcium	4	0	4	Yes
Chloride 4 0 4 Yes Chlorobenzene 4 4 0 No Chloroethane 4 4 0 No Chloroform 4 4 0 No Chloromethane 4 4 0 No Chloromethane 4 4 0 No Cis-1,2-Dichloroethene 4 4 0 No Cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Copper 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Solids 4 0 4 Yes <td>Carbon disulfide</td> <td>4</td> <td>4</td> <td>0</td> <td>No</td>	Carbon disulfide	4	4	0	No
Chloride 4 0 4 Yes Chlorobenzene 4 4 0 No Chloroethane 4 4 0 No Chloroform 4 4 0 No Chloromethane 4 4 0 No Chloromethane 4 4 0 No Cis-1,2-Dichloroethene 4 4 0 No Cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Copper 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Solids 4 0 4 Yes <td>Chemical Oxygen Demand (COD)</td> <td>4</td> <td>0</td> <td>4</td> <td>Yes</td>	Chemical Oxygen Demand (COD)	4	0	4	Yes
Chloroethane 4 4 0 No Chloroform 4 4 0 No Chloromethane 4 4 0 No Cis-1,2-Dichloroethene 4 4 0 No cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Oxygen 4 0 4 Yes Ethylbenzene 4 4 0 No		4	0	4	Yes
Chloroform 4 4 0 No Chloromethane 4 4 0 No cis-1,2-Dichloroethene 4 4 0 No cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dissolved Oxygen 4 4 0 No Dissolved Solids 4 0 4 Yes Ethylbenzene 4 4 0 No	Chlorobenzene	4	4	0	No
Chloromethane 4 4 0 No cis-1,2-Dichloroethene 4 4 0 No cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Oxygen 4 0 4 Yes Ethylbenzene 4 4 0 No	Chloroethane	4	4	0	No
cis-1,2-Dichloroethene 4 4 0 No cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Copper 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Oxygen 4 0 4 Yes Ethylbenzene 4 4 0 No	Chloroform	4	4	0	No
cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Copper 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Oxygen 4 0 4 Yes Dissolved Solids 4 0 4 Yes Ethylbenzene 4 4 0 No	Chloromethane	4	4	0	No
cis-1,3-Dichloropropene 4 4 0 No Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Copper 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Oxygen 4 0 4 Yes Dissolved Solids 4 0 4 Yes Ethylbenzene 4 4 0 No	cis-1,2-Dichloroethene	4	4	0	No
Cobalt 4 2 2 Yes Conductivity 4 0 4 Yes Copper 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Oxygen 4 0 4 Yes Dissolved Solids 4 0 4 Yes Ethylbenzene 4 4 0 No		4	4	0	No
Conductivity 4 0 4 Yes Copper 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Oxygen 4 0 4 Yes Dissolved Solids 4 0 4 Yes Ethylbenzene 4 4 0 No		4	2	2	Yes
Copper 4 0 4 Yes Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Oxygen 4 0 4 Yes Dissolved Solids 4 0 4 Yes Ethylbenzene 4 4 0 No					
Cyanide 4 4 0 No Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Oxygen 4 0 4 Yes Dissolved Solids 4 0 4 Yes Ethylbenzene 4 4 0 No	<u> </u>				
Dibromochloromethane 4 4 0 No Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Oxygen 4 0 4 Yes Dissolved Solids 4 0 4 Yes Ethylbenzene 4 4 0 No					
Dibromomethane 4 4 0 No Dimethylbenzene, Total 4 4 0 No Dissolved Oxygen 4 0 4 Yes Dissolved Solids 4 0 4 Yes Ethylbenzene 4 4 0 No					
Dimethylbenzene, Total 4 4 0 No Dissolved Oxygen 4 0 4 Yes Dissolved Solids 4 0 4 Yes Ethylbenzene 4 4 0 No		4	4	0	No
Dissolved Oxygen404YesDissolved Solids404YesEthylbenzene440No					
Dissolved Solids404YesEthylbenzene440No					
Ethylbenzene 4 4 0 No					
-		4			
	Iodide	4	3	1	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	2	2	Yes
Nickel	4	0	4	Yes
Oxidation-Reduction Potential	4	0	4	Yes
pН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	4	0	No
Vinyl Acetate	4	4	0	No
Zinc	4	2	2	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	8	3	Yes
Antimony	11	11	0	No
Beryllium	11	10	1	Yes
Beta activity	11	6	5	Yes
Boron	11	1	10	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	3	8	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	11	0	No
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	9	2	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	5	6	Yes
Magnesium	11	0	11	Yes
Manganese	11	8	3	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	5	6	Yes
Nickel	11	0	11	Yes
Oxidation-Reduction Potential	11	0	11	Yes
pН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	7	4	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	10	1	Yes
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	3	8	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	5	6	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	10	1	Yes
Vinyl Acetate	11	11	0	No
Zinc	11	7	4	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	6	1	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	2	5	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	7	0	No
Conductivity	7	0	7	Yes
	7	0	7	Yes
Copper Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromocnioromethane Dibromomethane	7	7	0	No No
Dinethylbenzene, Total	7	7	0	No
-	7	0	7	Yes
Dissolved Oxygen Dissolved Solids	7	0	7	Yes
	7	7	0	No
Ethylbenzene				
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	4	3	Yes
Magnesium	7	0	7	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Manganese	7	3	4	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	4	3	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
pН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	5	2	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc	7	7	0	No

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. For the UCRS, URGA, and LRGA, the test was applied to 26, 30, and 25 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which include those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background upper tolerance limit (UTL) for oxidation-reduction potential and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Oxidation-reduction potential	MW370: Oxidation-reduction potential, sulfate, technetium-99
MW390: Oxidation-reduction potential, technetium-99	MW221: Oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Oxidation-reduction potential, sulfate, technetium-99
	MW223: Oxidation-reduction potential	MW388: Oxidation-reduction potential, sulfate
	MW224: Oxidation-reduction potential	MW395: Oxidation-reduction potential
	MW369: Technetium-99	MW397: Oxidation-reduction potential
	MW372: Calcium, chemical oxygen demand, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	
	MW384: Oxidation-reduction potential, sulfate, technetium-99	
	MW387: Beta activity, calcium, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99	

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, and MW393.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation

^{*}If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beryllium	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentrations in MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372 and MW387.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentrations in MW372.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentrations in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW222, MW223, MW224, MW384, and MW387.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384, and MW387.
Thallium	Tolerance Interval	2.15	No exceedance of statistically derived historical background concentration.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW395, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370 and MW385.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. For the UCRS, URGA, and LRGA, the test was applied to 2, 10, and 7 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate, technetium-99
MW372: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, calcium, magnesium, sodium, sulfate, technetium-99	MW388: Sulfate

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the technetium-99 concentration in one UCRS well (i.e., MW390) exceeded the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

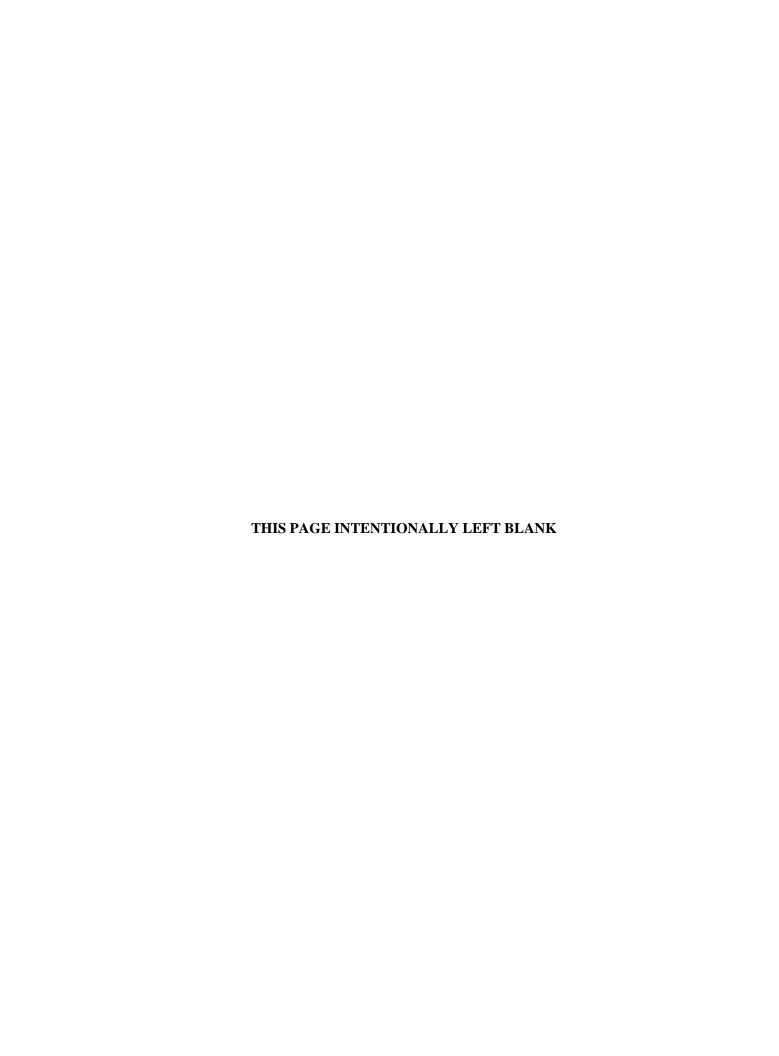
Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.38	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-23.2	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.53	MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.14	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand	Tolerance Interval	0.85	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Conductivity	Tolerance Interval	0.08	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.16	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.10	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.12	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.15	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.30	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.70	MW369, MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.


Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.15	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.06	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.22	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.15	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.20	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.06	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.76	MW370 and MW385 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

Historical Background Comparison

Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

CV(1)=0.567

K factor=** 3.188

TL(1)= 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259 S = 0.503

CV(2) = -0.400

K factor=** 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Partially Dry Wells

Well No. Gradient

S = 0.182

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well 1	No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW3	386	Sidegradient	No	0.05	N/A	-2.996	N/A
MW.	390	Downgradien	t Yes	0.0359	NO	-3.327	N/A
MW.	393	Downgradien	t Yes	0.024	NO	-3.730	N/A
MW3	396	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S= 0.833 **CV(1)**=1.282

K factor=** 3.188

TL(1) = 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.066

CV(2) = -1.031

K factor=** 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00744	N/A	-4.901	NO	
MW390	Downgradien	t Yes	0.0219	N/A	-3.821	NO	
MW393	Downgradien	t Yes	0.0223	N/A	-3.803	NO	
MW396	Ungradient	Ves	0.00803	N/A	-4 825	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

CV(1) = 0.236

K factor=** 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.301

S= 0.327 **S**= 0.252

CV(2) = 0.838

K factor=** 3.188

TL(2) = 1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.146	NO	-1.924	N/A
MW390	Downgradien	t No	0.2	N/A	-1.609	N/A
MW393	Downgradien	t No	0.2	N/A	-1.609	N/A
MW396	Upgradient	Yes	0.927	NO	-0.076	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445

CV(1)=0.202 K factor**= 3.188

TL(1)= 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.711

S = 0.241

CV(2) = 0.065

K factor=** 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	20.4	NO	3.016	N/A	
MW390	Downgradien	t Yes	30.9	NO	3.431	N/A	
MW393	Downgradien	t Yes	15.2	NO	2.721	N/A	
MW396	Upgradient	Yes	33.5	NO	3.512	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Chemical Oxygen Demand (COD) UNITS: mg/L

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744

K factor=** 3.188

TL(1)= 37.747

LL(1)=N/A

Statistics-Transformed Background

X = 3.566

S = 0.021

CV(2) = 0.006

CV(1) = 0.021

K factor**= 3.188

TL(2) = 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	15.3	NO	2.728	N/A	
MW390	Downgradient	t Yes	15.3	NO	2.728	N/A	
MW393	Downgradient	t Yes	26.5	NO	3.277	N/A	
MW396	Upgradient	Yes	26.5	NO	3.277	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Chloride UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245CV(1) = 0.052 **K factor**=** 3.188

TL(1)= 118.447

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.621 S = 0.053

CV(2) = 0.011

K factor=** 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	11.3	NO	2.425	N/A	
MW390	Downgradien	t Yes	25.2	NO	3.227	N/A	
MW393	Downgradien	t Yes	10.8	NO	2.380	N/A	
MW396	Upgradient	Yes	57.2	NO	4.047	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-8

Historical Background Comparison

Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

CV(1)=1.340

K factor=** 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.645 S = 1.339

S = 0.011

CV(2) = -0.237

K factor=** 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0124	N/A	-4.390	NO
MW390	Downgradien	t No	0.001	N/A	-6.908	N/A
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Ungradient	Yes	0.00317	7 N/A	-5 754	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-9

Historical Background Comparison

UCRS Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor**= 3.188

TL(1)= 1265.579 **LL(1)=**N/A

Statistics-Transformed Background

X = 6.822 S = 0.111 CV(2) = 0.016

K factor=** 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	558	NO	6.324	N/A
MW390	Downgradien	t Yes	643	NO	6.466	N/A
MW393	Downgradien	t Yes	420	NO	6.040	N/A
MW396	Upgradient	Yes	717	NO	6.575	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-10

Historical Background Comparison

UNITS: mg/L **UCRS** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1) = 0.481S = 0.014

K factor**= 3.188

TL(1) = 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414

CV(2) = -0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 -2.9960.05 9/16/2002 0.05 -2.99610/16/2002 0.026 -3.6501/13/2003 0.02 -3.912 4/8/2003 -3.9120.02 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.9121/14/2004 0.02

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

MW396 Upgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

-7.285

N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00092	7 NO	-6.984	N/A
MW390	Downgradien	t Yes	0.00155	NO	-6.470	N/A
MW393	Downgradien	t Yes	0.00052	3 NO	-7.556	N/A

NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

0.000686

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-11

Historical Background Comparison

Dissolved Oxygen UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

CV(1)=1.202S = 1.677

K factor=** 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

CV(2) = -18.867

K factor=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.55	N/A	0.438	NO
MW390	Downgradien	t Yes	2.01	N/A	0.698	NO
MW393	Downgradien	t Yes	1.9	N/A	0.642	NO
MW396	Upgradient	Yes	0.58	N/A	-0.545	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

Historical Background Comparison

Dissolved Solids UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor**= 3.188

TL(1) = 882.980 LL(1) = N/A

Statistics-Transformed Background

X = 6.298 S = 0.162 CV(2) = 0.026

K factor=** 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	313	NO	5.746	N/A
MW390	Downgradien	t Yes	371	NO	5.916	N/A
MW393	Downgradien	t Yes	216	NO	5.375	N/A
MW396	Upgradient	Yes	456	NO	6.122	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-13

Historical Background Comparison

Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

S = 0.283 CV(1) = 0.132

K factor=** 3.188

TL(1) = 3.052

LL(1)=N/A

Statistics-Transformed Background

X = 0.759

S= 0.123

CV(2) = 0.162

K factor=** 3.188

TL(2) = 1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.594	NO	-0.521	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

CV(1) = 0.478

K factor**= 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880

S= 3.723 **S**= 0.723

CV(2) = 0.384

K factor=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.63	NO	-0.462	N/A		
MW390	Downgradien	t Yes	0.0458	NO	-3.083	N/A		
MW393	Downgradien	t Yes	1.76	NO	0.565	N/A		
MW396	Upgradient	Yes	1.78	NO	0.577	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 16.876 S = 3.313

CV(1)=0.196 K factor**= 3.188

TL(1) = 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S = 0.240 CV

CV(2)=0.086 K factor**= 3.188

TL(2)= 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	8.51	NO	2.141	N/A		
MW390	Downgradien	t Yes	13	NO	2.565	N/A		
MW393	Downgradien	t Yes	4.04	NO	1.396	N/A		
MW396	Upgradient	Yes	14.6	NO	2.681	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Manganese UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

CV(1)=0.456

K factor=** 3.188

TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

S = 0.353

X = -0.566 S = 1.192 CV(2) = -2.105

K factor=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data						
1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW386	Sidegradient	Yes	1.44	NO	0.365	N/A
	MW390	Downgradien	t No	0.005	N/A	-5.298	N/A
	MW393	Downgradien	t Yes	0.0555	NO	-2.891	N/A
	MW396	Upgradient	Yes	0.46	NO	-0.777	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-17

Historical Background Comparison

Molybdenum **UCRS** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

CV(1) = 1.507

K factor**= 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.928 S = 1.420

S = 0.011

CV(2) = -0.240

K factor=** 3.188

TL(2) = -1.400

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00063	6 N/A	-7.360	NO
MW390	Downgradien	t Yes	0.00024	7 N/A	-8.306	NO
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	No	0.00042	3 N/A	-7.768	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-18

C-746-S/T First Quarter 2021 Statistical Analysis **Nickel** UNITS: mg/L

Historical Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

CV(1)=1.272S = 0.021

K factor**= 3.188

TL(1) = 0.083

LL(1)=N/A

Statistics-Transformed Background

X = -4.706 S = 1.057

CV(2) = -0.225

K factor=** 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00283	N/A	-5.867	NO	
MW390	Downgradien	t Yes	0.0023	N/A	-6.075	NO	
MW393	Downgradien	t Yes	0.00083	4 N/A	-7.089	NO	
MW396	Upgradient	Yes	0.00235	N/A	-6.053	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-19

C-746-S/T First Quarter 2021 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Historical Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor**= 3.188

TL(1)= 210.502 **LL(1)=**N/A

Statistics-Transformed Background

X = 4.364

S = 0.333 CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	360	N/A	5.886	YES
MW390	Downgradien	t Yes	408	N/A	6.011	YES
MW393	Downgradien	t Yes	180	N/A	5.193	YES
MW396	Upgradient	Yes	80	N/A	4.382	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

C-746-S/T First Quarter 2021 Statistical Analysis Historical pH UNITS: Std Unit

Historical Background Comparison Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

 $S = 0.350 \quad CV(1) = 0.054$

K factor=** 3.736

TL(1) = 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X = 1.864

S= 0.054

CV(2) = 0.029

K factor=** 3.736

TL(2) = 2.067

LL(2)=1.6621

(2)? (2)?

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	Current	Ouarter	Data
----------------------	---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(LN(Result) <ll(< th=""></ll(<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(LN(Result) <ll(< th=""></ll(<>
MW386	Sidegradient	Yes	6.32	NO	1.844	N/A
MW390	Downgradien	t Yes	5.96	NO	1.785	N/A
MW393	Downgradien	t Yes	5.9	NO	1.775	N/A
MW396	Upgradient	Yes	6.23	NO	1.829	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

 $S= 0.399 \quad CV(1)=0.282$

K factor**= 3.188

TL(1)= 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311

S= 0.271

CV(2) = 0.870

K factor=** 3.188

TL(2) = 1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.274	NO	-1.295	N/A
MW390	Downgradien	t Yes	0.335	NO	-1.094	N/A
MW393	Downgradien	t Yes	0.454	NO	-0.790	N/A
MW396	Upgradient	Yes	0.706	NO	-0.348	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Sodium UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor**= 3.188

TL(1)=208.973 LL(1)=N/A

Statistics-Transformed Background Data

X = 4.595

S = 0.492 CV(2) = 0.107

K factor=** 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	99.9	NO	4.604	N/A	
MW390	Downgradien	t Yes	103	NO	4.635	N/A	
MW393	Downgradien	t Yes	90.2	NO	4.502	N/A	
MW396	Upgradient	Yes	111	NO	4.710	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-23

C-746-S/T First Quarter 2021 Statistical Analysis I Sulfate UNITS: mg/L

Historical Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.463 S = 8.876

CV(1) = 0.395

K factor=** 3.188

TL(1)= 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054

S = 0.351

CV(2) = 0.115

K factor=** 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	45.5	NO	3.818	N/A
MW390	Downgradien	t Yes	32.5	NO	3.481	N/A
MW393	Downgradien	t Yes	19.4	NO	2.965	N/A
MW396	Upgradient	Yes	25.9	NO	3.254	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2021 Statistical Analysis H Technetium-99 UNITS: pCi/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1)=0.860

K factor=** 3.188

TL(1) = 28.531

LL(1)=N/A

Statistics-Transformed Background

X = 1.498

S= 6.558 **S**= 1.321

CV(2) = 0.882

K factor**= 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	4.8	N/A	1.569	N/A
MW390	Downgradien	t Yes	59.9	YES	4.093	N/A
MW393	Downgradien	t No	7.48	N/A	2.012	N/A
MW396	Upgradient	No	10.9	N/A	2.389	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Total Organic Carbon (TOC)

UNITS: mg/L

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

S= 4.696 **CV(1)**= 0.470

K factor=** 3.188

TL(1) = 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 0.454

CV(2) = 0.205

K factor**= 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	5	NO	1.609	N/A	
MW390	Downgradien	t Yes	2.56	NO	0.940	N/A	
MW393	Downgradien	t Yes	2.73	NO	1.004	N/A	
MW396	Upgradient	Yes	4.72	NO	1.552	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result

for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: ug/L

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

K(1)=0.375 K factor**= 3.188

TL(1)= 313.314 **LL(1)=**N/A

UCRS

Statistics-Transformed Background

X = 4.896

 $S= 0.390 \quad CV(2)=0.080$

K factor**= 3.188

TL(2)= 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Total Organic Halides (TOX)

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	106	NO	4.663	N/A	
MW390	Downgradien	t Yes	16	NO	2.773	N/A	
MW393	Downgradien	t Yes	11.3	NO	2.425	N/A	
MW396	Upgradient	Yes	41.9	NO	3.735	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Zinc UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

CV(1)=0.786

K factor=** 3.188

TL(1) = 0.156

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.342 S = 0.682

S = 0.035

CV(2) = -0.204

K factor=** 3.188

TL(2) = -1.168

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.02	NO	-3.912	N/A
MW390	Downgradien	t Yes	0.00377	NO	-5.581	N/A
MW393	Downgradien	t No	0.02	N/A	-3.912	N/A
MW396	Upgradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

C-746-S/T First Quarter 2021 Statistical Analysis Aluminum UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.221

S = 0.061 CV(1) = 0.277

K factor**= 2.523

TL(1) = 0.376

LL(1)=N/A

Statistics-Transformed Background

X = -1.534 S = 0.212 CV(2) = -0.138

K factor=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.427	-0.851
1/13/2004	0.309	-1.174
4/13/2004	0.2	-1.609
7/21/2004	0.202	-1.599
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	1
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.05	N/A	-2.996	N/A
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A
MW222	Sidegradient	Yes	0.204	NO	-1.590	N/A
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A
MW369	Downgradien	t Yes	0.0351	NO	-3.350	N/A
MW372	Downgradien	t No	0.05	N/A	-2.996	N/A
MW384	Sidegradient	Yes	0.0997	NO	-2.306	N/A
MW387	Downgradien	t No	0.05	N/A	-2.996	N/A
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A
MW394	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-29

C-746-S/T First Quarter 2021 Statistical Analysis **Beryllium** UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.911 **K** factor**= 2.523 Statistics-Background Data X = 0.002S = 0.001TL(1) = 0.005LL(1)=N/A **Statistics-Transformed Background** X = -6.707 S = 0.550 CV(2) = -0.082**K factor**=** 2.523 TL(2) = -5.320LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.001 -6.908 1/15/2003 0.001 -6.908-6.908 4/10/2003 0.001 7/14/2003 0.001 -6.908 -6.908 10/13/2003 0.001 1/13/2004 0.001 -6.9084/13/2004 0.001 -6.908 7/21/2004 0.001 -6.908Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.005 -5.298 9/16/2002 0.005 -5.29810/16/2002 0.001 -6.9081/13/2003 0.001-6.908-6.9084/10/2003 0.001 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.0005	N/A	-7.601	N/A
MW221	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW222	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW223	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW224	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW369	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW372	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW384	Sidegradient	Yes	0.00062	3 NO	-7.381	N/A
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW391	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW394	Upgradient	No	0.0005	N/A	-7.601	N/A
N/A - Resu	lts identified as N	Non-Detects	during labo	oratory analysis or	data validatio	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

C-746-S/T First Quarter 2021 Statistical Analysis Beta activity UNITS: pCi/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.273 S = 13.883 CV(1) = 0.973

K factor**= 2.523

TL(1) = 49.300

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.213 S = 1.033 CV(2) = 0.467

K factor=** 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.615
Date Collected	Result	
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	5.57	N/A	1.717	N/A
MW221	Sidegradient	Yes	15	N/A	2.708	N/A
MW222	Sidegradient	No	0.46	N/A	-0.777	N/A
MW223	Sidegradient	No	8.2	N/A	2.104	N/A
MW224	Sidegradient	No	4.33	N/A	1.466	N/A
MW369	Downgradien	t Yes	23.2	N/A	3.144	N/A
MW372	Downgradien	t Yes	27.6	N/A	3.318	N/A
MW384	Sidegradient	Yes	20	N/A	2.996	N/A
MW387	Downgradien	t Yes	186	YES	5.226	N/A
MW391	Downgradien	t No	-3.48	N/A	#Error	N/A
MW394	Upgradient	No	3.05	N/A	1.115	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW387

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-31

C-746-S/T First Quarter 2021 Statistical Analysis **Boron** UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.425

S= 0.615 **CV(1)**= 1.447

K factor**= 2.523

TL(1)= 1.976

LL(1)=N/A

Statistics-Transformed Background

X = -1.322 S = 0.786 CV(2) = -0.595

K factor=** 2.523

TL(2) = 0.663

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	0.00782	N/A	-4.851	NO
MW221	Sidegradient	Yes	0.015	N/A	-4.200	NO
MW222	Sidegradient	Yes	0.00718	N/A	-4.936	NO
MW223	Sidegradient	No	0.015	N/A	-4.200	N/A
MW224	Sidegradient	Yes	0.00879	N/A	-4.734	NO
MW369	Downgradien	t Yes	0.0147	N/A	-4.220	NO
MW372	Downgradien	t Yes	1.39	N/A	0.329	NO
MW384	Sidegradient	Yes	0.0464	N/A	-3.070	NO
MW387	Downgradien	t Yes	0.03	N/A	-3.507	NO
MW391	Downgradien	t Yes	0.0454	N/A	-3.092	NO
MW394	Upgradient	Yes	0.0199	N/A	-3.917	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-32

C-746-S/T First Quarter 2021 Statistical Analysis I Bromide UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.000

S = 0.000

CV(1)=0.000 K

K factor**= 2.523

TL(1)= 1.000

LL(1)=N/A

Statistics-Transformed Background

X = 0.000

S = 0.000

CV(2)=#Num!

K factor=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 0.000 0.0004/10/2003 7/14/2003 1 0.00010/13/2003 0.000 1 1/13/2004 1 0.000 4/13/2004 0.0001 7/21/2004 0.000Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1 0.0009/16/2002 0.000 1 10/16/2002 0.000 1/13/2003 0.000 4/10/2003 0.0007/16/2003 1 0.000 10/14/2003 0.000 1

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.194	NO	-1.640	N/A	
MW221	Sidegradient	Yes	0.456	NO	-0.785	N/A	
MW222	Sidegradient	Yes	0.338	NO	-1.085	N/A	
MW223	Sidegradient	Yes	0.393	NO	-0.934	N/A	
MW224	Sidegradient	Yes	0.32	NO	-1.139	N/A	
MW369	Downgradien	t Yes	0.343	NO	-1.070	N/A	
MW372	Downgradien	t Yes	0.51	NO	-0.673	N/A	
MW384	Sidegradient	Yes	0.278	NO	-1.280	N/A	
MW387	Downgradien	t Yes	0.574	NO	-0.555	N/A	
MW391	Downgradien	t Yes	0.568	NO	-0.566	N/A	
MW394	Upgradient	Yes	0.584	NO	-0.538	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Calcium

X = 27.638 S = 4.743

CV(1)=0.172

K factor**= 2.523

TL(1) = 39.604

LL(1)=N/A

Statistics-Transformed Background

X = 3.304 S = 0.183 CV(2) = 0.055

K factor=** 2.523

TL(2) = 3.765

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	23.6	3.161
1/15/2003	25.9	3.254
4/10/2003	30.4	3.414
7/14/2003	33.9	3.523
10/13/2003	21.3	3.059
1/13/2004	20.3	3.011
4/13/2004	23.8	3.170
7/21/2004	19	2.944
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.384
Date Collected	Result	,
Date Collected 8/13/2002	Result 29.5	3.384
Date Collected 8/13/2002 9/16/2002	Result 29.5 29.9	3.384 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 29.5 29.9 31.2	3.384 3.398 3.440
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 29.5 29.9 31.2 30.7	3.384 3.398 3.440 3.424
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 29.5 29.9 31.2 30.7 34.4	3.384 3.398 3.440 3.424 3.538

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	20.9	NO	3.040	N/A
MW221	Sidegradient	Yes	20.5	NO	3.020	N/A
MW222	Sidegradient	Yes	11.2	NO	2.416	N/A
MW223	Sidegradient	Yes	20	NO	2.996	N/A
MW224	Sidegradient	Yes	19.9	NO	2.991	N/A
MW369	Downgradien	t Yes	15.4	NO	2.734	N/A
MW372	Downgradien	t Yes	67.5	YES	4.212	N/A
MW384	Sidegradient	Yes	22.9	NO	3.131	N/A
MW387	Downgradien	t Yes	43.2	YES	3.766	N/A
MW391	Downgradien	t Yes	25.8	NO	3.250	N/A
MW394	Upgradient	Yes	25.5	NO	3.239	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-34

C-746-S/T First Quarter 2021 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 35.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 35.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.555
 S= 0.000
 CV(2)=0.000
 K factor**= 2.523
 TL(2)= 3.555
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	22.7	NO	3.122	N/A
MW221	Sidegradient	Yes	20.2	NO	3.006	N/A
MW222	Sidegradient	Yes	22.7	NO	3.122	N/A
MW223	Sidegradient	Yes	22.7	NO	3.122	N/A
MW224	Sidegradient	Yes	12.9	NO	2.557	N/A
MW369	Downgradien	t No	20	N/A	2.996	N/A
MW372	Downgradien	t Yes	39.7	YES	3.681	N/A
MW384	Sidegradient	No	20	N/A	2.996	N/A
MW387	Downgradien	t No	20	N/A	2.996	N/A
MW391	Downgradien	t Yes	24.2	NO	3.186	N/A
MW394	Upgradient	Yes	21.8	NO	3.082	N/A
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2021 Statistical Analysis Chloride UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor**= 2.523

TL(1) = 77.499

LL(1)=N/A

Statistics-Transformed Background

X = 3.866 S = 0.244 CV(2) = 0.063

K factor=** 2.523

TL(2) = 4.482

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.101
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	17.8	NO	2.879	N/A
MW221	Sidegradient	Yes	35.4	NO	3.567	N/A
MW222	Sidegradient	Yes	23.3	NO	3.148	N/A
MW223	Sidegradient	Yes	28.6	NO	3.353	N/A
MW224	Sidegradient	Yes	19.8	NO	2.986	N/A
MW369	Downgradien	t Yes	29.8	NO	3.395	N/A
MW372	Downgradien	t Yes	38.4	NO	3.648	N/A
MW384	Sidegradient	Yes	24.1	NO	3.182	N/A
MW387	Downgradien	t Yes	40.8	NO	3.709	N/A
MW391	Downgradien	t Yes	41.4	NO	3.723	N/A
MW394	Upgradient	Yes	44.3	NO	3.791	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-36

Historical Background Comparison

Cobalt UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

S = 0.040

CV(1)=2.440**K** factor**= 2.523 TL(1) = 0.116

LL(1)=N/A

Statistics-Transformed Background

X = -5.582 S = 1.573 CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.613

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0041	-5.497
1/15/2003	0.00496	-5.306
4/10/2003	0.00289	-5.846
7/14/2003	0.161	-1.826
10/13/2003	0.0226	-3.790
1/13/2004	0.00464	-5.373
4/13/2004	0.001	-6.908
7/21/2004	0.00264	-5.937
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.001	N/A	-6.908	N/A
MW221	Sidegradient	No	0.001	N/A	-6.908	N/A
MW222	Sidegradient	No	0.00060	1 N/A	-7.417	N/A
MW223	Sidegradient	No	0.00031	4 N/A	-8.066	N/A
MW224	Sidegradient	No	0.00035	1 N/A	-7.955	N/A
MW369	Downgradien	t Yes	0.00382	N/A	-5.568	NO
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A
MW384	Sidegradient	Yes	0.00105	N/A	-6.859	NO
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	No	0.001	N/A	-6.908	N/A
NI/A D		T D ()	1 1 1 1	1 1	1 / 1:1 /:	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-37

C-746-S/T First Quarter 2021 Statistical Analysis **Historical Background Comparison Conductivity** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor**= 2.523

TL(1) = 652.432 LL(1) = N/A

URGA

Statistics-Transformed Background

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2) = 8.652

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	368	5.908
1/15/2003	433.2	6.071
4/10/2003	489	6.192
7/14/2003	430	6.064
10/13/2003	346	5.846
1/13/2004	365	5.900
4/13/2004	416	6.031
7/21/2004	353	5.866
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 6.006
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 406	6.006
Date Collected 8/13/2002 9/16/2002	Result 406 418	6.006 6.035
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 406 418 411	6.006 6.035 6.019
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 406 418 411 422	6.006 6.035 6.019 6.045
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 406 418 411 422 420	6.006 6.035 6.019 6.045 6.040

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	344	NO	5.841	N/A
MW221	Sidegradient	Yes	388	NO	5.961	N/A
MW222	Sidegradient	Yes	287	NO	5.659	N/A
MW223	Sidegradient	Yes	387	NO	5.958	N/A
MW224	Sidegradient	Yes	410	NO	6.016	N/A
MW369	Downgradien	t Yes	373	NO	5.922	N/A
MW372	Downgradien	t Yes	822	YES	6.712	N/A
MW384	Sidegradient	Yes	390	NO	5.966	N/A
MW387	Downgradien	t Yes	588	NO	6.377	N/A
MW391	Downgradien	t Yes	384	NO	5.951	N/A
MW394	Upgradient	Yes	390	NO	5.966	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

Historical Background Comparison

UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024

CV(1)=0.429

K factor**= 2.523

TL(1) = 0.050

LL(1)=N/A

Statistics-Transformed Background

X = -3.794 S = 0.312 CV(2) = -0.082

S = 0.010

K factor=** 2.523

TL(2) = -3.007

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.8581/15/2003 0.02 -3.9120.02 -3.9124/10/2003 7/14/2003 0.02 -3.912 10/13/2003 0.02 -3.9121/13/2004 0.02 -3.9124/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.996-3.91210/16/2002 0.02 1/13/2003 0.02 -3.9124/10/2003 0.02-3.912 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.00096	5 NO	-6.943	N/A		
MW221	Sidegradient	Yes	0.00148	NO	-6.516	N/A		
MW222	Sidegradient	Yes	0.000792	2 NO	-7.141	N/A		
MW223	Sidegradient	Yes	0.00147	NO	-6.522	N/A		
MW224	Sidegradient	Yes	0.00105	NO	-6.859	N/A		
MW369	Downgradien	t Yes	0.00341	NO	-5.681	N/A		
MW372	Downgradien	t Yes	0.00142	NO	-6.557	N/A		
MW384	Sidegradient	Yes	0.00214	NO	-6.147	N/A		
MW387	Downgradien	t Yes	0.00116	NO	-6.759	N/A		
MW391	Downgradien	t Yes	0.000638	8 NO	-7.357	N/A		
MW394	Upgradient	Yes	0.00266	NO	-5.929	N/A		
NI/A D	1, 11, 20, 1, 3,	T D ()	1 1 1 1	1 .	1 4 11 41	1 .		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-39

C-746-S/T First Quarter 2021 Statistical Analysis **Dissolved Oxygen** UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.784

CV(1)=0.499

K factor**= 2.523

TL(1) = 8.545

LL(1)=N/A

Statistics-Transformed Background

X = 1.182

S= 1.887

S = 0.612 CV(2) = 0.518

K factor=** 2.523

TL(2) = 2.727

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.79	1.915
1/15/2003	7.25	1.981
4/10/2003	3.6	1.281
7/14/2003	0.94	-0.062
10/13/2003	1.65	0.501
1/13/2004	3.48	1.247
4/13/2004	1.05	0.049
7/21/2004	4.46	1.495
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.807
Date Collected	Result	
Date Collected 8/13/2002	Result 6.09	1.807
Date Collected 8/13/2002 9/16/2002	Result 6.09 3.85	1.807 1.348
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 6.09 3.85 5.11	1.807 1.348 1.631
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 6.09 3.85 5.11 3.83	1.807 1.348 1.631 1.343
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 6.09 3.85 5.11 3.83 4.15	1.807 1.348 1.631 1.343 1.423

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	5.29	NO	1.666	N/A	
MW221	Sidegradient	Yes	5.09	NO	1.627	N/A	
MW222	Sidegradient	Yes	5.11	NO	1.631	N/A	
MW223	Sidegradient	Yes	4.7	NO	1.548	N/A	
MW224	Sidegradient	Yes	1.91	NO	0.647	N/A	
MW369	Downgradien	t Yes	1.88	NO	0.631	N/A	
MW372	Downgradien	t Yes	2.13	NO	0.756	N/A	
MW384	Sidegradient	Yes	4.3	NO	1.459	N/A	
MW387	Downgradien	t Yes	3.71	NO	1.311	N/A	
MW391	Downgradien	t Yes	4.07	NO	1.404	N/A	
MW394	Upgradient	Yes	5.22	NO	1.652	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-40

C-746-S/T First Quarter 2021 Statistical Analysis **Dissolved Solids** UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor**= 2.523

TL(1)=302.045 LL(1)=N/A

Statistics-Transformed Background

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	161	NO	5.081	N/A	
MW221	Sidegradient	Yes	184	NO	5.215	N/A	
MW222	Sidegradient	Yes	150	NO	5.011	N/A	
MW223	Sidegradient	Yes	190	NO	5.247	N/A	
MW224	Sidegradient	Yes	187	NO	5.231	N/A	
MW369	Downgradien	t Yes	191	NO	5.252	N/A	
MW372	Downgradien	t Yes	447	YES	6.103	N/A	
MW384	Sidegradient	Yes	176	NO	5.170	N/A	
MW387	Downgradien	t Yes	284	NO	5.649	N/A	
MW391	Downgradien	t Yes	166	NO	5.112	N/A	
MW394	Upgradient	Yes	196	NO	5.278	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

C-746-S/T First Quarter 2021 Statistical Analysis UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Iron

X = 0.897

CV(1) = 1.170

K factor**= 2.523

TL(1) = 3.545

LL(1)=N/A

Statistics-Transformed Background

S = 1.050

X = -0.565 S = 0.951 CV(2) = -1.683

K factor=** 2.523

TL(2) = 1.834

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.429	-0.846
7/14/2003	4.33	1.466
10/13/2003	1.81	0.593
1/13/2004	0.793	-0.232
4/13/2004	0.13	-2.040
7/21/2004	0.382	-0.962
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.293
Date Collected	Result	1
Date Collected 8/13/2002	Result 1.34	0.293
Date Collected 8/13/2002 9/16/2002	Result 1.34 0.328	0.293 -1.115
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.34 0.328 1.38	0.293 -1.115 0.322
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.34 0.328 1.38 1.3	0.293 -1.115 0.322 0.262
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.34 0.328 1.38 1.3 0.494	0.293 -1.115 0.322 0.262 -0.705

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.1	N/A	-2.303	N/A	
MW221	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW222	Sidegradient	Yes	0.224	N/A	-1.496	NO	
MW223	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW224	Sidegradient	Yes	0.086	N/A	-2.453	NO	
MW369	Downgradien	t Yes	0.167	N/A	-1.790	NO	
MW372	Downgradien	t No	0.1	N/A	-2.303	N/A	
MW384	Sidegradient	Yes	0.162	N/A	-1.820	NO	
MW387	Downgradien	t Yes	0.0951	N/A	-2.353	NO	
MW391	Downgradien	t No	0.1	N/A	-2.303	N/A	
MW394	Upgradient	Yes	0.0771	N/A	-2.563	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

C-746-S/T First Quarter 2021 Statistical Analysis I Magnesium UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical

background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X=

X= 10.796 **S**= 1.703 **CV(1)**=0.158

K factor=** 2.523

TL(1)= 15.092

LL(1)=N/A

Statistics-Transformed Background

X= 2.368 **S**= 0.158

CV(2) = 0.067

K factor=** 2.523

TL(2) = 2.766

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 9.16 2.215 1/15/2003 10 2.303 4/10/2003 10.8 2.380 7/14/2003 14.7 2.68810/13/2003 9.03 2.201 1/13/2004 8.49 2.139 4/13/2004 9.7 2.272 7/21/2004 8.06 2.087 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 11.8 2.468 9/16/2002 12.1 2.493 10/16/2002 11.3 2.425 1/13/2003 10.3 2.332 4/10/2003 11.7 2.460 7/16/2003 12 2.485 10/14/2003 2.501 12.2 1/13/2004 11.4 2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

ur	rent	Qua	arte	r D	ata

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	8.72	NO	2.166	N/A
MW221	Sidegradient	Yes	8.92	NO	2.188	N/A
MW222	Sidegradient	Yes	4.9	NO	1.589	N/A
MW223	Sidegradient	Yes	7.88	NO	2.064	N/A
MW224	Sidegradient	Yes	8.64	NO	2.156	N/A
MW369	Downgradien	t Yes	6.85	NO	1.924	N/A
MW372	Downgradien	t Yes	24.1	YES	3.182	N/A
MW384	Sidegradient	Yes	9.64	NO	2.266	N/A
MW387	Downgradien	t Yes	17.8	YES	2.879	N/A
MW391	Downgradien	t Yes	10.9	NO	2.389	N/A
MW394	Upgradient	Yes	10.7	NO	2.370	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

UNITS: mg/L Manganese **URGA** The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the

TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.287

CV(1)=2.156

K factor**= 2.523

TL(1)= 1.848

LL(1)=N/A

Statistics-Transformed Background

X = -2.455 S = 1.619 CV(2) = -0.659

S = 0.619

K factor=** 2.523

TL(2) = 1.630

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.537-4.2904/10/2003 0.0137 7/14/2003 2.54 0.932 10/13/2003 -0.9730.378 1/13/2004 0.159 -1.8394/13/2004 0.00707 -4.9527/21/2004 0.0841 -2.476Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.864-2.27310/16/2002 0.103 1/13/2003 0.128 -2.0564/10/2003 0.005-5.2987/16/2003 0.272 -1.302

0.0795

0.0658

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.005	N/A	-5.298	N/A	
MW221	Sidegradient	No	0.005	N/A	-5.298	N/A	
MW222	Sidegradient	No	0.00217	N/A	-6.133	N/A	
MW223	Sidegradient	No	0.00258	N/A	-5.960	N/A	
MW224	Sidegradient	No	0.00191	N/A	-6.261	N/A	
MW369	Downgradien	t Yes	0.0167	N/A	-4.092	NO	
MW372	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW384	Sidegradient	Yes	0.00368	N/A	-5.605	NO	
MW387	Downgradien	t Yes	0.00763	N/A	-4.876	NO	
MW391	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW394	Upgradient	No	0.00113	N/A	-6.786	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.532

-2.721

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

C-746-S/T First Quarter 2021 Statistical Analysis Molybdenum UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

CV(1)=1.261S = 0.008

K factor**= 2.523

TL(1) = 0.026

LL(1)=N/A

Statistics-Transformed Background

X = -5.747 S = 1.205 CV(2) = -0.210

K factor=** 2.523

TL(2) = -2.708

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.00558	-5.189
1/15/2003	0.00983	-4.622
4/10/2003	0.0109	-4.519
7/14/2003	0.00245	-6.012
10/13/2003	0.00566	-5.174
1/13/2004	0.00572	-5.164
4/13/2004	0.001	-6.908
7/21/2004	0.00392	-5.542
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00052	9 N/A	-7.545	NO	
MW221	Sidegradient	Yes	0.00248	N/A	-5.999	NO	
MW222	Sidegradient	Yes	0.00103	N/A	-6.878	NO	
MW223	Sidegradient	Yes	0.0072	N/A	-4.934	NO	
MW224	Sidegradient	Yes	0.00065	6 N/A	-7.329	NO	
MW369	Downgradien	t Yes	0.00020	8 N/A	-8.478	NO	
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW394	Upgradient	No	0.001	N/A	-6.908	N/A	
37/1 5					4 . 4		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-45

C-746-S/T First Quarter 2021 Statistical Analysis **Nickel** UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.127

CV(1) = 1.790S = 0.228

K factor**= 2.523

TL(1) = 0.701

LL(1)=N/A

Statistics-Transformed Background

X = -3.617 S = 1.837 CV(2) = -0.508

K factor=** 2.523

TL(2) = 1.019

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.418	-0.872
1/15/2003	0.738	-0.304
4/10/2003	0.544	-0.609
7/14/2003	0.106	-2.244
10/13/2003	0.0529	-2.939
1/13/2004	0.0209	-3.868
4/13/2004	0.005	-5.298
7/21/2004	0.0192	-3.953
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.05 0.05 0.005 0.005	-2.996 -2.996 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00807	N/A	-4.820	NO
MW221	Sidegradient	Yes	0.0107	N/A	-4.538	NO
MW222	Sidegradient	Yes	0.022	N/A	-3.817	NO
MW223	Sidegradient	Yes	0.0556	N/A	-2.890	NO
MW224	Sidegradient	Yes	0.0205	N/A	-3.887	NO
MW369	Downgradien	t Yes	0.00505	N/A	-5.288	NO
MW372	Downgradien	t Yes	0.00145	N/A	-6.536	NO
MW384	Sidegradient	Yes	0.00264	N/A	-5.937	NO
MW387	Downgradien	t Yes	0.00181	N/A	-6.314	NO
MW391	Downgradien	t Yes	0.00105	N/A	-6.859	NO
MW394	Upgradient	Yes	0.00878	N/A	-4.735	NO
NI/A D	14. : 14:E . 1 X	T D-44-	4	4 1	4-41:4-4:-	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-46

C-746-S/T First Quarter 2021 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor**= 2.523

TL(1)=397.652 LL(1)=N/A

Statistics-Transformed Background

X = 4.861 S = 1.252 CV(2) = 0.258

K factor=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	496	YES	6.207	N/A
MW221	Sidegradient	Yes	496	YES	6.207	N/A
MW222	Sidegradient	Yes	492	YES	6.198	N/A
MW223	Sidegradient	Yes	500	YES	6.215	N/A
MW224	Sidegradient	Yes	503	YES	6.221	N/A
MW369	Downgradien	t Yes	350	NO	5.858	N/A
MW372	Downgradien	t Yes	362	NO	5.892	N/A
MW384	Sidegradient	Yes	448	YES	6.105	N/A
MW387	Downgradien	t Yes	439	YES	6.084	N/A
MW391	Downgradien	t Yes	264	NO	5.576	N/A
MW394	Upgradient	Yes	309	NO	5.733	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW220	
MW221	
MW222	

MW222 MW223

MW224 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-47

C-746-S/T First Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.138 S = 0.282 CV(1) = 0.046 K factor**= 2.904 TL(1) = 6.957 LL(1) = 5.3179

Statistics-Transformed Background Data

X= 1.813 **S**= 0.047 **CV(2)**= 0.026

K factor**= 2.904

TL(2)= 1.950

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.798 6.04 1/15/2003 6.31 1.842 4/10/2003 6.5 1.872 7/14/2003 6.3 1.841 10/13/2003 6.34 1.847 1/13/2004 6.33 1.845 4/13/2004 6.3 1.841 7/21/2004 5.9 1.775 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.8 1.758 9/30/2002 5.93 1.780 10/16/2002 5.42 1.690 1/13/2003 6 1.792 6.04 1.798 4/10/2003 7/16/2003 6.2 1.825 10/14/2003 1.856 6.4 1/13/2004 6.39 1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	5.76	NO	1.751	N/A
MW221	Sidegradient	Yes	5.67	NO	1.735	N/A
MW222	Sidegradient	Yes	6.14	NO	1.815	N/A
MW223	Sidegradient	Yes	6.1	NO	1.808	N/A
MW224	Sidegradient	Yes	5.88	NO	1.772	N/A
MW369	Downgradien	t Yes	5.98	NO	1.788	N/A
MW372	Downgradien	t Yes	6.04	NO	1.798	N/A
MW384	Sidegradient	Yes	5.65	NO	1.732	N/A
MW387	Downgradien	t Yes	5.77	NO	1.753	N/A
MW391	Downgradien	t Yes	5.73	NO	1.746	N/A
MW394	Ungradient	Yes	5.82	NO	1 761	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

UNITS: mg/L **Potassium URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.654

S = 9.310

CV(1) = 1.399

K factor**= 2.523

TL(1)=30.144

LL(1)=N/A

Statistics-Transformed Background

X = 1.130

 $S= 1.208 \quad CV(2)=1.069$

K factor=** 2.523

TL(2) = 4.178

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.7	1.902
1/15/2003	29.7	3.391
4/10/2003	24.9	3.215
7/14/2003	1.13	0.122
10/13/2003	3.43	1.233
1/13/2004	6.71	1.904
4/13/2004	19.3	2.960
7/21/2004	3.97	1.379
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	1.03	0.030
1/13/2003	1.1	0.095
4/10/2003	1.24	0.215

1.14

1.05

1.07

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.14	N/A	0.131	NO
MW221	Sidegradient	Yes	1.07	N/A	0.068	NO
MW222	Sidegradient	Yes	0.731	N/A	-0.313	NO
MW223	Sidegradient	Yes	6.18	N/A	1.821	NO
MW224	Sidegradient	Yes	0.818	N/A	-0.201	NO
MW369	Downgradien	t Yes	0.505	N/A	-0.683	NO
MW372	Downgradien	t Yes	2.21	N/A	0.793	NO
MW384	Sidegradient	Yes	1.44	N/A	0.365	NO
MW387	Downgradien	t Yes	1.77	N/A	0.571	NO
MW391	Downgradien	t Yes	1.44	N/A	0.365	NO
MW394	Upgradient	Yes	1.31	N/A	0.270	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.131

0.049

0.068

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-S/T First Quarter 2021 Statistical Analysis Sodium UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 36.363 S = 8.666

CV(1)=0.238

K factor**= 2.523

TL(1) = 58.227

LL(1)=N/A

Statistics-Transformed Background

X = 3.570 S = 0.222 CV(2) = 0.062

K factor=** 2.523

TL(2) = 4.129

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	35.4	3.567
1/15/2003	40.6	3.704
4/10/2003	51	3.932
7/14/2003	58.2	4.064
10/13/2003	38.1	3.640
1/13/2004	37	3.611
4/13/2004	43.2	3.766
7/21/2004	33.8	3.520
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.493
Date Collected	Result	
Date Collected 8/13/2002	Result 32.9	3.493
Date Collected 8/13/2002 9/16/2002	Result 32.9 29.9	3.493 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 32.9 29.9	3.493 3.398 3.367
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 32.9 29.9 29	3.493 3.398 3.367 3.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 32.9 29.9 29 27.1 24.8	3.493 3.398 3.367 3.300 3.211

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	36.1	NO	3.586	N/A
MW221	Sidegradient	Yes	42.9	NO	3.759	N/A
MW222	Sidegradient	Yes	39.5	NO	3.676	N/A
MW223	Sidegradient	Yes	41.4	NO	3.723	N/A
MW224	Sidegradient	Yes	57	NO	4.043	N/A
MW369	Downgradien	t Yes	53.9	NO	3.987	N/A
MW372	Downgradien	t Yes	64	YES	4.159	N/A
MW384	Sidegradient	Yes	41.9	NO	3.735	N/A
MW387	Downgradien	t Yes	60.3	YES	4.099	N/A
MW391	Downgradien	t Yes	29.5	NO	3.384	N/A
MW394	Upgradient	Yes	30.9	NO	3.431	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-50

C-746-S/T First Quarter 2021 Statistical Analysis Sulfate UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Ouarter Data

MW387 Downgradient Yes

MW394 Upgradient

Downgradient Yes

MW391

Statistics-Background Data

X= 10.481 **S**= 2.648

CV(1)=0.253 K factor**= 2.523

TL(1)= 17.161

LL(1)=N/A

Statistics-Transformed Background

X= 2.322 **S**=

S = 0.239 CV(2) = 0.103

K factor**= 2.523

TL(2) = 2.925

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.416
Date Collected	Result	
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Duta					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	15.9	NO	2.766	N/A
MW221	Sidegradient	Yes	13.5	NO	2.603	N/A
MW222	Sidegradient	Yes	9.23	NO	2.222	N/A
MW223	Sidegradient	Yes	11.8	NO	2.468	N/A
MW224	Sidegradient	Yes	10.4	NO	2.342	N/A
MW369	Downgradien	t Yes	5.86	NO	1.768	N/A
MW372	Downgradien	t Yes	156	YES	5.050	N/A
MW384	Sidegradient	Yes	20	YES	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

YES

NO

NO

33.6

14.2

11.4

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

N/A

N/A

MW372 MW384

3.515

2.653

2.434

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2021 Statistical Analysis **Technetium-99** UNITS: pCi/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.354

CV(1)=0.992

K factor**= 2.523

TL(1) = 32.768

LL(1)=N/A

Statistics-Transformed Background

X = 2.270

S = 9.280

S = 0.849 CV(2) = 0.374

K factor=** 2.523

TL(2) = 3.262

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	19.7	2.981
1/15/2003	26.1	3.262
4/10/2003	3.56	1.270
7/14/2003	0	#Func!
10/13/2003	21	3.045
1/13/2004	6.32	1.844
4/13/2004	3	1.099
7/21/2004	14.6	2.681
772172001	1 1.0	2.001
Well Number:	MW394	2.001
,,_,,_,,	1	LN(Result)
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
Well Number: Date Collected 8/13/2002	MW394 Result	LN(Result) 2.639
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 14 5.45	LN(Result) 2.639 1.696
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 14 5.45 2.49	LN(Result) 2.639 1.696 0.912
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 14 5.45 2.49 18.3	LN(Result) 2.639 1.696 0.912 2.907

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

					- 0	
Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	10.3	N/A	2.332	N/A
MW221	Sidegradient	No	4.72	N/A	1.552	N/A
MW222	Sidegradient	No	4.1	N/A	1.411	N/A
MW223	Sidegradient	No	2.02	N/A	0.703	N/A
MW224	Sidegradient	No	-0.72	N/A	#Error	N/A
MW369	Downgradien	t Yes	47.7	YES	3.865	N/A
MW372	Downgradien	t Yes	43.5	YES	3.773	N/A
MW384	Sidegradient	Yes	40.8	YES	3.709	N/A
MW387	Downgradien	t Yes	308	YES	5.730	N/A
MW391	Downgradien	t No	7.92	N/A	2.069	N/A
MW394	Upgradient	No	11.4	N/A	2.434	N/A
37/4 B	1 1	T D			1 . 111	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

#Func!

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

C-746-S/T First Quarter 2021 Statistical Analysis Thallium UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.031

CV(1)=2.152

K factor**= 2.523

TL(1) = 0.198

LL(1)=N/A

Statistics-Transformed Background

X = -4.834 S = 1.475 CV(2) = -0.305

S = 0.066

K factor=** 2.523

TL(2) = -1.112

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.01	-4.605
1/15/2003	0.01	-4.605
4/10/2003	0.01	-4.605
7/14/2003	0.01	-4.605
10/13/2003	0.002	-6.215
1/13/2004	0.002	-6.215
4/13/2004	0.002	-6.215
7/21/2004	0.002	-6.215
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.01	-1.609 -1.609 -4.605
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.01 0.01	-1.609 -1.609 -4.605 -4.605
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.2 0.01 0.01 0.01	-1.609 -1.609 -4.605 -4.605

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	No	0.002	N/A	-6.215	N/A
MW221	Sidegradient	No	0.002	N/A	-6.215	N/A
MW222	Sidegradient	No	0.002	N/A	-6.215	N/A
MW223	Sidegradient	No	0.002	N/A	-6.215	N/A
MW224	Sidegradient	No	0.002	N/A	-6.215	N/A
MW369	Downgradien	t No	0.002	N/A	-6.215	N/A
MW372	Downgradien	t No	0.002	N/A	-6.215	N/A
MW384	Sidegradient	Yes	0.00062	8 N/A	-7.373	NO
MW387	Downgradien	t No	0.002	N/A	-6.215	N/A
MW391	Downgradien	t No	0.002	N/A	-6.215	N/A
MW394	Upgradient	No	0.002	N/A	-6.215	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-53

Historical Background Comparison

Total Organic Carbon (TOC) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.494

S = 0.737

CV(1) = 0.493

K factor**= 2.523

TL(1) = 3.353

URGA

LL(1)=N/A

Statistics-Transformed Background

X = 0.315

S = 0.402 CV(2) = 1.279

K factor=** 2.523

TL(2) = 1.330

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
7/21/2004 Well Number:	3.1 MW394	1.131
	0.1	LN(Result)
Well Number:	MW394	-
Well Number: Date Collected	MW394 Result	LN(Result)
Well Number: Date Collected 8/13/2002	MW394 Result 1.3	LN(Result) 0.262
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 1.3	LN(Result) 0.262 0.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 1.3 1	LN(Result) 0.262 0.000 0.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 1.3 1 1.6	LN(Result) 0.262 0.000 0.000 0.470

13

1

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.05	NO	0.049	N/A
MW221	Sidegradient	Yes	0.985	NO	-0.015	N/A
MW222	Sidegradient	Yes	0.837	NO	-0.178	N/A
MW223	Sidegradient	Yes	0.914	NO	-0.090	N/A
MW224	Sidegradient	Yes	1.01	NO	0.010	N/A
MW369	Downgradien	t Yes	1.32	NO	0.278	N/A
MW372	Downgradien	t Yes	1.29	NO	0.255	N/A
MW384	Sidegradient	Yes	1.25	NO	0.223	N/A
MW387	Downgradien	t Yes	1.43	NO	0.358	N/A
MW391	Downgradien	t Yes	0.916	NO	-0.088	N/A
MW394	Upgradient	Yes	0.934	NO	-0.068	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.262

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-54

C-746-S/T First Quarter 2021 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor**= 2.523

TL(1) = 475.063 LL(1) = N/A

Statistics-Transformed Background

X = 3.103 S = 1.145 CV(2) = 0.369

K factor=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	50	3.912
1/15/2003	10	2.303
4/10/2003	10	2.303
7/14/2003	10	2.303
10/13/2003	10	2.303
1/13/2004	10	2.303
4/13/2004	10	2.303
7/21/2004	10	2.303
Well Number:	MW394	
Date Collected	Result	
	Result	LN(Result)
8/13/2002	50	LN(Result) 3.912
8/13/2002 9/16/2002		
	50	3.912
9/16/2002	50 672	3.912 6.510
9/16/2002 10/16/2002	50 672 50	3.912 6.510 3.912
9/16/2002 10/16/2002 1/13/2003	50 672 50 36.1	3.912 6.510 3.912 3.586
9/16/2002 10/16/2002 1/13/2003 4/10/2003	50 672 50 36.1	3.912 6.510 3.912 3.586 2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	10	N/A	2.303	N/A
MW221	Sidegradient	Yes	6.08	N/A	1.805	NO
MW222	Sidegradient	Yes	5.48	N/A	1.701	NO
MW223	Sidegradient	No	10	N/A	2.303	N/A
MW224	Sidegradient	Yes	4.66	N/A	1.539	NO
MW369	Downgradien	t Yes	24.6	N/A	3.203	NO
MW372	Downgradien	t Yes	14	N/A	2.639	NO
MW384	Sidegradient	Yes	8.52	N/A	2.142	NO
MW387	Downgradien	t No	10	N/A	2.303	N/A
MW391	Downgradien	t Yes	7.12	N/A	1.963	NO
MW394	Upgradient	Yes	6.72	N/A	1.905	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

C-746-S/T First Quarter 2021 Statistical Analysis **Trichloroethene** UNITS: ug/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.951**K** factor**= 2.523 Statistics-Background Data X = 8.813S = 8.376TL(1)=29.946LL(1)=N/A **Statistics-Transformed Background** X = 1.395

S = 1.449

CV(2) = 1.039

K factor=** 2.523

TL(2) = 5.052

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 0.000 0.0004/10/2003 7/14/2003 1 0.00010/13/2003 0.000 1 1/13/2004 1 0.000 4/13/2004 0.0001 7/21/2004 1 0.000Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 7/16/2003 19 2.944

20

16

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t Yes	1.47	N/A	0.385	N/A
MW372	Downgradien	t Yes	3.41	N/A	1.227	N/A
MW384	Sidegradient	Yes	0.5	N/A	-0.693	N/A
MW387	Downgradien	t Yes	0.87	N/A	-0.139	N/A
MW391	Downgradien	t Yes	7.5	NO	2.015	N/A
MW394	Upgradient	Yes	2.84	N/A	1.044	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.996

2.773

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-56

Historical Background Comparison

Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.021

CV(1) = 0.083

K factor**= 2.523

TL(1) = 0.025

LL(1)=N/A

Statistics-Transformed Background

X = -3.884 S = 0.076

S = 0.002

CV(2) = -0.020

K factor**= 2.523

TL(2) = -3.692

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -3.9120.02 1/15/2003 0.02 -3.9120.02 -3.9124/10/2003 7/14/2003 0.02 -3.912 10/13/2003 -3.9120.02 1/13/2004 0.02 -3.9124/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689-3.91210/16/2002 0.02 1/13/2003 0.02 -3.9124/10/2003 0.02 -3.912 7/16/2003 0.02 -3.91210/14/2003 0.02 -3.912

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
Upgradient	No	0.02	N/A	-3.912	N/A
Sidegradient	No	0.02	N/A	-3.912	N/A
Sidegradient	No	0.02	N/A	-3.912	N/A
Sidegradient	No	0.02	N/A	-3.912	N/A
Sidegradient	No	0.02	N/A	-3.912	N/A
Downgradien	t Yes	0.00332	. NO	-5.708	N/A
Downgradien	t No	0.02	N/A	-3.912	N/A
Sidegradient	No	0.02	N/A	-3.912	N/A
Downgradien	t No	0.02	N/A	-3.912	N/A
Downgradien	t No	0.02	N/A	-3.912	N/A
Upgradient	No	0.02	N/A	-3.912	N/A
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Sidegradient Downgradien Downgradien Downgradient Downgradient Downgradient Downgradien	Gradient Detected? Upgradient No Sidegradient No Sidegradient No Sidegradient No Sidegradient No Downgradient Yes Downgradient No Sidegradient No Downgradient No Downgradient No Downgradient No Downgradient No	Gradient Detected? Result Upgradient No 0.02 Sidegradient No 0.02 Downgradient Ves 0.00332 Downgradient No 0.02 Sidegradient No 0.02 Downgradient No 0.02	Gradient Detected? Result Result >TL(1)? Upgradient No 0.02 N/A Sidegradient No 0.02 N/A Downgradient Yes 0.00332 NO Downgradient No 0.02 N/A Sidegradient No 0.02 N/A Sidegradient No 0.02 N/A Downgradient No 0.02 N/A Downgradient No 0.02 N/A Downgradient No 0.02 N/A Downgradient No 0.02 N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient No 0.02 N/A -3.912 Sidegradient No 0.02 N/A -3.912 Downgradient No 0.02 N/A -3.912 Sidegradient No 0.02 N/A -3.912 Downgradient No 0.02 N/A -3.912 Downgradient No 0.02 N/A -3.912 Downgradient No 0.02 N/A -3.912

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2021 Statistical Analysis Zinc UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.036S = 0.026

CV(1)=0.722

K factor**= 2.523

TL(1) = 0.101

LL(1)=N/A

Statistics-Transformed Background

X = -3.485 S = 0.525 CV(2) = -0.151

K factor=** 2.523

TL(2) = -2.162

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.025	-3.689
1/15/2003	0.035	-3.352
4/10/2003	0.035	-3.352
7/14/2003	0.0389	-3.247
10/13/2003	0.026	-3.650
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	2.012
7/21/2004	0.02	-3.912
Well Number:	0.02 MW394	-3.912
,,_,,_,,		LN(Result)
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
Well Number: Date Collected 8/13/2002	MW394 Result 0.1	LN(Result) -2.303
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 0.1 0.1	LN(Result) -2.303 -2.303
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 0.1 0.1 0.025	LN(Result) -2.303 -2.303 -3.689
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 0.1 0.1 0.025 0.035	LN(Result) -2.303 -2.303 -3.689 -3.352
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 0.1 0.1 0.025 0.035 0.035	LN(Result) -2.303 -2.303 -3.689 -3.352 -3.352

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
Upgradient	No	0.02	N/A	-3.912	N/A		
Sidegradient	Yes	0.00346	NO	-5.666	N/A		
Sidegradient	No	0.02	N/A	-3.912	N/A		
Sidegradient	No	0.02	N/A	-3.912	N/A		
Sidegradient	No	0.02	N/A	-3.912	N/A		
Downgradien	t Yes	0.00591	NO	-5.131	N/A		
Downgradien	t No	0.02	N/A	-3.912	N/A		
Sidegradient	Yes	0.00412	NO	-5.492	N/A		
Downgradien	t No	0.02	N/A	-3.912	N/A		
Downgradien	t Yes	0.00519	NO	-5.261	N/A		
Upgradient	No	0.02	N/A	-3.912	N/A		
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Sidegradient Downgradien Downgradien Downgradient Downgradient Downgradient Downgradien	Gradient Detected? Upgradient No Sidegradient No Sidegradient No Sidegradient No Sidegradient No Downgradient Yes Downgradient No Sidegradient No Downgradient No Sidegradient Yes Downgradient Yes Downgradient Yes Downgradient Yes	Gradient Detected? Result Upgradient No 0.02 Sidegradient Yes 0.00346 Sidegradient No 0.02 Sidegradient No 0.02 Sidegradient No 0.02 Downgradient Yes 0.00591 Downgradient No 0.02 Sidegradient Ves 0.00412 Downgradient No 0.02 Downgradient Yes 0.00519 Downgradient Yes 0.00519	Gradient Detected? Result Result >TL(1)? Upgradient No 0.02 N/A Sidegradient Yes 0.00346 NO Sidegradient No 0.02 N/A Sidegradient No 0.02 N/A Sidegradient No 0.02 N/A Sidegradient No 0.02 N/A Downgradient Yes 0.00591 NO Downgradient No 0.02 N/A Sidegradient No 0.02 N/A Sidegradient No 0.02 N/A Sidegradient Yes 0.00412 NO Downgradient No 0.02 N/A Downgradient Yes 0.00519 NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient No 0.02 N/A -3.912 Sidegradient Yes 0.00346 NO -5.666 Sidegradient No 0.02 N/A -3.912 Sidegradient No 0.02 N/A -3.912 Sidegradient No 0.02 N/A -3.912 Downgradient Yes 0.00591 NO -5.131 Downgradient Yes 0.00412 NO -5.492 Downgradient No 0.02 N/A -3.912 Downgradient Yes 0.00519 NO -5.261		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

Historical Background Comparison

Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

CV(1)=0.856S = 0.221

K factor**= 2.523

TL(1) = 0.815

LL(1)=N/A

Statistics-Transformed Background

X = -2.266 S = 2.485 CV(2) = -1.097

K factor=** 2.523

TL(2) = 4.003

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.2 -1.6099/16/2002 0.2 -1.6090.0002 10/16/2002 -8.517 1/13/2003 0.737 -0.3054/10/2003 -1.6090.2 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.824 -0.1949/16/2002 0.2 -1.609 0.0002 10/17/2002 -8.5171/13/2003 0.363 -1.0130.2 -1.6094/8/2003 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient l	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.05	N/A	-2.996	N/A	
MW373	Downgradient	Yes	0.0399	NO	-3.221	N/A	
MW385	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW388	Downgradient	No	0.05	N/A	-2.996	N/A	
MW392	Downgradient	No	0.05	N/A	-2.996	N/A	
MW395	Upgradient	No	0.05	N/A	-2.996	N/A	
MW397	Upgradient	No	0.05	N/A	-2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-59

Historical Background Comparison

UNITS: mg/L LRGA Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

CV(1)=1.238

K factor**= 2.523

TL(1) = 2.681

LL(1)=N/A

Statistics-Transformed Background

X = -1.034 S = 1.030 CV(2) = -0.996

S = 0.805

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 2 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.27	N/A	-1.309	NO	
MW373	Downgradient	Yes	2.1	N/A	0.742	NO	
MW385	Sidegradient	Yes	0.0529	N/A	-2.939	NO	
MW388	Downgradient	Yes	0.0237	N/A	-3.742	NO	
MW392	Downgradient	Yes	0.0259	N/A	-3.654	NO	
MW395	Upgradient	Yes	0.0205	N/A	-3.887	NO	
MW397	Upgradient	Yes	0.00841	N/A	-4.778	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

Historical Background Comparison

Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.000

S = 0.000 CV

CV(1)=0.000 K factor**= 2.523

TL(1)= 1.000

LL(1)=N/A

Statistics-Transformed Background

X = 0.000

S = 0.000

CV(2)=#Num!

K factor=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
	•	0.000
Well Number:	MW397	0.000
Well Number: Date Collected	MW397 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 8/13/2002	Result	LN(Result) 0.000
Date Collected 8/13/2002 9/16/2002	Result 1	LN(Result) 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	LN(Result) 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	LN(Result) 0.000 0.000 0.000 0.000

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.464	NO	-0.768	N/A	
MW373	Downgradient	Yes	0.565	NO	-0.571	N/A	
MW385	Sidegradient	Yes	0.266	NO	-1.324	N/A	
MW388	Downgradient	Yes	0.444	NO	-0.812	N/A	
MW392	Downgradient	Yes	0.583	NO	-0.540	N/A	
MW395	Upgradient	Yes	0.512	NO	-0.669	N/A	
MW397	Upgradient	Yes	0.41	NO	-0.892	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.103 S = 11.538 CV(1) = 0.499

K factor**= 2.523

TL(1) = 52.213

LL(1)=N/A

Statistics-Transformed Background

X = 2.357 S = 2.411 CV(2) = 1.023

K factor=** 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient l	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	28.3	NO	3.343	N/A	
MW373	Downgradient	Yes	71	YES	4.263	N/A	
MW385	Sidegradient	Yes	32.5	NO	3.481	N/A	
MW388	Downgradient	Yes	24.2	NO	3.186	N/A	
MW392	Downgradient	Yes	25.5	NO	3.239	N/A	
MW395	Upgradient	Yes	24.8	NO	3.211	N/A	
MW397	Upgradient	Yes	18.8	NO	2.934	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-62

C-746-S/T First Quarter 2021 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.313 S = 1.250

CV(1) = 0.035

K factor**= 2.523

TL(1) = 38.466

LL(1)=N/A

Statistics-Transformed Background

X = 3.564

S = 0.033 CV(2) = 0.009

K factor=** 2.523

TL(2) = 3.648

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	` /
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	17.8	NO	2.879	N/A	
MW373	Downgradient	t No	20	N/A	2.996	N/A	
MW385	Sidegradient	No	20	N/A	2.996	N/A	
MW388	Downgradient	Yes	12.9	NO	2.557	N/A	
MW392	Downgradient	Yes	19.4	NO	2.965	N/A	
MW395	Upgradient	Yes	24.2	NO	3.186	N/A	
MW397	Upgradient	Yes	15.3	NO	2.728	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-63

Historical Background Comparison

Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor**= 2.523

TL(1)= 81.242

LL(1)=N/A

Statistics-Transformed Background

X = 3.924 S

 $S= 0.229 \quad CV(2)=0.058$

K factor=** 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.661
Date Collected	Result	
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient l	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	36.7	NO	3.603	N/A	
MW373	Downgradient	Yes	39	NO	3.664	N/A	
MW385	Sidegradient	Yes	23.4	NO	3.153	N/A	
MW388	Downgradient	Yes	36	NO	3.584	N/A	
MW392	Downgradient	Yes	43	NO	3.761	N/A	
MW395	Upgradient	Yes	40.3	NO	3.696	N/A	
MW397	Upgradient	Yes	33.9	NO	3.523	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

UNITS: ug/L cis-1,2-Dichloroethene LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.000**K** factor**= 2.523 Statistics-Background Data X = 5.000S = 0.000TL(1) = 5.000LL(1)=N/A **Statistics-Transformed Background** CV(2) = 0.000X = 1.609S = 0.000**K factor**=** 2.523 TL(2) = 1.609LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 5 9/30/2002 5 1.609 5 1.609 10/16/2002 1/13/2003 5 1.609 4/10/2003 5 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 5 10/17/2002 1.609 1/13/2003 5 1.609 5 1.609 4/8/2003 5 7/16/2003 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	1	N/A	0.000	N/A
MW373	Downgradient	No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	No	1	N/A	0.000	N/A
MW392	Downgradient	Yes	0.6	NO	-0.511	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-65

C-746-S/T First Quarter 2021 Statistical Analysis **Conductivity** UNITS: umho/cm

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor**= 2.523

TL(1) = 509.326 LL(1) = N/A

LRGA

Statistics-Transformed Background

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.775
Date Collected	Result	
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient l	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	464	NO	6.140	N/A
MW373	Downgradient	Yes	854	YES	6.750	N/A
MW385	Sidegradient	Yes	452	NO	6.114	N/A
MW388	Downgradient	Yes	390	NO	5.966	N/A
MW392	Downgradient	Yes	357	NO	5.878	N/A
MW395	Upgradient	Yes	358	NO	5.881	N/A
MW397	Upgradient	Yes	320	NO	5.768	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

Historical Background Comparison

UNITS: mg/L LRGA Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

S = 0.013

CV(1) = 0.474

K factor**= 2.523

TL(1) = 0.061

LL(1)=N/A

Statistics-Transformed Background

X = -3.662 S = 0.406 CV(2) = -0.111

K factor=** 2.523

TL(2) = -2.638

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.0281	-3.572
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	1411207	
Well Nullibel.	MW397	
Date Collected	Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
,	MW370	Downgradient	Yes	0.00128	NO	-6.661	N/A
	MW373	Downgradient	Yes	0.00115	NO	-6.768	N/A
	MW385	Sidegradient	Yes	0.000698	8 NO	-7.267	N/A
	MW388	Downgradient	Yes	0.00107	NO	-6.840	N/A
	MW392	Downgradient	Yes	0.000643	3 NO	-7.349	N/A
	MW395	Upgradient	Yes	0.00173	NO	-6.360	N/A
	MW397	Upgradient	Yes	0.00096	5 NO	-6.943	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

Historical Background Comparison

Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 4.678

CV(1)=0.520

K factor**= 2.523

TL(1)=10.812

LL(1)=N/A

Statistics-Transformed Background

X = 1.414

S = 2.431

 $S = 0.550 \quad CV(2) = 0.389$

K factor=** 2.523

TL(2) = 2.802

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	7.29	1.987
9/30/2002	4.03	1.394
10/16/2002	3.85	1.348
1/13/2003	2.36	0.859
4/10/2003	1.14	0.131
7/16/2003	1.76	0.565
10/14/2003	4.05	1.399
1/13/2004	4.26	1.449
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.448
Date Collected	Result	
Date Collected 8/13/2002	Result 11.56	2.448
Date Collected 8/13/2002 9/16/2002	Result 11.56 5.86	2.448 1.768
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 11.56 5.86 5.94	2.448 1.768 1.782
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 11.56 5.86 5.94 4.66	2.448 1.768 1.782 1.539
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 11.56 5.86 5.94 4.66 3.77	2.448 1.768 1.782 1.539 1.327

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	4.3	NO	1.459	N/A
MW373	Downgradient	Yes	1.8	NO	0.588	N/A
MW385	Sidegradient	Yes	0.82	NO	-0.198	N/A
MW388	Downgradient	Yes	3.98	NO	1.381	N/A
MW392	Downgradient	Yes	1.69	NO	0.525	N/A
MW395	Upgradient	Yes	5.22	NO	1.652	N/A
MW397	Upgradient	Yes	6.3	NO	1.841	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-68

C-746-S/T First Quarter 2021 Statistical Analysis **Dissolved Solids** UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor**= 2.523

TL(1) = 305.301

LRGA

LL(1)=N/A

Statistics-Transformed Background

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	210	NO	5.347	N/A
MW373	Downgradient	Yes	484	YES	6.182	N/A
MW385	Sidegradient	Yes	180	NO	5.193	N/A
MW388	Downgradient	Yes	189	NO	5.242	N/A
MW392	Downgradient	Yes	160	NO	5.075	N/A
MW395	Upgradient	Yes	8.57	NO	2.148	N/A
MW397	Upgradient	Yes	151	NO	5.017	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-69

Historical Background Comparison

UNITS: mg/L LRGA Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.400

S = 0.514 CV(1) = 1.286

K factor**= 2.523

TL(1)= 1.698

LL(1)=N/A

Statistics-Transformed Background

X = -2.197 S = 2.634 CV(2) = -1.199

K factor=** 2.523

TL(2) = 4.449

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.457
Date Collected	Result	
Date Collected 8/13/2002	Result 1.58	0.457
Date Collected 8/13/2002 9/16/2002	Result 1.58 0.232	0.457 -1.461
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.58 0.232 0.0002	0.457 -1.461 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.58 0.232 0.0002 0.453	0.457 -1.461 -8.517 -0.792
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.58 0.232 0.0002 0.453 0.2	0.457 -1.461 -8.517 -0.792 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	0.1	N/A	-2.303	N/A
MW373	Downgradient	Yes	0.0362	N/A	-3.319	NO
MW385	Sidegradient	No	0.1	N/A	-2.303	N/A
MW388	Downgradient	Yes	0.0366	N/A	-3.308	NO
MW392	Downgradient	Yes	0.0392	N/A	-3.239	NO
MW395	Upgradient	No	0.1	N/A	-2.303	N/A
MW397	Upgradient	No	0.1	N/A	-2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

Historical Background Comparison

Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.102

CV(1) = 0.515

K factor**= 2.523

TL(1) = 20.922

LL(1)=N/A

Statistics-Transformed Background

X= 1.423

S= 2.408

S = 4.685

CV(2) = 1.692

K factor=** 2.523

TL(2) = 7.500

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	12.5	2.526
9/16/2002	13	2.565
10/16/2002	0.0127	-4.366
1/13/2003	11.2	2.416
4/10/2003	17.5	2.862
7/16/2003	12.9	2.557
10/14/2003	13.4	2.595
1/13/2004	12.4	2.518
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.058
Date Collected	Result	
Date Collected 8/13/2002	Result 7.83	2.058
Date Collected 8/13/2002 9/16/2002	Result 7.83 7.64	2.058 2.033
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 7.83 7.64 0.00658	2.058 2.033 -5.024
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 7.83 7.64 0.00658 6.69	2.058 2.033 -5.024 1.901
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 7.83 7.64 0.00658 6.69 7.28	2.058 2.033 -5.024 1.901 1.985

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW370	Downgradient	Yes	12.9	NO	2.557	N/A		
MW373	Downgradient	Yes	27.2	YES	3.303	N/A		
MW385	Sidegradient	Yes	12.9	NO	2.557	N/A		
MW388	Downgradient	Yes	10.4	NO	2.342	N/A		
MW392	Downgradient	Yes	10.7	NO	2.370	N/A		
MW395	Upgradient	Yes	10.4	NO	2.342	N/A		
MW397	Upgradient	Yes	7.94	NO	2.072	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

UNITS: mg/L **LRGA** Manganese

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.131

S = 0.195

CV(1) = 1.487

K factor**= 2.523

TL(1) = 0.624

LL(1)=N/A

Statistics-Transformed Background

X = -3.104 S = 1.529 CV(2) = -0.493

K factor=** 2.523

TL(2) = 0.755

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395		
Date Collected	Result	LN(Result)	
8/13/2002	0.361	-1.019	
9/16/2002	0.028	-3.576	
10/16/2002	0.026	-3.650	
1/13/2003	0.0713	-2.641	
4/10/2003	0.629	-0.464	
7/16/2003	0.297	-1.214	
10/14/2003	0.0198	-3.922	
1/13/2004	0.0126 -4.374		
Well Number:	MW397		
Date Collected	Result	LN(Result)	
8/13/2002	0.466	-0.764	
9/16/2002	0.077	-2.564	
10/17/2002	0.028	-3.576	
1/13/2003	0.0164	-4.110	
4/8/2003	0.0407	-3.202	
7/16/2003	0.0167	-4.092	
10/14/2003	0.00555	-5.194	
1/13/2004	0.005	-5.298	

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	No	0.00196	N/A	-6.235	N/A		
MW373	Downgradient	Yes	0.0185	N/A	-3.990	NO		
MW385	Sidegradient	Yes	0.00152	N/A	-6.489	NO		
MW388	Downgradient	Yes	0.00157	N/A	-6.457	NO		
MW392	Downgradient	Yes	0.00949	N/A	-4.658	NO		
MW395	Upgradient	No	0.005	N/A	-5.298	N/A		
MW397	Upgradient	No	0.005	N/A	-5.298	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-72

C-746-S/T First Quarter 2021 Statistical Analysis Molybdenum UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.011

Statistics-Background Data

X = 0.007

CV(1) = 1.451

K factor**= 2.523

TL(1) = 0.034

LRGA

LL(1)=N/A

Statistics-Transformed Background

X = -5.990 S = 1.443 CV(2) = -0.241

K factor=** 2.523

TL(2) = -2.349

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395			
Date Collected	Result	LN(Result)		
8/13/2002	0.025	-3.689		
9/16/2002	0.025	-3.689		
10/16/2002	0.001	-6.908		
1/13/2003	0.00609	-5.101		
4/10/2003	0.001	-6.908		
7/16/2003	0.001	-6.908		
10/14/2003	0.001	-6.908		
1/13/2004	0.001	-6.908		
Well Number:	MW397			
Date Collected	Result	LN(Result)		
8/13/2002	0.025	-3.689		
9/16/2002	0.025	-3.689		
10/17/2002	0.001	-6.908		
1/13/2003	0.001	-6.908		
4/8/2003	0.001	-6.908		
7/16/2003	0.001	-6.908		
10/14/2003	0.001	(000		
10/14/2003	0.001	-6.908		

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.001	N/A	-6.908	N/A	
MW373	Downgradient	Yes	0.000584	4 N/A	-7.446	NO	
MW385	Sidegradient	Yes	0.000328	8 N/A	-8.022	NO	
MW388	Downgradient	Yes	0.000228	8 N/A	-8.386	NO	
MW392	Downgradient	No	0.000339	9 N/A	-7.990	N/A	
MW395	Upgradient	No	0.001	N/A	-6.908	N/A	
MW397	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-73

C-746-S/T First Quarter 2021 Statistical Analysis **Nickel** UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

S = 0.020

CV(1)=1.089

K factor**= 2.523

TL(1) = 0.068

LL(1)=N/A

Statistics-Transformed Background

X = -4.540 S = 1.020 CV(2) = -0.225

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395		
Date Collected	Result	LN(Result)	
8/13/2002	0.05	-2.996	
9/16/2002	0.05	-2.996	
10/16/2002	0.00702	-4.959	
1/13/2003	0.029	-3.540	
4/10/2003	0.0091	-4.699	
7/16/2003	0.00627	-5.072	
10/14/2003	0.005	-5.298	
1/13/2004	0.005	-5.298	
Well Number:	MW397		
Well Number: Date Collected	MW397 Result	LN(Result)	
Date Collected	Result	LN(Result)	
Date Collected 8/13/2002	Result 0.05	LN(Result) -2.996	
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	LN(Result) -2.996 -2.996	
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	LN(Result) -2.996 -2.996 -5.298	
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.005	LN(Result) -2.996 -2.996 -5.298 -5.294	
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.005 0.00502 0.005	LN(Result) -2.996 -2.996 -5.298 -5.294 -5.298	

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	0.00254	N/A	-5.976	NO		
MW373	Downgradient	Yes	0.0027	N/A	-5.915	NO		
MW385	Sidegradient	Yes	0.0014	N/A	-6.571	NO		
MW388	Downgradient	Yes	0.00143	N/A	-6.550	NO		
MW392	Downgradient	Yes	0.00163	N/A	-6.419	NO		
MW395	Upgradient	Yes	0.00178	N/A	-6.331	NO		
MW397	Upgradient	Yes	0.0018	N/A	-6.320	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-S/T First Quarter 2021 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=157.250 S= 52.376 CV(1)=0.333

V(1)=0.333 K factor**= 2.523

TL(1) = 289.395

LL(1)=N/A

Statistics-Transformed Background

X = 5.003 S = 0.348 CV(2) = 0.069

K factor**= 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 4.745
Date Collected	Result	
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	395	YES	5.979	N/A	
MW373	Downgradient	Yes	372	YES	5.919	N/A	
MW385	Sidegradient	Yes	433	YES	6.071	N/A	
MW388	Downgradient	Yes	432	YES	6.068	N/A	
MW392	Downgradient	Yes	286	NO	5.656	N/A	
MW395	Upgradient	Yes	334	YES	5.811	N/A	
MW397	Upgradient	Yes	478	YES	6.170	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

MW385

MW388 MW395

MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2021 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.048 S = 0.248 CV(1) = 0.041 K factor**= 2.904 TL(1) = 6.767 LL(1) = 5.3289

Statistics-Transformed Background Data

X= 1.799 **S**= 0.042 **CV(2)**= 0.023

K factor**= 2.904

TL(2)= 1.920 LL(2

LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/16/2002 1.792 5.47 1.699 10/16/2002 1/13/2003 6 1.792 4/10/2003 6.18 1.821 7/16/2003 6 1.792 10/14/2003 6.31 1.842 1/13/2004 6.24 1.831 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 5.84 1.765 9/30/2002 1.792 6 10/17/2002 5.75 1.749 1/13/2003 6 1.792 4/8/2003 6.3 1.841 7/16/2003 6.2 1.825 10/14/2003 6.36 1.850

6.32

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
				Result \LL(1):		LN(Result) \LL(2):
MW370	Downgradien	t Yes	5.79	NO	1.756	N/A
MW373	Downgradien	t Yes	6.05	NO	1.800	N/A
MW385	Sidegradient	Yes	5.89	NO	1.773	N/A
MW388	Downgradien	t Yes	5.63	NO	1.728	N/A
MW392	Downgradien	t Yes	5.83	NO	1.763	N/A
MW395	Upgradient	Yes	5.7	NO	1.740	N/A
MW397	Upgradient	Yes	5.73	NO	1.746	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.844

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2021 Statistical Analysis

Historical Background Comparison

Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.590

CV(1)=0.404

K factor**= 2.523

TL(1) = 3.208

LL(1)=N/A

Statistics-Transformed Background

X = -0.306 S = 2.457 CV(2) = -8.028

S = 0.642

K factor=** 2.523

TL(2) = 5.892

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.00129	-6.653
1/13/2003	1.51	0.412
4/10/2003	1.67	0.513
7/16/2003	1.73	0.548
10/14/2003	1.7	0.531
1/13/2004	1.58	0.457
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.708
Date Collected	Result	,
Date Collected 8/13/2002	Result 2.03	0.708
Date Collected 8/13/2002 9/16/2002	Result 2.03 2	0.708 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2.03 2 0.00145	0.708 0.693 -6.536
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2.03 2 0.00145 1.69	0.708 0.693 -6.536 0.525
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2.03 2 0.00145 1.69 1.73	0.708 0.693 -6.536 0.525 0.548

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	2.69	NO	0.990	N/A	
MW373	Downgradient	Yes	2.78	NO	1.022	N/A	
MW385	Sidegradient	Yes	1.65	NO	0.501	N/A	
MW388	Downgradient	Yes	1.78	NO	0.577	N/A	
MW392	Downgradient	Yes	1.9	NO	0.642	N/A	
MW395	Upgradient	Yes	1.46	NO	0.378	N/A	
MW397	Upgradient	Yes	1.73	NO	0.548	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

C-746-S/T First Quarter 2021 Statistical Analysis Sodium UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor**= 2.523

TL(1) = 64.616

LL(1)=N/A

Statistics-Transformed Background

X = 2.615 S = 2.411 CV(2) = 0.922

K factor=** 2.523

TL(2) = 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	43.1	NO	3.764	N/A	
MW373	Downgradient	Yes	64	NO	4.159	N/A	
MW385	Sidegradient	Yes	37.5	NO	3.624	N/A	
MW388	Downgradient	Yes	39	NO	3.664	N/A	
MW392	Downgradient	Yes	25.3	NO	3.231	N/A	
MW395	Upgradient	Yes	28.3	NO	3.343	N/A	
MW397	Upgradient	Yes	32.5	NO	3.481	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-78

C-746-S/T First Quarter 2021 Statistical Analysis **Sulfate** UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.200

Statistics-Background Data

X = 10.756 S = 2.147

K factor**= 2.523

TL(1) = 16.173

LL(1)=N/A

Statistics-Transformed Background

X = 2.356 S = 0.203 CV(2) = 0.086

K factor=** 2.523

TL(2) = 2.869

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.639
Date Collected	Result	
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	20.9	YES	3.040	N/A	
MW373	Downgradient	Yes	170	YES	5.136	N/A	
MW385	Sidegradient	Yes	20.7	YES	3.030	N/A	
MW388	Downgradient	Yes	18.6	YES	2.923	N/A	
MW392	Downgradient	Yes	10.5	NO	2.351	N/A	
MW395	Upgradient	Yes	11.6	NO	2.451	N/A	
MW397	Upgradient	Yes	11.5	NO	2.442	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-79

C-746-S/T First Quarter 2021 Statistical Analysis **Technetium-99** UNITS: pCi/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 11.359 S = 9.138

CV(1) = 0.805

K factor**= 2.523

TL(1) = 34.414

LL(1)=N/A

Statistics-Transformed Background

X = 2.398

S = 0.859 CV(2) = 0.358

K factor=** 2.523

TL(2) = 3.246

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.802
Date Collected	Result	
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	58.8	YES	4.074	N/A	
MW373	Downgradient	No	9.89	N/A	2.292	N/A	
MW385	Sidegradient	Yes	40.6	YES	3.704	N/A	
MW388	Downgradient	No	14.9	N/A	2.701	N/A	
MW392	Downgradient	No	-2.19	N/A	#Error	N/A	
MW395	Upgradient	No	14	N/A	2.639	N/A	
MW397	Upgradient	No	15.2	N/A	2.721	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-80

C-746-S/T First Quarter 2021 Statistical Analysis

Historical Background Comparison

Total Organic Carbon (TOC)

UNITS: mg/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.544

CV(1)=0.554S = 0.856

K factor**= 2.523

TL(1) = 3.702

LL(1)=N/A

Statistics-Transformed Background

X = 0.325

S = 0.452 CV(2) = 1.393

K factor=** 2.523

TL(2) = 1.465

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	1.13	NO	0.122	N/A	
MW373	Downgradient	Yes	1.3	NO	0.262	N/A	
MW385	Sidegradient	Yes	1.26	NO	0.231	N/A	
MW388	Downgradient	Yes	1.19	NO	0.174	N/A	
MW392	Downgradient	Yes	0.862	NO	-0.149	N/A	
MW395	Upgradient	Yes	0.89	NO	-0.117	N/A	
MW397	Upgradient	Yes	0.846	NO	-0.167	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-81

C-746-S/T First Quarter 2021 Statistical Analysis

Historical Background Comparison

Total Organic Halides (TOX)

UNITS: ug/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 31.513 S = 18.609 CV(1) = 0.591

K factor**= 2.523

TL(1) = 78.462

LL(1)=N/A

Statistics-Transformed Background

X = 3.240 S = 0.707 CV(2) = 0.218

K factor=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002		
8/13/2002	50	3.912
9/16/2002	50 50	3.912 3.912
9/16/2002	50	3.912
9/16/2002 10/17/2002	50 50	3.912 3.912
9/16/2002 10/17/2002 1/13/2003	50 50 12	3.912 3.912 2.485
9/16/2002 10/17/2002 1/13/2003 4/8/2003	50 50 12 19.9	3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient l	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	7.02	NO	1.949	N/A	
MW373	Downgradient	Yes	9.52	NO	2.253	N/A	
MW385	Sidegradient	Yes	8.2	NO	2.104	N/A	
MW388	Downgradient	Yes	5.52	NO	1.708	N/A	
MW392	Downgradient	Yes	12.6	NO	2.534	N/A	
MW395	Upgradient	Yes	4.7	NO	1.548	N/A	
MW397	Upgradient	Yes	5.36	NO	1.679	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-82

C-746-S/T First Quarter 2021 Statistical Analysis Trichloroethene UNITS: ug/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical

background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313

CV(1) = 0.780S = 5.701

K factor**= 2.523

TL(1) = 21.695

LRGA

LL(1)=N/A

Statistics-Transformed Background

X = 1.467 S = 1.213 CV(2) = 0.827

K factor=** 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
337 11 NT 1	1.000	
Well Number:	MW397	
Date Collected	Result	LN(Result)
		LN(Result)
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1 1	1.609 1.609 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.86	N/A	-0.151	N/A	
MW373	Downgradient	Yes	4.54	N/A	1.513	N/A	
MW385	Sidegradient	Yes	0.37	N/A	-0.994	N/A	
MW388	Downgradient	Yes	0.46	N/A	-0.777	N/A	
MW392	Downgradient	Yes	13.1	NO	2.573	N/A	
MW395	Upgradient	Yes	2.28	N/A	0.824	N/A	
MW397	Upgradient	No	1	N/A	0.000	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

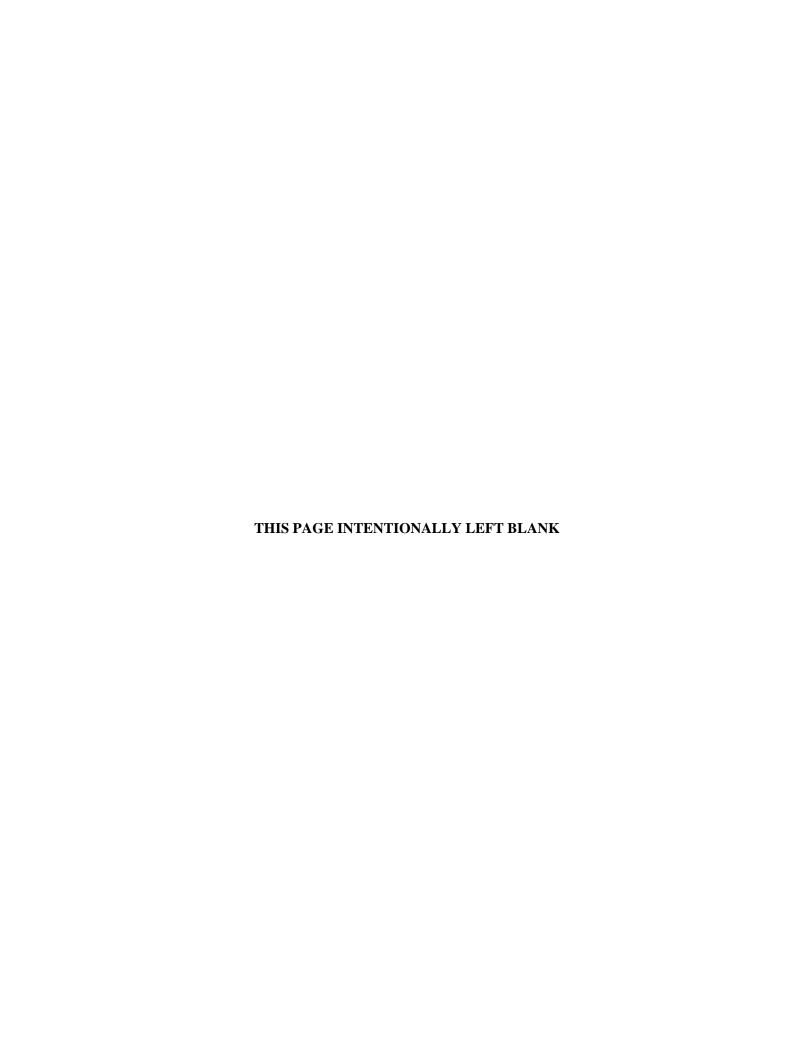
Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),


X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-83

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Fourth Quarter 2020 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW393 Downgradient Yes

Statistics-Background Data

X = 297.750 S = 114.578 CV(1) = 0.385

K factor**= 3.188

TL(1)= 663.026 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.621 S = 0.434

CV(2) = 0.077

K factor**= 3.188

TL(2) = 7.005

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
1/23/2019	231	5.442
4/22/2019	431	6.066
7/17/2019	415	6.028
10/10/2019	227	5.425
3/18/2020	127	4.844
4/22/2020	401	5.994
7/29/2020	346	5.846
10/22/2020	204	5.318

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.193

N/A

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	360	NO	5.886	N/A
MW390	Downgradien	t Yes	408	NO	6.011	N/A

NO

180

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Current Background Comparison** Technetium-99 **UCRS** UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

TL(1)= 23.024 X = -0.316 S = 7.321CV(1) = -23.204K factor**= 3.188 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** X = 1.630K factor**= 3.188 S = 0.301CV(2)=0.185TL(2)= 1.828 LL(2)=N/A

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
1/23/2019	6.22	1.828
4/22/2019	5.89	1.773
7/17/2019	-0.714	#Func!
10/10/2019	-9.62	#Func!
1/27/2020	3.26	1.182
4/22/2020	5.69	1.739
7/29/2020	-0.35	#Func!
10/22/2020	-12.9	#Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradien	t Yes	59.9	YES	4.093	N/A

Conclusion of Statistical Analysis on Current Data

MW390

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-4

C-746-S/T Fourth Quarter 2020 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=11.164 **S**= 5.878

CV(1)=0.526

K factor**= 2.523

TL(1)= 25.994

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.263 S = 0.597

CV(2)=0.264

K factor**= 2.523

TL(2) = 3.769

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 1/22/2019 23 3.135 4/16/2019 8.19 2.103 2.542 7/16/2019 12.7 2.939 10/8/2019 18.9 1/22/2020 8.34 2.121 4/21/2020 16.5 2.803 7/28/2020 18.9 2.939 10/14/2020 2.617 13.7

Well Number: MW394 Date Collected Result LN(Result) 1/23/2019 4.28 1.454 4/22/2019 2.82 1.037 7/17/2019 10.3 2.332 10/10/2019 8.14 2.097 1/27/2020 4.69 1.545 4/22/2020 5.27 1.662 7/29/2020 12 2.485

10.9

10/22/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW387	Downgradien	t Yes	186	YES	5 226	N/A

Conclusion of Statistical Analysis on Current Data

2.389

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 25.656 **S**= 3.695

CV(1)=0.144

S = 0.140

K factor=** 2.523

TL(1) = 34.978

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.235

CV(2) = 0.043

K factor**= 2.523

TL(2) = 3.588

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/22/2019	26	3.258
4/16/2019	35.8	3.578
7/16/2019	25.4	3.235
10/8/2019	20.9	3.040
1/22/2020	26.3	3.270
4/21/2020	28.8	3.360
7/28/2020	20.6	3.025
10/14/2020	19.9	2.991

Well Number:	MW394	
Date Collected	Result	LN(Result)
1/23/2019	27.9	3.329
4/22/2019	24.7	3.207
7/17/2019	25.4	3.235
10/10/2019	25.2	3.227
1/27/2020	25.3	3.231
4/22/2020	24.9	3.215
7/29/2020	26	3.258
10/22/2020	27.4	3.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	67.5	YES	4.212	N/A
MW387	Downgradient	Yes	43.2	YES	3.766	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Current Background Comparison Chemical Oxygen Demand (COD)** URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 28.775 S = 24.569 CV(1) = 0.854

K factor**= 2.523

TL(1)= 90.761

LL(1)=N/A

Statistics-Transformed Background X=3.176Data

S = 0.546

CV(2)=0.172

K factor**= 2.523

TL(2) = 4.554

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/22/2019	20	2.996
4/16/2019	16.4	2.797
7/16/2019	15.9	2.766
10/8/2019	20	2.996
1/22/2020	20	2.996
4/21/2020	114	4.736
7/28/2020	20	2.996
10/14/2020	12	2.485

12	2.485
MW394	
Result	LN(Result)
20	2.996
20.3	3.011
18.3	2.907
40.8	3.709
29.2	3.374
31.1	3.437
16	2.773
46.4	3.837
	MW394 Result 20 20.3 18.3 40.8 29.2 31.1 16

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	39.7	NO	3.681	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-7

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Current Background Comparison** URGA **Conductivity** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 383.625 S = 30.311 CV(1) = 0.079

K factor**= 2.523

TL(1)= 460.101

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.947

S = 0.078CV(2) = 0.013 K factor**= 2.523

TL(2) = 6.143

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/22/2019	416	6.031
5/30/2019	424	6.050
7/16/2019	377	5.932
10/8/2019	346	5.846
3/18/2020	441	6.089
4/21/2020	435	6.075
7/28/2020	354	5.869
10/14/2020	338	5.823

7/28/2020	354	5.869
10/14/2020	338	5.823
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/23/2019	381	5.943
5/29/2019	383	5.948
7/17/2019	370	5.914
10/10/2019	382	5.945
1/27/2020	370	5.914
4/22/2020	367	5.905
7/29/2020	379	5.938
10/22/2020	375	5.927

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	822	YES	6.712	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 205.188 S = 32.542 CV(1) = 0.159

K factor=** 2.523

TL(1)= 287.290

Because CV(1) is less than or equal to

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.313 S = 0.155 CV(2) = 0.029

K factor**= 2.523

utilizing TL(1).

TL(2) = 5.704

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 1/22/2019 209 5.342 4/16/2019 273 5.609 7/16/2019 176 5.170 10/8/2019 176 5.170 1/22/2020 256 5.545 4/21/2020 214 5.366 7/28/2020 191 5.252 10/14/2020 190 5.247

Current Quarter Data

Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2)

MW372 Downgradient Yes 447 YES 6.103 N/A

Well Number:	MW394	
Date Collected	Result	LN(Result)
1/23/2019	197	5.283
4/22/2019	216	5.375
7/17/2019	167	5.118
10/10/2019	251	5.525
1/27/2020	200	5.298
4/22/2020	200	5.298
7/29/2020	213	5.361
10/22/2020	154	5.037

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Current Background Comparison** Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.485 S = 1.078

CV(1)=0.103

K factor**= 2.523

TL(1)= 13.205

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.345

S = 0.109CV(2) = 0.046 K factor**= 2.523

TL(2) = 2.619

URGA

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/22/2019	10.8	2.380
4/16/2019	10.3	2.332
7/16/2019	10	2.303
10/8/2019	8.71	2.164
1/22/2020	10.9	2.389
4/21/2020	11.9	2.477
7/28/2020	8.24	2.109
10/14/2020	8.71	2.164
Well Number:	MW394	

10/1/2020	0., 1	2.10.
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/23/2019	11.4	2.434
4/22/2019	11	2.398
7/17/2019	10.8	2.380
10/10/2019	10.7	2.370
1/27/2020	10.6	2.361
4/22/2020	10.7	2.370
7/29/2020	11.2	2.416
10/22/2020	11.8	2.468

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	24.1	YES	3.182	N/A
MW387	Downgradient	Yes	17.8	YES	2.879	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 409.500 S = 49.410 CV(1) = 0.121

K factor**= 2.523

TL(1)= 534.161 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.008

S = 0.121CV(2)=0.020 K factor**= 2.523

TL(2) = 6.313

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/22/2019	361	5.889
5/30/2019	523	6.260
7/16/2019	407	6.009
10/8/2019	414	6.026
3/18/2020	378	5.935
4/21/2020	435	6.075
7/28/2020	375	5.927
10/14/2020	385	5.953
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.749
Date Collected	Result	
Date Collected 1/23/2019	Result 314	5.749
Date Collected 1/23/2019 5/29/2019	Result 314 463	5.749 6.138
Date Collected 1/23/2019 5/29/2019 7/17/2019	Result 314 463 435	5.749 6.138 6.075
Date Collected 1/23/2019 5/29/2019 7/17/2019 10/10/2019	Result 314 463 435 438	5.749 6.138 6.075 6.082
Date Collected 1/23/2019 5/29/2019 7/17/2019 10/10/2019 1/27/2020	Result 314 463 435 438 440	5.749 6.138 6.075 6.082 6.087

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	496	NO	6.207	N/A
MW221	Sidegradient	Yes	496	NO	6.207	N/A
MW222	Sidegradient	Yes	492	NO	6.198	N/A
MW223	Sidegradient	Yes	500	NO	6.215	N/A
MW224	Sidegradient	Yes	503	NO	6.221	N/A
MW384	Sidegradient	Yes	448	NO	6.105	N/A
MW387	Downgradien	t Yes	439	NO	6.084	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-11

C-746-S/T Fourth Quarter 2020 Statistical Analysis Sodium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 38.031 **S**= 5.785

CV(1)=0.152

K factor**= 2.523

TL(1) = 52.627

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.628

S= 0.149 **CV(2)**=0.041

K factor=** 2.523

TL(2) = 4.004

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 1/22/2019 45.1 3.809 4/16/2019 47.4 3.859 7/16/2019 43.4 3.770 10/8/2019 39.4 3.674 1/22/2020 47.6 3.863 4/21/2020 44 3.784 7/28/2020 38.3 3.645 10/14/2020 3.645 38.3

Well Number:	MW394	
Date Collected	Result	LN(Result)
1/23/2019	32.7	3.487
4/22/2019	30.8	3.428
7/17/2019	31.9	3.463
10/10/2019	33	3.497
1/27/2020	34.1	3.529
4/22/2020	33.4	3.509
7/29/2020	33.7	3.517
10/22/2020	35.4	3.567

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	64	YES	4.159	N/A
MW387	Downgradient	Yes	60.3	YES	4.099	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 15.231 **S**= 4.558

CV(1)=0.299

K factor**= 2.523

TL(1) = 26.732

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.684

S = 0.283

CV(2)=0.105

K factor**= 2.523

TL(2) = 3.398

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/22/2019	21.4	3.063
4/16/2019	24.1	3.182
7/16/2019	18.5	2.918
10/8/2019	15.6	2.747
1/22/2020	20.1	3.001
4/21/2020	22.2	3.100
7/28/2020	15.3	2.728
10/14/2020	13.9	2.632
Well Number:	MW394	
Date Collected	Result	LN(Result)

1/22/2020	20.1	5.001
4/21/2020	22.2	3.100
7/28/2020	15.3	2.728
10/14/2020	13.9	2.632
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/23/2019	11	2.398
4/22/2019	10.7	2.370
7/17/2019	11.1	2.407
10/10/2019	12	2.485
1/27/2020	12.1	2.493
4/22/2020	12.7	2.542
7/29/2020	11.7	2.460
10/22/2020	11.3	2.425

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	156	YES	5.050	N/A
MW384	Sidegradient	Yes	20	NO	2.996	N/A
MW387	Downgradient	Yes	33.6	YES	3.515	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Current Background Comparison Technetium-99** URGA UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW387 Downgradient Yes

X = 12.578 S = 8.828CV(1)=0.702K factor**= 2.523 Statistics-Background Data

Statistics-Transformed Background X = 2.344S = 0.875CV(2) = 0.373

TL(1) = 34.852

LL(1)=N/A

Data

K factor**= 2.523

TL(2) = 3.325

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/22/2019	19.4	2.965
4/16/2019	17.1	2.839
7/16/2019	27.8	3.325
10/8/2019	27	3.296
1/22/2020	12	2.485
4/21/2020	18.7	2.929
7/28/2020	19	2.944
10/14/2020	16.7	2.815
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.442
Date Collected	Result	
Date Collected 1/23/2019	Result 11.5	2.442
Date Collected 1/23/2019 4/22/2019	Result 11.5 2.55	2.442 0.936
Date Collected 1/23/2019 4/22/2019 7/17/2019	Result 11.5 2.55 4.74	2.442 0.936 1.556
Date Collected 1/23/2019 4/22/2019 7/17/2019 10/10/2019	Result 11.5 2.55 4.74 -2.22	2.442 0.936 1.556 #Func!
Date Collected 1/23/2019 4/22/2019 7/17/2019 10/10/2019 1/27/2020	Result 11.5 2.55 4.74 -2.22 10.2	2.442 0.936 1.556 #Func! 2.322

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

5.730

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW369	Downgradien	t Yes	47.7	YES	3.865	N/A	
MW372	Downgradien	t Yes	43.5	YES	3.773	N/A	
MW384	Sidegradient	Yes	40.8	YES	3.709	N/A	

YES

308

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

N/A

MW369 MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 21.806 S = 3.350

CV(1)=0.154

K factor**= 2.523

TL(1) = 30.259

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.071

S = 0.154CV(2)=0.050 K factor**= 2.523

TL(2) = 3.461

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395	
Date Collected Result LN(Result	lt)
1/23/2019 27.3 3.307	
4/22/2019 25.4 3.235	
7/17/2019 24.2 3.186	
10/10/2019 23.4 3.153	
1/27/2020 24.4 3.195	
4/22/2020 24 3.178	
7/29/2020 24.7 3.207	
10/22/2020 25.7 3.246	

10/22/2020	25.7	3.246
Well Number:	MW397	
Date Collected	Result	LN(Result)
1/23/2019	19	2.944
4/16/2019	16.9	2.827
7/16/2019	19.7	2.981
10/9/2019	18.8	2.934
1/27/2020	18.6	2.923
4/22/2020	18.1	2.896
7/27/2020	18.9	2.939
10/22/2020	19.8	2.986

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	71	YES	4.263	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 337.000 **S**= 18.963 **CV(1)**=0.056

V(1)=0.056 K factor**= 2.523

TL(1) = 384.844

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.819 S = 0.056 CV(2) = 0.010

K factor**= 2.523

TL(2) = 5.960

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/23/2019	359	5.883
5/29/2019	367	5.905
7/17/2019	344	5.841
10/10/2019	357	5.878
1/27/2020	348	5.852
4/22/2020	350	5.858
7/29/2020	354	5.869
10/22/2020	358	5.881

4/22/2020	350	5.858
7/29/2020	354	5.869
10/22/2020	358	5.881
Well Number:	MW397	
Date Collected	Result	LN(Result)
1/23/2019	316	5.756
5/29/2019	318	5.762
7/16/2019	316	5.756
10/9/2019	319	5.765
3/18/2020	321	5.771
4/22/2020	319	5.765
7/27/2020	322	5.775

324

10/22/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	854	YES	6.750	N/A

Conclusion of Statistical Analysis on Current Data

5.781

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Current Background Comparison Dissolved Solids** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 184.563 S = 40.355 CV(1) = 0.219

K factor**= 2.523

TL(1)= 286.378 **LL(1)**=N/A

LRGA

Statistics-Transformed Background Data

X = 5.198S = 0.201CV(2) = 0.039 K factor**= 2.523

TL(2) = 5.705

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/23/2019	284	5.649
4/22/2019	173	5.153
7/17/2019	184	5.215
10/10/2019	146	4.984
1/27/2020	257	5.549
4/22/2020	199	5.293
7/29/2020	173	5.153
10/22/2020	150	5.011

Well Number:	MW397	
Date Collected	Result	LN(Result)
1/23/2019	160	5.075
4/16/2019	229	5.434
7/16/2019	176	5.170
10/9/2019	173	5.153
1/27/2020	177	5.176
4/22/2020	160	5.075
7/27/2020	179	5.187
10/22/2020	133	4.890

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	484	YES	6 182	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-17

C-746-S/T Fourth Quarter 2020 Statistical Analysis Currer Magnesium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.302

S = 1.405 C

CV(1)=0.151 K facto

K factor=** 2.523

TL(1)= 12.846

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.219

S= 0.152 **CV(2)**=0.068

K factor**= 2.523

TL(2) = 2.602

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/23/2019	11.2	2.416
4/22/2019	11.1	2.407
7/17/2019	10.6	2.361
10/10/2019	9.88	2.291
1/27/2020	10.3	2.332
4/22/2020	10.2	2.322
7/29/2020	10.4	2.342
10/22/2020	11.1	2.407

10/22/2020	11.1	2.407
Well Number:	MW397	
Date Collected	Result	LN(Result)
1/23/2019	7.84	2.059
4/16/2019	7.65	2.035
7/16/2019	8.63	2.155
10/9/2019	8	2.079
1/27/2020	7.81	2.055
4/22/2020	7.81	2.055
7/27/2020	7.7	2.041
10/22/2020	8.61	2.153

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	27.2	YES	3.303	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 395.625 **S**= 80.410 **CV(1)**=0.203

K factor=** 2.523

TL(1)= 598.499 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.955 S = 0.250 CV(2) = 0.042

K factor=** 2.523

TL(2) = 6.585

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/23/2019	433	6.071
5/29/2019	477	6.168
7/17/2019	449	6.107
10/10/2019	443	6.094
1/27/2020	457	6.125
4/22/2020	419	6.038
7/29/2020	366	5.903
10/22/2020	354	5.869
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.976
Date Collected	Result	
Date Collected 1/23/2019	Result 394	5.976
Date Collected 1/23/2019 5/29/2019	Result 394 488	5.976 6.190
Date Collected 1/23/2019 5/29/2019 7/16/2019	Result 394 488 395	5.976 6.190 5.979
Date Collected 1/23/2019 5/29/2019 7/16/2019 10/9/2019	Result 394 488 395 439	5.976 6.190 5.979 6.084
Date Collected 1/23/2019 5/29/2019 7/16/2019 10/9/2019 3/18/2020	Result 394 488 395 439 246	5.976 6.190 5.979 6.084 5.505

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	395	NO	5.979	N/A
MW373	Downgradient	Yes	372	NO	5.919	N/A
MW385	Sidegradient	Yes	433	NO	6.071	N/A
MW388	Downgradient	t Yes	432	NO	6.068	N/A
MW395	Upgradient	Yes	334	NO	5.811	N/A
MW397	Upgradient	Yes	478	NO	6.170	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Sulfate** UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 11.175 S = 0.714

CV(1)=0.064

K factor**= 2.523

TL(1)= 12.977

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.412

S = 0.064CV(2) = 0.027 K factor**= 2.523

TL(2) = 2.573

LL(2)=N/A

(2)

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 1/23/2019 10.6 2.361 4/22/2019 10.5 2.351 7/17/2019 10.9 2.389 2.493 10/10/2019 12.1 1/27/2020 11.7 2.460 4/22/2020 12.4 2.518 7/29/2020 2.485

1/29/2020	12	2.485
10/22/2020	11.7	2.460
Well Number:	MW397	
Date Collected	Result	LN(Result)
1/23/2019	10.1	2.313
4/16/2019	10	2.303
7/16/2019	10.7	2.370
10/9/2019	11.4	2.434
1/27/2020	10.9	2.389
4/22/2020	11	2.398
7/27/2020	11.7	2.460
10/22/2020	11.1	2.407

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Cultunt	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW370	Downgradient	t Yes	20.9	YES	3.040	N/A
MW373	Downgradient	t Yes	170	YES	5.136	N/A
MW385	Sidegradient	Yes	20.7	YES	3.030	N/A
MW388	Downgradient	t Yes	18.6	YES	2.923	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Current Background Comparison Technetium-99 LRGA** UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 10.276 S = 7.854CV(1)=0.764K factor**= 2.523 **LL(1)=**N/A **Statistics-Background Data** TL(1)= 30.091 **Statistics-Transformed Background** X = 2.208K factor**= 2.523 S = 0.648CV(2)=0.293TL(2) = 3.469LL(2)=N/A

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/23/2019	10.3	2.332
4/22/2019	11.2	2.416
7/17/2019	4.92	1.593
10/10/2019	8.31	2.117
1/27/2020	3.14	1.144
4/22/2020	8.44	2.133
7/29/2020	12.2	2.501
10/22/2020	-1.04	#Func!
10:22:2020		
Well Number:	MW397	
		LN(Result)
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Well Number: Date Collected 1/23/2019	MW397 Result 7.12	LN(Result) 1.963
Well Number: Date Collected 1/23/2019 4/16/2019	MW397 Result 7.12 32.1	LN(Result) 1.963 3.469
Well Number: Date Collected 1/23/2019 4/16/2019 7/16/2019	MW397 Result 7.12 32.1 5.83	LN(Result) 1.963 3.469 1.763

20.1

8.46

7/27/2020

10/22/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	58.8	YES	4.074	N/A
MW385	Sidegradient	Yes	40.6	YES	3.704	N/A

Conclusion of Statistical Analysis on Current Data

3.001

2.135

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385

- CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-21

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

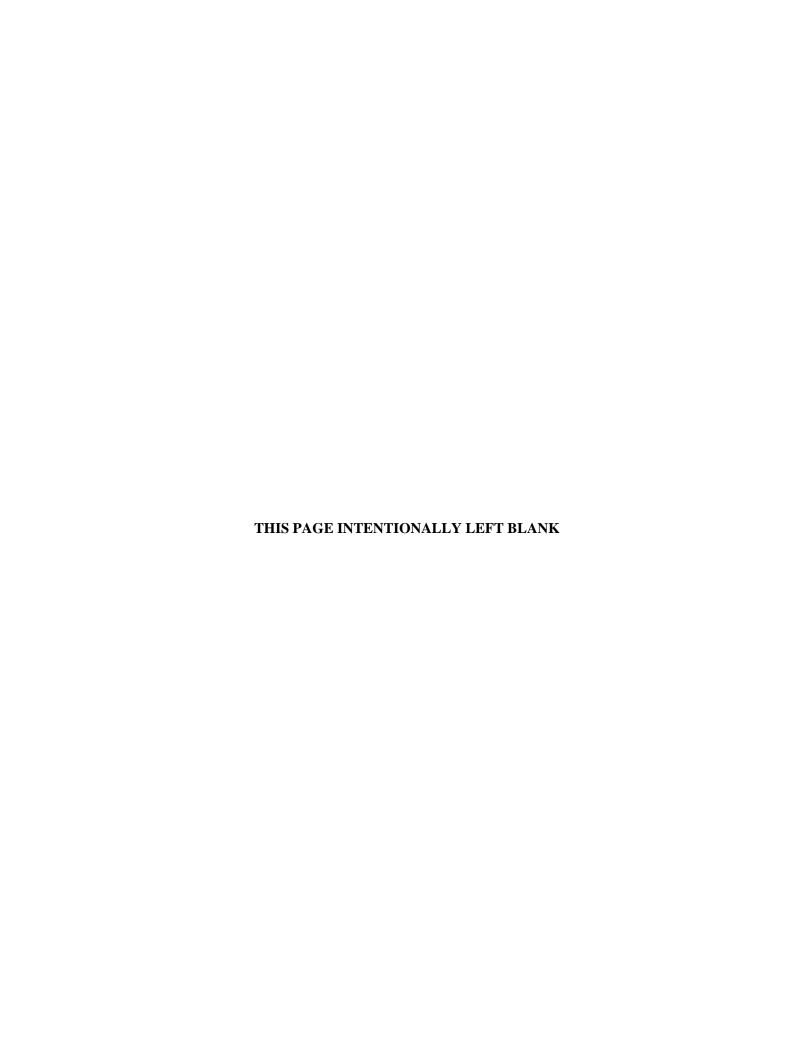
April 29, 2021

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the first quarter 2021 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).


Sincerely,

Bryan Smith

Byan Six

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2021 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2021 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on January 25, 2021. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had sufficient water for a water level measurement but insufficient water for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. During January, RGA groundwater flow was directed inward and then northeast towards the Ohio River. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 4.73×10^{-4} ft/ft. Additional water level measurements in January (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 5.31×10^{-4} ft/ft, northward. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for January 2021, RGA groundwater flow from the landfill area was directed to the northeast.

_

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

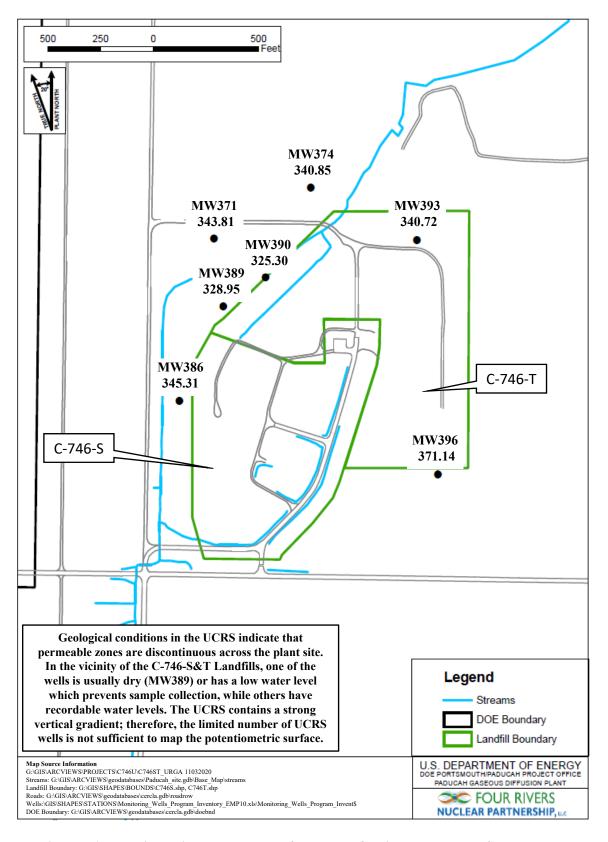


Figure E.1. Potentiometric Measurements of the Upper Continental Recharge System at the C-746-S&T Landfills, January 25, 2021

Table E.1. C-746-S&T Landfills First Quarter 2021 (January) Water Levels

			C-746-S&	T Landfills (Ja	nuary 202	1) Water Le	evels			
							Ra	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/25/2021	15:36	MW220	URGA	382.01	29.61	0.02	56.45	325.56	56.47	325.54
1/25/2021	15:06	MW221	URGA	391.38	29.61	0.02	66.09	325.29	66.11	325.27
1/25/2021	15:11	MW222	URGA	395.27	29.61	0.02	69.92	325.35	69.94	325.33
1/25/2021	15:09	MW223	URGA	394.38	29.61	0.02	69.01	325.37	69.03	325.35
1/25/2021	15:13	MW224	URGA	395.69	29.61	0.02	70.25	325.44	70.27	325.42
1/25/2021	15:38	MW225	URGA	385.73	29.61	0.02	60.28	325.45	60.30	325.43
1/25/2021	13:09	MW353	LRGA	375.05	29.63	0.00	49.29	325.76	49.29	325.76
1/25/2021	15:21	MW384	URGA	365.29	29.61	0.02	39.93	325.36	39.95	325.34
1/25/2021	15:22	MW385	LRGA	365.74	29.61	0.02	40.32	325.42	40.34	325.40
1/25/2021	15:23	MW386	UCRS	365.32	29.61	0.02	19.99	345.33	20.01	345.31
1/25/2021	15:29	MW387	URGA	363.48	29.61	0.02	38.14	325.34	38.16	325.32
1/25/2021	15:30	MW388	LRGA	363.45	29.61	0.02	38.12	325.33	38.14	325.31
1/25/2021	15:27	MW389	UCRS	364.11	29.61	0.02	35.14	328.97	35.16	328.95
1/25/2021	15:24	MW390	UCRS	360.39	29.61	0.02	35.07	325.32	35.09	325.30
1/25/2021	15:01	MW391	URGA	366.67	29.61	0.02	41.31	325.36	41.33	325.34
1/25/2021	15:02	MW392	LRGA	365.85	29.61	0.02	40.50	325.35	40.52	325.33
1/25/2021	15:03	MW393	UCRS	366.62	29.61	0.02	25.88	340.74	25.90	340.72
1/25/2021	14:53	MW394	URGA	378.46	29.61	0.02	52.79	325.67	52.81	325.65
1/25/2021	14:54	MW395	LRGA	379.12	29.61	0.02	53.49	325.63	53.51	325.61
1/25/2021	14:55	MW396	UCRS	378.75	29.61	0.02	7.59	371.16	7.61	371.14
1/25/2021	15:15	MW397	LRGA	387.00	29.61	0.02	61.38	325.62	61.40	325.60
1/25/2021	14:58	MW418	URGA	367.21	29.61	0.02	41.71	325.50	41.73	325.48
1/25/2021	14:59	MW419	LRGA	367.05	29.61	0.02	41.57	325.48	41.59	325.46

Reference Barometric Pressure

29.63

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

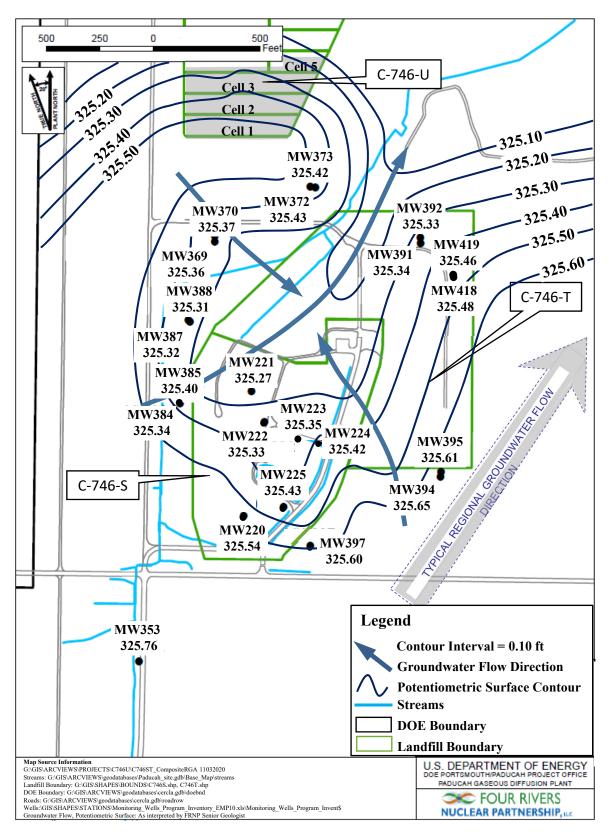


Figure E.2. Composite Potentiometric Surface of the Regional Gravel Aquifer at the C-746-S&T Landfills January 25, 2021

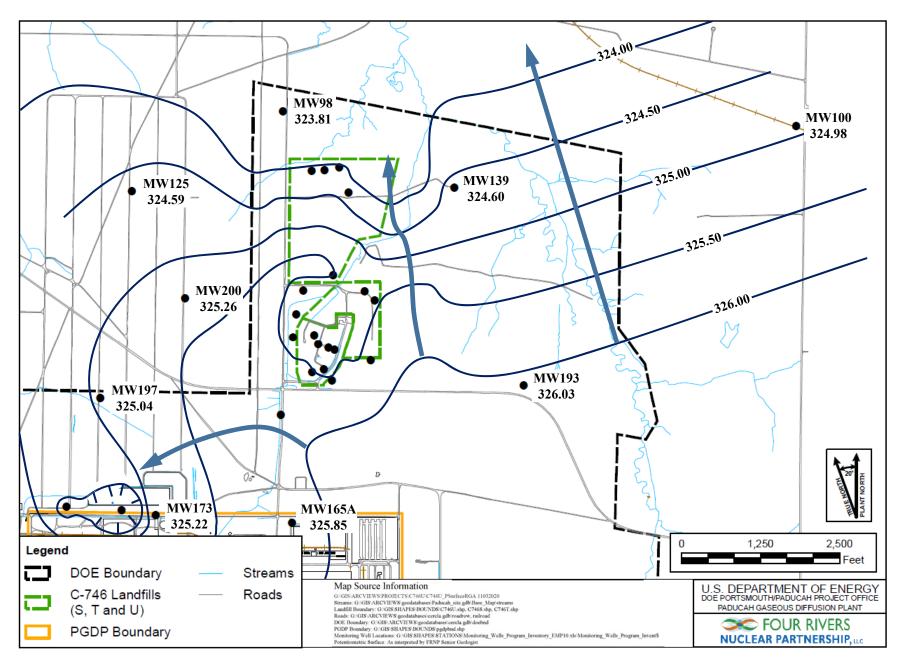
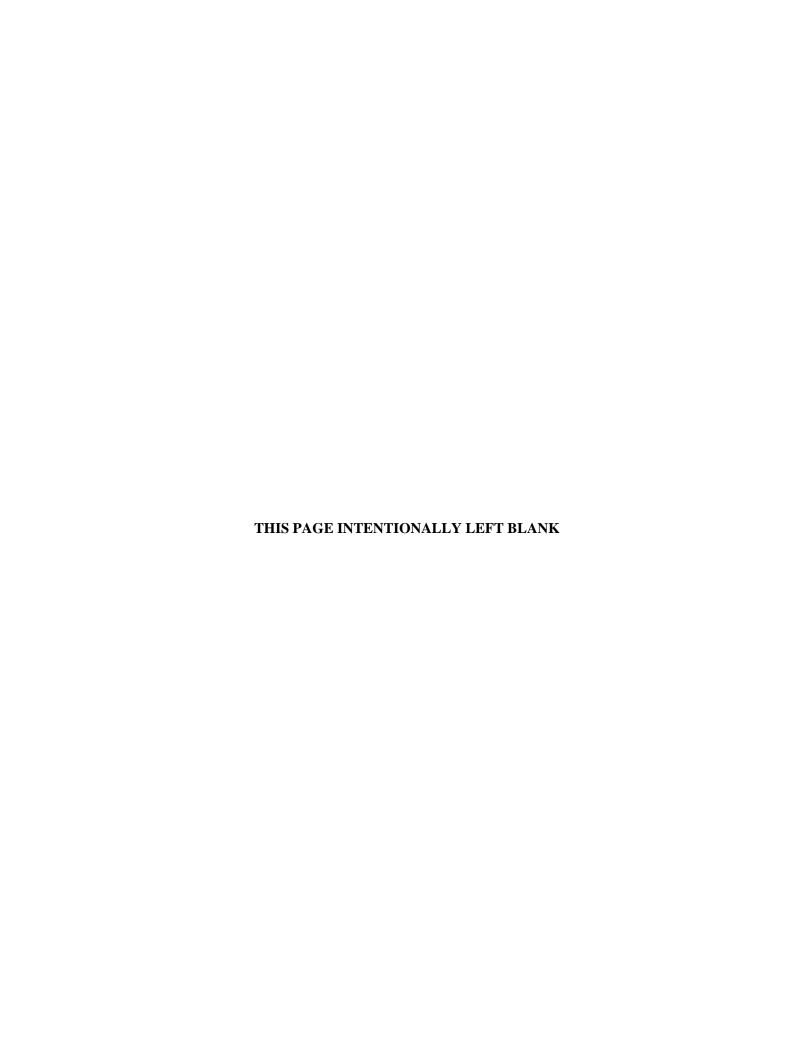


Figure E.3. Vicinity Potentiometric Surface of the Regional Gravel Aquifer, January 25, 2021


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	4.73×10^{-4}
Vicinity	5.31 × 10 ⁻⁴

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific 1	Discharge (q)	Average	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.343	1.21 × 10 ⁻⁴	1.37	4.84 × 10 ⁻⁴
425	0.150	0.201	7.09 × 10 ⁻⁵	0.803	2.84 × 10 ⁻⁴
Vicinity					
725	0.256	0.385	1.36 × 10 ⁻⁴	1.54	5.44 × 10 ⁻⁴
425	0.150	0.226	7.97 × 10 ⁻⁵	0.903	3.19 × 10 ⁻⁴

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the first quarter 2021 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill)* at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).

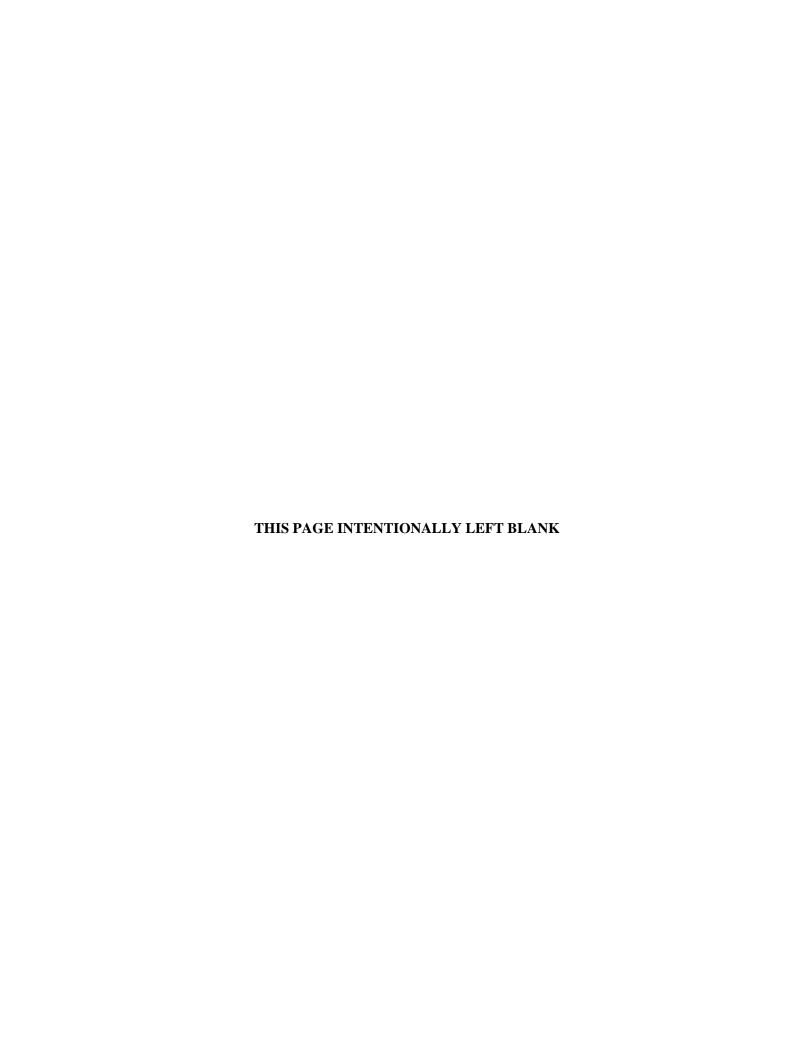
The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW372, MW387 MW369, MW372, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW385

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

3/1/2021

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS


SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4815	MW387	Beta activity	9310	186	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	7.5	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	13.1	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

Groundwater Flow System			UCRS	S						1	URG	4							-	LRGA	A		_
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394		370		388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
Quarter 4, 2019																*							
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									-
Quarter 1, 2004			*				*	*			*												_
Quarter 2, 2004			-4-				*	-4-			-			*									_
Quarter 3, 2004	1		1				*	1				 	 	*	 								
Quarter 4, 2004	 		*				·*	<u> </u>		_	_	<u> </u>	<u> </u>	-	<u> </u>		-						\vdash
	1		*					-				-	-		-								
Quarter 1, 2005							<u>.</u>																-
Quarter 2, 2005	-		*				*			ىد											ىد		<u> </u>
Quarter 3, 2005			*				*			*	11.										*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
•			*				*				*												Н.
Quarter 1, 2010			*				т.				*												Н.
Quarter 2, 2010														4			J			4			
Quarter 3, 2010			*				4				*			*			*			*			igspace
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				
Quarter 3, 2012							*																
Quarter 1, 2013		\Box					*				*					\Box	L	\Box	\Box	\Box			<u> </u>
Quarter 3, 2013			*																				
Quarter 1, 2014							*																
Quarter 2, 2014											*												
Quarter 4, 2014			*																				
Quarter 1, 2016							*																
Quarter 2, 2016														*									
Quarter 1, 2017							*																
Quarter 4, 2017																							*
Quarter 1, 2018							*																
Quarter 1, 2020													*										
BARIUM																							
Quarter 3, 2003																							
Quarter 4, 2003			1									1	1		1								
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003	1																						
													_				Ė						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		1	UCRS	S						1	URGA	A								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 2, 2003			-														-						
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																		t					
Quarter 2, 2007										-			Ī										
Quarter 3, 2007										Ŧ			Ī				Ŧ			Ē			
Quarter 4, 2007										_			Ī										
Quarter 1, 2008														1									
Quarter 2, 2008										Ŧ			Ī				Ŧ			Ē			
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009										Ŧ		-	Ŧ				Ħ						
Quarter 2, 2009													Ī										
Quarter 3, 2009										Ŧ			Ŧ				Ħ						
Quarter 4, 2009										ī		-	Ŧ				Ħ			F			
Quarter 1, 2010										_							Η=			-			
Quarter 2, 2010										_		_					-			-			
Quarter 3, 2010			_							=			i				H			-			
Quarter 4, 2010										Ŧ							Ħ			-			
Quarter 1, 2011										┪		_	i				H			-			
Quarter 2, 2011										i			i				H			-			
Quarter 3, 2011			_							Ŧ													
Quarter 4, 2011										Ŧ			Ŧ				Ħ			┢═			
Quarter 1, 2012										Ē			ī				ī						
Quarter 2, 2012										Ŧ							Ħ			Ħ			
Quarter 3, 2012			_							Ŧ										┢═			
Quarter 4, 2012	-									i		-	i	\vdash			H	 					
Quarter 1, 2013										Ŧ			i	 			<u> </u>		i	Ħ			
Quarter 2, 2013										Ŧ		_	i	 					-	Ħ			
Quarter 3, 2013		1					1			Ŧ					1		Ħ			Ħ	1		\vdash
Quarter 4, 2013		1					1			Ŧ		=	Ī		 		H		-	H	 		\vdash
Quarter 1, 2014		 					 			Ŧ			Ŧ		1		Ħ		\vdash	H	1		\vdash
Quarter 2, 2014			_							Ŧ		_	i	 			H						
Quarter 3, 2014													Ī	1									
Quarter 4, 2014														1									
Quarter 1, 2015		1					1			Ŧ			Ŧ		1		Ħ		\vdash	Ħ	 		\vdash
Quarter 2, 2015										Ŧ			Ŧ				Ħ		 				
Quarter 3, 2015														1									
Quarter 4, 2015														1									
Quarter 1, 2016										Ŧ			Ŧ				Ħ		 				
Quarter 2, 2016										-			Ī						 				
Quarter 3, 2016		1					1								1				\vdash	Ħ	1		\vdash
Quarter 4, 2016	-									▔			i	\vdash			H	⊢	 	Ħ			<u> </u>
Quarter 1, 2017		 					 								 				\vdash		1		\vdash
Quarter 2, 2017	-												i	\vdash			H		 				<u> </u>
Quarter 3, 2017	-									=			i	\vdash			H		 	Ħ			<u> </u>
Vanie 3, 2011	_																	_		_			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2017																							
Quarter 1, 2018										•													
Quarter 2, 2018										•													
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019										_													
Quarter 3, 2019			_							_		_					╚	_		_			<u> </u>
Quarter 4, 2019			_							_		_											<u> </u>
Quarter 1, 2020																							<u> </u>
Quarter 2, 2020												_											<u> </u>
Quarter 3, 2020																							<u> </u>
Quarter 4, 2020																		-					<u> </u>
Quarter 1, 2021													-										
BROMIDE			*																				
Quarter 1, 2003 Quarter 4, 2003	_		*										-										
Quarter 4, 2003 Quarter 1, 2004	 		*	-				-			-	-						-		-			
Quarter 1, 2004 Quarter 2, 2004			*	<u> </u>				<u> </u>			<u> </u>	<u> </u>						<u> </u>		<u> </u>			
Quarter 3, 2004			*	<u> </u>				<u> </u>			<u> </u>	<u> </u>						<u> </u>		<u> </u>			
Quarter 4, 2004	-		*	_				_			_	_	 					_	<u> </u>	_			
Quarter 1, 2005			*	<u> </u>				<u> </u>			<u> </u>	<u> </u>						<u> </u>		<u> </u>			
Quarter 3, 2006	 		*										-					_		_			—
CALCIUM			~																				
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											<u> </u>
Quarter 3, 2003	-		*									т.											
Quarter 4, 2003	-		*									*							*				
Quarter 1, 2004	-		*									*		*					*				
Quarter 2, 2004			*									*		т.					*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004	1		*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005	1											*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006	1											*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007	1											*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007	1		-	-				-			-	*						-	*	-			
Quarter 1, 2008	1											*	 						*				
Quarter 2, 2008	 		-	-				-			-	*						-	*	-			
Quarter 3, 2008	-		_	_				_			_	*	 					_	*	_			
Quarter 4, 2008	1											*	 						*				
Quarter 1, 2009	 		-	-				-			-	*						-	*	-			
Quarter 2, 2009	-		_	_				_			_	*	 					_	*	_			
Quarter 3, 2009			<u> </u>	<u> </u>				<u> </u>			<u> </u>	*						<u> </u>	*	<u> </u>			
Quarter 4, 2009	 	-				_						*	 				_		*				<u> </u>
Quarter 1, 2010	 											*	-						*	_			—
Quarter 2, 2010	_											*							*				
Quarter 3, 2010	 		-	-				-			-	*						-	*	-			
Quarter 4, 2010	 	-				_						*	 				_		*				<u> </u>
Quarter 4, 2010 Quarter 1, 2011	_		 	 				 			 	*	-					 	*	 			
												*	*						*				
Quarter 2, 2011	_											*	*						*				
Quarter 3, 2011													-										<u> </u>
Quarter 4, 2011	!		-	-				-			-	*	-					-	*	-			<u> </u>
Quarter 1, 2012			<u> </u>	<u> </u>		<u> </u>		<u> </u>			<u> </u>	*					<u> </u>	<u> </u>	*	<u> </u>			<u> </u>
Quarter 2, 2012												*							*				<u> </u>
Quarter 3, 2012												*							*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	4								LRG	Λ		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017												*							*				
Quarter 3, 2017												*							*				
Quarter 4, 2017												*							*				
Quarter 1, 2018												*							*				
Quarter 2, 2018												*							*				
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*							*				
Quarter 4, 2019												*	*						*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*							*				
Quarter 3, 2020												*	*						*				
Quarter 4, 2020												*	*						*				
Quarter 1, 2021												*	*						*				
CARBON DISULFIDE											_												
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
Quarter 2, 2017	<u> </u>											*	*						*				
CHEMICAL OXYGEN DEMANI	D																						
Quarter 1, 2003				*																			
Quarter 2, 2003				*																			
Quarter 3, 2003				*			*			*													
Quarter 4, 2003	ų.			*																			
Quarter 1, 2004	*			*																			
Quarter 1, 2004	*					<u> </u>											<u> </u>						
Quarter 1, 2005	*					-											-						
Quarter 2, 2005	*					_				*		JE.									*		
Quarter 3, 2005	*					 	-			*	-	*	-	-	-		-	-			*		
Quarter 4, 2005	*					-	 			~	<u> </u>	 	<u> </u>	 	 		-	<u> </u>					
Quarter 1, 2006	*					<u> </u>											<u> </u>						
Quarter 2, 2006	*					<u> </u>											<u> </u>						
Quarter 3, 2006	*					_											- VE						
Quarter 4, 2006	*					-				*							*						
Quarter 1, 2007	*					<u> </u>				*							_						
Quarter 2, 2007						_											_						
Quarter 3, 2007	*					-											-						
Quarter 4, 2007	*					-											-						
Quarter 1, 2008	*					-											-						
Quarter 2, 2008	*					-											-						
Quarter 3, 2008						_											_						
Quarter 4, 2008	*					_											_						
Quarter 1, 2009						-	<u> </u>				<u> </u>		-	<u> </u>		ىد							
Quarter 2, 2009	*					-	<u> </u>				<u> </u>		-	<u> </u>		*							
Quarter 3, 2009	*					Ц	<u> </u>				<u> </u>	<u> </u>	<u> </u>				Ц	<u> </u>					

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	A]	LRGA	Λ		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHEMICAL OXYGEN DEMANI)																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014							*																
Quarter 2, 2015																*							
Quarter 3, 2015															*								
Quarter 3, 2016			*								*												
Quarter 4, 2016																	*						
Quarter 2, 2017							*																
Quarter 3, 2017	*														*								\vdash
Quarter 4, 2017						*						1	1	1	<u> </u>								
Quarter 2, 2018	-	 	-	-		Ė		-	-	-				*	-		-	-				*	
Quarter 3, 2018		<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	<u> </u>		*		_	<u> </u>			<u> </u>				-	_
Quarter 4, 2018		-	-	-		-		-	-	-		-T		-	-			-					*
Quarter 4, 2018 Quarter 2, 2019					*	<u> </u>	-					*	 	*					*				_
					不							*	*	不					*			*	*
Quarter 3, 2019	*			<u>.</u>				<u>.</u>			*		不			ı.			*			*	*
Quarter 4, 2019	*			*				*	4		不	*				*					4		₩
Quarter 1, 2020					*				*												*		<u> </u>
Quarter 2, 2020															*								
Quarter 4, 2020																*							
Quarter 1, 2021												*											
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				
Quarter 4, 2005			*																				
Quarter 1, 2006																		*					
Quarter 2, 2006			*																				
Quarter 3, 2006			*																				
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*																				
Quarter 3, 2007			*																				
Quarter 4, 2007			*																				
Quarter 1, 2008			*																				
Quarter 2, 2008			*																				
Quarter 3, 2008			*																				
Quarter 4, 2008			*																				
Quarter 1, 2009			*																				\vdash
Quarter 2, 2009			*																				\vdash
Quarter 3, 2009			*																				
Quarter 4, 2009			*									 	 										_
Quarter 1, 2010			*									1	1	 									\vdash
Quarter 2, 2010 Quarter 2, 2010	_		*	_			-	_	_	_	_	 	 	<u> </u>	_		_	_	_	_		_	₩
		-	*	-		-	-	-	-	-		-	-	 	-			-					
Quarter 3, 2010		-	*	-		-	-	-	-	-		-	-	 	-			-					
Quarter 4, 2010	Ц_		*			Ц										Щ	Ц_						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR:	S						1	URGA	4								LRGA	Λ		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394	385	370	_	388	392	395	397
CHLORIDE																							
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				
Quarter 3, 2013			*																				1
Quarter 4, 2013	_		*																				-
Quarter 4, 2014	-		*																				-
Quarter 2, 2019	-		**																		*		
																					т		
CHROMIUM Quarter 4, 2002																							
Quarter 1, 2003								i															-
Quarter 2, 2003	-							i														-	-
Quarter 3, 2009	-					-	-	_															-
Quarter 1, 2019	-					H																	
COBALT						Ē																	
Quarter 3, 2003							*																
					_		_ ~			_	_	_	_		_					_			_
CONDUCTIVITY Operator 4, 2002										*									*				
Quarter 4, 2002 Quarter 1, 2003	 	-	*	-	-		-			*	-	-	-		-				*	-			₩
	 	-	*	 		_	 			*									*				
Quarter 2, 2003 Quarter 3, 2003	 	-	*	 		_	 	*		*									*				
			*					Ť		*									*				
Quarter 4, 2003 Quarter 1, 2004	-		~							~									*				-
Quarter 2, 2004 Quarter 2, 2004	-									*									*				-
	-									*									*				-
Quarter 3, 2004	-		*							*									*				-
Quarter 4, 2004	_		T							*		*							*				-
Quarter 1, 2005 Quarter 2, 2005										Ψ.		*							*				
Quarter 3, 2005												Ψ.							*				
	-									*		*							*				-
Quarter 4, 2005 Quarter 1, 2006										Ψ.		*							*				
												*							*				
Quarter 2, 2006	-											*							*				-
Quarter 3, 2006 Quarter 4, 2006												Ψ.					*		*				
Quarter 1, 2007												*					•		*				
	-											т.					*		*				-
Quarter 2, 2007																	*		*				
Quarter 3, 2007 Quarter 4, 2007	 	-	-	 		_	 					*					*		*				
Quarter 1, 2008	1	-	-		-					-	-	*	-		-		<u> </u>		*	-			\vdash
Quarter 1, 2008 Quarter 2, 2008	 	-	-	-		-	-	_	_		<u> </u>	*		_	<u> </u>				*	<u> </u>			_
Quarter 3, 2008	1	-	-		-					-	-	*	-		-		*		*	-			\vdash
Quarter 4, 2008	 											*					-		*				
Quarter 1, 2009	1	-	-		-					-	-	*	-		-				*	-			\vdash
Quarter 1, 2009 Quarter 2, 2009	1	-	-		-					-	-	*	-		-				*	-			\vdash
Quarter 3, 2009	 			1			1				1	*			1				*	1			
Quarter 4, 2009	1	-	-		-					-	-	*	-		-		*		*	-			
Quarter 1, 2010	1	-	-		-					-	-	*	-		-		<u> </u>		*	-			\vdash
Quarter 2, 2010	 			1			1				1	*			1				*	1			
Quarter 3, 2010	1	-	-		-					-	-	*	-		-				*	-			\vdash
Quarter 4, 2010	1	-	-		-					-	-	*	-		-				*	-			\vdash
Quarter 1, 2011	1	-	-		-					*	-	*	-		-				*	-			\vdash
	 	-	-	-		-	-	_	_	~	<u> </u>	*		_	<u> </u>				*	<u> </u>			_
Quarter 2, 2011 Quarter 3, 2011	 	-	-	 		_	 					*							*				
Quarter 4, 2011	 	-	-	 		_	 					*							*				
Quarter 1, 2012	 	-	-	-		-	-	_	_		*	*		_	<u> </u>				*	<u> </u>			_
Quarter 1, 2012 Quarter 2, 2012	 	-	-	 		_	 				_	*							*				
Quarter 3, 2012 Quarter 3, 2012	 	-	-	 		_	 					*							*				₩
Quarter 3, 2012	_			_	_	_	_	_	_	_		_~	_	_		_	_		· T				_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Standard	Groundwater Flow System			UCRS	S						1	URGA	A								LRGA	A.		_
DOMESTATIVE DOMESTATION	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Quarter 4, 2012	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2013	CONDUCTIVITY							•	•										•		•			
Damer 2, 2013 Damer 3, 2013 Damer 4, 2013 Damer 4, 2014 Damer 5, 2015 Damer 6, 2016 Damer 7, 2016 Damer 7, 2016 Damer 7, 2016 Damer 8, 2016 Damer 8, 2017 Damer 8, 2016 Damer 9, 2017 Damer 9, 2018 Damer 9, 2019 Da	Quarter 4, 2012												*							*				
Danter 3, 2013 Danter 1, 2014 Danter 2, 2014 Danter 2, 2014 Danter 3, 2015 Danter 3, 2016 Danter 3, 2017 Danter 3, 2017 Danter 3, 2017 Danter 3, 2018 Danter 4, 2019 Danter 4, 2000 Danter 6, 2000 Danter 7, 2000 Danter	Quarter 1, 2013												*							*				
Danter 1, 2013 Danter 1, 2014 Danter 2, 2014 Danter 2, 2014 Danter 3, 2015 Danter	Quarter 2, 2013												*											
Damer 1, 2014 Damer 2, 2014 Damer 3, 2014 Damer 4, 2015 Damer 5, 2014 Damer 5, 2015 Damer 6, 2015 Damer 7, 2015 Damer 7, 2015 Damer 8, 2015 Damer 8, 2015 Damer 8, 2015 Damer 9, 2015 Da	Quarter 3, 2013																							
Danter 2, 2014 Danter 3, 2014 Danter 4, 2014 Danter 4, 2014 Danter 6, 2015 Danter 2, 2015 Danter 2, 2015 Danter 2, 2015 Danter 2, 2015 Danter 3, 2016 Danter 1, 2016 Danter 1, 2016 Danter 1, 2016 Danter 2, 2016 Danter 2, 2016 Danter 3, 2016 Danter 2, 2016 Danter 2, 2016 Danter 2, 2016 Danter 3, 2016 Danter 2, 2017 Danter 3, 2016 Danter 2, 2018 Danter 2, 2018 Danter 2, 2017 Danter 3, 2017 Danter 4, 2017 Danter 3, 2017 Danter 4, 2018 Danter 4, 2018 Danter 4, 2018 Danter 4, 2018 Danter 4, 2019 Danter 4, 2019 Danter 4, 2019 Danter 4, 2019 Danter 4, 2020 Danter 5, 2036 Danter 6, 2030 Danter 7, 2040 Danter 7, 2040 Danter 7, 2040 Danter 8, 2020 Danter 8, 2020 Danter 8, 2020 Danter 9, 2030 Danter 9, 2040 Danter	Quarter 4, 2013																							
Danter 3, 2014 Danter 4, 2015 Danter 2, 2016 Danter 2, 2017 Danter 2, 2017 Danter 2, 2018 Danter 3, 2017 Danter 2, 2018 Danter 3, 2017 Danter 3, 2017 Danter 3, 2017 Danter 3, 2017 Danter 4, 2019 Danter 4, 2010 Danter 5, 2000 Danter 6, 2000 Danter 7, 2000 Danter 7, 2000 Danter 8, 2000 Danter 9, 2000 Danter																								
Dauter 4, 2014 Dauter 2, 2015 Dauter 2, 2015 Dauter 2, 2015 Dauter 3, 2015 Dauter 3, 2015 Dauter 4, 2015 Dauter 2, 2015 Dauter 2, 2015 Dauter 2, 2016 Dauter 2, 2016 Dauter 3, 2016 Dauter 4, 2017 Dauter 5, 2017 Dauter 5, 2017 Dauter 6, 2019 Dauter 8, 2019 Dauter 8, 2019 Dauter 9, 2018 Dauter 9, 2019 Dauter	,																							
Danter 1, 2015 Danter 2, 2015 Danter 3, 2015 Danter 3, 2015 Danter 3, 2015 Danter 4, 2016 Danter 4, 2016 Danter 5, 2016 Danter 5, 2016 Danter 6, 2016 Danter 6, 2016 Danter 7, 2017 Danter 7, 2017 Danter 1, 2017 Danter 2, 2018 Danter 2, 2018 Danter 2, 2018 Danter 3, 2018 Danter 4, 2018 Danter 4, 2018 Danter 4, 2019 Danter 4, 2019 Danter 4, 2019 Danter 5, 2019 Danter 6, 2019 Danter 7, 2019 Danter 1, 2019 Danter 2, 2019 Danter 3, 2019 Danter 4, 2019 Danter 5, 2019 Danter 6, 2019 Danter 6, 2019 Danter 7, 2019 Danter 7, 2019 Danter 8, 2019 Danter 8, 2019 Danter 9, 2019 Danter 9, 2019 Danter 9, 2019 Danter 1, 2006 Danter 1, 2007 Danter 1, 2007 Danter 2, 2007 Danter 2, 2007 Danter 2, 2007 Danter 2, 2007 Danter 1, 2007 Danter 2, 2007 Danter 1, 2007 Danter 2, 2007 Danter 1, 2008 Danter 1, 2008 Danter 1, 2008 Danter 1, 2009 Danter 2, 2009 Danter 2, 2009 Danter 3, 2007 Danter 3, 2007 Danter 4, 2008 Danter 4, 2008 Danter 5, 2008 Danter 6, 2008 Danter																								
Danter 2, 2015 Danter 3, 2015 Danter 3, 2015 Danter 4, 2015 Danter 5, 2015 Danter 6, 2015 Danter 1, 2016 Danter 1, 2017 Danter 2, 2017 Danter 3, 2017 Danter 4, 2017 Danter 3, 2017 Danter 1, 2018 Danter 4, 2019 Danter 5, 2019 Danter 6, 2019 Danter 6, 2019 Danter 7, 2010 Danter 8, 2019 Danter 8, 2019 Danter 8, 2019 Danter 9, 2019 Danter	,																							
Danter 1, 2015 Danter 1, 2016 Danter 2, 2016 Danter 3, 2016 Danter 3, 2016 Danter 4, 2016 Danter 4, 2016 Danter 4, 2016 Danter 3, 2016 Danter 3, 2017 Danter 3, 2017 Danter 3, 2017 Danter 4, 2018 Danter 4, 2018 Danter 3, 2019 Danter 3, 2019 Danter 4, 2019 Danter 4, 2019 Danter 4, 2019 Danter 5, 2019 Danter 5, 2019 Danter 5, 2019 Danter 6, 2019 Danter 6, 2019 Danter 7, 2019 Danter 7, 2019 Danter 8, 2019 Danter 8, 2019 Danter 8, 2019 Danter 9, 2019 Danter 1, 2009 Danter 1, 2000 Danter																								
Danter 4, 2015 Danter 1, 2016 Danter 2, 2016 Danter 2, 2016 Danter 3, 2016 Danter 3, 2017 Danter 1, 2018 Danter 4, 2019 Danter 4, 2019 Danter 4, 2019 Danter 5, 2019 Danter 6, 2019 Danter 6, 2019 Danter 6, 2019 Danter 7, 2018 Danter 7, 2018 Danter 8, 2019 Danter 9, 2019 Danter 1, 2019 Danter 9, 2019 Danter																								
Dauter 1, 2016 Dauter 2, 2016 Dauter 3, 2016 Dauter 4, 2016 Dauter 4, 2017 Dauter 4, 2017 Dauter 4, 2017 Dauter 4, 2018 Dauter 4, 2019 Dauter 5, 2000 Dauter 6, 2000 Dauter 7, 2000 Dauter 7, 2000 Dauter 7, 2000 Dauter 7, 2000 Dauter 3, 2000 Dauter 4, 2019 Dauter 1, 2020 Dauter 2, 2006 Dauter 2, 2006 Dauter 2, 2006 Dauter 3, 2006 Dauter 4, 2005 Dauter 4, 2005 Dauter 4, 2005 Dauter 4, 2005 Dauter 4, 2006 Dauter 4, 2008 Dauter 4, 2009 Dauter 4, 2009 Dauter 4, 2009 Dauter 4, 2009 Dauter 5, 2006 Dauter 6, 2006 Dauter 6, 2006 Dauter 6, 2006 Dauter 6, 2008 Dauter 7, 2009 Dauter 8, 2008	-																							
Danter 2, 2016 Danter 3, 2016 Danter 4, 2016 Danter 4, 2016 Danter 5, 2017 Danter 1, 2017 Danter 1, 2017 Danter 1, 2017 Danter 1, 2018 Danter 2, 2018 Danter 2, 2018 Danter 3, 2018 Danter 3, 2018 Danter 4, 2018 Danter 4, 2018 Danter 4, 2018 Danter 3, 2018 Danter 4, 2019 Danter 4, 2020 Danter 5, 2020 Danter 6, 2020 Danter 7, 2020 Danter 7, 2020 Danter 8, 2020 Danter 9, 2020																								
Dauter 4, 2016 Dauter 4, 2016 Dauter 4, 2017 Dauter 5, 2017 Dauter 6, 2017 Dauter 7, 2018 Dauter 6, 2018 Dauter 6, 2018 Dauter 7, 2019 Dauter 7, 2020 Dauter 7, 2020													-											
Deater 4, 2016 Deater 1, 2017 Deater 2, 2017 Deater 2, 2017 Deater 3, 2017 Deater 1, 2018 Deater 3, 2018 Deater 3, 2018 Deater 4, 2019 Deater 4, 2000 Deater 4, 2000													*											
Description Color							-	 	-					1					-		-			\vdash
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2020 Quarter 4,	Quarter 1, 2017																							
Dearter 1, 2017 Dearter 2, 2017 Dearter 3, 2017 Dearter 4, 2017 Dearter 4, 2018 Dearter 3, 2018 Dearter 3, 2018 Dearter 3, 2018 Dearter 3, 2019 Dearter 4, 2019 Dearter 4, 2019 Dearter 4, 2019 Dearter 4, 2019 Dearter 3, 2019 Dearter 4, 2020 Dearter 4,	Quarter 2, 2017																							
Description	Quarter 3, 2017																			*				
Dearter 1, 2018	Quarter 4, 2017																			*				
Quarter 3, 2018	Quarter 1, 2018																			*				
Quarter 4, 2018	Quarter 2, 2018																			*				
Daurter 1, 2019 Daurter 2, 2019 Daurter 3, 2020 Daurter 3, 2020 Daurter 3, 2020 Daurter 4, 2019 Daurter 4, 2019 Daurter 4, 2019 Daurter 5, 2020 Daurter 6, 2020 Daurter 7, 2020 Daurter 7, 2020 Daurter 1, 2020 Daurter 3, 2020 Daurter 3, 2020 Daurter 4, 2020 Daurter 4, 2020 Daurter 3, 2020 Daurter 4, 2020 Daurter 3, 2020 Daurter 4, 2020 Daurter 3, 2020 Daurter 4, 2020 Daurter 5, 2020 Daurter 5, 2020 Daurter 6, 2020 Daurter 7, 2020 Daurte	Quarter 3, 2018																			*				
Quarter 2, 2019	Quarter 4, 2018																			*				
Quarter 4, 2019	Quarter 1, 2019																			*				
Quarter 2,019	Quarter 2, 2019																							
Quarter 1,2020	Quarter 3, 2019																							
Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2021 Quarter 1, 2021 Quarter 2, 2020 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 2, 2033 Quarter 3, 2033 Quarter 4, 2033 Quarter 3, 2034 Quarter 3, 2035 Quarter 4, 2035 Quarter 3, 2036 Quarter 3, 2036 Quarter 4, 2035 Quarter 3, 2036 Quarter 3, 2036 Quarter 4, 2035 Quarter 4, 2035 Quarter 3, 2036 Quarter 3, 2036 Quarter 4, 2035 Quarter 3, 2036 Quarter 4, 2037 Quarter 3, 2036 Quarter 4, 2036 Quarter 3, 2036 Quarter 4, 2036 Quarter 4, 2036 Quarter 4, 2037 Quarter 3, 2038 Quarter 4, 2038 Quarter 4, 2038 Quarter 5, 2038 Quarter 5, 2038 Quarter 6, 2038 Quarter 7, 2038 Quarter 6, 2038 Quarter 7, 2039																								
Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2006																								
Quarter 4, 2020 Quarter 1, 2021 Quarter 2, 2006																					*			
Quarter 1, 2021																								
DISSOLVED OXYGEN																								
Quarter 3, 2006													不							不				
DISSOLVED SOLIDS				*					*															
Quarter 4, 2002 Quarter 1, 2003																								
Quarter 1, 2003											*									*				
Part				*																				
The property of the property																								
*								*	*				*											
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009	Quarter 4, 2003			*				*		*	*		*							*				
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 ** ** ** ** ** ** ** ** **	Quarter 1, 2004			*									*							*				
Quarter 4, 2004	Quarter 2, 2004										*		*							*				
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 ** ** ** ** ** ** ** ** **	Quarter 3, 2004																							
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2009 ** ** ** ** ** ** ** ** **	Quarter 4, 2004										*		*							*				
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 ** ** ** ** ** ** ** ** **	Quarter 1, 2005												*							*				
Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 ** ** ** ** ** ** ** ** **	Quarter 2, 2005																			*				
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 ** ** ** ** ** ** ** ** **	Quarter 3, 2005																	*	*	*	*	*		
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 ** ** ** ** ** ** ** ** **	Quarter 4, 2005																							
Quarter 3, 2006	Quarter 1, 2006																							
Quarter 4, 2006	Quarter 2, 2006																	*	*	*	*	*		
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 ** ** ** ** ** ** ** ** **	Quarter 3, 2006						L											*	*		*	*		
Quarter 2, 2007	Quarter 4, 2006										*		*					*		*				
Quarter 3, 2007	Quarter 1, 2007																			*				
Quarter 4, 2007	Quarter 2, 2007																							
Quarter 1, 2008	Quarter 3, 2007										*									*				
Quarter 2, 2008	Quarter 4, 2007												*							*				
Quarter 3, 2008	Quarter 1, 2008												*							*				
Quarter 4, 2008	Quarter 2, 2008												*							*				
Quarter 1, 2009 * * * *	Quarter 3, 2008												*							*				
	Quarter 4, 2008										*		*							*				
Quarter 2, 2009 * * * * * * * * * * * * * * * * * *	Quarter 1, 2009												*							*				
	Quarter 2, 2009												*	*						*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	URGA	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
	386	389	390	393	396		222	223		384		372	_	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*	*						*				
Quarter 2, 2014												*							*				
Quarter 3, 2014									*			*	*						*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015									*			*						*	*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*	*	*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017												*							*				
Quarter 3, 2017												*		*	*				*				
Quarter 4, 2017												*							*				
Quarter 1, 2018												*							*				
Quarter 2, 2018												*							*				
Quarter 3, 2018												*		*					*				
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*	*						*				
Quarter 4, 2019												*							*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*	*						*				
Quarter 3, 2020	_					1				*		*	*				*		*				
Quarter 4, 2020												*	*						*				
Quarter 1, 2021												*							*				
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003	-					*																	
Quarter 3, 2003	_												*										\vdash
Quarter 1, 2004	_			*																			_
Quarter 3, 2010	_																				*		_
Quarter 2, 2013	_									*													\vdash
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003						1				*	*	*	*										\vdash
Quarter 3, 2003						1	*	*	*	*	*	*	Ė										_
Quarter 4, 2003	_	-	1	1	-	1	Ė				*	H	-	 	1					-	-		
Quarter 1, 2004						1					*						-						\vdash
Quarter 2, 2004						1				*	*			 									\vdash
		l	l																				₩
										*													
Quarter 3, 2004 Quarter 4, 2004										*													

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	A								LRGA	Λ		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2008												*											
Quarter 3, 2008												*											
MAGNESIUM												-											
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*				-					*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*		Ë					*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006																							
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013												*	<u> </u>						*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
	_					_	-					*					_		*				
Quarter 4, 2013 Quarter 1, 2014												Ť.						*	*				
Quarter 1, 2014	_	_			_	_			_	_	_	_	_	_	_	_	_	*	*			_	

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient Monitoring Well MAGNESIUM Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015	S 386	D 389	D 390	D 393	U 396	S 221	S 222	S 223	S 224	S 204	D	D	D	D	U	U	S	D	D	D	D	U	U
MAGNESIUM Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014	386	389	390	393	396	221	222	223	224	204		255		201	220					400	200	205	
MAGNESIUM Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014									227	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2014 Quarter 4, 2014																							
Quarter 4, 2014												*	*						*				
` '												*							*				
Quarter 1, 2015												*	*						*				
												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				<u> </u>
Quarter 1, 2016												*							*				<u> </u>
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*		-11					*				
Quarter 4, 2016												*		*					*				-
Quarter 1, 2017												*		*					*				-
Quarter 2, 2017												*		- W									
Quarter 3, 2017												*		*					*				-
Quarter 4, 2017												*	*						*				
Quarter 1, 2018												*	不						*				
Quarter 2, 2018					\vdash							*				\vdash							
Quarter 4, 2018												*	*	*					*				
Quarter 4, 2018 Quarter 1, 2019												*	*	*					*				
Quarter 1, 2019 Quarter 2, 2019												*		*			\vdash		*				
Quarter 2, 2019 Quarter 3, 2019												*	*						*				
Quarter 4, 2019												*	*						*				 -
Quarter 4, 2019 Quarter 1, 2020												*	*				\vdash		*				H
Quarter 2, 2020												*	*						*				\vdash
Quarter 3, 2020												*	*						*				\vdash
Quarter 4, 2020												*	*						*				
Quarter 1, 2021												*	*						*				
MANGANESE													-						-				
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*															
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	I		UCRS	S		I				ī	URG	A								LRGA	A.		_
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*	*		*			*		*		*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*	<u> </u>						*		*		با		*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
Quarter 2, 2017	*		*	*	*												*			*	*		
Quarter 3, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 1, 2018	*		*	*	*	*												*	*	*	*		*
Quarter 2, 2018	*		*	*	*												*	*	*	*	*	*	*
Quarter 3, 2018	*		*	*	*	*	*	*	*								*	*	*	*	*	*	*
Quarter 4, 2018	*		*	*	*	*				*			*		*		*	*	*	*	*		*
Quarter 1, 2019	*		*	*	*	*	*	*			*						*	*	*	*	*	*	*
Quarter 2, 2019	*		*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2019	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2019	*		*	*	*				*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2020	*		*	*	*	*	*	*	*				*			*	*	*	*	*	*	*	
Quarter 2, 2020	*		*	*	*	*	*	*	*	*			*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2020	*		*	*	*	*											*	*	*	*	*	*	*
Quarter 4, 2020	*		*	*	*	*		*						*			*	*	*	*	*	*	
Quarter 1, 2021	*		*	*		*	*	*	*	*			*		*		*	*	*	*		*	*
PCB-1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009											*												
Quarter 4, 2009	1										*												
Quarter 1, 2010							t				*												
Quarter 2, 2010	1										*	1											
Quarter 3, 2010	1					1					*	 											-
Quarter 4, 2010	1					_					*												_
Vanite 7, 2010	_	_	_	_	_	_						_	_	_			_	_	_		_	_	_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	Α.								LRGA	A.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394	385	370	_	388	392	395	
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006																		*					
pH																							
Quarter 4, 2002																	*						
Quarter 2, 2003																	*						1
Quarter 3, 2003	i																*						
Quarter 4, 2003							*										*						<u> </u>
Quarter 1, 2004							*										*						1
Quarter 2, 2004																	*						<u> </u>
Quarter 3, 2004	i																*						
Quarter 4, 2004																	*						<u> </u>
Quarter 3, 2005	1									*							*				*		
Quarter 4, 2005										*							*						
Quarter 1, 2006	Ī																*						
Quarter 2, 2006	1																*						
Quarter 3, 2006	1																*						
Quarter 3, 2007	1																*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
Quarter 4, 2014																					*		
Quarter 2, 2016																		*	*				
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				Щ
Quarter 3, 2013																			*				Щ
RADIUM-226																							
Quarter 4, 2002	<u> </u>		*										*	*							*		<u> </u>
Quarter 2, 2004	1																		*				Щ
Quarter 2, 2005	<u> </u>								*		L.												<u> </u>
Quarter 1, 2009	<u> </u>	<u> </u>									*												Щ
Quarter 3, 2014	<u> </u>		L.						*		L.	*											<u> </u>
Quarter 4, 2014	<u> </u>		*				914			414	*	41.						*					<u> </u>
Quarter 1, 2015	<u> </u>		*				*			*		*						*					Щ
Quarter 2, 2015	<u> </u>		*				*			*		*						*					Щ
Quarter 3, 2015	1	1	*				l				I		l		l								l

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System Gradient Monitoring Well RADIUM-226 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017	\$ 386	D 389	D 390	D 393	U 396	S 221	S 222	S 223	S 224	S	D	D	D	D	U	U	S	D	D	D	D	U	U
RADIUM-226 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017		389	390	393	396	221	222	223	224	201	200	277	207	201									
Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017	*							223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017	*																						
Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017	*				*	*									*		*				*	*	
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017	*		*						*		*	*	*	*	*	*		*					
Quarter 1, 2017 Quarter 2, 2017	*																	*					
Quarter 2, 2017			*			*			*				*		*					*		*	
			*							*	*							*					
																	*	*		*	*		
Quarter 3, 2017					*				*	*	*									*			
Quarter 4, 2017																		*		*			
Quarter 1, 2018												*						*		*			
Quarter 4, 2018	<u> </u>												*				*						
Quarter 1, 2020		<u> </u>															*						<u> </u>
Quarter 2, 2020															*								
RADIUM-228							_				_												
Quarter 2, 2005	1																						
Quarter 3, 2005	1—	 	•			-											-						<u> </u>
Quarter 4, 2005 Quarter 1, 2006	1	1	-					-			-	-											-
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003	1	1	-		i			-			-	-										-	
Quarter 2, 2003	+				_																	_	
Quarter 3, 2003	1	 	H																				
Quarter 4, 2003	1				_																		
SODIUM			_																				
Quarter 4, 2002																			*		*		
Quarter 1, 2003	1			*					*	*	*												
Quarter 2, 2003	1			*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003	1						*		*	*													
Quarter 1, 2004	1								*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004	1									*													
Quarter 4, 2004	1								*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005	1								*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006	1								*	*		*							*				
Quarter 4, 2006	1								*	*							*						
Quarter 1, 2007									*			*											
Quarter 2, 2007	1								*	*													
Quarter 3, 2007	1								*														
Quarter 4, 2007									*														
Quarter 1, 2008	1								*														
Quarter 3, 2008												*											
Quarter 4, 2008									*	*													
Quarter 1, 2009	1								*			*							*				
Quarter 3, 2009	1	l										*											
Quarter 4, 2009	t								*			*											
Quarter 1, 2010	1	1										*											
Quarter 2, 2010	1									*		*											\vdash
Quarter 3, 2010	+	!	 							*		Ė											_
Quarter 4, 2010	1	 							*	*													
Quarter 1, 2011	1	 							-	*													
Quarter 1, 2011 Quarter 2, 2011	1	1						<u> </u>	*	-	<u> </u>	<u> </u>											
Quarter 4, 2011	1	1						-	-		-	-							*				<u> </u>
Zummer 7, 2011	_	_	_		_	_	_		_							_	_	Ļ		_			_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						1	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							-				
										*		*							*				
Quarter 1, 2013										•				-					•				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014									*	*		*	*										
Quarter 1, 2015													*										
Quarter 2, 2015												*											
Quarter 3, 2015										*		*											
Quarter 4, 2015									*	*		*											
Quarter 2, 2016											*												
Quarter 3, 2016											*												*
Quarter 1, 2017		1								*	*		*					*		1			
Quarter 2, 2017									*	*	*												
Quarter 2, 2018									Ė	Ė	Ė		*										
Quarter 3, 2018			 	 							1	1		*				1	-		1		
Quarter 1, 2019	-	 				-							*	<u> </u>			-			 			
Quarter 2, 2019													*										
Quarter 4, 2019												*											
Quarter 1, 2020											*	*		-					*				
Quarter 2, 2020											*	т.	*	-					*				
											*	*	т-						т-				
Quarter 3, 2020											Ψ.	*											
Quarter 4, 2020												*	*										
Quarter 1, 2021												不	不										
STRONTIUM-90										_													
Quarter 2, 2003										_													
Quarter 1, 2004										•													
SULFATE																			-11				
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005			1	1						*	1	*	*	1				*	*	*	1		
Quarter 1, 2006										*		*	*				*	*	*	*			
Quarter 2, 2006			1	 					*	*	 	*	*	 			*	*	*	*	 		
Quarter 3, 2006		1	 	 					*	*	1	*	*	 			*	Ë	*	*	1		
	_	-	-	-					*	*	-	*	*	 			*	-	*	_	-		
Quarter 4, 2006	<u> </u>	 	<u> </u>	<u> </u>							<u> </u>			<u> </u>				<u> </u>		,u-	<u> </u>		
Quarter 1, 2007		-	<u> </u>	<u> </u>					*	*	<u> </u>	*	*	<u> </u>			*	<u> </u>	*	*	<u> </u>		
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007		<u> </u>							*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*	<u> </u>			*	*	*	*			
Quarter 1, 2008		L								*		*	*				*	*	*	*			L
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009			1	1						*	1	*	*	1			*	*	*		1		
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009			1	1					*	*	1	*	*	 			*	*	*	*	1		
Quarter 4, 2009	*	1	 	 					_	*	 	*	*	 			*	*	*	-	 		
	*	-	 	 					*	*	 	*	*	 			*	-T	*	-	 		
Quarter 1, 2010						Щ	_		*	*		*	*						*			_	_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S							URGA	A								LRGA	Λ		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SULFATE																							
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*	-			*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
	*									*		*	*				*	*	*	*			
Quarter 2, 2012																							
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*			
Quarter 4, 2013										*		*	*	L	L		*	*	*	*			L
Quarter 1, 2014								*		*		*	*	L	L		*	*	*	*			
Quarter 2, 2014										*		*	*	*			*	*	*	*			
Quarter 3, 2014										*		*	*	*			*	*	*	*			
Quarter 4, 2014										*		*	*				*	*	*	*			
Quarter 1, 2015										*		*	*	1	1		*	*	*	*			
Quarter 2, 2015										*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015								*		*	Ė	*	*	*	*		*	*	*	*			
Quarter 4, 2015										*		*	*	*			*		*	*			
Quarter 1, 2016								*		*		*	*	*			*	*	*	*			
Quarter 2, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2016								~		*		*	*	*	*		*	*	*	*			
										*		*	*	*	*		*	*	*	*			
Quarter 1, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 2, 2017												*											
Quarter 3, 2017								*		*			*	*	*		*	*	*	*			
Quarter 4, 2017										*		*	*	*	*		*	*	*	*			
Quarter 1, 2018										*		*	*	*	-14		*	*	*	*			
Quarter 2, 2018								*		*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2018								*		*		*		*	*		*	*	*	*			
Quarter 4, 2018										*		*	*	*			*	*	*	*			
Quarter 1, 2019								*		*		*	*	*	*		*	*	*	*			
Quarter 2, 2019								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2019			*					*		*		*	*	*	*		*	*	*	*	*		
Quarter 4, 2019			*							*		*	*	*			*	*	*	*	*		
Quarter 1, 2020								*		*		*	*	*	*		*	*	*	*	*		
Quarter 2, 2020								*		*		*	*	*	*		*	*	*	*	*		
Quarter 3, 2020			*							*		*	*				*	*	*	*	*		
Quarter 4, 2020										*		*	*				*	*	*	*			
Quarter 1, 2021										*		*	*				*	*	*	*			
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*	1					1		1		*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*	t	t		*	t	*				
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*									*	Ė				*		*	Ė			
Quarter 4, 2004		-	*	1			-	-	1	*	1	*	*				*	*	*	1			
Quarter 1, 2005			*	1					1	*	1	*	*	1	1		*	-	-	*			
Quarter 1, 2005 Quarter 2, 2005	_		*	_		_			_	*	_		*	-	-		*	*	*	*	_	_	_
` '	<u> </u>		*	<u> </u>		<u> </u>			<u> </u>		<u> </u>			-	-								
Quarter 3, 2005				<u> </u>					<u> </u>	*	<u> </u>		*				*	*	*	*			
Quarter 4, 2005			*	<u> </u>					<u> </u>	*	<u> </u>	*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*						*	*			
Quarter 1, 2007			*							*			*				*		*	*			
																_							

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Montrory Well 386 889 90 930 936 95 221 222 23 224 94 94 969 97 23 37 991 20 394 985 370 973 388 92 985 939 936 939 939	Groundwater Flow System		,	UCRS	3						1	URGA	4]	LRGA	A.		
Fig. High Property Fig.	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Description	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Danter 1, 2007 Danter 1, 2007 Danter 1, 2008 Danter 2, 2008 Danter 3, 2008 Danter 3, 2008 Danter 1, 2009 Danter 3, 2009 Danter 4, 2009 Danter 3, 2009 Danter	TECHNETIUM-99																							
Jameter 3, 2007 Jameter 1, 2007 Jameter 1, 2007 Jameter 2, 2008 Jameter 3, 2007 Jameter 3, 2008 Jameter 3, 2009 Jamete				*							*		*	*				*	*		*			
Damer 4, 2007				*							*	*						*		*	*			
Description	-																							
Damer 2, 2008																			*					
Danter 3, 2008 Danter 4, 2008 Danter 1, 2009 Danter 2, 2009 Danter 3, 2009 Danter 3, 2009 Danter 3, 2009 Danter 4, 2009 Danter 3, 2009 Danter 4, 2009 Danter 4, 2000 Danter 4, 2000 Danter 4, 2000 Danter 5, 2000 Danter 5, 2000 Danter 6, 2000 Danter 7, 2000 Danter 6, 2000 Danter 6, 2000 Danter 7, 2000 Danter 6, 2000 Danter 7, 2000 Danter	-											*												-
Danter 4, 2008				Ψ.								Ψ.								•				-
Danter 1, 1909 Danter 2, 2009 Danter 3, 2009 Danter 4, 2009 Danter 4, 2001 Danter 4, 2001 Danter 3, 2009 Danter 4, 2001 Danter 5, 2001 Danter 6, 2001 Danter 6, 2001 Danter 6, 2001 Danter 7, 2001 Danter 8, 2001 Danter 9, 2001																			-14	-11				
Danter 2, 2009 Danter 3, 2009 Danter 4, 2009 Danter 4, 2009 Danter 5, 2000 Danter 6, 2000 Danter 6, 2000 Danter 7, 2000 Danter 1, 2010 Danter 1, 2010 Danter 1, 2011 Danter 1, 2011 Danter 1, 2011 Danter 1, 2011 Danter 2, 2011 Danter 3, 2011 Danter 3, 2011 Danter 3, 2011 Danter 4, 2011 Danter 4, 2011 Danter 5, 2011 Danter 6, 2011 Danter 6, 2011 Danter 6, 2011 Danter 7, 2011 Danter 9, 2012 Danter 9, 2012 Danter 9, 2012 Danter 9, 2012 Danter 9, 2013 Danter 9, 2014 Danter 9, 2015 Danter 9, 2016 Danter 9, 2017 Danter 9, 2016 Danter 9, 2016 Danter 9, 2017 Danter																			*	*	*			
Date 1, 2019 Date 2, 2019 Date 3, 2019 Date 4, 2009 Date 4, 2009 Date 4, 2010 Date 4, 2011 Date 4, 2012 Date 4, 2013 Date 4, 2014 Date 4, 2013 Date 4, 2013 Date 4, 2014 Date 4, 2015 Date 4, 2015 Date 4, 2016 Date 4, 2019 Date 5, 2017 Date 6, 2017 Date 7, 2017 Date																								
Description	Quarter 2, 2009																		*					
Description	Quarter 3, 2009			*							*	*	*	*				*			*			
Dauter 2, 2010 Dauter 3, 2010 Dauter 4, 2010 Dauter 4, 2011 Dauter 5, 2011 Dauter 5, 2011 Dauter 6, 2011 Dauter 6, 2011 Dauter 6, 2011 Dauter 7, 2011 Dauter 8, 2011 Dauter 9, 2012 Dauter 9, 2012 Dauter 9, 2012 Dauter 9, 2012 Dauter 9, 2013 Dauter 9, 2013 Dauter 9, 2014 Dauter 9, 2013 Dauter 9, 2014 Dauter 9, 2015 Dauter 9, 2015 Dauter 9, 2015 Dauter 9, 2016 Dauter 9, 2017 Dauter 9, 2019 Dauter 9, 2017 Dauter 9, 2016 Dauter 9, 2017 Dauter 9, 2016 Dauter 9, 2016	Quarter 4, 2009			*							*		*	*				*						
Samer 3, 2010	Quarter 1, 2010			*							*		*	*				*						
Samer 4, 2010	Quarter 2, 2010			*							*			*				*	*		*			
Daurier 4, 2010 Daurier 2, 2011 Daurier 3, 2012 Daurier 4, 2012 Daurier 4, 2013 Daurier 4, 2015 Daurier 4, 2015 Daurier 4, 2016 Daurier 4, 2017 Daurier 2, 2017 Daurier 2, 2017 Daurier 3, 2016 Daurier 4, 2016 Daurier 4, 2016 Daurier 4, 2017 Daurier 3, 2016 Daurier 3, 2016 Daurier 3, 2016 Daurier 4, 2016 Daurier 4, 2017 Daurier 3, 2016 Daurier 3, 2016 Daurier 3, 2016 Daurier 4, 2017 Daurier 3, 2016 Daurier 4, 2016 Daurier 4, 2017 Daurier 3, 2016 Daurier 3, 2017 Daurier 4, 2017 Daurier 3, 2017 Daurier 4, 2017 Daurier 4, 2017 Daurier 4, 2017 Daurier 4, 2017 Daurier 2, 2017 Daurier 3, 2018 Daurier 4, 2017 Daurier 4, 2018 Daurier 2, 2018 Daurier 2, 2019 Daurier 3, 2019 Daurier 4, 2010 Daurier 2, 2010 Daurier 4, 2010 Daurier 5, 2010 Daurier 6, 2010 Daurie	Quarter 3, 2010			*							*	*	*	*				*						
Danter 2011				*							*		*	*				*						
State 2, 2011	-										*							*						
Danter 3, 2011	-			*											1		H				*			
Description		_	_				_	_	_				_		 	_	H							
Danter 1,2012		-	-					-				, Mr	JE.		-	-					*			₩
Daumer 2, 2012			<u> </u>					<u> </u>				*	*			<u> </u>					45			<u> </u>
Daurier 3, 2012 * * * * * * * * *																								<u> </u>
Daurier 4, 2012 Daurier 1, 2013 Daurier 2, 2013 Daurier 3, 2013 Daurier 3, 2013 Daurier 4, 2013 Daurier 4, 2013 Daurier 3, 2013 Daurier 4, 2014 ** ** ** ** ** ** ** ** **	Quarter 2, 2012		ļ					ļ								ļ				*	*			
Durier 1, 2013 Durier 2, 2013 Durier 2, 2013 Durier 3, 2013 Durier 3, 2013 Durier 4, 2013 Durier 1, 2014 #	Quarter 3, 2012			*																				
Daurier 2, 2013	Quarter 4, 2012												*	*				*			*			<u> </u>
Quarter 3, 2013	Quarter 1, 2013										*			*				*		*	*			
Durter 4, 2013	Quarter 2, 2013										*		*	*				*		*	*			
Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 6, 2020 Quarter 1, 2020 Quarter 1, 2021 Quarter 2, 2020 Quarter 1, 2021 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2035 Quarter 6, 2040 Quarter 2, 2035 Quarter 7, 2040 Quarter 3, 2055 Quarter 7, 2017 Quarter 3, 2055 Quarter 6, 2040 Quarter 2, 2050 Quarter 7, 2017 Quarter 3, 2015 Quarter 6, 2020 Quarter 7, 2020 Quarter 8, 2020 Quarter 9,	Quarter 3, 2013			*							*		*	*				*		*	*			
Dunter 1, 2014 * * * * * * * * *	Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 2, 2014 * * * * * * * * *				*							*	*		*				*		*	*			
Quarter 3, 2014	, ,														*									
Quarter 4, 2014																								-
Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 ** ** ** ** ** ** ** ** **												*	*							ж				-
Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 1, 2012 Quarter 3, 2015 Quarter 1, 2014 Quarter 2, 2003 Quarter 1, 2014 Quarter 2, 2003 Quarter 1, 2014 Quarter 2, 2003 Quarter 1, 2014 Quarter 3, 2015 Quarter 1, 2017 Quarter 2, 2003 Quarter 1, 2017 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2015 Quarter 1, 2017 Quarter 2, 2003 Quarter 3, 2015 Quarter 3, 2003 Quarter 4, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2014 Quarter 3, 2015 Quarter 4, 2014 Quarter 3, 2015 Quarter 4, 2014 Quarter 3, 2003 Quarter 4, 2014 Quarter 3, 2015 Quarter 4, 2014 Quarter 5, 2018 Quarter 6, 2018 Quarter 6, 2018 Quarter 6, 2018																				~				\vdash
Quarter 3, 2015	-												不											
Quarter 1, 2015 Quarter 1, 2016 ** ** ** ** ** ** ** ** **	-																							
Quarter 1, 2016 Quarter 2, 2016 * * * * * * * * * * * * * * * * * * *																				*				
Duarter 2, 2016	Quarter 4, 2015												*						*					
Quarter 3, 2016	Quarter 1, 2016			*							*	*		*				*		*	*			
Quarter 4, 2016	Quarter 2, 2016			*			*				*			*				*	*		*			
Quarter 1, 2017	Quarter 3, 2016			*							*		*	*				*	*		*			
Quarter 2, 2017	Quarter 4, 2016			*							*	*		*				*			*			
Part	Quarter 1, 2017			*							*			*				*	*		*			
Quarter 3, 2017				*							*			*				*	*		*			
Quarter 1, 2018 Quarter 2, 2018	-			*							*	*							*		*			
Thorse T												-	*											-
												*	т.											-
Quarter 3, 2018																								-
Quarter 4, 2018	,											不												
Duarter 1, 2019							_								-		Щ							
Warter 2, 2019			ļ					ļ								ļ								
	Quarter 1, 2019																							
Warter 4, 2019	Quarter 2, 2019																							
Warter 1, 2020	Quarter 3, 2019	L	L					L	L			*			L	L	LJ	*						L
Warter 2, 2020	Quarter 4, 2019			*							*		*	*				*	*	*	*			
THORIUM-234 Puarter 2, 2003 Part 3, 2015 Part 4, 2017 Part 4, 2017 Part 4, 2017 Part 4, 2017 Part 5, 2017 Part 5, 2017 Part 6, 2017 Pa	Quarter 1, 2020			*							*		*	*				*	*		*			
THORIUM-230	Quarter 2, 2020			*							*		*	*				*	*		*			
* * * * * * * * * *	Quarter 3, 2020		1	*				1			*		*	*		1		*	*		*			
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *	Quarter 4, 2020																							H
THORIUM-230	,		1					1				*				1								\vdash
Quarter 1, 2012 * * * * * Quarter 4, 2014 * * *																								
Quarter 4, 2014 * * * Quarter 3, 2015 * * * * Quarter 1, 2017 * * * * FHORIUM-234 * * Quarter 2, 2003 * * * *		*								*					*									
Duarter 3, 2015			-	*				-		~		 	-		₹	-	\vdash							-
Quarter 1, 2017			<u> </u>	不		\vdash		<u> </u>		- JE	410	<u> </u>	<u> </u>	45		1L								<u> </u>
THORIUM-234 Quarter 2, 2003 * * * *		*	<u> </u>	- JL		\vdash		<u> </u>		*		<u> </u>	<u> </u>	*		*		- JL						
Quarter 2, 2003 * * * *				*							*							*						_
Quarter 4, 2007 * *							*								*									<u> </u>
	Quarter 4, 2007		<u> </u>					<u> </u>		*			<u> </u>			<u> </u>								

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Secondary Seco	Groundwater Flow System	Г	UCRS	3						1	URG	A								LRGA	A.		
Monifornia Well	Gradient	S			U	S	S	S	S				D	D	U	U	S	D				U	U
DOUTENE	Monitoring Well																						397
Description	TOLUENE																						
Descript (2, 2002 10	Quarter 2, 2014									*	*		*										
Descript (2, 2002 10	TOTAL ORGANIC CARBON																						
Danter 2, 2003	Quarter 4, 2002																				*		
2000 2000	Quarter 1, 2003			*						*	*							*	*		*		
Danter 4, 2003 Danter 1, 2004 Danter 1, 2004 Danter 2, 2004 Danter 1, 2004 Danter 1, 2005 Danter 2, 2005 Danter 2, 2005 Danter 2, 2006 Danter 3, 2007 Danter 3, 2001 Danter 4, 2005 Danter 4, 2005 Danter 4, 2005 Danter 5, 2006 Danter 1, 2007 Danter 6, 2006 Danter 1, 2007 Danter 2, 2006 Danter 3, 2006 Danter 3, 2006 Danter 3, 2006 Danter 3, 2006 Danter 4, 2005 Danter 4, 2005 Danter 4, 2005 Danter 4, 2005 Danter 4, 2006 Danter 4, 2008 Danter 4, 2009 Danter 5, 2009 Danter 6, 2009 Danter 7, 2009 Danter 6, 2009 Danter 7, 2009 Danter 7, 2009 Danter 7, 2009 Danter 8, 2009 Danter 8, 2009 Danter 9, 2009 Danter	Quarter 2, 2003									*	*		*								*		
Danter 1, 2004	Quarter 3, 2003						*	*	*	*	*	*											
Danter 2, 2004 Danter 3, 2004 Danter 9, 2005 Danter 1, 2005 Danter 1, 2005 Danter 1, 2006 Danter 1, 2006 Danter 1, 2006 Danter 1, 2006 Danter 2, 2006 Danter 3, 2007 Danter 3, 2007 Danter 3, 2007 Danter 3, 2007 Danter 4, 2008 Danter 4, 2005 Danter 4, 2006 Danter 4, 2008 Danter 4, 2008 Danter 4, 2008 Danter 4, 2009 Danter 6, 2001 Danter 6, 2001	Quarter 4, 2003						*		*	*													
Danter 3, 2004 Danter 4, 2004 Danter 2, 2005 Danter 2, 2005 Danter 3, 2006 Danter 4, 2005 Danter 4, 2006 Danter 3, 2007 Danter 3, 2007 Danter 3, 2007 Danter 3, 2007 Danter 4, 2008 Danter 4, 2009 Danter 5, 2009 Danter 6, 2009 Danter 6, 2009 Danter 7, 2001 Danter 7, 2001 Danter 8, 2009 Danter 9, 2009	Quarter 1, 2004									*													
Dauter 4, 2004 Dauter 1, 2005 Dauter 2, 2005 Dauter 3, 2005 Dauter 3, 2006 Dauter 4, 2006 Dauter 5, 2006 Dauter 5, 2006 Dauter 6, 2006 Dauter 6, 2006 Dauter 7, 2006 Dauter 7, 2006 Dauter 8, 2006 Dauter 9, 2007 Dauter 9, 2008 Dauter 9, 2009 Dauter 9, 2001 Dauter 9, 2001	Quarter 2, 2004									*	*												
Daurier 1, 2005 Daurier 2, 2005 Daurier 3, 2005 Daurier 3, 2006 Daurier 4, 2006 Daurier 5, 2006 Daurier 6, 2006 Daurier 7, 2006 Daurier 7, 2006 Daurier 7, 2006 Daurier 8, 2007 Daurier 9, 2006 Daurier 1, 2006 Daurier 1, 2006 Daurier 1, 2007 Daurier 1, 2008 Daurier 1, 2009 Daurier 2, 2009 Daurier 1, 2009 Daurier 1, 2009 Daurier 2, 2009 Daurier 2, 2009 Daurier 1, 2009 Daurier 2, 2009 Daurier 3, 2009 Daurier 3, 2009 Daurier 4, 2009 Daurier 2, 2009 Daurier 3, 2009 Daurier 3, 2009 Daurier 4, 2009 Daurier 4, 2009 Daurier 4, 2009 Daurier 4, 2009 Daurier 5, 2001 Daurier 6, 2009 Daurier 6, 2001 Daurier 8, 2009 Daurier 9, 2001 Daurier 9, 2005 Daurier 9, 2007 Daurier 9, 2007 Daurier 9, 2008 Daurier 9, 2008 Daurie	Quarter 3, 2004									*													
Damer 2,2005	Quarter 4, 2004									*													
Total Continue Tota	Quarter 1, 2005									*													
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 * * * * * * * * * * * * * * * * * *	Quarter 2, 2005									*											*		
Particle 2,0006 Particle	Quarter 3, 2005									*		*									*		
Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2007 Report 1, 2007 Report 2, 2006 Quarter 3, 2007 Report 2, 2006 Report 2, 2007 Report 2, 2007 Report 2, 2008 Report 2, 2009 Report 2, 2006 Report 2, 2008 Report 2, 200	Quarter 4, 2005									*											*		
Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Region Quarter 3, 2012 Region Quarter 3, 2012 Region Quarter 3, 2012 Region Quarter 3, 2012 Region Quarter 3, 2016 Region Quarter 3, 2003 Region Region Quarter 3, 2003 Region Region Quarter 3, 2003 Region Region Quarter 3, 2004 Region Quarter 3, 2004 Region Region Quarter 3, 2005 Region Region Quarter 3, 2005 Region Region Quarter 3, 2005 Region Region Quarter 3, 2006 Region R	Quarter 1, 2006									*													
Quarter 1,2006	Quarter 2, 2006									*		*											
Quarter 1,2007	Quarter 4, 2006																*						
Quarter 2, 2010	Quarter 1, 2007	*								*													
Quarter 3, 2011	Quarter 3, 2007	*				*	*	*	*				*	*			*						
Quarter 3, 2012											*												
Quarter 3, 2016		*																					
COTAL ORGANIC HALIDES																			*				
Quarter 4, 2002 Quarter 1, 2003	-																						
*																		*	*		*		
Quarter 3, 2003				*															-				
Quarter 2, 2004																							
Quarter 3, 2004	,																						
Quarter 1, 2005		*																					
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 1, 2006																							
Quarter 1, 2006																							
Quarter 2, 2006		*																					
Quarter 3, 2006																							
Quarter 1, 2006 Quarter 2, 2007 * Quarter 3, 2007 * Quarter 3, 2007 * Quarter 4, 2008 * Quarter 1, 2008 * Quarter 1, 2008 * Quarter 1, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 4, 2010 * Quarter 1, 2011 * Quarter 1, 2011	Quarter 3, 2006																						
Quarter 1, 2007	Quarter 4, 2006																*						
Quarter 2, 2007	Quarter 1, 2007	*																					
Quarter 3, 2007	Quarter 2, 2007	*																					
Quarter 4, 2007	Quarter 3, 2007	*																					
Quarter 1, 2008	Quarter 4, 2007	*																			*		
Quarter 4, 2008	Quarter 1, 2008	*																					
Quarter 4, 2008	Quarter 4, 2008	*																					
Quarter 1, 2009	Quarter 4, 2008	*																					
Quarter 2, 2009 *	Quarter 1, 2009	*																					
Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 4, 2010 * Quarter 1, 2011 *	Quarter 2, 2009	*																			*		
Quarter 1, 2010	Quarter 3, 2009	*																					
Quarter 1, 2010	Quarter 4, 2009	*																					
Quarter 3, 2010	Quarter 1, 2010	*																					
Quarter 4, 2010 *	Quarter 2, 2010	*																					
Quarter 1, 2011 *	Quarter 3, 2010	*																					
Quarter 1, 2011 *	Quarter 4, 2010	*																					
Quarter 3, 2013 *	Quarter 1, 2011	*																					
	Quarter 3, 2013																				*		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Graffeet S D D D U S S S S S S D D D D U S S S S	Groundwater Flow System			UCRS	3						1	URGA	4								LRGA	A		
TRICHINOSCHIENE Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2,	Gradient	S				U	S	S	S	S	S	D	D	D	D	U	U	S	D			_	U	U
Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 200	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 4, 2005 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2006 Quarter 2, 2007 Quarter 1, 2008 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 200	TRICHLOROETHENE																							
Quarter 2, 2003 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2	Quarter 4, 2002																							
Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 201	Quarter 1, 2003																							
Quanter 4, 2008 Quanter 4, 2004 Quanter 2, 2004 Quanter 3, 2005 Quanter 3, 2005 Quanter 3, 2005 Quanter 2, 2006 Quanter 2, 2006 Quanter 2, 2006 Quanter 3, 2005 Quanter 1, 2006 Quanter 2, 2006 Quanter 2, 2008 Quanter 4, 2008 Quanter 4, 2009 Quanter 2, 2007 Quanter 2, 2008 Quanter 3, 2007 Quanter 3, 2007 Quanter 3, 2007 Quanter 4, 2009 Quanter 2, 2009 Quanter 3, 2009 Quanter 4, 2008 Quanter 4, 2009 Quanter 2, 2009 Quanter 3, 2009 Quanter 4, 2008 Quanter 4, 2009 Quanter 5, 2009 Quanter 6, 2009 Quanter 7, 2009 Quanter 8, 2009 Quanter 9, 200	Quarter 2, 2003																							
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 1, 2006 Quarter 3, 2007 Quarter 1, 2008 Quarter 4, 2007 Quarter 1, 2008 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 201	Quarter 3, 2003																							
Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 3, 2017	Quarter 4, 2003																							
Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 201	Quarter 1, 2004																							
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017	Quarter 2, 2004																							
Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 201	Quarter 3, 2004																							
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 6, 2010 Quarter 6, 201	Quarter 4, 2004																							
Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2010 Quarter 7, 2010 Quarter 7, 2011 Quarter 7, 2011 Quarter 7, 2011 Quarter 7, 2010 Quarter 7, 201	Quarter 1, 2005	1																						
Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 2, 2016 Quarter 4, 2011 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 7, 2010 Quarter 7, 201	Quarter 2, 2005																							
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 3, 2017	Quarter 3, 2005																							
Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 7, 2012 Quarter 6, 2012 Quarter 6, 2012 Quarter 7, 2013 Quarter 7, 2013 Quarter 7, 2014 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2018 Quarter 1, 2019 Quarter 7, 2019 Quarter 7, 2010 Quarter 7, 2010 Quarter 7, 2011 Quarter 7, 2011 Quarter 8, 2011 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2016 Quarter 1, 2017 Quarter 2, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017	Quarter 4, 2005																							
Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 7, 2014 Quarter 7, 2014 Quarter 7, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017	Quarter 1, 2006																							
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2016 Quarter 4, 2015 Quarter 2, 2016 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017	Quarter 2, 2006																							
Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2016 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017	Quarter 2, 2007							1																
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 5, 2014 Quarter 5, 2014 Quarter 6, 2015 Quarter 7, 2014 Quarter 7, 2016 Quarter 7, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 7, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 9, 201		Г	t																		t			
Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 3, 2017		Г	t																		t			
Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 5, 2013 Quarter 5, 2013 Quarter 4, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017																							\vdash	
Quarter 2, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2010 Quarter 1, 2017 Quarter 3, 2017		┢						1						-									$\vdash \vdash$	
Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 2, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 2, 2015 Quarter 4, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 7, 2016 Quarter 3, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017		 																					\vdash	
Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2011 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2017 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017																							\vdash	
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2015 Quarter 3, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017		\vdash																					$\vdash\vdash$	
Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 201		\vdash																					$\vdash\vdash$	
Quarter 1, 2019 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017		\vdash																					$\vdash\vdash$	
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 5, 2013 Quarter 6, 2013 Quarter 6, 2013 Quarter 7, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 2, 2017 Quarter 3, 2017																							$\vdash \vdash$	
Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 7, 2017 Quarter 7, 2017 Quarter 7, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 7, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 7, 2016 Quarter 6, 2016 Quarter 6, 2017 Quarter 7, 2017 Quarter 6, 201												-											$\vdash \vdash$	
Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017																							$\vdash\vdash$	
Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2017		-																						
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 5, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017																								
Quarter 3, 2011 Quarter 4, 2011 Quarter 7, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 5, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017																								
Quarter 4, 2011 Quarter 7, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017																							-	
Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017																							ш	
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017																								
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017																								
Quarter 3, 2012													_				-						-	
Quarter 4, 2012																								
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017																								
Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017																							ш	
Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017																							ш	
Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017																							ш	
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017																							ш	
Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017	Quarter 4, 2013																						ш	
Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017	Quarter 1, 2014																						Ш	
Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017	,																						Ш	
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 5, 2017 Quarter 6, 2017 Quarter 9, 2017 Quarter 9, 2017 Quarter 9, 2017	Quarter 3, 2014																						\square	
Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 5, 2017 Quarter 3, 2017 Quarter 3, 2017	Quarter 4, 2014	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}}$																					\square	
Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 5, 2017 Quarter 7, 2017 Quarter 9, 2017 Quarter 9, 2017 Quarter 9, 2017 Quarter 1, 2017	Quarter 1, 2015																							
Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 5, 2017 Quarter 7, 2017 Quarter 9, 2017	Quarter 2, 2015																							
Quarter 1, 2016 Image: Control of the control of t	Quarter 3, 2015																							
Quarter 2, 2016 Image: Control of the control of t	Quarter 4, 2015																						L	
Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017	Quarter 1, 2016																							
Quarter 4, 2016	Quarter 2, 2016																							
Quarter 1, 2017	Quarter 3, 2016																							
Quarter 2, 2017	Quarter 4, 2016																							
Quarter 2, 2017	Quarter 1, 2017																							
Quarter 3, 2017	Quarter 2, 2017																						\Box	
	Quarter 3, 2017							1															М	
	,	Г	t																		t		H	
	,		_	_		_		_	_	_			_	_		_	_	_			_	_		

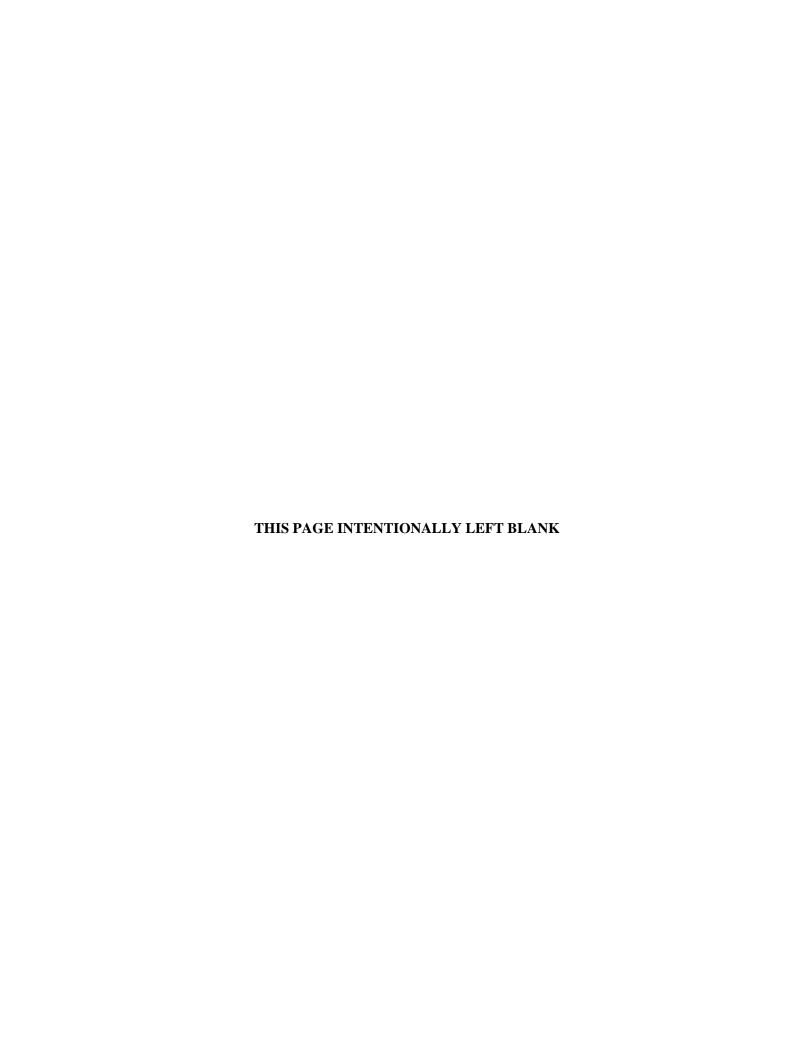
Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	URGA	A.								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019														•							•		
Quarter 2, 2019																							
Quarter 3, 2019																							
Quarter 4, 2019														•							•		
Quarter 1, 2020																							
Quarter 2, 2020																							
Quarter 3, 2020														•							•		
Quarter 4, 2020																							
Quarter 1, 2021																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														

^{*} Statistical test results indicate an elevated concentration (i.e., a statistically significant increase).

[■] MCL Exceedance

Previously reported as an MCL exceedance; however, result was equal to MCL.


UCRS = Upper Continental Recharge System

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer
S = Sidegradient; D = Downgradient; U = Upgradient

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:		3/2	22/20)21			ד	Time	:			130	0			Mon	itor:			R	obert Kirby
Weather Co	ndition	s: : 8	unn	y, Sl	ight \	Wind	1, 65	F													
Monitoring	Equipm	ent:	:RAE	E Sys	stem	s, M	ulti-l	RAE	Ser	al #	#44	194									
					N	/loni	tori	ng L	ocat	ior	1										Reading (% LEL)
Ogden Landi Road Entran	ng ce	Che	eckec	d at g	round	d leve	el														0
North Landfil	II Gate	Che	eckec	d at g	round	d leve	el														0
West Side of Landfill: North 37° West 88°	07.652	Che	∍cked	d at g	round	d leve	əl														0
East Side of Landfill: North 37° West 88°	07.628'	Che	eckec	d at g	rounc	d leve	el														0
Cell 1 Gas Ve		1 0	2 0	3 0	4 0	5 0	6	7 0	8		9.0	10 0	11 0	12 0	13 0	14 0	15 0	16 0		0	0
Cell 2 Gas V	ent (3)	1 0	2	3						•											0
Cell 3 Gas V	ent (7)	10 0	2	3	4 0	5 0	6	7 0													0
	l Office	Che	eckec	d at flo	oor le	evel															0
Suspect or P	roblem Areas	Nor	ne no	ted																	N/A
Remarks:																					
All gas vent	ts checl	ked	1" fr	om d	pen	ning.															
Performed I	oy: //	· ·		1/:	1																
	n	ube	rt i	Kir	by	_	Je	1		2						6	23	/24	o/	120	121
					Si	gnái	ture										•				Date

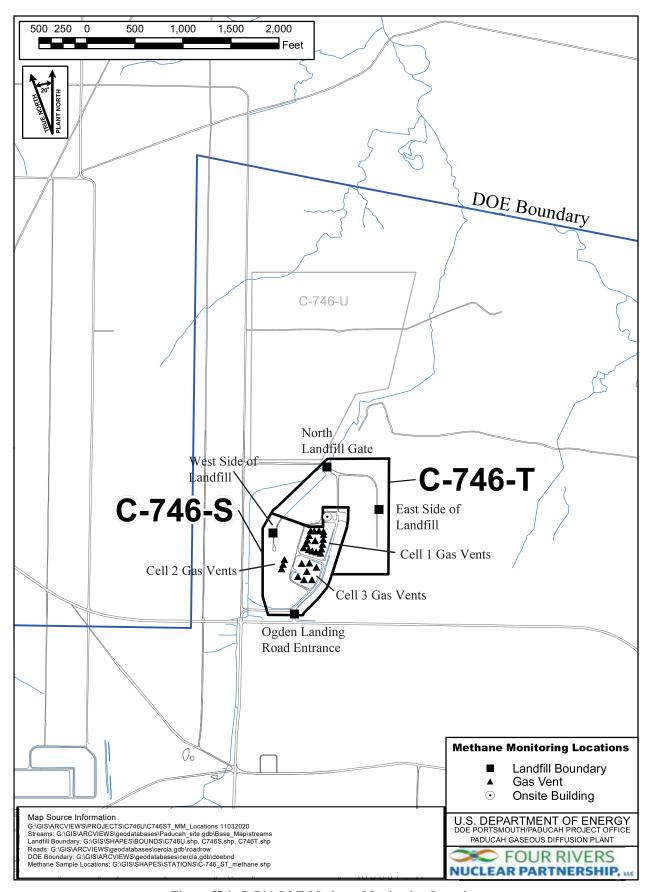
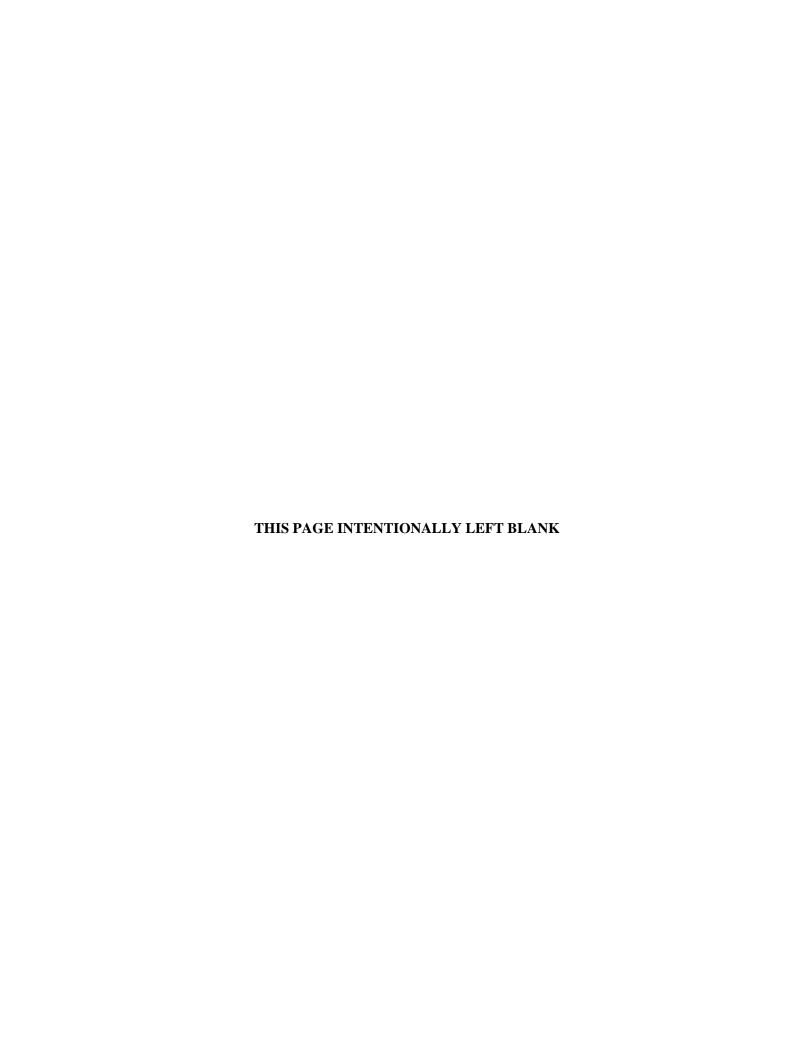



Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNSTI	REAM	L136 AT SI	TE		
Sample Seque	nce	#				1		1		1			
If sample is	a B	lank, specify Type: (F)ield, (T) r:	ip, (M)ethod	l, or (E) quipment	NA		NA		NA			
Sample Date	and	Time (Month/Day/Year hour: m	1/25/2021 09:	:32	1/25/2021 09	:11	1/25/2021 09	9:23					
Duplicate ("	Y" (or "N") ¹				N		N		N			
Split ('Y' o	r "1	N") ²				N		N		N			
Facility Samp	ple	ID Number (if applicable)				L135SS2-2	1	L154US2-2	1	L136SS2-2	21		7
Laboratory Sa	amp]	Le ID Number (if applicable)				532970001		532967002	2	53297000	2		
Date of Anal	ysis	s (Month/Day/Year)				2/5/2021		2/8/2021		2/5/2021			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL	F L A G
A200-00-0	0	Flow	Т	MGD	Field		*		*		*		
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	0.806		1.01		1.34			
14808-79-8	0	Sulfate	Т	MG/L	300.0	3.14		3.26		5.18			
7439-89-6	0	Iron	Т	MG/L	200.8	1.62		1.76	*	0.61			
7440-23-5	0	Sodium	Т	MG/L	200.8	1.12		1.16		0.736			
s0268	0	Organic Carbon ⁶	т	MG/L	9060	11.7		10.4		8.68			
s0097	0	BOD ⁶	Т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	49.5		37.3		39.7			

¹Respond "Y" if the sample was a duplicate of another sample in this report

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

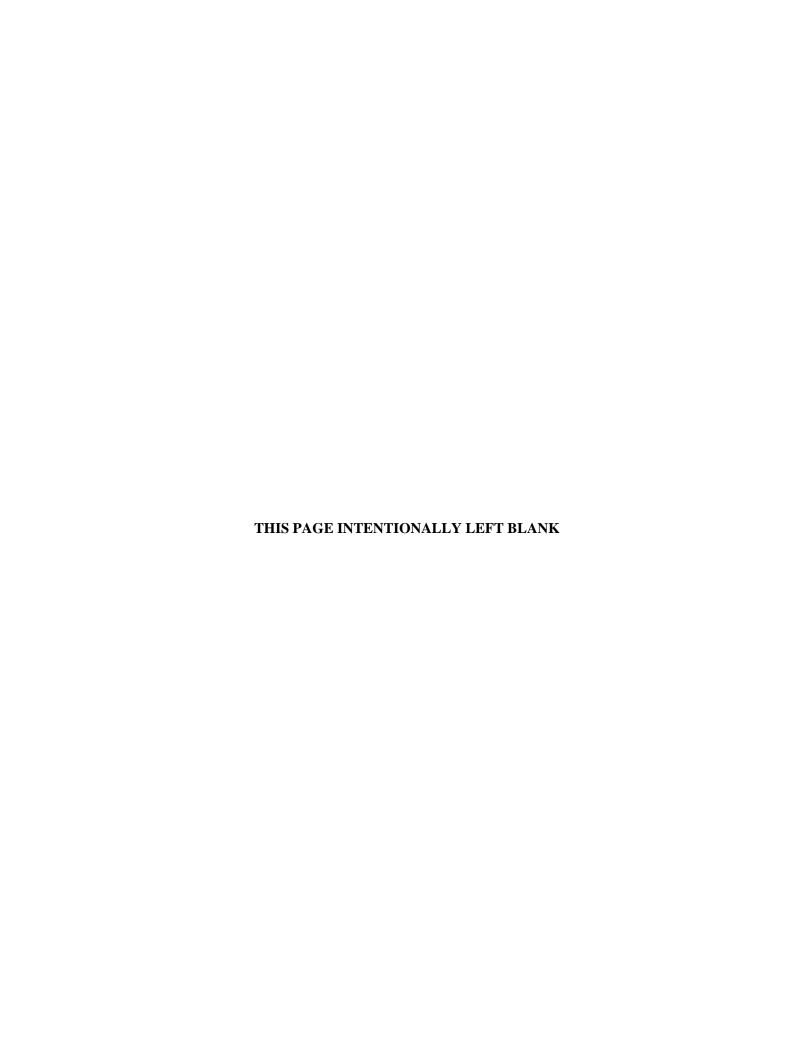
LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	: (KPDES Discharge Number, or	יינ:	JPSTREAM" or	"DOWNSTREAM")	L135 UPSTRI	EAM	L154 DOWNSTE	REAM	L136 AT S	ITE		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	L A G S ⁷
S0145	1	Specific Conductance	Т	µнмs/см	Field	72		80		163			
S0270	0	Total Suspended Solids	Т	MG/L	160.2	39.6		41.3		6.8	J		
s0266	0	Total Dissolved Solids	Т	MG/L	160.1	37.1	*	60	*	81.4	*		
S0269	0	Total Solids	Т	MG/L	SM-2540 B 17	590	*	550	*	680	*		
s0296	0	рН	Т	Units	Field	7.55		7.17		7.55			
7440-61-1		Uranium	т	MG/L	200.8	0.00135		0.00121		0.001			
12587-46-1		Gross Alpha (α)	T	pCi/L	9310	1.62	*	8.5	*	4.58	*		
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	4.02	*	4.76	*	4.12	*	X	
												/\	
												/	
													<u> </u>
													ackslash
													\Box
													\Box
												/	\bigsqcup
													\

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045


Finds/Unit:	KY8-890-008-982 /	1
LAB ID:	None	_
For Official U	se Only	

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135SS2-21	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.98. Rad error is 3.97.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.46. Rad error is 6.42.
L154	L154US2-21	Flow Rate		Analysis of constituent not required and not performed.
		Iron	*	Duplicate analysis not within control limits.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 5.91. Rad error is 5.75.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.72. Rad error is 5.66.
L136	L136SS2-21	Flow Rate		Insufficient flow to collect a sample.
		Biochemical Oxygen Demand (BOD		Insufficient flow to collect a sample.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.97. Rad error is 3.9.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.13. Rad error is 5.08.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

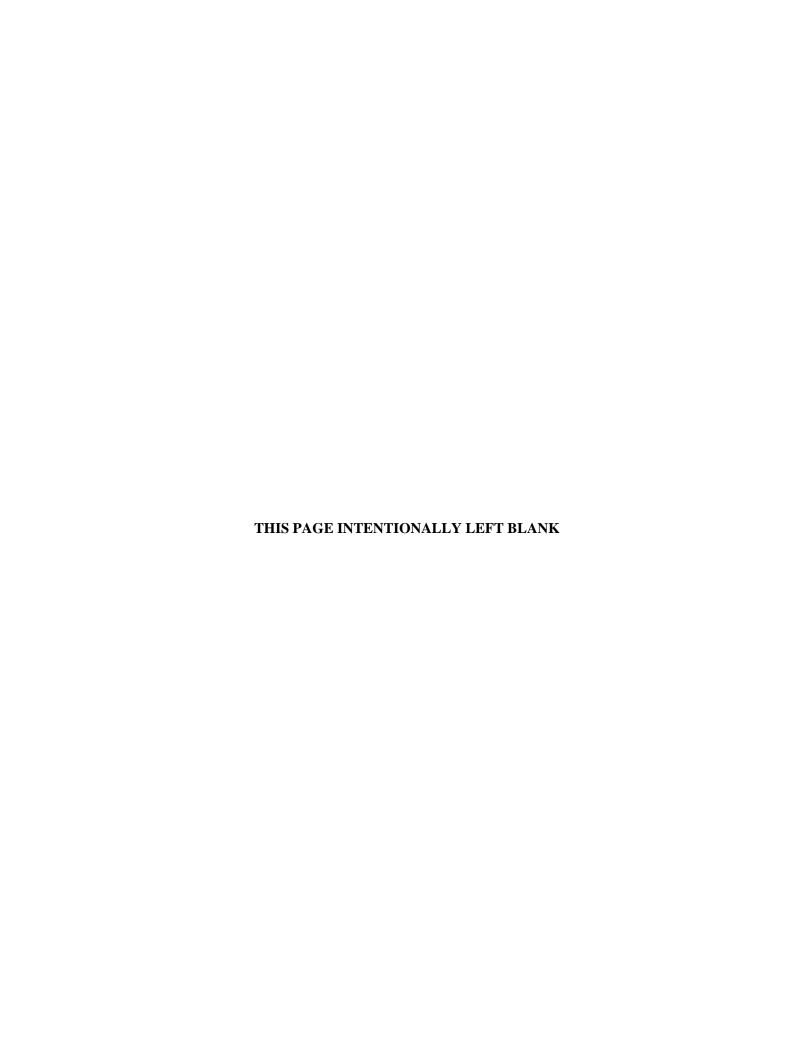
GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

Environmental Testing

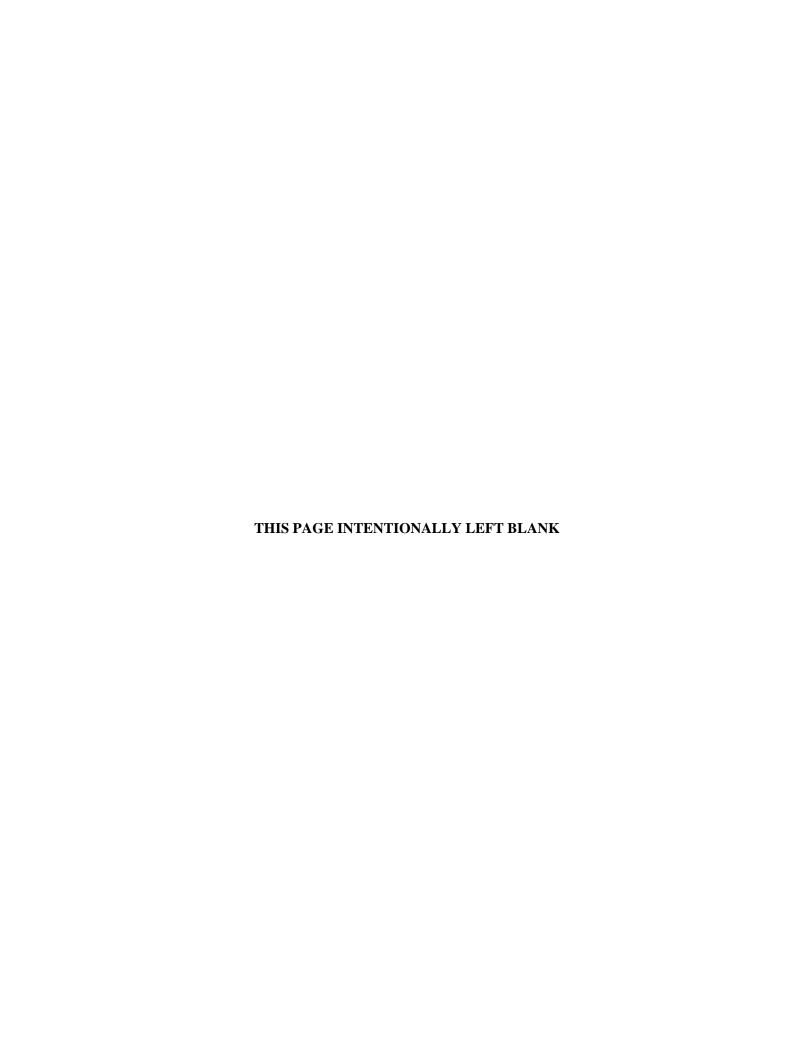
In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DOD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

APPENDIX K LABORATORY ANALYTICAL METHODS



LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and 1,2,3-
		Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L MICROPURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-S&T Landfills

				,	, ,					,	,
			July Legit	30	d of the little				July Control of St. Line St.	M /	A STATE OF THE STA
		Sording Condition	iniho		d day gen little			Conduction Conduction	initio		Turk Chick
		igo /	igited legit	in	, St. 780 /	ETC.	/	Jie /	July Street	Titl	044°
	13		in Li		od Jak				in End		§ /3
	Z STORY	CORU	1316	J'SSU	Tuio.		Z STORY	CORU	1310	Dissu	Zigo,
MW220			ĺ	Ì		MW221				<u> </u>	
Date Collected: 01/25/2021						Date Collected: 01/25/2021					
0852	60.0	349	5.87	5.68	2.1	0621	59.3	390	5.88	5.55	18.2
0855	60.1	346	5.79	5.35	4.8	0624	58.9	390	5.66	5.05	27.9
0858	59.7	344	5.76	5.29	5.0	0627	58.8	388	5.67	5.09	28.5
MW222						MW223					
Date Collected: 01/25/2021 0733	60.1	292	6.20	5.46	6.3	Date Collected: 01/25/2021 0702	59.8	387	6.07	4.88	1.6
0736	59.3	288	6.14	5.16	6.2	0705	59.4	387	6.07	4.67	1.8
0739	59.1	287	6.14	5.10	6.0	0708	59.4	387	6.10	4.70	2.6
MW224	57.1	201	0.17	5.11	0.0	MW369	57.0	201	0.10	1.70	2.0
Date Collected: 01/25/2021						Date Collected: 01/20/2021					
0814	60.4	402	5.99	3.23	2.7	0712	57.1	378	6.48	4.45	3.82
0817	59.8	412	5.88	1.94	1.7	0715	56.9	373	6.02	1.95	4.06
0820	59.5	410	5.88	1.91	1.8	0718	56.7	373	5.98	1.88	4.1
MW370						MW372					
Date Collected: 01/20/2021						Date Collected: 01/20/2021					
0810	56.4	450	5.93	6.50	1.1	0930	59.1	819	6.10	3.38	12.4
0813	58.2	464	5.80	4.39	1.75	0933	59.1	822	6.04	2.22	14.9
0816	58.1	464	5.79	4.30	2.05	0936	58.8	822	6.04	2.13	15.2
MW373						MW384					
Date Collected: 01/20/2021	59.9	855	6.06	3.33	1.49	Date Collected: 01/21/2021 0820	58.9	401	5.65	4.41	2.6
1013	59.5	855	6.04	1.86	1.49	0823	58.9	395	5.63	4.41	3.7
016	59.5	854	6.05	1.80	1.58	0825	57.6	390	5.65	4.30	4.0
MW385	39.3	0.54	0.03	1.00	1.56	MW386	37.0	390	3.03	4.30	4.0
Date Collected: 01/21/2021						Date Collected: 01/21/2021					
0915	59.2	454	5.91	1.27	3.0	0948	60.1	554	6.44	3.30	10.7
918	58.8	453	5.89	0.91	4.1	0951	59.7	557	6.33	1.58	12.0
921	58.5	452	5.89	0.82	4.4	0954	59.6	558	6.32	1.55	12.5
AW387						MW388					
Date Collected: 01/21/2021						Date Collected: 01/21/2021					
0706	58.4	588	5.78	4.51	27.7	0742	58.9	392	5.68	4.15	2.9
0709	57.3	587	5.78	3.72	22.1	0745	57.7	391	5.64	4.00	4.5
0712 MXX/200	57.0	588	5.77	3.71	21.7	0748 MXX/201	57.7	390	5.63	3.98	4.3
MW390 Date Collected: 01/21/2021						MW391 Date Collected: 01/26/2021					
0620	57.1	645	5.99	2.39	4.5	0819	58.7	387	5.87	3.72	3.0
0623	57.0	644	5.96	2.04	4.0	0822	57.7	384	5.74	4.08	4.6
0626	57.0	643	5.96	2.01	3.8	0825	57.5	384	5.73	4.07	4.7
MW392						MW393					
Date Collected: 01/26/2021						Date Collected: 01/26/2021					
906	58.8	359	5.83	2.05	5.4	0938	59.3	406	5.97	4.20	7.0
909	58.6	357	5.83	1.72	6.0	0941	59.4	421	5.91	1.96	8.9
912	58.3	357	5.83	1.69	6.1	0944	59.4	420	5.90	1.90	9.2
MW394						MW395					
Date Collected: 01/26/2021						Date Collected: 01/26/2021	<u> </u>				
	57.9	390	5.99	5.55	2.7	0705	58.4	358	5.77	5.49	19.4
	57.2	390	5.87	5.29	7.5	0708	57.6	359	5.71	5.26	26.3
0631			5.82	5.22	8.2	0711	57.4	358	5.70	5.22	26.6
0628 0631 0634	57.2	390	3.02			MXX/207					
0631 0634 MW396		390	3.62			MW397					
0631 0634 MW396 Date Collected: 01/26/2021	57.2			1.10	0 1	Date Collected: 01/25/2021	50.1	221	574	6.20	2.4
0631 0634 MW396		719	6.26	1.19	8.1 19.7		59.1 58.3	321 321	5.74 5.72	6.39	2.4

