

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

February 25, 2021

Mr. Todd Hendricks
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Ms. Jamie Nielsen Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Mr. Hendricks and Ms. Nielsen:

C-746-S&T LANDFILLS FOURTH QUARTER CALENDAR YEAR 2020 (OCTOBER-DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0152/V4, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

The subject report for the fourth quarter calendar year (CY) 2020 has been uploaded to the KY eForms portal via the Kentucky Online Gateway. Other recipients outside the Solid Waste Branch are receiving this document via e-mail distribution (see distribution list). This report is required in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). The report includes groundwater analytical data, surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the fourth quarter CY 2020 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Monitoring Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance (1989). This report also serves as the statistical increase notification for the fourth quarter CY 2020, in accordance with Monitoring Condition GSTR0003, Standard Requirement 5, of the Permit.

PPPO-02-10009512-21B

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Lennifer Woodard Paducah Site Lead

Portsmouth/Paducah Project Office

enrife Woodard

Enclosure:

C-746-S&T Landfills Fourth Quarter Calendar Year 2020 (October–December) Compliance Monitoring Report, FRNP-RPT-0152/V4

cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.webb@ky.gov, KDEP arcorrespondence@pad.pppo.gov, FRNP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov, FRNP jennifer.woodard@pppo.gov, PPPO joel.bradburne@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov robert.edwards@pppo.gov, PPPO stephaniec.brock@ky.gov, KYRHB tracey.duncan@pppo.gov, PPPO

cc via KY eForms portal:

jamie.nielsen@ky.gov, KDEP lauren.linehan@ky.gov, KDEP

teresa.osborne@ky.gov, KDEP

todd.hendricks@ky.gov, KDEP

C-746-S&T Landfills Fourth Quarter Calendar Year 2020 (October-December) **Compliance Monitoring Report,** Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

C-746-S&T Landfills
Fourth Quarter Calendar Year 2020
(October–December)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—February 2021

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURE	S		v
TA	BLES	S		v
AC	CRON	YMS		vii
1.	INTI	RODUC	TION	1
	1.1		GROUND	
	1.2		TORING PERIOD ACTIVITIES	
		1.2.1	Groundwater Monitoring	
		1.2.2	Methane Monitoring	3
		1.2.3	Surface Water Monitoring	
	1.3	KEY R	ESULTS	5
2.	DAT		LUATION/STATISTICAL SYNOPSIS	
	2.1	STATI	STICAL ANALYSIS OF GROUNDWATER DATA	
		2.1.1	Upper Continental Recharge System	
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	
	2.2	DATA	VERIFICATION AND VALIDATION	11
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	13
4.	REF	ERENC	ES	15
AF	PENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE	
			MONITORING SAMPLE DATA REPORTING FORM	A-1
AF	PPENI	OIX B:	FACILITY INFORMATION SHEET	B-1
AF	PPENI	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
AF	PENI	DIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AF	PPENI	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AF	PENI	OIX F:	NOTIFICATIONS	F-1
AF	PENI	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AF	PPENI	OIX H:	METHANE MONITORING DATA	H-1
AF	PPENI	OIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
AF	PENI	OIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1
ΑF	PENI	OIX K:	LABORATORY ANALYTICAL METHODS	K-1
ΔΓ	PENI	JIX I ·	MICRO-PURGING STABILITY PARAMETERS	I -1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
2.	C-746-S&T Landfills Surface Water Monitoring Locations	4
	TABLES	
1.	Summary of MCL Exceedances	5
2.	Exceedances of Statistically Derived Historical Background Concentrations	5
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	6
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations
COD chemical oxygen demand

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit

MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, *C-746-S&T Landfills Fourth Quarter Calendar Year 2020 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky,* is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND

The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter,

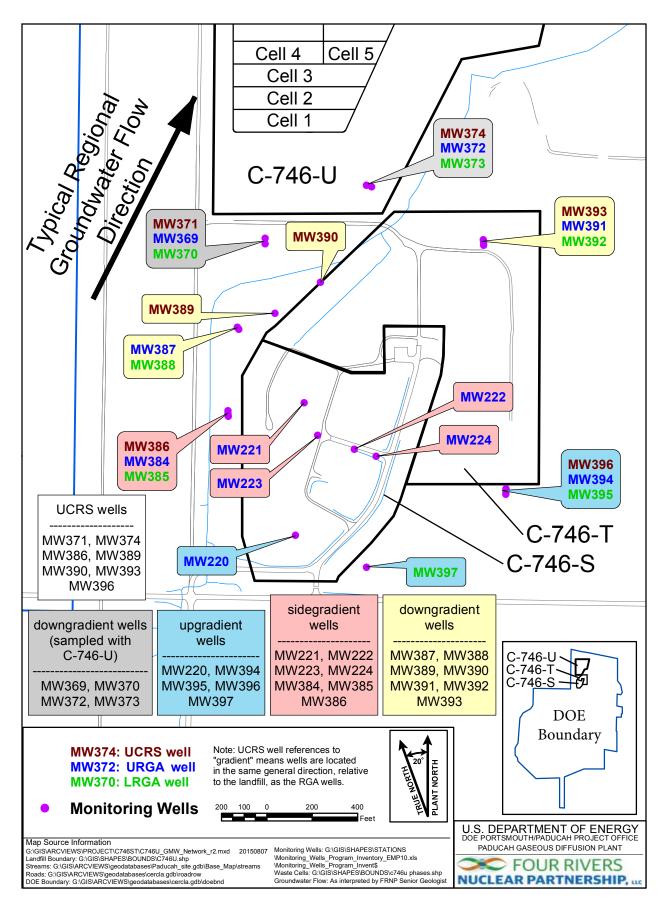


Figure 1. C-746-S&T Landfills Groundwater Monitoring Well Network

except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2020 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the fourth quarter 2020 was conducted in October 2020. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 26 and 27, 2020, in MWs of the C-746-S&T Landfills (see Appendix E, Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Appendix E, Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During October, RGA groundwater flow was directed inward and then northeast towards the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in October was 5.79×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was approximately 5.45×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.927 to 1.68 ft/day (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the Solid Waste Landfill Permit. Industrial Hygiene staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on December 8, 2020. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills: (1) upstream location, L135; (2) downstream location, L154; and (3) L136, a location capturing

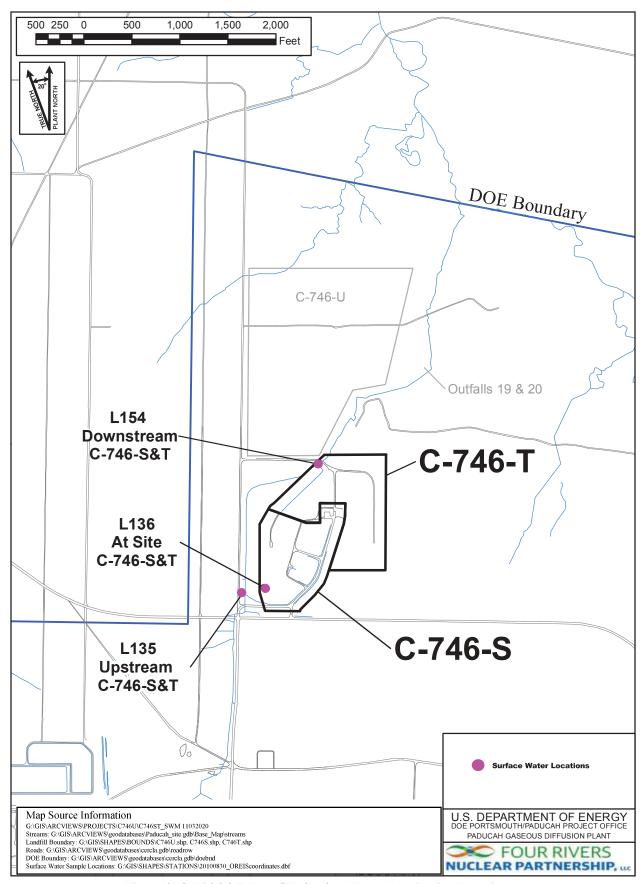


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

runoff from the landfill surface. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application, Attachment 24, of the Solid Waste Landfill Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters that exceeded their MCL and also exceeded their historical background UTL, as well as other parameters that do not have MCLs but have concentrations that exceeded the statistically derived historical background UTL¹ during the fourth quarter 2020. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells designated as background wells (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW387: Beta activity	MW370: Beta activity
	MW391: Trichloroethene	MW392: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW221: Oxidation-reduction	MW370: Beta activity,
potential	potential	oxidation-reduction potential,
		sulfate, technetium-99
MW390: Oxidation-reduction	MW223: Oxidation-reduction	MW373: Calcium, conductivity,
potential, technetium-99	potential	dissolved solids, magnesium,
		oxidation-reduction potential,
		sulfate
MW393: Oxidation-reduction	MW372: Calcium, conductivity,	MW385: Oxidation-reduction
potential	dissolved solids, magnesium,	potential, sulfate, technetium-99
	sodium, sulfate, technetium-99	
MW396: Oxidation-reduction	MW384: Sulfate, technetium-99	MW388: Oxidation-reduction
potential		potential, sulfate
	MW387: Beta activity, calcium,	MW392: Oxidation-reduction
	dissolved solids, magnesium,	potential
	sulfate, technetium-99	
	MW391: Oxidation-reduction	MW395: Oxidation-reduction
	potential	potential
	MW394: Chemical oxygen demand	
	(COD)	

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Background wells: MW220, MW394, MW395, MW396, MW397

_

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL.

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW372: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW370: Beta activity, sulfate, technetium-99
MW387: Beta activity, calcium, dissolved solids, magnesium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
	MW388: Sulfate

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), the MCL exceedances for TCE in MW391 and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW370 and MW387 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. None of the wells evaluated for beta activity showed an increasing Mann-Kendall trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
		Beta activity	8	0.05	0.119	-8	No Trend
	MW370	Sulfate	8	0.05	0.452	-3	No Trend
		Technetium-99	8	0.05	0.089	-12	No Trend
		Calcium	8	0.05	0.016	19	Increasing
	MW372	Conductivity	8	0.05	0.001	24	Increasing
		Dissolved Solids	8	0.05	0.119	8	No Trend
C-746-		Magnesium	8	0.05	0.007	20	Increasing
S&T		Sodium	8	0.05	0.031	16	Increasing
Landfill		Sulfate	8	0.05	0.007	20	Increasing
		Technetium-99	8	0.05	0.360	4	No Trend
		Calcium	8	0.05	0.031	16	Increasing
		Conductivity	8	0.05	0.002	22	Increasing
	MW373	Dissolved Solids	8	0.05	0.031	16	Increasing
		Magnesium	8	0.05	0.089	12	No Trend
		Sulfate	8	0.05	0.089	12	No Trend

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters (Continued)

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
		Beta activity	8	0.05	0.119	8	No Trend
		Calcium	8	0.05	0.007	20 Increas	Increasing
C-746-	MW387	Dissolved Solids	8	0.05	0.031	16	Increasing
S&T	WI W 367	Magnesium	8	0.05	0.016	18	Increasing
Landfill		Sulfate	8	0.05	0.138	10	No Trend
		Technetium-99 8	0.05	0.274	6	No Trend	
	MW388	Sulfate	8	0.05	0.054	-14	No Trend

¹ An alpha of 0.05 represents a 95% confidence interval.

Note: Statistics generated using ProUCL.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL to identify if the current downgradient well concentrations are consistent with current background values. The current background UTL was developed using the most recent eight quarters of data from wells identified as background wells. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-S&T Landfills source; therefore, they are a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan (LATA Kentucky 2014). To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. Eleven of the 22 preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Eleven of the 22 preliminary Type 2 exceedances in downgradient wells have an increasing trend. Specifically, the Mann-Kendall statistical test indicates that there are increasing trends of groundwater constituents in MW372, MW373, and MW387 over the past eight quarters. MW372 showed increasing trends for calcium, conductivity, magnesium, sodium, and sulfate. Constituents that showed increasing trends in MW373 were calcium, conductivity, and dissolved solids. Calcium, dissolved solids, and magnesium concentrations showed an increasing trend in MW387.

²The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses; the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

Levels of calcium and conductivity in both MW372 and MW373; magnesium, sodium, and sulfate in MW372; and dissolved solids in MW373 all exceed the UTLs for historical and current background and exhibit similar increasing trends. These occurrences are indicators of high ionic strength of the area groundwater. Because levels of calcium, conductivity, magnesium, sodium, sulfate, and dissolved solids are lower in MW372 (URGA) than in MW373 (LRGA), these trends do not appear to be associated with the C-746-S&T Landfills (influence of the landfill should have a greater impact on the URGA well). Trends of these ions and indicator parameters should be considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

In MW387, levels of calcium and magnesium have similar trends, with current concentrations above historic levels. The level of dissolved solids remains within the range of historic levels. The dissolved solids trend should be considered a Type 1 exceedance—not attributable to the C-746-S&T Landfills. The October 2020 levels of calcium and magnesium will require further assessment in upcoming reports to determine if a release from the C-746-S&T Landfills is indicated. In accordance with the Groundwater Monitoring Plan, these trends are considered to be a Type 2 exceedance—source unknown.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS well MW390 technetium-99 values that exceed both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T Landfills sources and is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW390: technetium-99

*In the same direction (relative to the landfill) as RGA wells.

With the exception of calcium and magnesium in MW387, all MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2020 groundwater data collected from the C-746-S&T Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as downgradient wells) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient well concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance—could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

To calculate the UTL, the data were divided into censored (non-detects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs historically included in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis^a

UCRS	URGA	LRGA
MW386	MW220 (background)	MW370
MW389 ^b	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396 ^c	MW224	MW392
	MW369	MW395 (background)
	MW372	MW397 (background)
	MW384	
	MW387	
	MW391	
	MW394 (background)	

^a map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient well concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL in downgradient wells and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, beta activity, calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^b Well had insufficient water to permit a water sample for laboratory analysis.

^c In the same direction (relative to the landfill) as RGA wells considered to be background.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

Fourth Quarter Calendar Year 2020 (October–December)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0152/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

PG113927

Regulation for Police PG113927

Regulation for Police PG113927

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

11-20

Tebrusry 17, 2021 Date

Kenneth R. Davis

PG113927

13

4. REFERENCES

- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

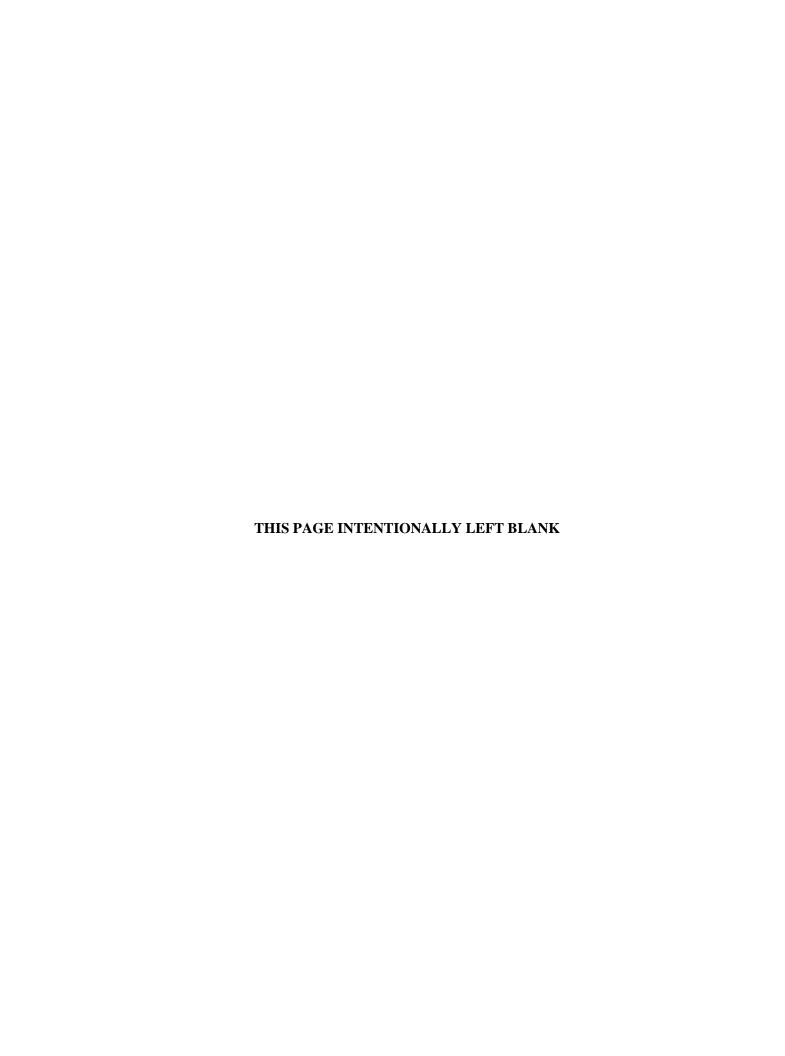
GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah Gaseous Diffusion Plant (As officially shown on DWM Permit Face)			Activity:	Activity: C-746-S&T Landfills			
SW07300014, Permit No: SW07300015, SW07300045		5, F	inds/Unit No:	Quarter & Yea	4th Qtr. CY 2020			
Please check the f	following as ap	plicable:						
Characteri	zation X	Quarterly	Semiannual	Annua	Assessment			
Please check appl	icable submitta	al(s): X	Groundwater	X	Surface Water			
		_	Leachate	X	Methane Monitoring			
This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 at 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (4 hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction page I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordant with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on n inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of n knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for such violations.								
Myrna E. Redfie Four Rivers Nuc				Date				
Janufu Jennifer Woodar U.S. Department		rd te Lead		2/a Date	23/2021			

APPENDIX B FACILITY INFORMATION SHEET



FACILITY INFORMATION SHEET

Sampling Date: Facility Name:	Groundwater: October 202 Surface water: October 20 Methane: December 2020 U.S. DOE—Paducah Gase (As offic	20	_	McCracken	_ Permit Nos.	SW07300014, SW07300015, SW07300045			
Site Address:	Site Address: 5600 Hobbs Road Kevil, Kentucky 42053								
Site Hadress.	Street		ity/State			Zip			
Phone No:	(270) 441-6800 I	Latitude: N	1 37° 07' 37.	70"	Longitude:	W 88° 47' 55.41"			
	OWNER INFORMATION								
Facility Owner:	U.S. DOE, Robert E. Edwa	rds III, Manager			Phone No:	(859) 227-5020			
Contact Person:	Bruce Ford	, ,			-	(270) 441-5357			
Contact Person Ti		— ental Services, Four Rive	ers Nuclear F	Partnership, I					
Mailing Address:	5511 Hobbs Road		l, Kentucky	•		42053			
•	Street	(City/State			Zip			
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)									
Company:	GEO Consultants Corpor	ration							
Contact Person:	Jason Boulton				Phone No:	(270) 816-3415			
Mailing Address:	199 Kentucky Avenue		l, Kentucky			42053			
	Street	(City/State			Zip			
		LABORATORY R	ECORD #1	1					
Laboratory:	GEL Laboratories, LLC		La	ab ID No:	XY90129				
Contact Person:	Valerie Davis				Phone No:	(843) 769-7391			
Mailing Address:	2040 Savage Road		n, South Car	olina		29407			
	Street	(City/State			Zip			
		LABORATORY R	ECORD #2	2					
Laboratory:	N/A			Lab ID No:	N/A				
Contact Person:	N/A		<u></u>		Phone No:	N/A			
Mailing Address:	N/A				•				
Ţ,	Street	(City/State			Zip			
		LABORATORY R	ECORD #3	3					
Laboratory:	N/A			Lab ID No:	N/A				
Contact Person:	N/A		<u></u>			N/A			
Mailing Address:	N/A				1 110110 110.	11/11			
	Street	(City/State			Zip			

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520 ⁻	1	8000-52	202	8000-52	242	8000-524	1 3
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	220		221		222		223	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/14/2020 0	9:35	10/14/2020	06:35	10/14/2020	08:05	10/14/2020 (07:20
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW220SG1	-21	MW221S	G1-21	MW222S0	G1-21	MW223SG	1-21
Laboratory Sa	mple ID Number (if applicable)		52441900	1	524419	003	524419	005	5244190	07		
Date of Analy	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Ana				10/17/202	0	10/17/2	020	10/17/20)20	10/17/202	20
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.201		0.467		0.385		0.4	
16887-00-6	Chloride(s)	т	mg/L	9056	17.5		35.4		26.9		27.7	
16984-48-8	Fluoride	т	mg/L	9056	0.217		0.22		0.32		0.276	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.1		1.17		1.62		1.32	
14808-79-8	Sulfate	т	mg/L	9056	13.9		13.9		12.3		11.8	_
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.07		30.06		30.06		30.06	
S0145	Specific Conductance	т	μ MH 0/cm	Field	338		390		344		363	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Lo	ocal Well or Spring Number (e.g., M	√-1 , 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.28		325.08		325.26		325.29	
N238	Dissolved Oxygen	т	mg/L	Field	2.8		4.4		3.59		3.6	
S0266	Total Dissolved Solids	т	mg/L	160.1	190		220		206		199	
s0296	рН	Т	Units	Field	6.16		6.05		6.28		6.14	
NS215	Eh	т	mV	Field	385		405		397		398	
s0907	Temperature	т	°C	Field	16.17		15.28		16.33		15.83	
7429-90-5	Aluminum	т	mg/L	6020	0.02	J	<0.05		0.0271	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.186	*	0.215	*	0.234	*	0.225	*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.00879	J	0.0187		0.00885	J	0.00762	J
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	19.9		20.8		15.4		20.4	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		0.012	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		0.000556	J	0.000465	J
7440-50-8	Copper	Т	mg/L	6020	0.00107	J	0.000719	J	0.000472	J	0.00105	J
7439-89-6	Iron	т	mg/L	6020	0.0417	J	<0.1		0.0397	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	8.71		9.85		7.14		8.65	
7439-96-5	Manganese	т	mg/L	6020	0.0013	J	<0.005		0.003	J	0.00495	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-520	01	8000-52	202	8000-524	42	8000-52	43
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.000458	J	0.00114		0.00134		0.00481	
7440-02-0	Nickel	т	mg/L	6020	0.00918		0.00788		0.0396		0.0647	
7440-09-7	Potassium	т	mg/L	6020	2.62		1.23		0.618		1.31	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	38.3		47.7		48.8		46.1	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

C-6

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8000-520	1	8000-520)2	8000-52	242	8000-52	243	
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	220		221		222		223	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	42	8000-524	43
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000187		<0.0000191		<0.0000189		<0.0000189	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.1		<0.0965		<0.0964		<0.0943	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.1		<0.0965		<0.0964		<0.0943	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.1		<0.0965		<0.0964		<0.0943	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.0965		<0.0964		<0.0943	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.0965		<0.0964		<0.0943	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.1		<0.0965		<0.0964		<0.0943	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

11NDB/ 0N11. 110 090 0

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	3
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.1		<0.0965		<0.0964		<0.0943	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.0965		<0.0964		<0.0943	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.0965		<0.0964		<0.0943	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-2.26	*	3.73	*	-1.32	*	3.44	*
12587-47-2	Gross Beta	Т	pCi/L	9310	13.7	*	4.23	*	4.91	*	1.49	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.258	*	0.0244	*	0.943	*	0.178	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.485	*	-0.463	*	-1.08	*	0.761	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	16.7	*	4.94	*	4.98	*	7.93	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.0419	*	0.249	*	0.115	*	0.448	*
10028-17-8	Tritium	т	pCi/L	906.0	-14.9	*	29.8	*	34.7	*	76.2	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	12	J	24.5		14.5	J	17	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
S0268	Total Organic Carbon	Т	mg/L	9060	1.28	J	0.967	J	0.956	J	1.24	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00458	J	0.00676	J	<0.01		<0.01	
		\perp										
		Щ										
		\perp										

C-8

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244	4	8004-48	320	8004-48	318	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	L, MW-2, etc	:.)	224		369		370		372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/14/2020 0	8:50	10/12/2020	06:24	10/12/2020	07:04	10/12/2020	08:35
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW224SG1	-21	MW369U	G1-21	MW370U0	G1-21	MW372UG	1-21
Laboratory San	mple ID Number (if applicable)		52441900	9	524106	001	5241060	003	5241700	01		
Date of Analy	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					0	10/14/2	020	10/15/20)20	10/15/202	20
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN				SIDE		DOW	N	DOWI	N	DOWN	i
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.338		0.324	*	0.439	*	0.53	
16887-00-6	Chloride(s)	т	mg/L	9056	22		27.9		34.4		41.5	
16984-48-8					0.319		0.197		0.155		0.211	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.924		0.736		0.885		0.959	*
14808-79-8	Sulfate	т	mg/L	9056	10.8		5.29		20.8		129	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.06		29.81		29.81		29.83	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	406		373		458		778	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

^{5&}quot;T" = Total; "D" = Dissolved

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	325.46		325.67		325.65		325.73	
N238	Dissolved Oxygen	Т	mg/L	Field	1.82		1.88		3.45		1.94	
s0266	Total Dissolved Solids	Т	mg/L	160.1	251		220		247		474	
s0296	рн	Т	Units	Field	6.2		6.14		6.06		6.23	
NS215	Eh	Т	mV	Field	395		362		350		341	
s0907	Temperature	т	°C	Field	16.78		16.56		16.44		16.78	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.087		<0.05		0.0335	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00216	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.196	*	0.408		0.264		0.0664	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0124	J	0.0173		0.252		1.23	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	20.2		15.7		29.9		62.3	
7440-47-3	Chromium	т	mg/L	6020	0.0165		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000566	J	0.004		<0.001		0.000308	J
7440-50-8	Copper	Т	mg/L	6020	0.00208		0.00211		0.000802	J	0.000594	J
7439-89-6	Iron	Т	mg/L	6020	0.718		0.699		<0.1		0.0607	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	9.4		7.24	В	13.6	В	23.4	В
7439-96-5	Manganese	Т	mg/L	6020	0.00266	J	0.0206		0.00104	J	0.00126	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-524	14	8004-48	20	8004-48	18	8004-48	808
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.00159		0.000283	J	<0.001		0.000433	BJ
7440-02-0	Nickel	т	mg/L	6020	0.0406		0.00622		0.00421		0.00243	
7440-09-7	Potassium	т	mg/L	6020	0.91		0.542		3.04		2.39	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	54.2		55.3		48.5		61.7	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.000107	BJ	<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		0.00484	BJ	0.00375	BJ	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		0.00591	BJ	0.004	BJ	0.00396	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number		8000-5244	4	8004-482	20	8004-48	318	8004-48	308		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00073	J	0.00066	J	0.00285	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-4820)	8004-481	18	8004-480	08
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.000188		<0.0000201		<0.0000201		<0.0000205	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0956		<0.0946		<0.0955		<0.0959	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0956		<0.0946		<0.0955		<0.0959	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0956		<0.0946		<0.0955		<0.0959	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0956		<0.0946		<0.0955		<0.0959	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0956		<0.0946		<0.0955		<0.0959	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0956		<0.0946		<0.0955		<0.0959	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	L, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0956		<0.0946		<0.0955		<0.0959	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0956		<0.0946		<0.0955		<0.0959	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0956		<0.0946		<0.0955		<0.0959	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.779	*	-0.352	*	-4.83	*	-1.51	*
12587-47-2	Gross Beta	т	pCi/L	9310	-2.64	*	14.3	*	51.8	*	46.6	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.00612	*	-0.123	*	0.833	*	0.268	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.501	*	0.993	*	0.534	*	3.83	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	12.8	*	18.6	*	72.3	*	83.4	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.259	*	-0.169	*	1.05	*	0.173	*
10028-17-8	Tritium	т	pCi/L	906.0	-64.6	*	-21.7	*	-8.64	*	54.8	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	22		20.7		20.7		23.3	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5	*	<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.02	J	1.36	J	0.95	J	1.2	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00936	J	0.0306		0.00478	J	0.00646	J
		\perp										

C-14

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	310	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g., M	1 W−1	L, MW-2, etc	:.)	373		384		385		386	
Sample Sequence	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/12/2020 0	9:14	10/13/2020	08:34	10/13/2020	0 09:16	10/13/2020 (09:53
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	cility Sample ID Number (if applicable)					-21	MW384S	G1-21	MW385S0	G1-21	MW386SG	1-21
Laboratory Sam	poratory Sample ID Number (if applicable)					3	524399	001	524399	003	5243990	07
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Anal					0	10/19/2	020	10/16/20	020	10/16/202	20
Gradient with	respect to Monitored Unit (UP, DC	NWC	, SIDE, UNKN	IOWN)	DOWN		SIDE	Ξ	SIDE	Ξ	SIDE	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.53		0.291	*	0.298	*	0.161	*J
16887-00-6	Chloride(s)	Т	mg/L	9056	38.3		24.1		24.8		12.1	
16984-48-8	Fluoride	Т	mg/L	9056	0.206		0.173		0.174		0.633	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.772		0.806	*	0.856	*	<0.1	*
14808-79-8	Sulfate	Т	mg/L	9056	157		21.1		23.5		46.6	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.83		30.18		30.19		30.21	
S0145	Specific Conductance	Т	μ M H0/cm	Field	841		425		476		562	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-1	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	325.72		324.86		324.88		344.24	
N238	Dissolved Oxygen	Т	mg/L	Field	1.77		3.25		1.73		0.87	
S0266	Total Dissolved Solids	Т	mg/L	160.1	529		217		219		334	
s0296	рН	Т	Units	Field	6.17		6.12		6.3		6.67	
NS215	Eh	Т	mV	Field	350		383		378		360	
s0907	Temperature	т	°C	Field	16.83		15.61		16		16.06	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00204	J	<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.0332		0.23		0.338		0.164	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.85		0.0678		0.0978		0.00822	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	70.1		25.2		30		20.8	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.000542	J	<0.001		0.000542	BJ	<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000465	J	0.000508	BJ	0.000467	BJ	0.000767	BJ
7439-89-6	Iron	Т	mg/L	6020	0.0698	J	0.0472	J	<0.1		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	28	В	11.1		13.3		9.51	
7439-96-5	Manganese	Т	mg/L	6020	0.0331		0.00134	J	0.00332	J	0.304	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	0.000288	BJ	0.000244	BJ	0.00029	BJ	0.000682	BJ
7440-02-0	Nickel	т	mg/L	6020	0.00382		0.00204	В	0.00299	В	0.00272	В
7440-09-7	Potassium	т	mg/L	6020	3.03		1.61		1.85		0.291	J
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	62.4		47.6		49.3		85.2	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	T	mg/L	6020	0.000089	J	<0.0002		0.000116	J	0.000103	J
7440-62-2	Vanadium	Т	mg/L	6020	0.00378	J	<0.02		<0.02		0.00356	J
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		0.00337	J	0.00354	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-48	310	8004-48	304
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00428		0.00066	J	0.00058	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-479	2	8004-4809)	8004-481	10	8004-480)4		
Facility's Loc	cal Well or Spring Number (e.g., N	4W −1	., MW-2, et	.c.)	373		384		385		386	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000204		<0.0000206		<0.0000207		<0.0000202	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0963		<0.0959		<0.0961		<0.0965	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0963		<0.0959		<0.0961		<0.0965	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0963		<0.0959		<0.0961		<0.0965	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0963		<0.0959		<0.0961		<0.0965	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0963		<0.0959		<0.0961		<0.0965	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0963		<0.0959		<0.0961		<0.0965	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809		8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0963		<0.0959		<0.0961		<0.0965	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0963		<0.0959		<0.0961		<0.0965	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0963		<0.0959		<0.0961		<0.0965	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.443	*	0.45	*	4.19	*	1.82	*
12587-47-2	Gross Beta	Т	pCi/L	9310	5.99	*	26.3	*	33.4	*	2.2	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.49	*	0.18	*	0.522	*	0.723	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.352	*	0.797	*	1.06	*	0.174	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	19.2	*	36.9	*	56.5	*	-2.18	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.268	*	-0.0316	*	1.02	*	0.196	*
10028-17-8	Tritium	т	pCi/L	906.0	14.4	*	7.43	*	114	*	31.8	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	25.9		<20	*	12.6	*J	12.6	*J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	т	mg/L	9060	1.27	J	1.05	J	1.17	J	3.56	
s0586	Total Organic Halides	т	mg/L	9020	0.00956	J	0.00598	J	0.00932	J	0.0947	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	316	8004-09	981	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	387		388		389		390	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/13/2020 0	7:15	10/13/2020	07:55	NA		10/13/2020 ()6:22
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	ility Sample ID Number (if applicable)					-21	MW388S	G1-21	NA		MW390SG1	-21
Laboratory Sa	mple ID Number (if applicable)				52439900	9	524399	011	NA		52439901	13
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis.	10/16/202	0	10/16/2	020	NA		10/16/202	20
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	i
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.512	*	0.416	*		*	0.412	*
16887-00-6	Chloride(s)	т	mg/L	9056	40.4		32.7			*	40.3	
16984-48-8	Fluoride	т	mg/L	9056	0.679		0.205			*	0.296	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.06	*	0.917	*		*	2.08	*
14808-79-8	Sulfate	т	mg/L	9056	34.4		18.3			*	41.9	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.16		30.18			*	30.13	
S0145	Specific Conductance	т	μ MH 0/cm	Field	597		401			*	669	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None
For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	324.92		324.86			*	325.11	
N238	Dissolved Oxygen	т	mg/L	Field	3.2		2.85			*	3.03	
s0266	Total Dissolved Solids	Т	mg/L	160.1	311		194			*	376	
s0296	рн	т	Units	Field	6.28		6.11			*	6.27	
NS215	Eh	т	mV	Field	370		378			*	393	
s0907	Temperature	т	°C	Field	15.61		16.28			*	14.06	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05			*	0.0875	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00341	J	<0.005			*	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.165		0.149			*	0.225	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0359		0.0253			*	0.0155	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	44.1		24.9			*	32.1	
7440-47-3	Chromium	т	mg/L	6020	0.0128		<0.01			*	0.00482	J
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*	0.000501	BJ
7440-50-8	Copper	т	mg/L	6020	0.00048	BJ	0.000387	BJ		*	0.00155	BJ
7439-89-6	Iron	т	mg/L	6020	0.136		0.0354	J		*	0.267	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	0.000527	J
7439-95-4	Magnesium	Т	mg/L	6020	19.6		11.4			*	14.2	
7439-96-5	Manganese	Т	mg/L	6020	0.0146		0.00248	J		*	0.00451	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-481	1
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001			*	0.00087	BJ
7440-02-0	Nickel	т	mg/L	6020	0.00249	В	0.0027	В		*	0.00788	В
7440-09-7	Potassium	т	mg/L	6020	1.99		2.21			*	0.419	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	55.5		43.2			*	89.9	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.000237	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02			*	0.00357	J
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02			*	0.00482	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-48	312	8004-481	11
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00088	J	0.0006	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4816	3	8004-48	12	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., 1	1W −1	L, MW-2, et	cc.)	387		388		389		390	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000202		<0.0000203			*	<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0973		<0.0948			*	<0.1	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0973		<0.0948			*	<0.1	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0973		<0.0948			*	<0.1	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0973		<0.0948			*	<0.1	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0973		<0.0948			*	<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0973		<0.0948			*	<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816		8004-481	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0973		<0.0948			*	<0.1	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0973		<0.0948			*	<0.1	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0973		<0.0948			*	<0.1	
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.42	*	2.15	*		*	4.93	*
12587-47-2	Gross Beta	т	pCi/L	9310	207	*	11.5	*		*	38.4	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.241	*	0.0326	*		*	0.516	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.35	*	-0.21	*		*	-1.96	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	321	*	27.7	*		*	60.7	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.902	*	0.226	*		*	0.257	*
10028-17-8	Tritium	Т	pCi/L	906.0	34.7	*	47.1	*		*	72.1	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20	*	<20	*		*	12.6	*J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*		*	<0.5	*
S0268	Total Organic Carbon	т	mg/L	9060	1.21	J	1.35	J		*	2.5	
s0586	Total Organic Halides	Т	mg/L	9020	0.00552	J	0.011			*	0.0207	
		1										<u> </u>
												—

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4805	5	8004-48	306	8004-48	307	8004-480)2
Facility's Loc	cal Well or Spring Number (e.g., M	/W−1	., MW-2, etc	.)	391		392		393		394	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/14/2020 1	0:27	10/14/2020	11:09	10/14/2020	11:46	10/22/2020 (07:15
Duplicate ("Y	Duplicate ("Y" or "N") ²					N		N			N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Samp	Facility Sample ID Number (if applicable)					-21	MW392S	G1-21	MW393S0	31-21	MW394SG1	-21R
Laboratory San	Laboratory Sample ID Number (if applicable)					1	524419	013	5246020	001	5251860	01
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/17/202	0	10/17/2020		10/21/2020		10/27/202	20
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	OWN)	DOWN		DOWN		DOWN		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.577		0.556		0.147	J	0.557	
16887-00-6	Chloride(s)	т	mg/L	9056	42.5		42.4		12.1		41.6	
16984-48-8	Fluoride	т	mg/L	9056	0.175		0.2		0.178		0.164	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.5		1.02		<0.1		1.35	
14808-79-8	Sulfate	т	mg/L	9056	15.7		15.4		14.3		11.3	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.05		30.03		30.03		30.11	
S0145	0145 Specific Conductance T µMH0/cm Field				401		383		394		375	_

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480)5	8004-480	6	8004-4807	,	8004-4802	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.14		325.04		340.55		325.39	
N238	Dissolved Oxygen	т	mg/L	Field	3.77		2.3		0.8		3.85	
s0266	Total Dissolved Solids	т	mg/L	160.1	200		211		237		154	
s0296	Н	т	Units	Field	6.11		6.12		6.19		5.95	
NS215	Eh	Т	mV	Field	404		408		282		396	
s0907	Temperature	т	°C	Field	16.17		16.06		16.22		15.22	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0196	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00295	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.175	*	0.22	*	0.134		0.243	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0568		0.0257		0.0184		0.0212	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	26.3		26.8		12.5		27.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000383	J	0.000478	J	<0.002		0.000478	J
7439-89-6	Iron	т	mg/L	6020	0.0504	J	0.091	J	1.66		0.0569	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.8		11.6		3.72	В	11.8	
7439-96-5	Manganese	т	mg/L	6020	0.00151	J	0.0124		0.0606		0.00231	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	05	8004-48	06	8004-480	07	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000285	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.00169	J	0.00334		0.0022		0.00872	
7440-09-7	Potassium	т	mg/L	6020	1.55		1.96		0.391		1.32	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	32.3		29.1		77.2		35.4	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		0.00439	J	<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		0.00653	J	0.00431	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	307	8004-48	302
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	0.00048	J	0.00093	J	<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00953		0.014		<0.001		0.00335	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	3	8004-480)7	8004-480	02
Facility's Loc	al Well or Spring Number (e.g., M	1 ₩−1	1, MW-2, et	cc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.000019		<0.0000192		<0.0000206		<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0964		<0.0974		<0.0951		<0.1	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0964		<0.0974		<0.0951		<0.1	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0964		<0.0974		<0.0951	_	<0.1	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0964		<0.0974		<0.0951		<0.1	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0964		<0.0974		<0.0951		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0964		<0.0974		<0.0951		<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-4805		8004-4806	;	8004-480	7	8004-480)2		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0964		<0.0974		<0.0951		<0.1	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0964		<0.0974		<0.0951		<0.1	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0964		<0.0974		<0.0951		<0.1	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.751	*	1.91	*	1.35	*	-1.27	*
12587-47-2	Gross Beta	Т	pCi/L	9310	-4.42	*	-0.0792	*	-4.85	*	10.9	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.134	*	0.744	*	0.523	*	0.259	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.615	*	0.781	*	2.46	*	0.562	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	6.89	*	11.3	*	-6.67	*	1.28	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.24	*	-0.315	*	-0.331	*	0.515	*
10028-17-8	Tritium	Т	pCi/L	906.0	29	*	-89.6	*	6.45	*	-72	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	17	J	22		27		46.4	*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	0.885	J	0.92	J	2.44		0.961	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0128		0.0245		0.0125		0.012	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480	1	8004-48	303	8004-48	317	0000-0000	0
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	395		396		397		E. BLANK	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		E	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/22/2020 0	8:06	10/22/2020 08:44		10/22/2020	09:28	10/13/2020	05:40
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N	N			N	
Facility Samp	Facility Sample ID Number (if applicable)						MW396SG	31-21R	MW397SG	1-21R	RI1SG1-21	1
Laboratory San	Laboratory Sample ID Number (if applicable)					3	525186	005	5251860	007	524399016	ò
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis.	10/27/202	0	10/27/2020		10/27/2020		10/17/2020)
Gradient with	respect to Monitored Unit (UP, DC	OWN, SIDE, UNKNOWN)			UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.479		0.857		0.404			*
16887-00-6	Chloride(s)	т	mg/L	9056	37.3		52.6		33.3			*
16984-48-8	Fluoride	т	mg/L	9056	0.121		0.578		0.232			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.56		<1		1.01			*
14808-79-8	Sulfate	т	mg/L	9056	11.7		25.3		11.1			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.12		30.12		30.13			*
S0145	Specific Conductance	т	μ MH 0/cm	Field	358		708		324			*

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	,	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.9		368.12		325.33			*
N238	Dissolved Oxygen	т	mg/L	Field	4.2		2.03		3.4			*
s0266	Total Dissolved Solids	т	mg/L	160.1	150		340		133			*
s0296	рН	т	Units	Field	6.1		6.38		6.2			*
NS215	Eh	Т	mV	Field	354		204		190			*
s0907	Temperature	т	°C	Field	15.89		16.5		16.61			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0374	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00374	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.245		0.435		0.145		<0.004	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0213		0.00831	J	0.00831	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	25.7		36		19.8		<0.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00312		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00055	J	0.00168	J	0.000375	J	0.000441	BJ
7439-89-6	Iron	т	mg/L	6020	<0.1		3.17		0.0756	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.1		16.4		8.61		<0.03	
7439-96-5	Manganese	т	mg/L	6020	<0.005		0.601		0.0028	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	1K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000524	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.00433		0.00308		0.00577		<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.61		0.874		1.9		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	31.7		105		36.8		<0.25	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		0.00332	J	<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None
For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	03	8004-48	317	0000-00	000
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00227		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., N	1W −1	L, MW-2, et	cc.)	395		396		397		E. BLAN	ΙK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000203		<0.0000202		<0.0000206		<0.0000202	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0941		<0.0946		<0.095		<0.0986	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0941		<0.0946		<0.095		<0.0986	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0941		<0.0946		<0.095		<0.0986	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0941		<0.0946		<0.095		<0.0986	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0941		<0.0946		<0.095		<0.0986	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0941		<0.0946		<0.095		<0.0986	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803	}	8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0941		<0.0946		<0.095		<0.0986	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0941		<0.0946		<0.095		<0.0986	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0941		<0.0946		<0.095		<0.0986	
12587-46-1	Gross Alpha	т	pCi/L	9310	-2.02	*	-0.145	*	-0.225	*	-0.475	*
12587-47-2	Gross Beta	Т	pCi/L	9310	9.97	*	2.49	*	9.56	*	-2.94	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.414	*	0.552	*	0.189	*	-0.0686	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.61	*	-3.27	*	3.27	*	4.93	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-1.04	*	-12.9	*	8.46	*	7.03	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.241	*	2.13	*	0.314	*	-0.562	*
10028-17-8	Tritium	Т	pCi/L	906.0	-169	*	-114	*	-50.7	*	22.3	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	20.7	*	31	*	36.1	*		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	0.747	*	<0.5	*	<0.5	*
S0268	Total Organic Carbon	Т	mg/L	9060	0.865	J	4.78		0.821	J		*
S0586	Total Organic Halides	Т	mg/L	9020	0.00788	J	0.0367		0.0062	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000	0
Facility's Loc	al Well or Spring Number (e.g., N	/W−1	l, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLAN	(2	T. BLANK	3
Sample Sequenc	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) ∈	thod, or (E)	quipment	F		Т		Т		Т	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		10/13/2020 (09:55	10/13/2020	05:30	10/14/2020	05:30	10/22/2020 ()5:40
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)		FB1SG1-	21	TB1SG1	-21	TB2SG1-	21	TB3SG1-	21		
Laboratory Sam	oratory Sample ID Number (if applicable)						5243990	17	5244190	15	52518600)9
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					20	10/17/20	20	10/17/20	20	10/27/202	20
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	μ MHO/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	F. BLANI	Κ	T. BLANK	(1	T. BLANK	2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°c	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.004			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	T	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	<0.002			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	Т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*		*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	<0.02			*		*		*
7440-66-6	Zinc	Т	mg/L	6020	<0.02			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	0.0118		<0.005		<0.005		0.00292	J
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-000	00	0000-00	000	0000-00	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	F. BLAN	(T. BLAN	(1	T. BLAN	√1K 2	T. BLAN	NK 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	1, MW-2, et	cc.)	F. BLAN	(T. BLANK	1	T. BLAN	< 2	T. BLANI	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000202		<0.0000201		<0.0000187		<0.0000206	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0996			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0996			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0996			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0996			*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0996			*		*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.0996			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000	1	0000-0000		0000-0000		0000-0000	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	F. BLANK		T. BLANK 1		T. BLANK 2		T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0996			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0996			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0996			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.21	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	0.762	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.383	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	4.54	*		*		*		*
14133-76-7	Technetium-99	T	pCi/L	Tc-02-RC	-2.19	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.194	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0	93.7	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5	*		*		*		*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	4						
Facility's Lo	ocal Well or Spring Number (e.g., M	w−1	, MW-2, etc	:.)	386							
Sample Sequen	ice #				2						/	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA							
Sample Date a	and Time (Month/Day/Year hour: minu	tes)		10/13/2020 0	9:53	`	$\overline{\ \ }$				
Duplicate ("Y	" or "N") ²				Υ							
Split ("Y" or	· "N") ³				N							
Facility Samp	ility Sample ID Number (if applicable)					1-21				/		
Laboratory Sa	oratory Sample ID Number (if applicable))5						
Date of Analy	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					0						
Gradient with	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysi adient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN				SIDE				\setminus	,		
CAS RN ⁴	dient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN				DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.167	*J						
16887-00-6	Chloride(s)	Т	mg/L	9056	12.3							
16984-48-8	Fluoride	Т	mg/L	9056	0.63			/				
s0595	Nitrate & Nitrite	Т	mg/L	9056	<0.1	*						
14808-79-8	Sulfate	Т	mg/L	9056	46.4							
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*						
S0145	Specific Conductance	Т	μ MH 0/cm	Field		*						

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

			, 00	_ ,								
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	4						
Facility's Lo	ocal Well or Spring Number (e.g., M	W-1, I	MW-2, BLANK-	F, etc.)	386							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*						
N238	Dissolved Oxygen	Т	mg/L	Field		*						
s0266	Total Dissolved Solids	т	mg/L	160.1	334							
s0296	рн	т	Units	Field		*						
NS215	Eh	т	mV	Field		*				/	,	
s0907	Temperature	Т	°C	Field		*				/		
7429-90-5	Aluminum	T	mg/L	6020	<0.05					/		
7440-36-0	Antimony	T	mg/L	6020	<0.003							
7440-38-2	Arsenic	Т	mg/L	6020	<0.005				X			
7440-39-3	Barium	T	mg/L	6020	0.172							
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005							
7440-42-8	Boron	Т	mg/L	6020	0.00868	J						
7440-43-9	Cadmium	T	mg/L	6020	<0.001				/			
7440-70-2	Calcium	т	mg/L	6020	21.5							
7440-47-3	Chromium	Т	mg/L	6020	<0.01							
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		,	/				
7440-50-8	Copper	Т	mg/L	6020	0.00083	BJ						
7439-89-6	Iron	Т	mg/L	6020	<0.1							
7439-92-1	Lead	T	mg/L	6020	<0.002							
7439-95-4	Magnesium	Т	mg/L	6020	9.67							
7439-96-5	Manganese	т	mg/L	6020	0.321							
7439-97-6	Mercury	Т	mg/L	7470	<0.0002							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	04	\overline{N}					
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	386							
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	0.000727	BJ						
7440-02-0	Nickel	Т	mg/L	6020	0.00272	В						
7440-09-7	Potassium	Т	mg/L	6020	0.288	J						
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			,				
7782-49-2	Selenium	Т	mg/L	6020	<0.005							
7440-22-4	Silver	T	mg/L	6020	<0.001							
7440-23-5	Sodium	T	mg/L	6020	91							
7440-25-7	Tantalum	T	mg/L	6020	<0.005	*						
7440-28-0	Thallium	т	mg/L	6020	<0.002				X			
7440-61-1	Uranium	Т	mg/L	6020	0.000106	J						
7440-62-2	Vanadium	Т	mg/L	6020	0.00332	J				\setminus		
7440-66-6	Zinc	т	mg/L	6020	0.00488	J						
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005							
67-64-1	Acetone	т	mg/L	8260	<0.005				/			
107-02-8	Acrolein	т	mg/L	8260	<0.005							
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005							
71-43-2	Benzene	т	mg/L	8260	<0.001							
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001							
1330-20-7	Xylenes	т	mg/L	8260	<0.003							
100-42-5	Styrene	Т	mg/L	8260	<0.001							
108-88-3	Toluene	Т	mg/L	8260	<0.001							
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4804	4						
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	l, MW-2, et	cc.)	386							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		1					
74-83-9	Methyl bromide	т	mg/L	8260	<0.001							
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005							
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005					/	/	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005							
75-00-3	Chloroethane	Т	mg/L	8260	<0.001							
67-66-3	Chloroform	Т	mg/L	8260	<0.001							
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001				X			
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001				/ \			
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001							
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001							
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001							
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001							
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001							
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001							
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001							
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number	8004-4804	4						/			
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)												
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQI	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	т	mg/L	8260	<0.005							
74-88-4	Iodomethane	т	mg/L	8260	<0.005							
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001							
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005					/		
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000204							
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				X			
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001							
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001							
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001							
1336-36-3	PCB,Total	т	ug/L	8082	<0.0961							
12674-11-2	PCB-1016	т	ug/L	8082	<0.0961							
11104-28-2	PCB-1221	т	ug/L	8082	<0.0961							
11141-16-5	PCB-1232	т	ug/L	8082	<0.0961							
53469-21-9	PCB-1242	т	ug/L	8082	<0.0961							
12672-29-6	PCB-1248	т	ug/L	8082	<0.0961							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

DWITTER SIETE I				(00110.							
, Facility Well/Spring Number				8004-4804							
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)											
CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
PCB-1254	т	ug/L	8082	<0.0961							
PCB-1260	т	ug/L	8082	<0.0961							
PCB-1268	т	ug/L	8082	<0.0961							
Gross Alpha	т	pCi/L	9310	3.17	*					/	
Gross Beta	Т	pCi/L	9310	-4.23	*						
Iodine-131	Т	pCi/L			*						
Radium-226	Т	pCi/L	AN-1418	0.543	*				1		
Strontium-90	Т	pCi/L	905.0	-0.487	*			V			
Technetium-99	Т	pCi/L	Tc-02-RC	0.784	*						
Thorium-230	т	pCi/L	Th-01-RC	-0.0642	*						
Tritium	Т	pCi/L	906.0	134	*						
Chemical Oxygen Demand	Т	mg/L	410.4	<20	*			/			
Cyanide	Т	mg/L	9012	<0.2			/				
Iodide	т	mg/L	300.0	<0.5	*						
Total Organic Carbon	Т	mg/L	9060	3.59		/	/				
Total Organic Halides	т	mg/L	9020	0.0903							
	CONSTITUENT CONSTITUENT PCB-1254 PCB-1260 PCB-1268 Gross Alpha Gross Beta Iodine-131 Radium-226 Strontium-90 Technetium-99 Thorium-230 Tritium Chemical Oxygen Demand Cyanide Iodide Total Organic Carbon	CONSTITUENT CONSTITUENT CONSTITUENT PCB-1254 PCB-1260 PCB-1268 Gross Alpha Gross Beta Todine-131 Radium-226 Strontium-90 Technetium-99 Thorium-230 Tritium Chemical Oxygen Demand Todide Todide Todide Todide Todide Total Organic Carbon T	CONSTITUENT CONSTITUENT CONSTITUENT T	Facility Well/Spring Number Cal Well or Spring Number (e.g., MW-1, MW-2, etc.) CONSTITUENT	South Spring Number South So	Facility Well/Spring Number 8004-4804 Sal Well or Spring Number (e.g., MW-1, MW-2, etc.) 386	Pacility Well/Spring Number Racility Well/Spring Number (e.g., MW-1, MW-2, etc.) 386	Facility Well/Spring Number 8004-4804	Recipion Number Recipion Recipion	Real Heat Spring Number South South	Reality Well/Spring Number 8004-4804 386

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

	Facility Sample ID	Constituent	Flag	Description
8000-5201 MW220 MV	V220SG1-21	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.87. Rad error is 3.87.
		Gross beta		TPU is 7.42. Rad error is 7.08.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.614. Rad error is 0.614.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.25. Rad error is 2.25.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.1. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.34. Rad error is 1.34.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 121. Rad error is 120.
		lodide	W	Post-digestion spike recovery out of control limits.
8000-5202 MW221 MV	V221SG1-21	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.96. Rad error is 4.91.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.85. Rad error is 4.8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.435. Rad error is 0.435.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.58. Rad error is 1.58.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.9. Rad error is 0.896.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 119. Rad error is 118.
		lodide	W	Post-digestion spike recovery out of control limits.
8000-5242 MW222 MV	V222SG1-21	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.32. Rad error is 3.31.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.17. Rad error is 6.11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.89. Rad error is 0.887.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.42. Rad error is 3.42.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.739. Rad error is 0.737.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 129. Rad error is 129.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Faci Point Sam	lity ple ID	Constituent	Flag	Description
8000-5243 MW223 MW223	3SG1-21	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 5.79. Rad error is 5.76.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 5.38. Rad error is 5.38.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.53. Rad error is 0.53.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 3.68. Rad error is 3.68.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 12.3. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.22. Rad error is 1.21.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 128. Rad error is 128.
		Iodide	W	Post-digestion spike recovery out of control limits.
3000-5244 MW224 MW224	4SG1-21	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 5.5. Rad error is 5.49.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 5.47. Rad error is 5.47.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.542. Rad error is 0.542.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.08. Rad error is 2.08.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 11.8. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.916. Rad error is 0.912.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 102. Rad error is 102.
		Iodide	W	Post-digestion spike recovery out of control limits.
3004-4820 MW369 MW369	9UG1-21	Bromide	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.5. Rad error is 2.5.
		Gross beta		TPU is 7.62. Rad error is 7.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.302. Rad error is 0.302.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.19. Rad error is 2.18.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 13. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.813. Rad error is 0.812.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 106. Rad error is 106.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4818 MW37	0 MW370UG1-21	Bromide	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 3.74. Rad error is 3.74.
		Gross beta		TPU is 14. Rad error is 11.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.826. Rad error is 0.824.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 2.55. Rad error is 2.55.
		Technetium-99		TPU is 16.2. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 1.24. Rad error is 1.23.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. This 107. Rad error is 107.
004-4808 MW37	2 MW372UG1-21	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 2.35. Rad error is 2.34.
	Gross beta		TPU is 12.6. Rad error is 10.1.	
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 0.521. Rad error is 0.521.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.51. Rad error is 3.46.
		Technetium-99		TPU is 16.8. Rad error is 14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.962. Rad error is 0.959.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 117. Rad error is 117.
004-4792 MW37	3 MW373UG1-21	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.93. Rad error is 3.93.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.32. Rad error is 6.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 0.67. Rad error is 0.669.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.96. Rad error is 1.96.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.9. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.15. Rad error is 1.15.
	Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 109. Rad error is 109.	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

	Facility Sample ID	Constituent	Flag	Description
004-4809 MW384 MW	V384SG1-21	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.26. Rad error is 5.26.
		Gross beta		TPU is 10.7. Rad error is 9.82.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.536. Rad error is 0.536.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.05. Rad error is 2.04.
		Technetium-99		TPU is 13.2. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.799. Rad error is 0.797.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 106. Rad error is 106.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
		lodide	W	Post-digestion spike recovery out of control limits.
004-4810 MW385 MW	V385SG1-21	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.65. Rad error is 5.61.
		Gross beta		TPU is 10.6. Rad error is 8.96.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.655. Rad error is 0.655.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.15. Rad error is 2.15.
		Technetium-99		TPU is 14.1. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.42. Rad error is 1.4.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 129. Rad error is 127.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW38	36 MW386SG1-21	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.9. Rad error is 5.89.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.57. Rad error is 4.55.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.771. Rad error is 0.77.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.62. Rad error is 1.62.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.18. Rad error is 1.17.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 114. Rad error is 114.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
		lodide	W	Post-digestion spike recovery out of control limits.
04-4815 MW38	37 MW387SG1-21	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.51. Rad error is 6.51.
		Gross beta		TPU is 37.9. Rad error is 17.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.546. Rad error is 0.546.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.83. Rad error is 1.82.
		Technetium-99		TPU is 39.6. Rad error is 17.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.67. Rad error is 0.669.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 113. Rad error is 113.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4816 MW388 MW388SG1-21		Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 5.22. Rad error is 5.21.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 8.36. Rad error is 8.14.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.574. Rad error is 0.574.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 2.18. Rad error is 2.18.
		Technetium-99		TPU is 12.4. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.931. Rad error is 0.927.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 115. Rad error is 115.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample w collected.
		Temperature		During sampling, the well was dry; therefore, no sample w collected.
		Aluminum		During sampling, the well was dry; therefore, no sample w collected.
		Antimony		During sampling, the well was dry; therefore, no sample w collected.
		Arsenic		During sampling, the well was dry; therefore, no sample w collected.
		Barium		During sampling, the well was dry; therefore, no sample w collected.
		Beryllium		During sampling, the well was dry; therefore, no sample w collected.
		Boron		During sampling, the well was dry; therefore, no sample w collected.
		Cadmium		During sampling, the well was dry; therefore, no sample w collected.
		Calcium		During sampling, the well was dry; therefore, no sample w collected.
		Chromium		During sampling, the well was dry; therefore, no sample w collected.
		Cobalt		During sampling, the well was dry; therefore, no sample w collected.
		Copper		During sampling, the well was dry; therefore, no sample w collected.
		Iron		During sampling, the well was dry; therefore, no sample w collected.
		Lead		During sampling, the well was dry; therefore, no sample w collected.
		Magnesium		During sampling, the well was dry; therefore, no sample w collected.
		Manganese		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Mercury		During sampling, the well was dry; therefore, no sample wa collected.
		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample wa collected.
		Silver		During sampling, the well was dry; therefore, no sample wa collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample wa collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well was dry; therefore, no sample wa collected.
		Zinc		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample wa collected.
		Acetone		During sampling, the well was dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well was dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample wa collected.
		Benzene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well was dry; therefore, no sample wa collected.
		Styrene		During sampling, the well was dry; therefore, no sample was collected.
		Toluene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample we collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Carbon disulfide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		Chloroform		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample w collected.
		Iodomethane		During sampling, the well was dry; therefore, no sample w collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample w collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample w collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample w collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample w collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well was dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well was dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well was dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample wa collected.
		Tritium		During sampling, the well was dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well was dry; therefore, no sample wa collected.
		lodide		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4811 MW390 MW390SG1-21		Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.33. Rad error is 7.28.
		Gross beta		TPU is 11.2. Rad error is 9.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.671. Rad error is 0.67.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.33. Rad error is 3.33.
		Technetium-99		TPU is 14.5. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.929. Rad error is 0.926.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 123. Rad error is 122.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
		lodide	W	Post-digestion spike recovery out of control limits.
004-4805 MW391 M	IW391SG1-21	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.35. Rad error is 4.34.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.78. Rad error is 6.78.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.424. Rad error is 0.424.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.29. Rad error is 2.29.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.45. Rad error is 1.43.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 119. Rad error is 119.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

	cility mple ID	Constituent	Flag	Description
8004-4806 MW392 MW39	92SG1-21	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 4.09. Rad error is 4.08.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 3.99. Rad error is 3.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.794. Rad error is 0.792.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.18. Rad error is 2.17.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 11.8. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.498. Rad error is 0.497.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 111. Rad error is 111.
		lodide	W	Post-digestion spike recovery out of control limits.
3004-4807 MW393 MW3	93SG1-21	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 3.8. Rad error is 3.8.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 5.61. Rad error is 5.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.634. Rad error is 0.633.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.71. Rad error is 2.68.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 11.4. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.923. Rad error is 0.923.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 129. Rad error is 129.
		lodide	W	Post-digestion spike recovery out of control limits.
3004-4802 MW394 MW3	94SG1-21R	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.48. Rad error is 2.47.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 7.33. Rad error is 7.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.541. Rad error is 0.541.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.46. Rad error is 2.45.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 12.1. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.821. Rad error is 0.814.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 149. Rad error is 149.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4801 MW395 M	IW395SG1-21R	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 2.56. Rad error is 2.55.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 7.22. Rad error is 7.02.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.488. Rad error is 0.488.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.29. Rad error is 2.29.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 1.77. Rad error is 1.76.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 145. Rad error is 145.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
		lodide	W	Post-digestion spike recovery out of control limits.
8004-4803 MW396 M	W396SG1-21R	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 3.83. Rad error is 3.82.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 6.72. Rad error is 6.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.775. Rad error is 0.774.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.19. Rad error is 2.19.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 10.6. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.88. Rad error is 1.85.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 147. Rad error is 147.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
		lodide	W	Post-digestion spike recovery out of control limits.
3004-4817 MW397 M	W397SG1-21R	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 3.1. Rad error is 3.1.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 6.94. Rad error is 6.76.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 0.634. Rad error is 0.634.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 3.21. Rad error is 3.17.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.16. Rad error is 1.16.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 151. Rad error is 151.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG1-21	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.08. Rad error is 2.08.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.44. Rad error is 3.44.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.29. Rad error is 0.29.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.69. Rad error is 3.61.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.835. Rad error is 0.834.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 113. Rad error is 113.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide	W	Post-digestion spike recovery out of control limits.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG1-21	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 4.69. Rad error is 4.68.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 5.23. Rad error is 5.23.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.573. Rad error is 0.572.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 3.58. Rad error is 3.51.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 10.7. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 1. Rad error is 1.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 118. Rad error is 117.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide	W	Post-digestion spike recovery out of control limits.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG1-21	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG1-21	Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG1-21	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG1-21	Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG1-21	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

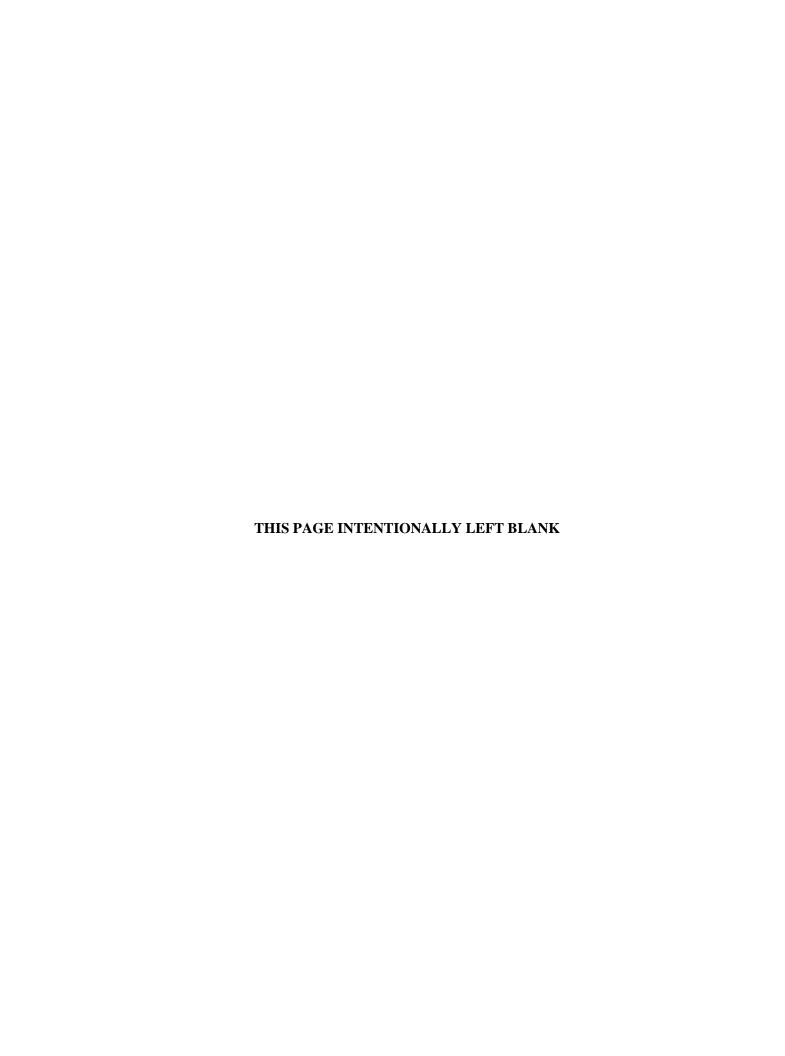
Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG1-21	Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045


Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4804 MW386	MW386DSG1-21	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.83. Rad error is 5.81.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.86. Rad error is 4.86.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.658. Rad error is 0.657.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.37. Rad error is 2.37.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.707. Rad error is 0.706.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 127. Rad error is 124.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
		Iodide	W	Post-digestion spike recovery out of control limits.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 4th CY 2020

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-980-008-982/1

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2020 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2020 data used to conduct the statistical analyses were collected in October 2020. The statistical analyses for this report first used data from the initial eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one compliance well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW3891*	TW	UCRS
MW390 ¹	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

¹NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: compliance or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

^{*}Well was dry this quarter and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the background wells (identified as "BG"), the compliance or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2020. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

-

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations. upper $TL = X + (K \times S)$

lower $TL = X - (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Aluminum Beta Activity Boron Bromide

Calcium Chemical Oxygen Demand (COD)

Chloride

cis-1,2-Dichloroethene

Cobalt

Conductivity

Copper

Dissolved Oxygen

Dissolved Solids

Iodide

Iron

Magnesium

Manganese

Molybdenum

Nickel

Oxidation-Reduction Potential

pH*

Potassium

Sodium

Sulfate

Technetium-99

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Vanadium

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	2	2	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	0	4	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	1	3	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	3	1	Yes
Conductivity	4	0	4	Yes
Copper	4	3	1	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Oxygen Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	3	1	Yes
Toulue	4	3	1	res

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	1	3	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	3	1	Yes
Nickel	4	0	4	Yes
Oxidation-Reduction Potential	4	0	4	Yes
PCB, Total	4	4	0	No
PCB-1016	4	4	0	No
PCB-1221	4	4	0	No
PCB-1232	4	4	0	No
PCB-1242	4	4	0	No
PCB-1248	4	4	0	No
PCB-1254	4	4	0	No
PCB-1260	4	4	0	No
PCB-1268	4	4	0	No
pН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	1	3	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	1	3	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	7	4	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	6	5	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	2	9	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	10	1	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	10	1	Yes
Conductivity	11	0	11	Yes
Copper	11	2	9	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Oxygen Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Iodide	istical lysis?
Iron 11 2 9 Ye Magnesium 11 0 11 Ye Manganese 11 9 2 Ye Methylene chloride 11 11 0 No Molybdenum 11 6 5 Ye Nickel 11 0 11 Ye Oxidation-Reduction Potential 11 0 11 Ye Oxidation-Reduction Potential 11 0 11 Ye PCB, Total 11 11 0 No PCB-1016 11 11 0 No PCB-1221 11 11 0 No PCB-1222 11 11 0 No PCB-1242 11 11 0 No PCB-1248 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No	lo_
Magnesium 11 0 11 Ye Manganese 11 9 2 Ye Methylene chloride 11 11 0 No Molybdenum 11 6 5 Ye Nickel 11 0 11 Ye Oxidation-Reduction Potential 11 0 11 Ye PCB, Total 11 11 0 No PCB-1016 11 11 0 No PCB-1221 11 11 0 No PCB-1222 11 11 0 No PCB-1232 11 11 0 No PCB-1242 11 11 0 No PCB-1248 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No PCB-1268 11 0 11 Ye Potass	lo_
Manganese 11 9 2 Ye Methylene chloride 11 11 0 No Molybdenum 11 6 5 Ye Nickel 11 0 11 Ye Oxidation-Reduction Potential 11 0 11 Ye PCB, Total 11 11 0 No PCB-1016 11 11 0 No PCB-1221 11 11 0 No PCB-1232 11 11 0 No PCB-1242 11 11 0 No PCB-1248 11 11 0 No PCB-1254 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No PCB-1268 11 11 0 No PCB-1268 11 0 11 Ye Potassi	es
Methylene chloride 11 11 0 No Molybdenum 11 6 5 Ye Nickel 11 0 11 Ye Oxidation-Reduction Potential 11 0 11 Ye PCB, Total 11 11 0 No PCB-1016 11 11 0 No PCB-1221 11 11 0 No PCB-1232 11 11 0 No PCB-1242 11 11 0 No PCB-1248 11 11 0 No PCB-1254 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 1 0 No PCB-1268	es
Molybdenum 11 6 5 Ye Nickel 11 0 11 Ye Oxidation-Reduction Potential 11 0 11 Ye PCB, Total 11 11 11 0 No PCB-1016 11 11 11 0 No PCB-1221 11 11 0 No PCB-1232 11 11 0 No PCB-1242 11 11 0 No PCB-1248 11 11 0 No PCB-1254 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No PCB-3268 11 11 0 No PCB-3268 11 0 11 Ye Potassium 11 0 11 Ye Rodium-226 11 11 0 No <	es
Nickel 11 0 11 Ye Oxidation-Reduction Potential 11 0 11 Ye PCB, Total 11 11 11 0 No PCB-1016 11 11 11 0 No PCB-1221 11 11 0 No PCB-1232 11 11 0 No PCB-1242 11 11 0 No PCB-1248 11 11 0 No PCB-1254 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No PCB-3268 11 0 No No PCB-3268 11 0 No No	<u>lo</u>
Oxidation-Reduction Potential 11 0 11 Ye PCB, Total 11 11 0 No PCB-1016 11 11 0 No PCB-1221 11 11 0 No PCB-1232 11 11 0 No PCB-1242 11 11 0 No PCB-1248 11 11 0 No PCB-1254 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No PCB-1268 11 11 0 No PCB-3268 11 11 0 No PCB-3268 11 11 0 No PCB-3268 11 0 11 Ye POdassium 11 0 11 Ye Podassium 11 0 No No Rhodium	es
PCB, Total 11 11 0 No PCB-1016 11 11 0 No PCB-1221 11 11 0 No PCB-1232 11 11 0 No PCB-1242 11 11 0 No PCB-1248 11 11 0 No PCB-1254 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No pH 11 0 11 Ye Potassium 11 0 11 Ye Radium-226 11 11 11 0 No Rhodium 11 11 11 0 No	es
PCB-1016 11 11 0 No PCB-1221 11 11 0 No PCB-1232 11 11 0 No PCB-1242 11 11 0 No PCB-1248 11 11 0 No PCB-1254 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No PCB-1268 11 0 11 Ye Potassium 11 0 11 Ye Radium-226 11 11 0 No Rhodium 11 11 11 0 No	es
PCB-1221 11 11 0 No PCB-1232 11 11 0 No PCB-1242 11 11 0 No PCB-1248 11 11 0 No PCB-1254 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No PH 11 0 11 Ye Potassium 11 0 11 Ye Radium-226 11 11 0 No Rhodium 11 11 11 0 No	lo
PCB-1232 11 11 0 No PCB-1242 11 11 0 No PCB-1248 11 11 0 No PCB-1254 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No pH 11 0 11 Ye Potassium 11 0 11 Ye Radium-226 11 11 0 No Rhodium 11 11 0 No	lo l
PCB-1242 11 11 0 No PCB-1248 11 11 0 No PCB-1254 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No pH 11 0 11 Ye Potassium 11 0 11 Ye Radium-226 11 11 0 No Rhodium 11 11 0 No	lo
PCB-1248 11 11 0 No PCB-1254 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No pH 11 0 11 Ye Potassium 11 0 11 Ye Radium-226 11 11 0 No Rhodium 11 11 0 No	lo
PCB-1254 11 11 0 No PCB-1260 11 11 0 No PCB-1268 11 11 0 No pH 11 0 11 Ye Potassium 11 0 11 Ye Radium-226 11 11 0 No Rhodium 11 11 11 0 No	lo .
PCB-1260 11 11 0 No PCB-1268 11 11 0 No pH 11 0 11 Ye Potassium 11 0 11 Ye Radium-226 11 11 0 No Rhodium 11 11 0 No	lo
PCB-1268 11 11 0 No pH 11 0 11 Ye Potassium 11 0 11 Ye Radium-226 11 11 0 No Rhodium 11 11 0 No	lo
pH 11 0 11 Ye Potassium 11 0 11 Ye Radium-226 11 11 0 No Rhodium 11 11 0 No	lo
Potassium 11 0 11 Ye Radium-226 11 11 0 No Rhodium 11 11 0 No	lo
Radium-226 11 11 0 No Rhodium 11 11 0 No	es
Rhodium 11 11 0 No	es
	lo
Sodium 11 0 11 Vo	lo_
Dominin 11 1 10 11 11 10	es
Styrene 11 11 0 No	lo
Sulfate 11 0 11 Ye	es
Tantalum 11 11 0 No	lo_
Technetium-99 11 8 3 Ye	es
Tetrachloroethene 11 11 0 No	<u>lo</u>
Thallium 11 11 0 No	lo_
Thorium-230 11 11 0 No	lo_
Toluene 11 11 0 No.	lo_
Total Organic Carbon (TOC) 11 0 11 Ye	es
Total Organic Halides (TOX) 11 2 9 Ye	es
trans-1,2-Dichloroethene 11 11 0 No	10
trans-1,3-Dichloropropene 11 11 0 No	10
<i>trans</i> -1,4-Dichloro-2-Butene 11 11 0 No	10
Trichloroethene 11 5 6 Ye	es
Trichlorofluoromethane 11 11 0 No	10
Vanadium 11 11 0 No	10
Vinyl Acetate 11 11 0 No	lo .
Zinc 11 9 2 Ye	es

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	6	1	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Beta activity	7	5	2	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	1	6	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	7	0	No
Conductivity	7	0	7	Yes
Copper	7	2	5	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	3	4	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Magnesium	7	0	7	Yes
Manganese	7	5	2	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	6	1	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	7	0	No
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	7	0	No
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	4	3	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	6	1	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	5	2	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. For the UCRS, URGA, and LRGA, the test was applied to 27, 28, and 28 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which include those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background upper tolerance limit (UTL) for oxidation-reduction potential and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW221: Oxidation-reduction potential	MW370: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW390: Oxidation-reduction potential, technetium-99	MW223: Oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW372: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW385: Oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW384: Sulfate, technetium-99	MW388: Oxidation-reduction potential, sulfate
	MW387: Beta activity, calcium, dissolved solids, magnesium, sulfate, technetium-99	MW392: Oxidation-reduction potential
	MW391: Oxidation-reduction potential	MW395: Oxidation-reduction potential
	MW394: Chemical oxygen demand (COD)	

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentrations in MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372 and MW387.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentrations in MW394.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentrations in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW221, MW223, and MW391.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW372.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW370.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, and MW395.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370 and MW385.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. For the UCRS, URGA, and LRGA, the test was applied to 2, 10, and 8 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW372: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW370: Beta activity, sulfate, technetium-99
MW387: Beta activity, calcium, dissolved solids, magnesium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
	MW388: Sulfate

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the technetium-99 concentration in one UCRS well (i.e., MW390) exceeded the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

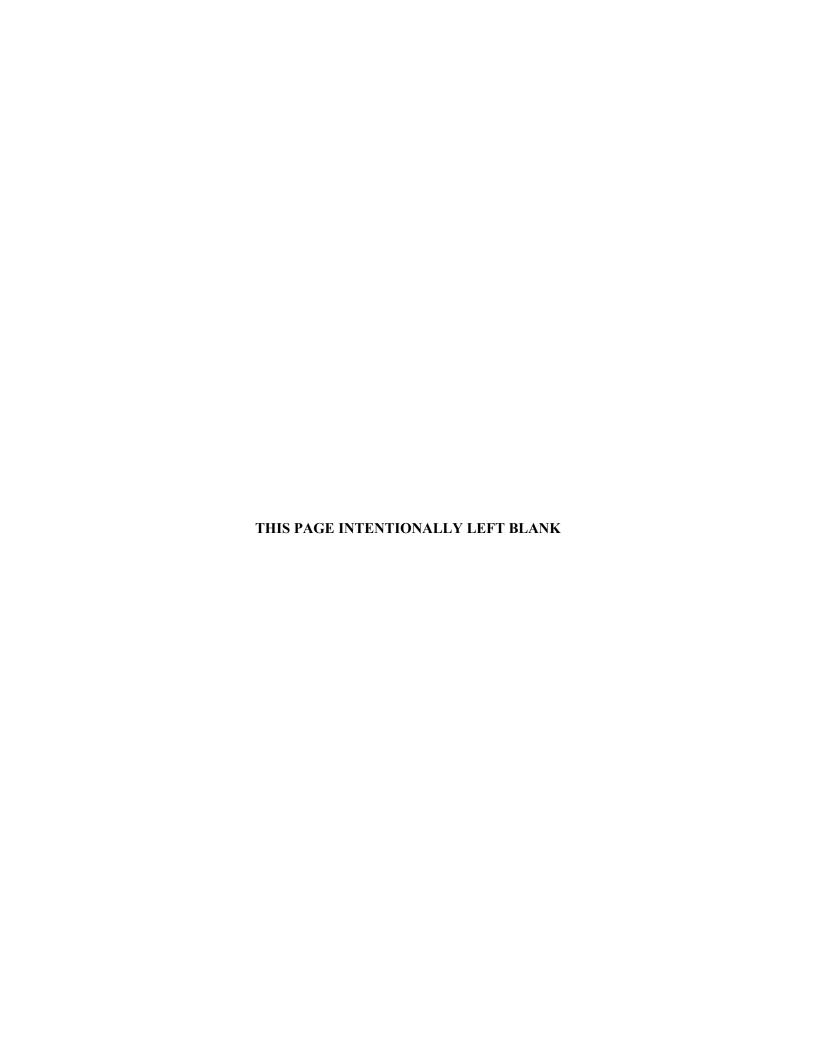
Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.38	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	6.71	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.53	MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.14	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand	Tolerance Interval	0.89	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Conductivity	Tolerance Interval	0.08	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.14	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.10	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.12	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.15	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.30	MW372, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.62	MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.


Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.44	MW370 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.15	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.06	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.19	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.15	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.18	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.07	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.63	MW370 and MW385 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

CV(1) = 0.567

K factor=** 3.188

TL(1) = 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259

S= 0.503

S = 0.182

CV(2) = -0.400

K factor=** 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.393 -0.9349/16/2002 0.2 -1.60910/16/2002 0.2 -1.6091/13/2003 0.501 -0.6914/8/2003 -1.6090.2 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/14/2004 0.668 -0.403

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A		
MW390	Downgradien	t Yes	0.0875	NO	-2.436	N/A		
MW393	Downgradien	t Yes	0.0196	NO	-3.932	N/A		
MW396	Upgradient	No	0.05	N/A	-2.996	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.833 CV(1) = 1.282

K factor=** 3.188

TL(1) = 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.034 **S**= 1.066

CV(2) = -1.031

K factor=** 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.00868	N/A	-4.747	NO		
MW390	Downgradien	t Yes	0.0155	N/A	-4.167	NO		
MW393	Downgradien	t Yes	0.0184	N/A	-3.995	NO		
MW396	Upgradient	Yes	0.00831	N/A	-4.790	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

CV(1)=0.236

K factor=** 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.301

S= 0.327 **S**= 0.252

CV(2) = 0.838

K factor**= 3.188

TL(2) = 1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.167	NO	-1.790	N/A		
MW390	Downgradien	t Yes	0.412	NO	-0.887	N/A		
MW393	Downgradien	t Yes	0.147	NO	-1.917	N/A		
MW396	Upgradient	Yes	0.857	NO	-0.154	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor**= 3.188

TL(1)= 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.711 S = 0.241

CV(2) = 0.065

K factor=** 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	20.8	NO	3.035	N/A	
MW390	Downgradien	t Yes	32.1	NO	3.469	N/A	
MW393	Downgradien	t Yes	12.5	NO	2.526	N/A	
MW396	Upgradient	Yes	36	NO	3.584	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744

CV(1) = 0.021

K factor**= 3.188

TL(1)= 37.747

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.566 S

S = 0.021

CV(2) = 0.006

K factor**= 3.188

TL(2)= 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	20	N/A	2.996	N/A	
MW390	Downgradien	t Yes	12.6	NO	2.534	N/A	
MW393	Downgradien	t Yes	27	NO	3.296	N/A	
MW396	Upgradient	Yes	31	NO	3.434	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **UCRS** Chloride

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

CV(1) = 0.052

K factor=** 3.188

TL(1)= 118.447

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.621 S = 0.053

CV(2) = 0.011

K factor=** 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	12.3	NO	2.510	N/A	
MW390	Downgradien	t Yes	40.3	NO	3.696	N/A	
MW393	Downgradien	t Yes	12.1	NO	2.493	N/A	
MW396	Upgradient	Yes	52.6	NO	3.963	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-8

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

CV(1) = 1.340

K factor=** 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X=-5.645 **S**= 1.339

39 CV(2) = -0.237

K factor=** 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

S = 0.011

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW390	Downgradient	t No	0.00050	1 N/A	-7.599	N/A	
MW393	Downgradient	t No	0.001	N/A	-6.908	N/A	
MW396	Upgradient	Yes	0.00312	N/A	-5.770	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison **Conductivity** UNITS: umho/cm **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor**= 3.188

TL(1)= 1265.579 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.822 S = 0.111 CV(2) = 0.016

K factor=** 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 784 6.664 9/30/2002 871 6.770 10/16/2002 868 6.766 1/13/2003 912 6.8164/8/2003 942 6.848 7/16/2003 910 6.813 10/14/2003 935 6.841 1/14/2004 1158 7.054

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	562	NO	6.332	N/A	
MW390	Downgradien	t Yes	669	NO	6.506	N/A	
MW393	Downgradien	t Yes	394	NO	5.976	N/A	
MW396	Upgradient	Yes	708	NO	6.562	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-10

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1) = 0.481

K factor=** 3.188

TL(1)= 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414

CV(2) = -0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

S = 0.014

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.00083	N/A	-7.094	N/A	
MW390	Downgradien	t No	0.00155	N/A	-6.470	N/A	
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A	
MW396	Upgradient	Yes	0.00168	NO	-6.389	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

CV(1)=1.202

K factor**= 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

S = 1.677

CV(2) = -18.867

K factor=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.87	N/A	-0.139	NO	
MW390	Downgradien	t Yes	3.03	N/A	1.109	NO	
MW393	Downgradien	t Yes	0.8	N/A	-0.223	NO	
MW396	Upgradient	Yes	2.03	N/A	0.708	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor**= 3.188

TL(1) = 882.980 LL(1) = N/A

Statistics-Transformed Background

X = 6.298 S = 0.162 CV(2) = 0.026

K factor**= 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	334	NO	5.811	N/A
MW390	Downgradien	t Yes	376	NO	5.930	N/A
MW393	Downgradien	t Yes	237	NO	5.468	N/A
MW396	Upgradient	Yes	340	NO	5.829	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-13

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

CV(1)=0.132

K factor=** 3.188

TL(1) = 3.052

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.759

S= 0.123

S = 0.283

CV(2) = 0.162

K factor=** 3.188

TL(2)= 1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A
MW390	Downgradient	t No	0.5	N/A	-0.693	N/A
MW393	Downgradient	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.747	NO	-0.292	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

CV(1) = 0.478

K factor=** 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880

S= 3.723 **S**= 0.723

CV(2) = 0.384

K factor=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.1	N/A	-2.303	N/A
MW390	Downgradien	t Yes	0.267	NO	-1.321	N/A
MW393	Downgradien	t Yes	1.66	NO	0.507	N/A
MW396	Upgradient	Yes	3.17	NO	1.154	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 16.876 S = 3.313

CV(1)=0.196 K factor**= 3.188

TL(1)= 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.804 **S**= 0.240

CV(2) = 0.086

K factor**= 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	9.67	NO	2.269	N/A
MW390	Downgradien	t Yes	14.2	NO	2.653	N/A
MW393	Downgradien	t Yes	3.72	NO	1.314	N/A
MW396	Upgradient	Yes	16.4	NO	2.797	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

CV(1)=0.456

K factor=** 3.188

TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

S = 0.353

X = -0.566 S = 1.192 CV(2) = -2.105

K factor=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.321	NO	-1.136	N/A
MW390	Downgradien	t No	0.00451	N/A	-5.401	N/A
MW393	Downgradien	t Yes	0.0606	NO	-2.803	N/A
MW396	Upgradient	Yes	0.601	NO	-0.509	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-17

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S= 0.011 **CV(1)**=1.507

K factor=** 3.188

TL(1)= 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.928

S= 1.420 **CV(2)**=-0.240

K factor=** 3.188

TL(2) = -1.400

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.9081/13/2003 0.00128-6.661 4/8/2003 0.00271 -5.911 7/16/2003 0.00117 -6.75110/14/2003 0.001 -6.908 1/14/2004 0.001 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

MW396 Upgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

-7.554

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.00072	7 N/A	-7.227	N/A
MW390	Downgradien	t No	0.00087	N/A	-7.047	N/A
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A

N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

0.000524

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

CV(1)=1.272S = 0.021

K factor**= 3.188

TL(1) = 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

CV(2) = -0.225

K factor=** 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.00272	N/A	-5.907	NO		
MW390	Downgradien	t Yes	0.00788	N/A	-4.843	NO		
MW393	Downgradien	t Yes	0.0022	N/A	-6.119	NO		
MW396	Upgradient	Yes	0.00308	N/A	-5.783	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-19

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor=** 3.188

TL(1)= 210.502 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.364

S = 0.333 CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	360	N/A	5.886	YES		
MW390	Downgradien	t Yes	393	N/A	5.974	YES		
MW393	Downgradien	t Yes	282	N/A	5.642	YES		
MW396	Upgradient	Yes	204	N/A	5.318	YES		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

 $S = 0.350 \quad CV(1) = 0.054$

K factor=** 3.736

TL(1)= 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X = 1.864

S= 0.054

CV(2) = 0.029

K factor=** 3.736

TL(2) = 2.067

LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.67	NO	1.898	N/A
MW390	Downgradien	t Yes	6.27	NO	1.836	N/A
MW393	Downgradien	t Yes	6.19	NO	1.823	N/A
MW396	Upgradient	Yes	6.38	NO	1.853	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

 $S= 0.399 \quad CV(1)=0.282$

K factor=** 3.188

TL(1)= 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311

S= 0.271

CV(2) = 0.870

K factor=** 3.188

TL(2) = 1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.291	NO	-1.234	N/A		
MW390	Downgradien	t Yes	0.419	NO	-0.870	N/A		
MW393	Downgradien	t Yes	0.391	NO	-0.939	N/A		
MW396	Upgradient	Yes	0.874	NO	-0.135	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Sodium **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor**= 3.188

TL(1)=208.973 LL(1)=N/A

Statistics-Transformed Background Data

X = 4.595

S = 0.492 CV(2) = 0.107

K factor=** 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	91	NO	4.511	N/A			
MW390	Downgradien	t Yes	89.9	NO	4.499	N/A			
MW393	Downgradien	t Yes	77.2	NO	4.346	N/A			
MW396	Upgradient	Yes	105	NO	4.654	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-23

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.463 S = 8.876 CV(1) = 0.395

K factor**= 3.188

TL(1) = 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054

S = 0.351 CV(2) = 0.115

K factor=** 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	46.6	NO	3.842	N/A			
MW390	Downgradien	t Yes	41.9	NO	3.735	N/A			
MW393	Downgradien	t Yes	14.3	NO	2.660	N/A			
MW396	Upgradient	Yes	25.3	NO	3.231	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1) = 0.860

K factor**= 3.188

TL(1)= 28.531

LL(1)=N/A

Statistics-Transformed Background

X = 1.498

S= 6.558 **S**= 1.321

CV(2) = 0.882

K factor**= 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

C	urre	nt Q	uar	ter I	Data
	11 3 7		~ 1		

Well N	lo. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW3	86 Sidegradier	nt No	0.784	N/A	-0.243	N/A
MW3	90 Downgradi	ent Yes	60.7	YES	4.106	N/A
MW3	93 Downgradi	ent No	-6.67	N/A	#Error	N/A
MW3	96 Upgradient	No	-12.9	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

S= 4.696 **CV(1)**= 0.470

K factor=** 3.188

TL(1)= 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 0.454

CV(2) = 0.205

K factor=** 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 19 2.944 9/16/2002 14.6 2.681 2.342 10/16/2002 10.4 1/13/2003 4.4 1.482 4/8/2003 7 1.946 7/16/2003 7.3 1.988 10/14/2003 9.1 2.208 1/14/2004 8.1 2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	3.59	NO	1.278	N/A
MW390	Downgradien	t Yes	2.5	NO	0.916	N/A
MW393	Downgradien	t Yes	2.44	NO	0.892	N/A
MW396	Upgradient	Yes	4.78	NO	1.564	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

S = 0.390

K factor=** 3.188

TL(1)= 313.314 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.896

CV(2) = 0.080

K factor=** 3.188

TL(2)= 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	94.7	NO	4.551	N/A
MW390	Downgradien	t Yes	20.7	NO	3.030	N/A
MW393	Downgradien	t Yes	12.5	NO	2.526	N/A
MW396	Upgradient	Yes	36.7	NO	3.603	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **UCRS** Vanadium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.021

CV(1)=0.109

K factor**= 3.188

TL(1) = 0.029

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.856 S = 0.103

S = 0.002

CV(2) = -0.027

K factor=** 3.188

TL(2) = -3.527

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00356	NO	-5.638	N/A
MW390	Downgradien	t Yes	0.00357	NO	-5.635	N/A
MW393	Downgradien	t Yes	0.00439	NO	-5.428	N/A
MW396	Upgradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

CV(1)=0.786

K factor**= 3.188

TL(1) = 0.156

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.342 S = 0.682

S = 0.035

CV(2) = -0.204

K factor=** 3.188

TL(2) = -1.168

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00488	NO	-5.323	N/A
MW390	Downgradien	t Yes	0.00482	NO	-5.335	N/A
MW393	Downgradien	t Yes	0.00653	NO	-5.031	N/A
MW396	Upgradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.221

S = 0.061

CV(1) = 0.277

K factor**= 2.523

TL(1) = 0.376

LL(1)=N/A

Statistics-Transformed Background

X = -1.534 S = 0.212 CV(2) = -0.138

K factor=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.609-1.609 4/10/2003 0.2 7/14/2003 0.2 -1.60910/13/2003 0.427 -0.8511/13/2004 0.309 -1.1744/13/2004 0.2 -1.6097/21/2004 0.202 -1.599Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.2 -1.6099/16/2002 0.2 -1.60910/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.02	NO	-3.912	N/A
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A
MW222	Sidegradient	Yes	0.0271	NO	-3.608	N/A
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A
MW369	Downgradien	t Yes	0.087	NO	-2.442	N/A
MW372	Downgradien	t Yes	0.0335	NO	-3.396	N/A
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A
MW387	Downgradien	t No	0.05	N/A	-2.996	N/A
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A
MW394	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: pCi/L Beta activity **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.273 S = 13.883 CV(1) = 0.973

K factor**= 2.523

TL(1) = 49.300

LL(1)=N/A

Statistics-Transformed Background

X = 2.213 S = 1.033 CV(2) = 0.467

K factor=** 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.615
Date Collected	Result	
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	13.7	N/A	2.617	N/A
MW221	Sidegradient	No	4.23	N/A	1.442	N/A
MW222	Sidegradient	No	4.91	N/A	1.591	N/A
MW223	Sidegradient	No	1.49	N/A	0.399	N/A
MW224	Sidegradient	No	-2.64	N/A	#Error	N/A
MW369	Downgradien	t Yes	14.3	N/A	2.660	N/A
MW372	Downgradien	t Yes	46.6	N/A	3.842	N/A
MW384	Sidegradient	Yes	26.3	N/A	3.270	N/A
MW387	Downgradien	t Yes	207	YES	5.333	N/A
MW391	Downgradien	t No	-4.42	N/A	#Error	N/A
MW394	Upgradient	No	10.9	N/A	2.389	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW387

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-31

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Boron URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.447**K** factor**= 2.523 Statistics-Background Data X = 0.425S = 0.615**TL(1)=** 1.976 LL(1)=N/A **Statistics-Transformed Background** X = -1.322 S = 0.786 CV(2) = -0.595

K factor=** 2.523

TL(2) = 0.663

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.60910/13/2003 -1.6090.2 1/13/2004 0.2 -1.6094/13/2004 0.2 -1.6097/21/2004 0.2 -1.609Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6090.2 -1.6094/10/2003 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00879	N/A	-4.734	NO
MW221	Sidegradient	Yes	0.0187	N/A	-3.979	NO
MW222	Sidegradient	Yes	0.00885	N/A	-4.727	NO
MW223	Sidegradient	Yes	0.00762	N/A	-4.877	NO
MW224	Sidegradient	Yes	0.0124	N/A	-4.390	NO
MW369	Downgradien	t Yes	0.0173	N/A	-4.057	NO
MW372	Downgradien	t Yes	1.23	N/A	0.207	NO
MW384	Sidegradient	Yes	0.0678	N/A	-2.691	NO
MW387	Downgradien	t Yes	0.0359	N/A	-3.327	NO
MW391	Downgradien	t Yes	0.0568	N/A	-2.868	NO
MW394	Upgradient	Yes	0.0212	N/A	-3.854	NO
NI/A Dans	14. : 14:C: - 1 N	I D -44 -	4		3-41:3-4:-	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-32

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.000

S = 0.000

CV(1)=0.000

K factor**= 2.523

TL(1)=1.000

LL(1)=N/A

Statistics-Transformed Background

X = 0.000

S= 0.000

CV(2)=#Num!

K factor**= 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.201	NO	-1.604	N/A
MW221	Sidegradient	Yes	0.467	NO	-0.761	N/A
MW222	Sidegradient	Yes	0.385	NO	-0.955	N/A
MW223	Sidegradient	Yes	0.4	NO	-0.916	N/A
MW224	Sidegradient	Yes	0.338	NO	-1.085	N/A
MW369	Downgradien	t Yes	0.324	NO	-1.127	N/A
MW372	Downgradien	t Yes	0.53	NO	-0.635	N/A
MW384	Sidegradient	Yes	0.291	NO	-1.234	N/A
MW387	Downgradien	t Yes	0.512	NO	-0.669	N/A
MW391	Downgradien	t Yes	0.577	NO	-0.550	N/A
MW394	Upgradient	Yes	0.557	NO	-0.585	N/A
NI/A Dagg	lta idamtifiad as N	Iam Dataata	ما در سنسرد	orotory analyzaia or	data validatio	n and rrons not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 27.638 S = 4.743

CV(1)=0.172

K factor**= 2.523

TL(1) = 39.604

LL(1)=N/A

Statistics-Transformed Background

X = 3.304 S = 0.183 CV(2) = 0.055

K factor=** 2.523

TL(2) = 3.765

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	23.6	3.161
1/15/2003	25.9	3.254
4/10/2003	30.4	3.414
7/14/2003	33.9	3.523
10/13/2003	21.3	3.059
1/13/2004	20.3	3.011
4/13/2004	23.8	3.170
7/21/2004	19	2.944
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.384
Date Collected	Result	,
Date Collected 8/13/2002	Result 29.5	3.384
Date Collected 8/13/2002 9/16/2002	Result 29.5 29.9	3.384 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 29.5 29.9 31.2	3.384 3.398 3.440
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 29.5 29.9 31.2 30.7	3.384 3.398 3.440 3.424
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 29.5 29.9 31.2 30.7 34.4	3.384 3.398 3.440 3.424 3.538

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	19.9	NO	2.991	N/A
MW221	Sidegradient	Yes	20.8	NO	3.035	N/A
MW222	Sidegradient	Yes	15.4	NO	2.734	N/A
MW223	Sidegradient	Yes	20.4	NO	3.016	N/A
MW224	Sidegradient	Yes	20.2	NO	3.006	N/A
MW369	Downgradien	t Yes	15.7	NO	2.754	N/A
MW372	Downgradien	t Yes	62.3	YES	4.132	N/A
MW384	Sidegradient	Yes	25.2	NO	3.227	N/A
MW387	Downgradien	t Yes	44.1	YES	3.786	N/A
MW391	Downgradien	t Yes	26.3	NO	3.270	N/A
MW394	Upgradient	Yes	27.4	NO	3.311	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-34

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 35.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 35.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.555
 S= 0.000
 CV(2)=0.000
 K factor**= 2.523
 TL(2)= 3.555
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	12	NO	2.485	N/A
MW221	Sidegradient	Yes	24.5	NO	3.199	N/A
MW222	Sidegradient	Yes	14.5	NO	2.674	N/A
MW223	Sidegradient	Yes	17	NO	2.833	N/A
MW224	Sidegradient	Yes	22	NO	3.091	N/A
MW369	Downgradien	t Yes	20.7	NO	3.030	N/A
MW372	Downgradien	t Yes	23.3	NO	3.148	N/A
MW384	Sidegradient	No	20	N/A	2.996	N/A
MW387	Downgradien	t No	20	N/A	2.996	N/A
MW391	Downgradien	t Yes	17	NO	2.833	N/A
MW394	Upgradient	Yes	46.4	YES	3.837	N/A
N/A - Resu	lts identified as N	Jon-Detects	durino lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW394

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Chloride** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor**= 2.523

TL(1) = 77.499

LL(1)=N/A

Statistics-Transformed Background

X = 3.866 S = 0.244 CV(2) = 0.063

K factor=** 2.523

TL(2) = 4.482

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.101
Date Collected	Result	
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	17.5	NO	2.862	N/A
MW221	Sidegradient	Yes	35.4	NO	3.567	N/A
MW222	Sidegradient	Yes	26.9	NO	3.292	N/A
MW223	Sidegradient	Yes	27.7	NO	3.321	N/A
MW224	Sidegradient	Yes	22	NO	3.091	N/A
MW369	Downgradien	t Yes	27.9	NO	3.329	N/A
MW372	Downgradien	t Yes	41.5	NO	3.726	N/A
MW384	Sidegradient	Yes	24.1	NO	3.182	N/A
MW387	Downgradien	t Yes	40.4	NO	3.699	N/A
MW391	Downgradien	t Yes	42.5	NO	3.750	N/A
MW394	Upgradient	Yes	41.6	NO	3.728	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-36

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 5.000 S= 0.000 CV(1)=0.000 K factor**= 2.523 TL(1)=5.000 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.609 S= 0.000 CV(2)=0.000 K factor**= 2.523 TL(2)=1.609 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.609 5 1/15/2003 5 1.609 5 1.609 4/10/2003 7/14/2003 5 1.609 10/13/2003 5 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 5 7/16/2003 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t No	1	N/A	0.000	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t No	1	N/A	0.000	N/A
MW391	Downgradien	t Yes	0.48	NO	-0.734	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A
N/A - Resu	lts identified as N	Jon-Detects	lurino lak	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=2.440**K** factor**= 2.523 Statistics-Background Data X = 0.016S = 0.040TL(1) = 0.116LL(1)=N/A **Statistics-Transformed Background** X = -5.582 S = 1.573 CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.613

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.497 1/15/2003 0.00496 -5.3060.00289 4/10/2003 -5.8467/14/2003 0.161 -1.82610/13/2003 0.0226 -3.7901/13/2004 0.00464 -5.3734/13/2004 0.001 -6.908 7/21/2004 0.00264 -5.937Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.9081/13/2003 0.001-6.9084/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.001	N/A	-6.908	N/A
MW221	Sidegradient	No	0.001	N/A	-6.908	N/A
MW222	Sidegradient	No	0.00055	6 N/A	-7.495	N/A
MW223	Sidegradient	No	0.00046	5 N/A	-7.673	N/A
MW224	Sidegradient	No	0.00056	6 N/A	-7.477	N/A
MW369	Downgradien	t Yes	0.004	N/A	-5.521	NO
MW372	Downgradien	t No	0.00030	8 N/A	-8.085	N/A
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	No	0.001	N/A	-6.908	N/A
M/A Dogu	Ita identified on N	Ion Dotoots	during lab	ratory analysis or	data validatio	n and ware not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison **URGA** Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor**= 2.523

TL(1) = 652.432 LL(1) = N/A

Statistics-Transformed Background

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2) = 8.652

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	368	5.908
1/15/2003	433.2	6.071
4/10/2003	489	6.192
7/14/2003	430	6.064
10/13/2003	346	5.846
1/13/2004	365	5.900
4/13/2004	416	6.031
7/21/2004	353	5.866
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 6.006
Date Collected	Result	
Date Collected 8/13/2002	Result 406	6.006
Date Collected 8/13/2002 9/16/2002	Result 406 418	6.006 6.035
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 406 418 411	6.006 6.035 6.019
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 406 418 411 422	6.006 6.035 6.019 6.045
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 406 418 411 422 420	6.006 6.035 6.019 6.045 6.040

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW220	Upgradient	Yes	338	NO	5.823	N/A			
MW221	Sidegradient	Yes	390	NO	5.966	N/A			
MW222	Sidegradient	Yes	344	NO	5.841	N/A			
MW223	Sidegradient	Yes	363	NO	5.894	N/A			
MW224	Sidegradient	Yes	406	NO	6.006	N/A			
MW369	Downgradien	t Yes	373	NO	5.922	N/A			
MW372	Downgradien	t Yes	778	YES	6.657	N/A			
MW384	Sidegradient	Yes	425	NO	6.052	N/A			
MW387	Downgradien	t Yes	597	NO	6.392	N/A			
MW391	Downgradien	t Yes	401	NO	5.994	N/A			
MW394	Upgradient	Yes	375	NO	5.927	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-39

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.429**K** factor**= 2.523 Statistics-Background Data X = 0.024S = 0.010TL(1) = 0.050LL(1)=N/A **Statistics-Transformed Background** X = -3.794 S = 0.312 CV(2) = -0.082

K factor=** 2.523

TL(2) = -3.007

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.8581/15/2003 0.02 -3.9120.02 -3.9124/10/2003 7/14/2003 0.02 -3.912 10/13/2003 -3.9120.02 1/13/2004 0.02 -3.9124/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.996-3.91210/16/2002 0.02 1/13/2003 0.02 -3.9120.02-3.912 4/10/2003 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	0.00107	NO	-6.840	N/A			
MW221	Sidegradient	Yes	0.00071	9 NO	-7.238	N/A			
MW222	Sidegradient	Yes	0.00047	2 NO	-7.659	N/A			
MW223	Sidegradient	Yes	0.00105	NO	-6.859	N/A			
MW224	Sidegradient	Yes	0.00208	NO	-6.175	N/A			
MW369	Downgradien	t Yes	0.00211	NO	-6.161	N/A			
MW372	Downgradien	t Yes	0.00059	4 NO	-7.429	N/A			
MW384	Sidegradient	No	0.00050	8 N/A	-7.585	N/A			
MW387	Downgradien	t No	0.00048	N/A	-7.642	N/A			
MW391	Downgradien	t Yes	0.00038	3 NO	-7.867	N/A			
MW394	Upgradient	Yes	0.00047	8 NO	-7.646	N/A			
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-40

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Dissolved Oxygen URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.784

CV(1)=0.499

K factor**= 2.523

TL(1) = 8.545

LL(1)=N/A

Statistics-Transformed Background

X = 1.182

S= 1.887

 $S= 0.612 \quad CV(2)=0.518$

K factor=** 2.523

TL(2) = 2.727

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 4/10/2003 3.6 1.281 7/14/2003 0.94 -0.06210/13/2003 0.501 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 3.83 1.343 4/10/2003 1.423 4.15 7/16/2003 1.83 0.604 10/14/2003 3.33 1.203 1/13/2004 3.14 1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	2.8	NO	1.030	N/A		
MW221	Sidegradient	Yes	4.4	NO	1.482	N/A		
MW222	Sidegradient	Yes	3.59	NO	1.278	N/A		
MW223	Sidegradient	Yes	3.6	NO	1.281	N/A		
MW224	Sidegradient	Yes	1.82	NO	0.599	N/A		
MW369	Downgradien	t Yes	1.88	NO	0.631	N/A		
MW372	Downgradien	t Yes	1.94	NO	0.663	N/A		
MW384	Sidegradient	Yes	3.25	NO	1.179	N/A		
MW387	Downgradien	t Yes	3.2	NO	1.163	N/A		
MW391	Downgradien	t Yes	3.77	NO	1.327	N/A		
MW394	Upgradient	Yes	3.85	NO	1.348	N/A		
NI/A Dagu	lta idamtifiad as N	Iam Dataata	ما ما ما سنسرد	orotory analyzaia or	data validatio	m and rrans not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Dissolved Solids URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor**= 2.523

TL(1)=302.045 LL(1)=N/A

Statistics-Transformed Background

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW220	Upgradient	Yes	190	NO	5.247	N/A			
MW221	Sidegradient	Yes	220	NO	5.394	N/A			
MW222	Sidegradient	Yes	206	NO	5.328	N/A			
MW223	Sidegradient	Yes	199	NO	5.293	N/A			
MW224	Sidegradient	Yes	251	NO	5.525	N/A			
MW369	Downgradien	t Yes	220	NO	5.394	N/A			
MW372	Downgradien	t Yes	474	YES	6.161	N/A			
MW384	Sidegradient	Yes	217	NO	5.380	N/A			
MW387	Downgradien	t Yes	311	YES	5.740	N/A			
MW391	Downgradien	t Yes	200	NO	5.298	N/A			
MW394	Upgradient	Yes	154	NO	5.037	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.170**K** factor**= 2.523 Statistics-Background Data X = 0.897S = 1.050TL(1) = 3.545LL(1)=N/A **Statistics-Transformed Background** X = -0.565 S = 0.951 CV(2) = -1.683**K factor**=** 2.523 TL(2) = 1.834LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.609-0.8464/10/2003 0.429 7/14/2003 4.33 1.466 10/13/2003 0.593 1.81 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.0407/21/2004 0.382 -0.962Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38 1/13/2003 1.3 0.2620.494 -0.7054/10/2003 -0.478 7/16/2003 0.62 10/14/2003 0.37 -0.9941/13/2004 0.251 -1.382

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	0.0417	N/A	-3.177	NO			
MW221	Sidegradient	No	0.1	N/A	-2.303	N/A			
MW222	Sidegradient	Yes	0.0397	N/A	-3.226	NO			
MW223	Sidegradient	No	0.1	N/A	-2.303	N/A			
MW224	Sidegradient	Yes	0.718	N/A	-0.331	NO			
MW369	Downgradien	t Yes	0.699	N/A	-0.358	NO			
MW372	Downgradien	t Yes	0.0607	N/A	-2.802	NO			
MW384	Sidegradient	Yes	0.0472	N/A	-3.053	NO			
MW387	Downgradien	t Yes	0.136	N/A	-1.995	NO			
MW391	Downgradien	t Yes	0.0504	N/A	-2.988	NO			
MW394	Upgradient	Yes	0.0569	N/A	-2.866	NO			
NI/A Dagu	lta idamtifiad as N	Iam Dataata	ما در سنسرد	oratory analyzaia or	data validatio	m and rrans not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.158**K** factor**= 2.523 Statistics-Background Data X = 10.796 S = 1.703TL(1)=15.092LL(1)=N/A **Statistics-Transformed Background**

X = 2.368S = 0.158CV(2) = 0.067 **K factor**=** 2.523

TL(2) = 2.766

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 9.16 2.215 1/15/2003 10 2.303 4/10/2003 10.8 2.380 7/14/2003 14.7 2.68810/13/2003 9.03 2.201 1/13/2004 8.49 2.139 4/13/2004 9.7 2.272 7/21/2004 8.06 2.087 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 11.8 2.468 9/16/2002 12.1 2.493 10/16/2002 11.3 2.425 1/13/2003 10.3 2.332 4/10/2003 11.7 2.460 7/16/2003 12 2.485 10/14/2003 12.2 2.501 1/13/2004 11.4 2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	8.71	NO	2.164	N/A			
MW221	Sidegradient	Yes	9.85	NO	2.287	N/A			
MW222	Sidegradient	Yes	7.14	NO	1.966	N/A			
MW223	Sidegradient	Yes	8.65	NO	2.158	N/A			
MW224	Sidegradient	Yes	9.4	NO	2.241	N/A			
MW369	Downgradien	t Yes	7.24	NO	1.980	N/A			
MW372	Downgradien	t Yes	23.4	YES	3.153	N/A			
MW384	Sidegradient	Yes	11.1	NO	2.407	N/A			
MW387	Downgradien	t Yes	19.6	YES	2.976	N/A			
MW391	Downgradien	t Yes	11.8	NO	2.468	N/A			
MW394	Upgradient	Yes	11.8	NO	2.468	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=2.156**K** factor**= 2.523 Statistics-Background Data X = 0.287S = 0.619**TL(1)=** 1.848 LL(1)=N/A **Statistics-Transformed Background** X = -2.455 S = 1.619 CV(2) = -0.659

K factor=** 2.523

TL(2) = 1.630

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.537-4.2904/10/2003 0.0137 7/14/2003 2.54 0.932 10/13/2003 -0.9730.378 1/13/2004 0.159 -1.8394/13/2004 0.00707 -4.9527/21/2004 0.0841 -2.476Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.864-2.27310/16/2002 0.103 1/13/2003 0.128 -2.0560.005-5.2984/10/2003 7/16/2003 0.272 -1.30210/14/2003 0.0795 -2.5321/13/2004 0.0658 -2.721

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW220	Upgradient	No	0.0013	N/A	-6.645	N/A				
MW221	Sidegradient	No	0.005	N/A	-5.298	N/A				
MW222	Sidegradient	No	0.003	N/A	-5.809	N/A				
MW223	Sidegradient	No	0.00495	N/A	-5.308	N/A				
MW224	Sidegradient	No	0.00266	N/A	-5.929	N/A				
MW369	Downgradien	t Yes	0.0206	N/A	-3.882	NO				
MW372	Downgradien	t No	0.00126	N/A	-6.677	N/A				
MW384	Sidegradient	No	0.00134	N/A	-6.615	N/A				
MW387	Downgradien	t Yes	0.0146	N/A	-4.227	NO				
MW391	Downgradien	t No	0.00151	N/A	-6.496	N/A				
MW394	Upgradient	No	0.00231	N/A	-6.071	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-45

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Molybdenum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.261**K** factor**= 2.523 Statistics-Background Data X = 0.006S = 0.008TL(1) = 0.026LL(1)=N/A **Statistics-Transformed Background** X = -5.747 S = 1.205 CV(2) = -0.210

K factor=** 2.523

TL(2) = -2.708

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.00558 -5.1891/15/2003 0.00983 -4.6220.0109 -4.519 4/10/2003 7/14/2003 0.00245 -6.01210/13/2003 0.00566 -5.1741/13/2004 0.00572 -5.1644/13/2004 0.001 -6.908 7/21/2004 0.00392 -5.542Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001-6.9080.001 -6.9084/10/2003 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	0.00045	8 N/A	-7.689	NO			
MW221	Sidegradient	Yes	0.00114	N/A	-6.777	NO			
MW222	Sidegradient	Yes	0.00134	N/A	-6.615	NO			
MW223	Sidegradient	Yes	0.00481	N/A	-5.337	NO			
MW224	Sidegradient	Yes	0.00159	N/A	-6.444	NO			
MW369	Downgradien	t No	0.00028	3 N/A	-8.170	N/A			
MW372	Downgradien	t No	0.00043	3 N/A	-7.745	N/A			
MW384	Sidegradient	No	0.00024	4 N/A	-8.318	N/A			
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A			
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A			
MW394	Upgradient	No	0.001	N/A	-6.908	N/A			
N/A - Recu	lts identified as N	Jon Detects	during lab	oratory analysis or	data validatio	n and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-46

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.790**K** factor**= 2.523 Statistics-Background Data X = 0.127S = 0.228TL(1) = 0.701LL(1)=N/A **Statistics-Transformed Background** X = -3.617 S = 1.837 CV(2) = -0.508

K factor=** 2.523

TL(2) = 1.019

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.304-0.609 4/10/2003 0.544 7/14/2003 0.106-2.24410/13/2003 -2.9390.0529 1/13/2004 0.0209 -3.8684/13/2004 0.005 -5.298 7/21/2004 0.0192 -3.953Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/16/2002 0.005 -5.2981/13/2003 0.005-5.298-5.2984/10/2003 0.005 7/16/2003 0.005 -5.29810/14/2003 0.005 -5.2981/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	0.00918	N/A	-4.691	NO			
MW221	Sidegradient	Yes	0.00788	N/A	-4.843	NO			
MW222	Sidegradient	Yes	0.0396	N/A	-3.229	NO			
MW223	Sidegradient	Yes	0.0647	N/A	-2.738	NO			
MW224	Sidegradient	Yes	0.0406	N/A	-3.204	NO			
MW369	Downgradien	t Yes	0.00622	N/A	-5.080	NO			
MW372	Downgradien	t Yes	0.00243	N/A	-6.020	NO			
MW384	Sidegradient	Yes	0.00204	N/A	-6.195	NO			
MW387	Downgradien	t Yes	0.00249	N/A	-5.995	NO			
MW391	Downgradien	t Yes	0.00169	N/A	-6.383	NO			
MW394	Upgradient	Yes	0.00872	N/A	-4.742	NO			
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not			

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-47

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor**= 2.523

TL(1)=397.652 LL(1)=N/A

Statistics-Transformed Background

X = 4.861 S = 1.252 CV(2) = 0.258

K factor=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 205 5.323 1/15/2003 1.95 0.668 5.313 4/10/2003 203 7/14/2003 30 3.401 10/13/2003 107 4.673 1/13/2004 295 5.687 4/13/2004 190 5.247 7/21/2004 319 5.765 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 90 4.500 9/16/2002 240 5.481 10/16/2002 185 5.220 1/13/2003 220 5.394 4/10/2003 196 5.278 7/16/2003 172 5.147 10/14/2003 175 5.165 1/13/2004 249 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW220	Upgradient	Yes	385	NO	5.953	N/A			
MW221	Sidegradient	Yes	405	YES	6.004	N/A			
MW222	Sidegradient	Yes	397	NO	5.984	N/A			
MW223	Sidegradient	Yes	398	YES	5.986	N/A			
MW224	Sidegradient	Yes	395	NO	5.979	N/A			
MW369	Downgradien	t Yes	362	NO	5.892	N/A			
MW372	Downgradien	t Yes	341	NO	5.832	N/A			
MW384	Sidegradient	Yes	383	NO	5.948	N/A			
MW387	Downgradien	t Yes	370	NO	5.914	N/A			
MW391	Downgradien	t Yes	404	YES	6.001	N/A			
MW394	Upgradient	Yes	396	NO	5.981	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW221 MW223

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.138 S = 0.282 CV(1) = 0.046 K factor**= 2.904 TL(1) = 6.957 LL(1) = 5.3179

Statistics-Transformed Background Data

X= 1.813 **S**= 0.047 **CV(2)**= 0.026

K factor**= 2.904

TL(2)= 1.950

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.798 6.04 1/15/2003 6.31 1.842 4/10/2003 6.5 1.872 7/14/2003 6.3 1.841 10/13/2003 6.34 1.847 1/13/2004 6.33 1.845 4/13/2004 6.3 1.841 7/21/2004 5.9 1.775 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.8 1.758 9/30/2002 5.93 1.780 10/16/2002 5.42 1.690 1/13/2003 6 1.792 6.04 1.798 4/10/2003 7/16/2003 6.2 1.825 10/14/2003 1.856 6.4 1/13/2004 6.39 1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th></th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>		LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.16	NO	1.818	N/A
MW221	Sidegradient	Yes	6.05	NO	1.800	N/A
MW222	Sidegradient	Yes	6.28	NO	1.837	N/A
MW223	Sidegradient	Yes	6.14	NO	1.815	N/A
MW224	Sidegradient	Yes	6.2	NO	1.825	N/A
MW369	Downgradien	t Yes	6.14	NO	1.815	N/A
MW372	Downgradien	t Yes	6.23	NO	1.829	N/A
MW384	Sidegradient	Yes	6.12	NO	1.812	N/A
MW387	Downgradien	t Yes	6.28	NO	1.837	N/A
MW391	Downgradien	t Yes	6.11	NO	1.810	N/A
MW394	Ungradient	Yes	5 95	NO	1 783	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Potassium URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.399**K** factor**= 2.523 Statistics-Background Data X = 6.654S = 9.310TL(1)=30.144LL(1)=N/A **Statistics-Transformed Background** X = 1.130

S = 1.208

CV(2) = 1.069

K factor=** 2.523

TL(2) = 4.178

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.902 6.7 1/15/2003 29.7 3.391 3.215 4/10/2003 24.9 7/14/2003 0.122 1.13 10/13/2003 3.43 1.233 1/13/2004 6.71 1.904 4/13/2004 19.3 2.960 7/21/2004 3.97 1.379 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 1.03 0.030 1/13/2003 1.1 0.0954/10/2003 0.215 1.24 7/16/2003 1.14 0.131 10/14/2003 1.05 0.049 1/13/2004 1.07 0.068

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	2.62	N/A	0.963	NO	
MW221	Sidegradient	Yes	1.23	N/A	0.207	NO	
MW222	Sidegradient	Yes	0.618	N/A	-0.481	NO	
MW223	Sidegradient	Yes	1.31	N/A	0.270	NO	
MW224	Sidegradient	Yes	0.91	N/A	-0.094	NO	
MW369	Downgradien	t Yes	0.542	N/A	-0.612	NO	
MW372	Downgradien	t Yes	2.39	N/A	0.871	NO	
MW384	Sidegradient	Yes	1.61	N/A	0.476	NO	
MW387	Downgradien	t Yes	1.99	N/A	0.688	NO	
MW391	Downgradien	t Yes	1.55	N/A	0.438	NO	
MW394	Upgradient	Yes	1.32	N/A	0.278	NO	
M/A Dogg	Ita identified on N	Ion Dotoota	during lob	oratory analyzaia or	data validatio	n and ware not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-50

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 36.363 S = 8.666

CV(1) = 0.238

K factor**= 2.523

TL(1) = 58.227

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.570 S = 0.222 CV(2) = 0.062

K factor=** 2.523

TL(2) = 4.129

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	35.4	3.567
1/15/2003	40.6	3.704
4/10/2003	51	3.932
7/14/2003	58.2	4.064
10/13/2003	38.1	3.640
1/13/2004	37	3.611
4/13/2004	43.2	3.766
7/21/2004	33.8	3.520
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.493
Date Collected	Result	
Date Collected 8/13/2002	Result 32.9	3.493
Date Collected 8/13/2002 9/16/2002	Result 32.9 29.9	3.493 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 32.9 29.9	3.493 3.398 3.367
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 32.9 29.9 29 27.1	3.493 3.398 3.367 3.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 32.9 29.9 29 27.1 24.8	3.493 3.398 3.367 3.300 3.211

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	38.3	NO	3.645	N/A
MW221	Sidegradient	Yes	47.7	NO	3.865	N/A
MW222	Sidegradient	Yes	48.8	NO	3.888	N/A
MW223	Sidegradient	Yes	46.1	NO	3.831	N/A
MW224	Sidegradient	Yes	54.2	NO	3.993	N/A
MW369	Downgradien	t Yes	55.3	NO	4.013	N/A
MW372	Downgradien	t Yes	61.7	YES	4.122	N/A
MW384	Sidegradient	Yes	47.6	NO	3.863	N/A
MW387	Downgradien	t Yes	55.5	NO	4.016	N/A
MW391	Downgradien	t Yes	32.3	NO	3.475	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

3.567

MW372

35.4

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

Yes

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-51

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Sulfate** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.481 S = 2.648

CV(1) = 0.253

K factor**= 2.523

TL(1)= 17.161

LL(1)=N/A

Statistics-Transformed Background

X = 2.322

S = 0.239 CV(2) = 0.103

K factor=** 2.523

TL(2) = 2.925

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.416
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data								
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
,	MW220	Upgradient	Yes	13.9	NO	2.632	N/A		
	MW221	Sidegradient	Yes	13.9	NO	2.632	N/A		
	MW222	Sidegradient	Yes	12.3	NO	2.510	N/A		
	MW223	Sidegradient	Yes	11.8	NO	2.468	N/A		
	MW224	Sidegradient	Yes	10.8	NO	2.380	N/A		
	MW369	Downgradien	t Yes	5.29	NO	1.666	N/A		
	MW372	Downgradien	t Yes	129	YES	4.860	N/A		
	MW384	Sidegradient	Yes	21.1	YES	3.049	N/A		
	MW387	Downgradien	t Yes	34.4	YES	3.538	N/A		
	MW391	Downgradien	t Yes	15.7	NO	2.754	N/A		
	MW394	Upgradient	Yes	11.3	NO	2.425	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.354

S= 9.280 **CV(1)**=0.992

K factor=** 2.523

TL(1) = 32.768

LL(1)=N/A

Statistics-Transformed Background

X = 2.270

S= 0.849

CV(2) = 0.374

K factor=** 2.523

TL(2) = 3.262

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 2.981 19.7 1/15/2003 26.1 3.262 1.270 4/10/2003 3.56 7/14/2003 0 #Func! 10/13/2003 3.045 2.1 1/13/2004 6.32 1.844 4/13/2004 3 1.099 7/21/2004 14.6 2.681 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 14 2.639 9/16/2002 5.45 1.696 0.912 10/16/2002 2.49 1/13/2003 18.3 2.907 -1.45#Func! 4/10/2003 7/16/2003 -1.71#Func! 10/14/2003 18.3 2.907 1/13/2004 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	16.7	N/A	2.815	N/A
MW221	Sidegradient	No	4.94	N/A	1.597	N/A
MW222	Sidegradient	No	4.98	N/A	1.605	N/A
MW223	Sidegradient	No	7.93	N/A	2.071	N/A
MW224	Sidegradient	No	12.8	N/A	2.549	N/A
MW369	Downgradien	t No	18.6	N/A	2.923	N/A
MW372	Downgradien	t Yes	83.4	YES	4.424	N/A
MW384	Sidegradient	Yes	36.9	YES	3.608	N/A
MW387	Downgradien	t Yes	321	YES	5.771	N/A
MW391	Downgradien	t No	6.89	N/A	1.930	N/A
MW394	Upgradient	No	1.28	N/A	0.247	N/A
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Total Organic Carbon (TOC) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.494CV(1)=0.493**K** factor**= 2.523 Statistics-Background Data S = 0.737TL(1) = 3.353LL(1)=N/A **Statistics-Transformed Background** X = 0.315S = 0.402 CV(2) = 1.279TL(2) = 1.330

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1.1 0.095 0.0004/10/2003 1 7/14/2003 3.3 1.194 10/13/2003 1.8 0.588 1/13/2004 1 0.000 4/13/2004 2 0.693 7/21/2004 3.1 1.131 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.3 0.262 9/16/2002 0.000 1 0.000 10/16/2002 1 1/13/2003 1.6 0.470 4/10/2003 1 0.0007/16/2003 1.4 0.336 10/14/2003 1.3 0.262 0.000 1/13/2004 1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	1.28	NO	0.247	N/A		
MW221	Sidegradient	Yes	0.967	NO	-0.034	N/A		
MW222	Sidegradient	Yes	0.956	NO	-0.045	N/A		
MW223	Sidegradient	Yes	1.24	NO	0.215	N/A		
MW224	Sidegradient	Yes	1.02	NO	0.020	N/A		
MW369	Downgradien	t Yes	1.36	NO	0.307	N/A		
MW372	Downgradien	t Yes	1.2	NO	0.182	N/A		
MW384	Sidegradient	Yes	1.05	NO	0.049	N/A		
MW387	Downgradien	t Yes	1.21	NO	0.191	N/A		
MW391	Downgradien	t Yes	0.885	NO	-0.122	N/A		
MW394	Upgradient	Yes	0.961	NO	-0.040	N/A		
NI/A D	14. : 14:£: . 1 X	I D-44-	J 1 . 1 .		4-4114-41-	4		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-54

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor**= 2.523

TL(1) = 475.063 LL(1) = N/A

Statistics-Transformed Background

X = 3.103 S = 1.145 CV(2) = 0.369

K factor=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	50	3.912
1/15/2003	10	2.303
4/10/2003	10	2.303
7/14/2003	10	2.303
10/13/2003	10	2.303
1/13/2004	10	2.303
4/13/2004	10	2.303
7/21/2004	10	2.303
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 672	3.912 6.510
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 50 672 50	3.912 6.510 3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 50 672 50 36.1	3.912 6.510 3.912 3.586
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 50 672 50 36.1 10	3.912 6.510 3.912 3.586 2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	4.58	N/A	1.522	NO
MW221	Sidegradient	Yes	6.76	N/A	1.911	NO
MW222	Sidegradient	No	10	N/A	2.303	N/A
MW223	Sidegradient	No	10	N/A	2.303	N/A
MW224	Sidegradient	Yes	9.36	N/A	2.236	NO
MW369	Downgradien	t Yes	30.6	N/A	3.421	NO
MW372	Downgradien	t Yes	6.46	N/A	1.866	NO
MW384	Sidegradient	Yes	5.98	N/A	1.788	NO
MW387	Downgradien	t Yes	5.52	N/A	1.708	NO
MW391	Downgradien	t Yes	12.8	N/A	2.549	NO
MW394	Upgradient	Yes	12	N/A	2.485	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 8.813
 S= 8.376
 CV(1)=0.951 K factor**= 2.523
 TL(1)=29.946 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.395
 S= 1.449
 CV(2)=1.039 K factor**= 2.523
 TL(2)=5.052 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 0.000 0.0004/10/2003 7/14/2003 1 0.0000.000 10/13/2003 1 1/13/2004 1 0.000 4/13/2004 0.0001 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 7/16/2003 19 2.944 10/14/2003 20 2.996 1/13/2004 16 2.773

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	1	N/A	0.000	N/A		
MW221	Sidegradient	No	1	N/A	0.000	N/A		
MW222	Sidegradient	No	1	N/A	0.000	N/A		
MW223	Sidegradient	No	1	N/A	0.000	N/A		
MW224	Sidegradient	No	1	N/A	0.000	N/A		
MW369	Downgradien	t Yes	0.73	N/A	-0.315	N/A		
MW372	Downgradien	t Yes	2.85	N/A	1.047	N/A		
MW384	Sidegradient	Yes	0.66	N/A	-0.416	N/A		
MW387	Downgradien	t Yes	0.88	N/A	-0.128	N/A		
MW391	Downgradien	t Yes	9.53	NO	2.254	N/A		
MW394	Upgradient	Yes	3.35	N/A	1.209	N/A		
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.036
 S= 0.026
 CV(1)=0.722
 K factor**= 2.523
 TL(1)= 0.101
 LL(1)=N/A

 Statistics-Transformed Background
 X= -3.485
 S= 0.525
 CV(2)=-0.151
 K factor**= 2.523
 TL(2)= -2.162
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.025 -3.6891/15/2003 0.035 -3.3524/10/2003 0.035 -3.3527/14/2003 0.0389 -3.2470.026 10/13/2003 -3.6501/13/2004 0.02 -3.9124/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.3520.035-3.3524/10/2003 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	No	0.02	N/A	-3.912	N/A
MW221	Sidegradient	No	0.02	N/A	-3.912	N/A
MW222	Sidegradient	No	0.02	N/A	-3.912	N/A
MW223	Sidegradient	No	0.02	N/A	-3.912	N/A
MW224	Sidegradient	No	0.02	N/A	-3.912	N/A
MW369	Downgradien	t No	0.00591	N/A	-5.131	N/A
MW372	Downgradien	t Yes	0.00396	NO	-5.532	N/A
MW384	Sidegradient	No	0.02	N/A	-3.912	N/A
MW387	Downgradien	t No	0.02	N/A	-3.912	N/A
MW391	Downgradien	t No	0.02	N/A	-3.912	N/A
MW394	Upgradient	Yes	0.00431	NO	-5.447	N/A
NI/A D	1, 11 (CC 1 X	T D ()	1 . 11		1 / 1:1 /:	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

CV(1)=0.856

K factor**= 2.523

TL(1) = 0.815

LL(1)=N/A

Statistics-Transformed Background

X = -2.266 S = 2.485 CV(2) = -1.097

S = 0.221

K factor=** 2.523

TL(2) = 4.003

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 8/13/2002	Result 0.824	LN(Result) -0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	LN(Result) -0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	LN(Result) -0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	LN(Result) -0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	LN(Result) -0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.05	N/A	-2.996	N/A	
MW373	Downgradient	No	0.05	N/A	-2.996	N/A	
MW385	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW388	Downgradient	No	0.05	N/A	-2.996	N/A	
MW392	Downgradient	No	0.05	N/A	-2.996	N/A	
MW395	Upgradient	No	0.05	N/A	-2.996	N/A	
MW397	Upgradient	Yes	0.0374	NO	-3.286	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: pCi/L Beta activity LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.183

CV(1)=0.364S = 2.612

K factor**= 2.523

TL(1) = 13.773

LL(1)=N/A

Statistics-Transformed Background

X = 1.870 S = 0.552 CV(2) = 0.295

K factor=** 2.523

TL(2) = 3.261

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected		LN(Result)
8/13/2002	1.09	0.086
9/16/2002	5.79	1.756
10/16/2002	6.82	1.920
1/13/2003	5.01	1.611
4/10/2003	6.1	1.808
7/16/2003	8.51	2.141
10/14/2003	4.99	1.607
1/13/2004	6.58	1.884
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.259
Date Collected	Result	
Date Collected 8/13/2002	Result 9.57	2.259
Date Collected 8/13/2002 9/16/2002	Result 9.57	2.259 2.398
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 9.57 11 9.3	2.259 2.398 2.230
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 9.57 11 9.3 8.63	2.259 2.398 2.230 2.155
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 9.57 11 9.3 8.63 10	2.259 2.398 2.230 2.155 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient l	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	51.8	YES	3.947	N/A	
MW373	Downgradient	No	5.99	N/A	1.790	N/A	
MW385	Sidegradient	Yes	33.4	N/A	3.509	N/A	
MW388	Downgradient	No	11.5	N/A	2.442	N/A	
MW392	Downgradient	No	-0.0792	N/A	#Error	N/A	
MW395	Upgradient	No	9.97	N/A	2.300	N/A	
MW397	Upgradient	No	9.56	N/A	2.258	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-59

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Boron** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1)=1.238

K factor**= 2.523

TL(1) = 2.681

LL(1)=N/A

Statistics-Transformed Background

X = -1.034 S = 1.030 CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 2 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	0.252	N/A	-1.378	NO		
MW373	Downgradient	Yes	1.85	N/A	0.615	NO		
MW385	Sidegradient	Yes	0.0978	N/A	-2.325	NO		
MW388	Downgradient	Yes	0.0253	N/A	-3.677	NO		
MW392	Downgradient	Yes	0.0257	N/A	-3.661	NO		
MW395	Upgradient	Yes	0.0213	N/A	-3.849	NO		
MW397	Upgradient	Yes	0.00831	N/A	-4.790	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.000

S = 0.000

CV(1)=0.000

K factor=** 2.523

TL(1)= 1.000

LL(1)=N/A

Statistics-Transformed Background

X = 0.000

S= 0.000

CV(2)=#Num!

K factor=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.439	NO	-0.823	N/A	
MW373	Downgradient	Yes	0.53	NO	-0.635	N/A	
MW385	Sidegradient	Yes	0.298	NO	-1.211	N/A	
MW388	Downgradient	Yes	0.416	NO	-0.877	N/A	
MW392	Downgradient	Yes	0.556	NO	-0.587	N/A	
MW395	Upgradient	Yes	0.479	NO	-0.736	N/A	
MW397	Upgradient	Yes	0.404	NO	-0.906	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.103 S = 11.538 CV(1) = 0.499

K factor**= 2.523

TL(1) = 52.213

LL(1)=N/A

Statistics-Transformed Background

X = 2.357 S = 2.411 CV(2) = 1.023

K factor=** 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data								
1	Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
	MW370	Downgradient	Yes	29.9	NO	3.398	N/A		
	MW373	Downgradient	Yes	70.1	YES	4.250	N/A		
	MW385	Sidegradient	Yes	30	NO	3.401	N/A		
	MW388	Downgradient	Yes	24.9	NO	3.215	N/A		
	MW392	Downgradient	Yes	26.8	NO	3.288	N/A		
	MW395	Upgradient	Yes	25.7	NO	3.246	N/A		
	MW397	Upgradient	Yes	19.8	NO	2.986	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-62

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 35.313 **S**= 1.250

K factor**= 2.523

TL(1) = 38.466 L

LL(1)=N/A

Statistics-Transformed Background

X = 3.564

S = 0.033

CV(2) = 0.009

CV(1) = 0.035

K factor=** 2.523

TL(2) = 3.648

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 40 3.689 9/16/2002 35 3.555 10/17/2002 35 3.555 1/13/2003 35 3.555 35 4/8/2003 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	20.7	NO	3.030	N/A	
MW373	Downgradient	Yes	25.9	NO	3.254	N/A	
MW385	Sidegradient	Yes	12.6	NO	2.534	N/A	
MW388	Downgradient	No	20	N/A	2.996	N/A	
MW392	Downgradient	Yes	22	NO	3.091	N/A	
MW395	Upgradient	Yes	20.7	NO	3.030	N/A	
MW397	Upgradient	Yes	36.1	NO	3.586	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor**= 2.523

TL(1)= 81.242

LL(1)=N/A

Statistics-Transformed Background

X= 3.924 **S**= 0.229

 $S= 0.229 \quad CV(2)=0.058$

K factor**= 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.661
Date Collected	Result	
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	34.4	NO	3.538	N/A
MW373	Downgradient	Yes	38.3	NO	3.645	N/A
MW385	Sidegradient	Yes	24.8	NO	3.211	N/A
MW388	Downgradient	Yes	32.7	NO	3.487	N/A
MW392	Downgradient	Yes	42.4	NO	3.747	N/A
MW395	Upgradient	Yes	37.3	NO	3.619	N/A
MW397	Upgradient	Yes	33.3	NO	3.506	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 5.000 S= 0.000 CV(1)=0.000 K factor**= 2.523 TL(1)=5.000 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.609 S= 0.000 CV(2)=0.000 K factor**= 2.523 TL(2)=1.609 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 5 9/30/2002 5 1.609 5 10/16/2002 1.609 1/13/2003 5 1.609 4/10/2003 5 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 5 10/17/2002 1.609 1/13/2003 5 1.609 5 4/8/2003 1.609 5 7/16/2003 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	1	N/A	0.000	N/A
MW373	Downgradien	t No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradien	t No	1	N/A	0.000	N/A
MW392	Downgradien	t Yes	0.93	NO	-0.073	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor**= 2.523

TL(1) = 509.326 LL(1) = N/A

Statistics-Transformed Background

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.775
Date Collected	Result	
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
•	MW370	Downgradient	Yes	458	NO	6.127	N/A
	MW373	Downgradient	Yes	841	YES	6.735	N/A
	MW385	Sidegradient	Yes	476	NO	6.165	N/A
	MW388	Downgradient	Yes	401	NO	5.994	N/A
	MW392	Downgradient	Yes	383	NO	5.948	N/A
	MW395	Upgradient	Yes	358	NO	5.881	N/A
	MW397	Upgradient	Yes	324	NO	5.781	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L LRGA Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1) = 0.474S = 0.013

K factor**= 2.523

TL(1) = 0.061

LL(1)=N/A

Statistics-Transformed Background

X = -3.662 S = 0.406 CV(2) = -0.111

K factor=** 2.523

TL(2) = -2.638

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.0281	-3.572
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.00080	2 NO	-7.128	N/A
MW373	Downgradient	Yes	0.00046	5 NO	-7.673	N/A
MW385	Sidegradient	No	0.00046	7 N/A	-7.669	N/A
MW388	Downgradient	No	0.00038	7 N/A	-7.857	N/A
MW392	Downgradient	Yes	0.00047	8 NO	-7.646	N/A
MW395	Upgradient	Yes	0.00055	NO	-7.506	N/A
MW397	Upgradient	Yes	0.00037	5 NO	-7.889	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 4.678

CV(1)=0.520S = 2.431

K factor**= 2.523

TL(1)=10.812

LL(1)=N/A

Statistics-Transformed Background

X = 1.414

 $S = 0.550 \quad CV(2) = 0.389$

K factor=** 2.523

TL(2) = 2.802

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	7.29	1.987
9/30/2002	4.03	1.394
10/16/2002	3.85	1.348
1/13/2003	2.36	0.859
4/10/2003	1.14	0.131
7/16/2003	1.76	0.565
10/14/2003	4.05	1.399
1/13/2004	4.26	1.449
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.448
Date Collected	Result	
Date Collected 8/13/2002	Result 11.56	2.448
Date Collected 8/13/2002 9/16/2002	Result 11.56 5.86	2.448 1.768
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 11.56 5.86 5.94	2.448 1.768 1.782
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 11.56 5.86 5.94 4.66	2.448 1.768 1.782 1.539
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 11.56 5.86 5.94 4.66 3.77	2.448 1.768 1.782 1.539 1.327

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	3.45	NO	1.238	N/A
MW373	Downgradient	Yes	1.77	NO	0.571	N/A
MW385	Sidegradient	Yes	1.73	NO	0.548	N/A
MW388	Downgradient	Yes	2.85	NO	1.047	N/A
MW392	Downgradient	Yes	2.3	NO	0.833	N/A
MW395	Upgradient	Yes	4.2	NO	1.435	N/A
MW397	Upgradient	Yes	3.4	NO	1.224	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-68

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Dissolved Solids** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor**= 2.523

TL(1) = 305.301

LL(1)=N/A

Statistics-Transformed Background

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	247	NO	5.509	N/A
MW373	Downgradient	Yes	529	YES	6.271	N/A
MW385	Sidegradient	Yes	219	NO	5.389	N/A
MW388	Downgradient	Yes	194	NO	5.268	N/A
MW392	Downgradient	Yes	211	NO	5.352	N/A
MW395	Upgradient	Yes	150	NO	5.011	N/A
MW397	Upgradient	Yes	133	NO	4.890	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-69

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L LRGA Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.400

S = 0.514 CV(1) = 1.286

K factor**= 2.523

TL(1)= 1.698

LL(1)=N/A

Statistics-Transformed Background

X = -2.197 S = 2.634 CV(2) = -1.199

K factor=** 2.523

TL(2) = 4.449

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 8/13/2002	Result 1.58	LN(Result) 0.457
Date Collected 8/13/2002 9/16/2002	Result 1.58 0.232	LN(Result) 0.457 -1.461
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.58 0.232 0.0002	LN(Result) 0.457 -1.461 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.58 0.232 0.0002 0.453	LN(Result) 0.457 -1.461 -8.517 -0.792
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.58 0.232 0.0002 0.453 0.2	LN(Result) 0.457 -1.461 -8.517 -0.792 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.1	N/A	-2.303	N/A	
MW373	Downgradient	Yes	0.0698	N/A	-2.662	NO	
MW385	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW388	Downgradient	Yes	0.0354	N/A	-3.341	NO	
MW392	Downgradient	Yes	0.091	N/A	-2.397	NO	
MW395	Upgradient	No	0.1	N/A	-2.303	N/A	
MW397	Upgradient	Yes	0.0756	N/A	-2.582	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.102

S = 4.685

CV(1)=0.515 K factor**= 2.523

TL(1) = 20.922

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.423

S= 2.408

CV(2) = 1.692

K factor**= 2.523

TL(2) = 7.500

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 12.5 2.526 9/16/2002 13 2.565 10/16/2002 0.0127 -4.3661/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 2.595 13.4 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 0.00658 10/17/2002 -5.0241/13/2003 6.69 1.901 1.985 4/8/2003 7.28 7/16/2003 7.82 2.057 10/14/2003 7.94 2.072 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
Downgradient	Yes	13.6	NO	2.610	N/A		
Downgradient	Yes	28	YES	3.332	N/A		
Sidegradient	Yes	13.3	NO	2.588	N/A		
Downgradient	Yes	11.4	NO	2.434	N/A		
Downgradient	Yes	11.6	NO	2.451	N/A		
Upgradient	Yes	11.1	NO	2.407	N/A		
Upgradient	Yes	8.61	NO	2.153	N/A		
	Gradient Downgradient Downgradient Sidegradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Sidegradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 13.6 Downgradient Yes 28 Sidegradient Yes 13.3 Downgradient Yes 11.4 Downgradient Yes 11.6 Upgradient Yes 11.1	Gradient Detected? Result Result >TL(1)? Downgradient Yes 13.6 NO Downgradient Yes 28 YES Sidegradient Yes 13.3 NO Downgradient Yes 11.4 NO Downgradient Yes 11.6 NO Upgradient Yes 11.1 NO	Gradient Detected? Result Result >TL(1)? LN(Result) Downgradient Yes 13.6 NO 2.610 Downgradient Yes 28 YES 3.332 Sidegradient Yes 13.3 NO 2.588 Downgradient Yes 11.4 NO 2.434 Downgradient Yes 11.6 NO 2.451 Upgradient Yes 11.1 NO 2.407		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.131

S = 0.195

CV(1) = 1.487**K** factor**= 2.523 TL(1) = 0.624

LL(1)=N/A

Statistics-Transformed Background

X = -3.104 S = 1.529 CV(2) = -0.493

K factor=** 2.523

TL(2) = 0.755

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.466	-0.764
9/16/2002	0.077	-2.564
10/17/2002	0.028	-3.576
1/13/2003	0.0164	-4.110
4/8/2003	0.0407	-3.202
7/16/2003	0.0167	-4.092
10/14/2003	0.00555	-5.194
	0.00555	5.171

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	No	0.00104	N/A	-6.869	N/A	
MW373	Downgradient	Yes	0.0331	N/A	-3.408	NO	
MW385	Sidegradient	No	0.00332	N/A	-5.708	N/A	
MW388	Downgradient	No	0.00248	N/A	-5.999	N/A	
MW392	Downgradient	Yes	0.0124	N/A	-4.390	NO	
MW395	Upgradient	No	0.005	N/A	-5.298	N/A	
MW397	Upgradient	No	0.0028	N/A	-5.878	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-72

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

CV(1)=1.451

S = 0.011

K factor**= 2.523

TL(1)= 0.034

LL(1)=N/A

Statistics-Transformed Background

X=-5.990 **S**= 1.443

CV(2) = -0.241

K factor**= 2.523

TL(2) = -2.349

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689-6.908 10/16/2002 0.001 1/13/2003 0.00609 -5.101 0.001 -6.908 4/10/2003 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/17/2002 0.001 -6.9081/13/2003 0.001-6.9080.001 -6.9084/8/2003 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.001	N/A	-6.908	N/A
MW373	Downgradient	No	0.00028	8 N/A	-8.153	N/A
MW385	Sidegradient	No	0.00029	N/A	-8.146	N/A
MW388	Downgradient	No	0.001	N/A	-6.908	N/A
MW392	Downgradient	Yes	0.00028	5 N/A	-8.163	NO
MW395	Upgradient	No	0.001	N/A	-6.908	N/A
MW397	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

S = 0.020

CV(1)=1.089

K factor**= 2.523

TL(1) = 0.068

LL(1)=N/A

Statistics-Transformed Background

X = -4.540 S = 1.020 CV(2) = -0.225

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.005	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.005 0.00502 0.005	-2.996 -2.996 -5.298 -5.294 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	0.00421	N/A	-5.470	NO	
MW373	Downgradient	Yes	0.00382	N/A	-5.568	NO	
MW385	Sidegradient	Yes	0.00299	N/A	-5.812	NO	
MW388	Downgradient	Yes	0.0027	N/A	-5.915	NO	
MW392	Downgradient	Yes	0.00334	N/A	-5.702	NO	
MW395	Upgradient	Yes	0.00433	N/A	-5.442	NO	
MW397	Upgradient	Yes	0.00577	N/A	-5.155	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor**= 2.523

TL(1)=289.395 LL(1)=N/A

Statistics-Transformed Background

X = 5.003 S = 0.348 CV(2) = 0.069

K factor=** 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.745
Date Collected	Result	
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	350	YES	5.858	N/A	
MW373	Downgradient	Yes	350	YES	5.858	N/A	
MW385	Sidegradient	Yes	378	YES	5.935	N/A	
MW388	Downgradient	Yes	378	YES	5.935	N/A	
MW392	Downgradient	Yes	408	YES	6.011	N/A	
MW395	Upgradient	Yes	354	YES	5.869	N/A	
MW397	Upgradient	Yes	190	NO	5.247	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

MW392

MW395

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-75

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.048

S= 0.248 **CV(1)**=0.041

K factor=** 2.904

TL(1) = 6.767

LL(1)=5.3289

Statistics-Transformed Background

X = 1.799

S = 0.042

CV(2) = 0.023

K factor=** 2.904

TL(2)= 1.920

LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	5.8	1.758
9/16/2002	6	1.792
10/16/2002	5.47	1.699
1/13/2003	6	1.792
4/10/2003	6.18	1.821
7/16/2003	6	1.792
10/14/2003	6.31	1.842
1/13/2004	6.24	1.831
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.765
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 5.84	1.765
Date Collected 8/13/2002 9/30/2002	Result 5.84 6	1.765 1.792
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5.84 6 5.75	1.765 1.792 1.749
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5.84 6 5.75 6	1.765 1.792 1.749 1.792
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5.84 6 5.75 6 6.3	1.765 1.792 1.749 1.792 1.841

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	Current	Ouarter	Data
----------------------	---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
	D 11	***		()	1.002	, , ,
MW370	Downgradient	Yes	6.06	NO	1.802	N/A
MW373	Downgradient	Yes	6.17	NO	1.820	N/A
MW385	Sidegradient	Yes	6.3	NO	1.841	N/A
MW388	Downgradient	Yes	6.11	NO	1.810	N/A
MW392	Downgradient	Yes	6.12	NO	1.812	N/A
MW395	Upgradient	Yes	6.1	NO	1.808	N/A
MW397	Upgradient	Yes	6.2	NO	1.825	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Potassium** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.590

S = 0.642

CV(1)=0.404**K** factor**= 2.523 TL(1) = 3.208

LL(1)=N/A

Statistics-Transformed Background

X = -0.306 S = 2.457 CV(2) = -8.028

K factor=** 2.523

TL(2) = 5.892

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 9/16/2002 2 0.693 0.00129 10/16/2002 -6.6531/13/2003 1.51 0.412 4/10/2003 1.67 0.513 7/16/2003 1.73 0.548 10/14/2003 1.7 0.531 1/13/2004 1.58 0.457 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 2.03 0.7089/16/2002 0.693 2 0.00145 10/17/2002 -6.5361/13/2003 1.69 0.5251.73 0.5484/8/2003 7/16/2003 2 0.693 10/14/2003 1.92 0.652 1/13/2004 1.87 0.626

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	3.04	NO	1.112	N/A	
MW373	Downgradient	Yes	3.03	NO	1.109	N/A	
MW385	Sidegradient	Yes	1.85	NO	0.615	N/A	
MW388	Downgradient	Yes	2.21	NO	0.793	N/A	
MW392	Downgradient	Yes	1.96	NO	0.673	N/A	
MW395	Upgradient	Yes	1.61	NO	0.476	N/A	
MW397	Upgradient	Yes	1.9	NO	0.642	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor**= 2.523

TL(1) = 64.616

LL(1)=N/A

Statistics-Transformed Background

X = 2.615 S = 2.411 CV(2) = 0.922

K factor=** 2.523

TL(2) = 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	48.5	NO	3.882	N/A		
MW373	Downgradient	Yes	62.4	NO	4.134	N/A		
MW385	Sidegradient	Yes	49.3	NO	3.898	N/A		
MW388	Downgradient	Yes	43.2	NO	3.766	N/A		
MW392	Downgradient	Yes	29.1	NO	3.371	N/A		
MW395	Upgradient	Yes	31.7	NO	3.456	N/A		
MW397	Upgradient	Yes	36.8	NO	3.605	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-78

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Sulfate** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1)=0.200

K factor**= 2.523

TL(1)= 16.173

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.356 S = 0.203

CV(2) = 0.086

K factor=** 2.523

TL(2) = 2.869

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 10.3 2.332 9/16/2002 9.1 2.208 10/16/2002 8.8 2.175 1/13/2003 9 2.197 4/10/2003 8.3 2.116 7/16/2003 8.2 2.104 10/14/2003 8.3 2.116 1/13/2004 8.2 2.104 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 14 2.639 9/16/2002 12.8 2.549 10/17/2002 12.3 2.510 1/13/2003 12.7 2.542 2.549 4/8/2003 12.8 7/16/2003 13.1 2.573 10/14/2003 12.1 2.493 1/13/2004 12.1 2.493

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	20.8	YES	3.035	N/A		
MW373	Downgradient	Yes	157	YES	5.056	N/A		
MW385	Sidegradient	Yes	23.5	YES	3.157	N/A		
MW388	Downgradient	Yes	18.3	YES	2.907	N/A		
MW392	Downgradient	Yes	15.4	NO	2.734	N/A		
MW395	Upgradient	Yes	11.7	NO	2.460	N/A		
MW397	Upgradient	Yes	11.1	NO	2.407	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-79

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.359 **S**= 9.138

CV(1) = 0.805

K factor**= 2.523

TL(1)= 34.414

LL(1)=N/A

Statistics-Transformed Background

X = 2.398

S = 0.859

CV(2) = 0.358

K factor**= 2.523

TL(2)= 3.246

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.802
Date Collected	Result	,
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	72.3	YES	4.281	N/A	
MW373	Downgradient	No	19.2	N/A	2.955	N/A	
MW385	Sidegradient	Yes	56.5	YES	4.034	N/A	
MW388	Downgradient	Yes	27.7	NO	3.321	N/A	
MW392	Downgradient	No	11.3	N/A	2.425	N/A	
MW395	Upgradient	No	-1.04	N/A	#Error	N/A	
MW397	Upgradient	No	8.46	N/A	2.135	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Total Organic Carbon (TOC)** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.544

CV(1) = 0.554S = 0.856

K factor**= 2.523

TL(1) = 3.702

LL(1)=N/A

Statistics-Transformed Background

X = 0.325

S = 0.452 CV(2) = 1.393

K factor=** 2.523

TL(2) = 1.465

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
D + C 11 + 1	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
•	MW370	Downgradient	Yes	0.95	NO	-0.051	N/A	
	MW373	Downgradient	Yes	1.27	NO	0.239	N/A	
	MW385	Sidegradient	Yes	1.17	NO	0.157	N/A	
	MW388	Downgradient	Yes	1.35	NO	0.300	N/A	
	MW392	Downgradient	Yes	0.92	NO	-0.083	N/A	
	MW395	Upgradient	Yes	0.865	NO	-0.145	N/A	
	MW397	Upgradient	Yes	0.821	NO	-0.197	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-81

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 31.513 S = 18.609 CV(1) = 0.591

K factor**= 2.523

TL(1) = 78.462

LL(1)=N/A

Statistics-Transformed Background

X = 3.240 S = 0.707 CV(2) = 0.218

K factor=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	4.78	NO	1.564	N/A		
MW373	Downgradient	Yes	9.56	NO	2.258	N/A		
MW385	Sidegradient	Yes	9.32	NO	2.232	N/A		
MW388	Downgradient	Yes	11	NO	2.398	N/A		
MW392	Downgradient	Yes	24.5	NO	3.199	N/A		
MW395	Upgradient	Yes	7.88	NO	2.064	N/A		
MW397	Upgradient	Yes	6.2	NO	1.825	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-82

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313

CV(1) = 0.780

K factor**= 2.523

TL(1) = 21.695

LL(1)=N/A

Statistics-Transformed Background

S = 5.701

X = 1.467 S = 1.213 CV(2) = 0.827

K factor=** 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1 1	1.609 1.609 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.66	N/A	-0.416	N/A
MW373	Downgradient	Yes	4.28	N/A	1.454	N/A
MW385	Sidegradient	Yes	0.58	N/A	-0.545	N/A
MW388	Downgradient	Yes	0.6	N/A	-0.511	N/A
MW392	Downgradient	Yes	14	NO	2.639	N/A
MW395	Upgradient	Yes	2.27	N/A	0.820	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-83

C-746-S/T Fourth Quarter 2020 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.021

S= 0.002 **CV(1)**=0.105

K factor**= 2.523

TL(1) = 0.027

LL(1)=N/A

Statistics-Transformed Background

X = -3.856 S = 0.100

CV(2) = -0.026

K factor=** 2.523

TL(2) = -3.604

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689-3.91210/16/2002 0.02 1/13/2003 0.02 -3.912 7/16/2003 -3.9120.02 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912 4/12/2004 0.02 -3.912Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 -3.91210/17/2002 0.02 1/13/2003 0.02 -3.9120.02 -3.912 4/8/2003 7/16/2003 0.02 -3.91210/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well	No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW3	370	Downgradient	No	0.00375	N/A	-5.586	N/A
MW.	373	Downgradient	Yes	0.00378	NO	-5.578	N/A
MW.	385	Sidegradient	No	0.02	N/A	-3.912	N/A
MW.	388	Downgradient	No	0.02	N/A	-3.912	N/A
MW.	392	Downgradient	No	0.02	N/A	-3.912	N/A
MW.	395	Upgradient	No	0.02	N/A	-3.912	N/A
MW3	397	Upgradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Zinc LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.760**K** factor**= 2.523 Statistics-Background Data X = 0.044S = 0.034TL(1) = 0.129LL(1)=N/A **Statistics-Transformed Background**

X = -3.342 S = 0.659CV(2) = -0.197 **K factor**=** 2.523

TL(2) = -1.679

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.1 -2.3039/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.352-3.3524/10/2003 0.035 7/16/2003 0.02 -3.91210/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/17/2002 0.025 -3.6891/13/2003 0.035 -3.3520.035-3.352 4/8/2003 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	0.004	N/A	-5.521	N/A
MW373	Downgradient	No	0.02	N/A	-3.912	N/A
MW385	Sidegradient	Yes	0.00337	NO	-5.693	N/A
MW388	Downgradient	No	0.02	N/A	-3.912	N/A
MW392	Downgradient	No	0.02	N/A	-3.912	N/A
MW395	Upgradient	No	0.02	N/A	-3.912	N/A
MW397	Upgradient	Yes	0.00332	NO	-5.708	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

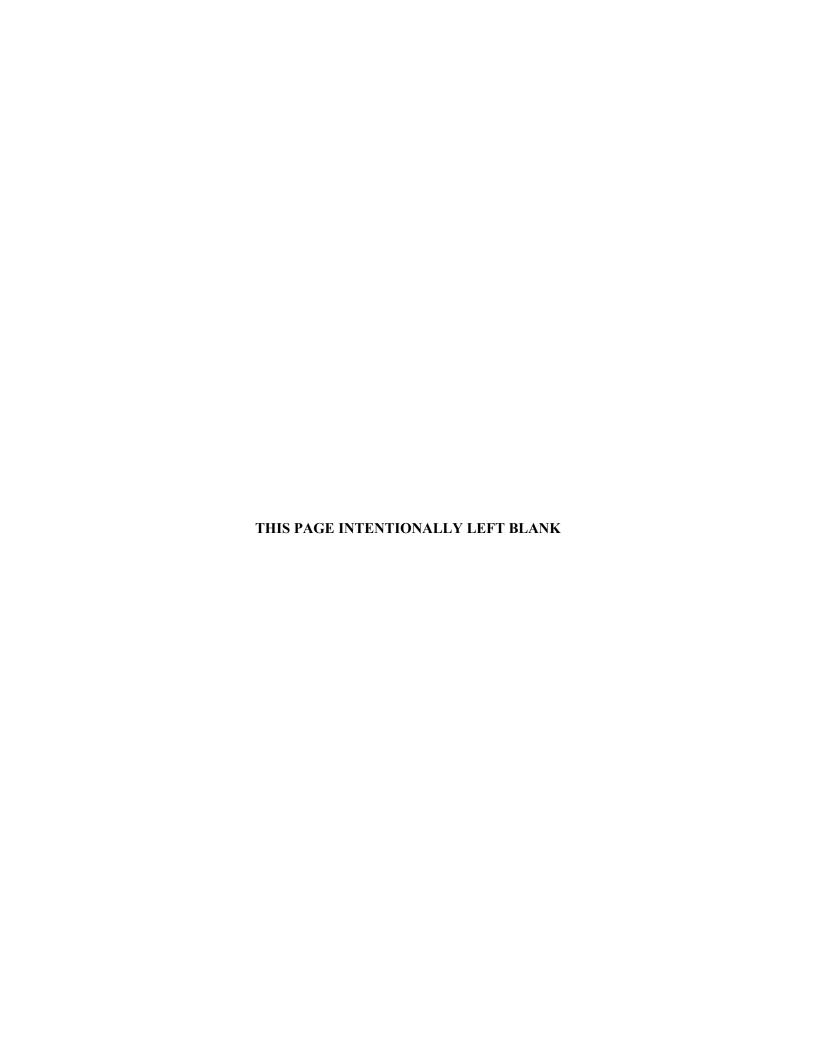
None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),


X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-85

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Fourth Quarter 2020 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 298.500 S = 113.895 CV(1) = 0.382

K factor=** 3.188

TL(1)= 661.596 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.624 S = 0.431 CV(2) = 0.077

K factor**= 3.188

TL(2)= 6.999

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/22/2018	210	5.347
1/23/2019	231	5.442
4/22/2019	431	6.066
7/17/2019	415	6.028
10/10/2019	227	5.425
3/18/2020	127	4.844
4/22/2020	401	5.994
7/29/2020	346	5.846

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	360	NO	5.886	N/A
MW390	Downgradient	t Yes	393	NO	5.974	N/A
MW393	Downgradient	t Yes	282	NO	5.642	N/A
MW396	Upgradient	Yes	204	NO	5.318	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.832 S = 5.579 CV(1) = 6.705 K factor** = 3.188
 TL(1) = 18.617 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.630 S = 0.301 CV(2) = 0.185 CV

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 10/22/2018 -3.72#Func! 1/23/2019 6.22 1.828 4/22/2019 1.773 5.89 7/17/2019 -0.714#Func! 10/10/2019 -9.62 #Func! 1/27/2020 3.26 1.182 4/22/2020 5.69 1.739 #Func! 7/29/2020 -0.35

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradien	t Yes	60.7	N/A	4.106	YES

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.083 **S**= 5.846

CV(1)=0.527

K factor**= 2.523

TL(1)= 25.833

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.256

S= 0.594 **CV(2)**=0.263

K factor**= 2.523

TL(2) = 3.754

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/15/2018 12.2 2.501 1/22/2019 23 3.135 4/16/2019 8.19 2.103 2.542 7/16/2019 12.7 10/8/2019 18.9 2.939 1/22/2020 8.34 2.121

16.5	2.803
18.9	2.939
MW394	
Result	LN(Result)
11.1	2.407
4.28	1.454
2.82	1.037
10.3	2.332
8.14	2.097
4.69	1.545
5.27	1.662
	18.9 MW394 Result 11.1 4.28 2.82 10.3 8.14 4.69

12

7/29/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW387	Downgradien	t Yes	207	YES	5.333	N/A

Conclusion of Statistical Analysis on Current Data

2.485

Wells with Exceedances

MW387

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 25.575 S = 3.597

CV(1)=0.141

K factor=** 2.523

TL(1)= 34.651

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.233

S = 0.135 CV(2) = 0.042

K factor=** 2.523

 $3 ext{TL(2)} = 3.572$

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220	
Result	LN(Result)
20.6	3.025
26	3.258
35.8	3.578
25.4	3.235
20.9	3.040
26.3	3.270
28.8	3.360
20.6	3.025
	Result 20.6 26 35.8 25.4 20.9 26.3 28.8

1/20/2020	20.0	3.023
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/22/2018	25.4	3.235
1/23/2019	27.9	3.329
4/22/2019	24.7	3.207
7/17/2019	25.4	3.235
10/10/2019	25.2	3.227
1/27/2020	25.3	3.231
4/22/2020	24.9	3.215
7/29/2020	26	3.258

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	62.3	YES	4.132	N/A
MW387	Downgradient	t Yes	44.1	YES	3.786	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Current Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 27.113 **S**= 24.198 **CV(1)**=0.892

K factor**= 2.523

TL(1)= 88.164

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.122 S = 0.520

CV(2)=0.166

K factor**= 2.523

TL(2) = 4.433

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/15/2018 20 2.996 1/22/2019 2.996 20 4/16/2019 2.797 16.4 7/16/2019 15.9 2.766 10/8/2019 20 2.996 1/22/2020 20 2.996 4/21/2020 114 4.736 7/20/2020

7/28/2020	20	2.996
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/22/2018	11.8	2.468
1/23/2019	20	2.996
4/22/2019	20.3	3.011
7/17/2019	18.3	2.907
10/10/2019	40.8	3.709
1/27/2020	29.2	3.374
4/22/2020	31.1	3.437
7/29/2020	16	2.773

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW394	Upgradient	Yes	46.4	NO	3.837	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Current Background Comparison** URGA **Conductivity** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 386.063 S = 30.506 CV(1) = 0.079

K factor**= 2.523

TL(1)= 463.028 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.953S = 0.078 CV(2) = 0.013

K factor**= 2.523

TL(2) = 6.150

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/15/2018	342	5.835
1/22/2019	416	6.031
5/30/2019	424	6.050
7/16/2019	377	5.932
10/8/2019	346	5.846
3/18/2020	441	6.089
4/21/2020	435	6.075
7/28/2020	354	5.869

4/21/2020	435	6.075
7/28/2020	354	5.869
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/22/2018	410	6.016
1/23/2019	381	5.943
5/29/2019	383	5.948
7/17/2019	370	5.914
10/10/2019	382	5.945
1/27/2020	370	5.914
4/22/2020	367	5.905
7/29/2020	379	5.938

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	778	YES	6.657	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Current Background Comparison Dissolved Solids** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 210.688 S = 29.420 CV(1) = 0.140

K factor**= 2.523

TL(1)= 284.915 **LL(1)**=N/A

URGA

Statistics-Transformed Background Data

X = 5.342S = 0.136CV(2)=0.026 K factor**= 2.523

TL(2) = 5.686

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/15/2018 226 5.421 1/22/2019 209 5.342 4/16/2019 273 5.609 7/16/2019 176 5.170 10/8/2019 176 5.170 1/22/2020 256 5.545 4/21/2020 214 5.366 7/28/2020 191 5.252

Well Number:	MW394	
Date Collected	Result	LN(Result)
10/22/2018	206	5.328
1/23/2019	197	5.283
4/22/2019	216	5.375
7/17/2019	167	5.118
10/10/2019	251	5.525
1/27/2020	200	5.298
4/22/2020	200	5.298
7/29/2020	213	5.361

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	474	YES	6.161	N/A
MW387	Downgradient	Yes	311	YES	5.740	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Current Background Comparison Magnesium UNITS: mg/L URGA

S = 0.105

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.459 **S**= 1.034

CV(1)=0.099

K factor=** 2.523

TL(1)= 13.069

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.343

CV(2) = 0.045

K factor**= 2.523

TL(2) = 2.607

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/15/2018	8.8	2.175
1/22/2019	10.8	2.380
4/16/2019	10.3	2.332
7/16/2019	10	2.303
10/8/2019	8.71	2.164
1/22/2020	10.9	2.389
4/21/2020	11.9	2.477
7/28/2020	8.24	2.109
Well Number:	MW394	
D-4- C-114-4	D14	I M/D14)

//28/2020	0.24	2.109
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/22/2018	11.3	2.425
1/23/2019	11.4	2.434
4/22/2019	11	2.398
7/17/2019	10.8	2.380
10/10/2019	10.7	2.370
1/27/2020	10.6	2.361
4/22/2020	10.7	2.370
7/29/2020	11.2	2.416

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	23.4	YES	3.153	N/A
MW387	Downgradien	t Yes	19.6	YES	2.976	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 410.625 S = 49.249 CV(1) = 0.120

K factor**= 2.523

TL(1)= 534.880 LL(

LL(1)=N/A

Statistics-Transformed Background Data

X = 6.011 S = 0.121

CV(2)=0.020

K factor**= 2.523

TL(2) = 6.315

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/15/2018	413	6.023
1/22/2019	361	5.889
5/30/2019	523	6.260
7/16/2019	407	6.009
10/8/2019	414	6.026
3/18/2020	378	5.935
4/21/2020	435	6.075
7/28/2020	375	5.927
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/22/2018	386	5.956
1/23/2019	314	5.749
5/29/2019	463	6.138

435

438

440

432

356

7/17/2019

10/10/2019

1/27/2020

4/22/2020

7/29/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW221	Sidegradient	Yes	405	NO	6.004	N/A
MW223	Sidegradient	Yes	398	NO	5.986	N/A
MW391	Downgradient	t Yes	404	NO	6.001	N/A

Conclusion of Statistical Analysis on Current Data

6.075

6.082

6.087

6.068

5.875

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2020 Statistical Analysis Sodium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 37.950 **S**= 5.872

CV(1)=0.155

K factor=** 2.523

TL(1) = 52.766

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.625

S= 0.152 **CV(2)**=0.042

K factor=** 2.523

TL(2) = 4.008

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220	
Result	LN(Result)
39	3.664
45.1	3.809
47.4	3.859
43.4	3.770
39.4	3.674
47.6	3.863
44	3.784
38.3	3.645
	Result 39 45.1 47.4 43.4 39.4 47.6 44

4/21/2020	44	3.784
7/28/2020	38.3	3.645
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/22/2018	33.4	3.509
1/23/2019	32.7	3.487
4/22/2019	30.8	3.428
7/17/2019	31.9	3.463
10/10/2019	33	3.497
1/27/2020	34.1	3.529
4/22/2020	33.4	3.509
7/29/2020	33.7	3.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	61.7	YES	4.122	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 15.375 **S**= 4.607

CV(1)=0.300

K factor**= 2.523

TL(1)= 26.998

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.693

S = 0.289 C

CV(2)=0.107

K factor=** 2.523

TL(2) = 3.422

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/15/2018	16.9	2.827
1/22/2019	21.4	3.063
4/16/2019	24.1	3.182
7/16/2019	18.5	2.918
10/8/2019	15.6	2.747
1/22/2020	20.1	3.001
4/21/2020	22.2	3.100
7/28/2020	15.3	2.728
Well Number	MW394	

Well Number:	MW394	
Date Collected	Result	LN(Result)
10/22/2018	10.6	2.361
1/23/2019	11	2.398
4/22/2019	10.7	2.370
7/17/2019	11.1	2.407
10/10/2019	12	2.485
1/27/2020	12.1	2.493
4/22/2020	12.7	2.542
7/29/2020	11.7	2.460

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	129	YES	4.860	N/A
MW384	Sidegradient	Yes	21.1	NO	3.049	N/A
MW387	Downgradient	Yes	34.4	YES	3.538	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 13.592 **S**= 8.471

CV(1)=0.623

K factor=** 2.523

TL(1)= 34.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.515

S= 0.666

CV(2)=0.265

K factor**= 2.523

TL(2) = 3.325

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/15/2018	20.8	3.035
1/22/2019	19.4	2.965
4/16/2019	17.1	2.839
7/16/2019	27.8	3.325
10/8/2019	27	3.296
1/22/2020	12	2.485
4/21/2020	18.7	2.929
7/28/2020	19	2.944
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/22/2018	13.4	2.595
1/23/2019	11.5	2.442
4/22/2019	2.55	0.936
7/17/2019	4.74	1.556

-2.22

10.2

6.29

9.21

10/10/2019

1/27/2020

4/22/2020

7/29/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	83.4	YES	4.424	N/A
MW384	Sidegradient	Yes	36.9	YES	3.608	N/A
MW387	Downgradient	Ves	321	YES	5 771	N/A

Conclusion of Statistical Analysis on Current Data

#Func!

2.322

1.839

2.220

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 8.479

S= 3.694 **CV(1)**=0.436

K factor**= 2.523

TL(1)= 17.798

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.051

 $S= 0.434 \quad CV(2)=0.211$

K factor**= 2.523

TL(2) = 3.145

1, assume normal distribution and

continue with statistical analysis

utilizing TL(1).

Because CV(1) is less than or equal to

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/22/2018 9.41 2.242 1/23/2019 5.24 1.656 4/22/2019 3.8 1.335 7/17/2019 6.42 1.859 10/10/2019 3.67 1.300 1/27/2020 10.1 2.313 4/22/2020 7.55 2.022 7/29/2020 13 2.565

Date Collected LN(Result) Result 10/15/2018 5.14 1.637 1/23/2019 8.19 2.103 4/16/2019 7.45 2.008 7/16/2019 6.74 1.908 10/9/2019 12.7 2.542 1/27/2020 9.86 2.288 4/22/2020 8.69 2.162

17.7

MW397

Well Number:

7/27/2020

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	51.8	YES	3.947	N/A

Conclusion of Statistical Analysis on Current Data

2.874

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 21.694 **S**= 3.286

CV(1)=0.151

K factor**= 2.523

TL(1)= 29.984

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.066

S= 0.152 **CV(2)**=0.050

K factor=** 2.523

utilizing TL(1).

TL(2) = 3.450

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/22/2018 24.4 3.195 1/23/2019 27.3 3.307 4/22/2019 25.4 3.235 7/17/2019 24.2 3.186 10/10/2019 23.4 3.153 1/27/2020 24.4 3.195 4/22/2020 24 3.178 7/29/2020 3.207 24.7

Well Number: MW397 Date Collected LN(Result) Result 10/15/2018 19.3 2.960 1/23/2019 19 2.944 4/16/2019 16.9 2.827 7/16/2019 19.7 2.981 10/9/2019 18.8 2.934

18.6

18.1

18.9

1/27/2020

4/22/2020

7/27/2020

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	70.1	YES	4.250	N/A

Conclusion of Statistical Analysis on Current Data

2.923

2.896

2.939

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Current Background Comparison LRGA Conductivity** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 337.875 S = 20.771 CV(1) = 0.061

K factor**= 2.523

TL(1)= 390.281

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.821

S = 0.061

CV(2) = 0.010

K factor**= 2.523

TL(2) = 5.975

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/22/2018	375	5.927
1/23/2019	359	5.883
5/29/2019	367	5.905
7/17/2019	344	5.841
10/10/2019	357	5.878
1/27/2020	348	5.852
4/22/2020	350	5.858
7/29/2020	354	5.869

7/29/2020	354	5.869
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/15/2018	321	5.771
1/23/2019	316	5.756
5/29/2019	318	5.762
7/16/2019	316	5.756
10/9/2019	319	5.765
3/18/2020	321	5.771
4/22/2020	319	5.765
7/27/2020	322	5.775

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	841	YES	6.735	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 189.375 **S**= 36.768 **CV(1)**=0.194

K factor=** 2.523

TL(1)= 282.139

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.228 S = 0.175 CV(2) = 0.034

K factor**= 2.523

utilizing TL(1).

TL(2) = 5.671

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/22/2018 176 5.170 1/23/2019 284 5.649 4/22/2019 173 5.153 7/17/2019 184 5.215 10/10/2019 146 4.984 1/27/2020 257 5.549 4/22/2020 199 5.293 5.153 7/29/2020 173

Current Quarter Data

Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2)

MW373 Downgradient Yes 529 YES 6.271 N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
10/15/2018	184	5.215
1/23/2019	160	5.075
4/16/2019	229	5.434
7/16/2019	176	5.170
10/9/2019	173	5.153
1/27/2020	177	5.176
4/22/2020	160	5.075
7/27/2020	179	5.187

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis Current Backgr Magnesium UNITS: mg/L

S = 1.379

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.269

CV(1)=0.149

K factor**= 2.523

TL(1)=12.747

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.216

 $S = 0.150 \quad CV(2) = 0.067$

K factor=** 2.523

TL(2) = 2.593

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/22/2018 10.7 2.370 1/23/2019 11.2 2.416 4/22/2019 2.407 11.1 7/17/2019 10.6 2.361 10/10/2019 9.88 2.291 1/27/2020 10.2 2 332

1/2//2020	10.5	2.332
4/22/2020	10.2	2.322
7/29/2020	10.4	2.342
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/15/2018	8.48	2.138
1/23/2019	7.84	2.059
4/16/2019	7.65	2.035
7/16/2019	8.63	2.155
10/9/2019	8	2.079
1/27/2020	7.81	2.055
4/22/2020	7.81	2.055

7.7

7/27/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	28	YES	3 332	N/A

Conclusion of Statistical Analysis on Current Data

2.041

Wells with Exceedances
MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Oxidation-Reduction Potential UNITS:** mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

Statistics-Background Data

X = 401.875 S = 71.943 CV(1) = 0.179

K factor**= 2.523

TL(1)= 583.388 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.978S = 0.210 CV(2) = 0.035

K factor**= 2.523

TL(2) = 6.506

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/22/2018 237 5.468 1/23/2019 433 6.071 477 5/29/2019 6.168 449 7/17/2019 6.107 10/10/2019 443 6.094 1/27/2020 457 6.125 4/22/2020 419 6.038 7/29/2020 5.903 366 Well Number: MW397 Date Collected Result LN(Result) 10/15/2018 407 6.009 1/23/2019 394 5.976 5/29/2019 488 6.190 7/16/2019 395 5.979 10/9/2019 439 6.084 3/18/2020 5.505 246 4/22/2020 420 6.040

360

7/27/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	(
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	350	NO	5.858	N/A
MW373	Downgradient	t Yes	350	NO	5.858	N/A
MW385	Sidegradient	Yes	378	NO	5.935	N/A
MW388	Downgradient	t Ves	378	NO	5 935	N/A

MW392 Downgradient Yes 408 6.011 NO N/A MW395 Upgradient Yes 354 NO 5.869 N/A

Conclusion of Statistical Analysis on Current Data

5.886

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-20

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Sulfate** UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 11.038 S = 0.758

CV(1)=0.069

K factor**= 2.523

TL(1)= 12.950

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.399

S = 0.068CV(2)=0.028 K factor**= 2.523

TL(2) = 2.571

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/22/2018	10.2	2.322
1/23/2019	10.6	2.361
4/22/2019	10.5	2.351
7/17/2019	10.9	2.389
10/10/2019	12.1	2.493
1/27/2020	11.7	2.460
4/22/2020	12.4	2.518
7/29/2020	12	2.485
Well Number:	MW397	
Date Collected	Result	LN(Result)

7/29/2020	12	2.485
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/15/2018	10.4	2.342
1/23/2019	10.1	2.313
4/16/2019	10	2.303
7/16/2019	10.7	2.370
10/9/2019	11.4	2.434
1/27/2020	10.9	2.389
4/22/2020	11	2.398
7/27/2020	11.7	2.460

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	20.8	YES	3.035	N/A
MW373	Downgradien	t Yes	157	YES	5.056	N/A
MW385	Sidegradient	Yes	23.5	YES	3.157	N/A
MW388	Downgradien	t Yes	18.3	YES	2.907	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2020 Statistical Analysis **Current Background Comparison Technetium-99** UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 11.781 S = 7.441

CV(1)=0.632

K factor**= 2.523

TL(1) = 30.555

LRGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.279

S = 0.654CV(2) = 0.287 K factor**= 2.523

TL(2) = 3.929

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/22/2018 13.2 2.580 1/23/2019 10.3 2.332 4/22/2019 11.2 2.416 7/17/2019 1.593

4.92 10/10/2019 8.31 2.117 1/27/2020 3.14 1.144 4/22/2020 8.44 2.133 7/29/2020 12.2 2.501

Well Number MW307

7/27/2020

well Nullibel.	IVI W 397	
Date Collected	Result	LN(Result)
10/15/2018	18.3	2.907
1/23/2019	7.12	1.963
4/16/2019	32.1	3.469
7/16/2019	5.83	1.763
10/9/2019	15.3	2.728
1/27/2020	3.04	1.112
4/22/2020	15	2.708

20.1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	72.3	YES	4.281	N/A
MW385	Sidegradient	Yes	56.5	YES	4.034	N/A

Conclusion of Statistical Analysis on Current Data

3.001

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

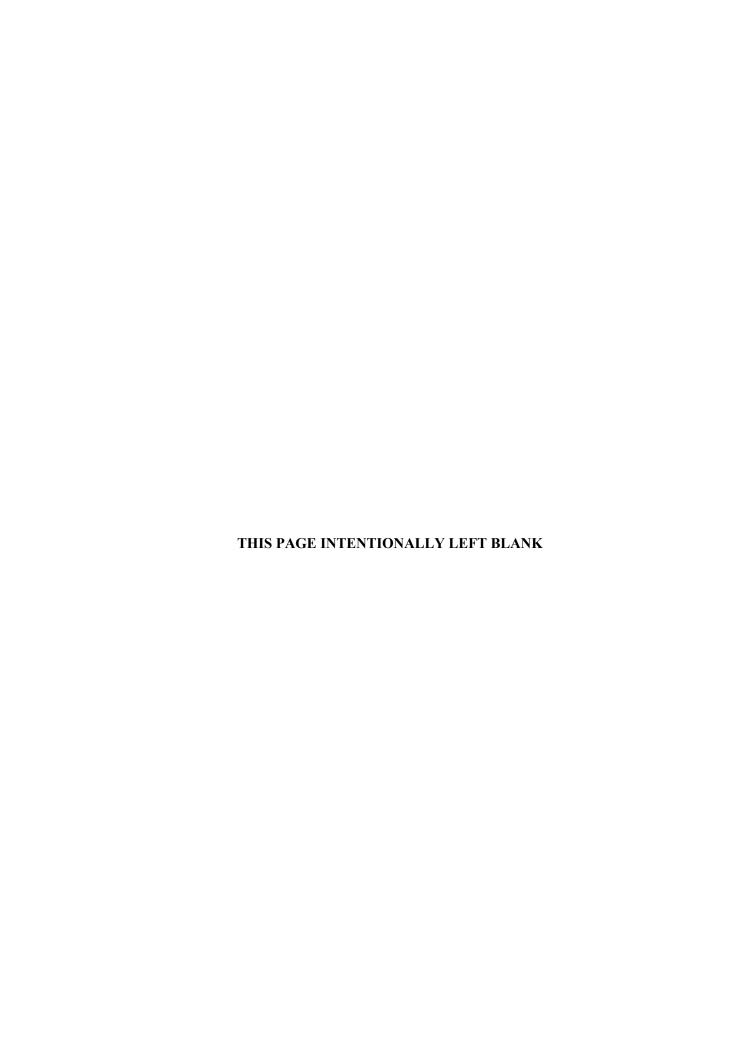
Four Rivers Nuclear Partnership, LLC

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

January 26, 2021

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:


As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the fourth quarter 2020 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Diyan Simui

Byn Si

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—QUARTERLY, 4th CY 2020 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

LAB ID: None Permit Numbers: SW07300014, SW07300015, SW07300045 For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Finds/Unit: KY8-890-008-982/1

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2020 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on October 26 and 27, 2020. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown in Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. During October, RGA groundwater flow was directed inward and then northeast towards the Ohio River. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 5.45 × 10⁻⁴ ft/ft. Additional water level measurements in October (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 5.79×10^{-4} ft/ft, northward. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for October 2020, RGA groundwater flow from the landfill area was directed to the northeast.

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

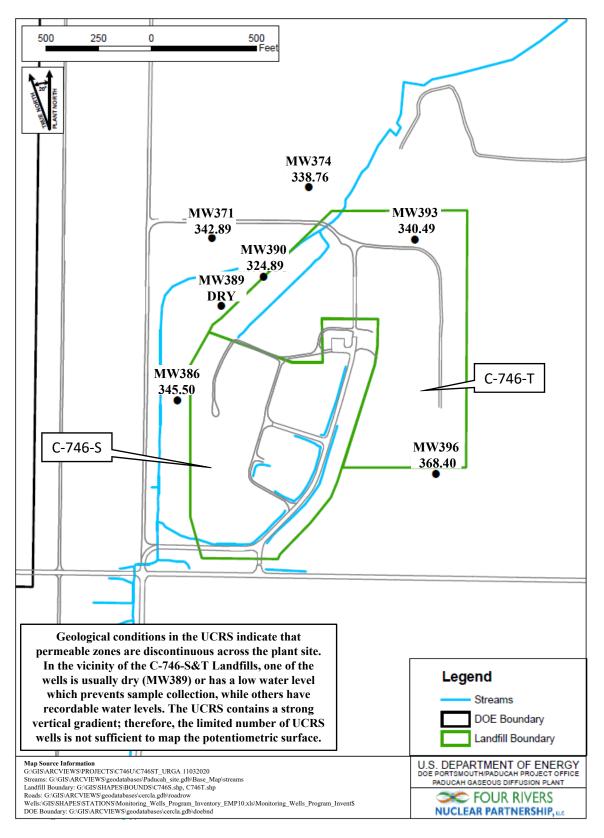


Figure E.1. Potentiometric Measurements of the Upper Continental Recharge System at the C-746-S&T Landfills, October 26, 2020

Table E.1. C-746-S&T Landfills Fourth Quarter 2020 (October) Water Levels

C-746-S&T Landfills (October 2020) Water Levels										
							Rav	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/26/2020	10:14	MW220	URGA	382.06	30.20	0.00	56.80	325.26	56.80	325.26
10/26/2020	10:19	MW221	URGA	391.43	30.20	0.00	66.52	324.91	66.52	324.91
10/26/2020	10:23	MW222	URGA	395.32	30.20	0.00	70.35	324.97	70.35	324.97
10/26/2020	10:21	MW223	URGA	394.43	30.20	0.00	69.45	324.98	69.45	324.98
10/26/2020	10:24	MW224	URGA	395.74	30.20	0.00	70.64	325.10	70.64	325.10
10/26/2020	10:16	MW225	URGA	385.78	30.20	0.00	60.64	325.14	60.64	325.14
10/26/2020	10:30	MW353	LRGA	375.09	30.20	0.00	49.38	325.71	49.38	325.71
10/27/2020	8:28	MW384	URGA	365.34	30.23	-0.03	40.41	324.93	40.38	324.96
10/26/2020	10:10	MW385	LRGA	365.79	30.20	0.00	40.78	325.01	40.78	325.01
10/26/2020	10:11	MW386	UCRS	365.37	30.20	0.00	19.87	345.50	19.87	345.50
10/26/2020	10:06	MW387	URGA	363.53	30.20	0.00	38.62	324.91	38.62	324.91
10/26/2020	10:07	MW388	LRGA	363.50	30.20	0.00	38.60	324.90	38.60	324.90
10/26/2020	10:05	MW389	UCRS	364.16			N/A			
10/26/2020	10:04	MW390	UCRS	360.44	30.20	0.00	35.55	324.89	35.55	324.89
10/26/2020	9:50	MW391	URGA	366.72	30.20	0.00	41.78	324.94	41.78	324.94
10/26/2020	9:51	MW392	LRGA	365.90	30.20	0.00	40.96	324.94	40.96	324.94
10/26/2020	9:52	MW393	UCRS	366.67	30.20	0.00	26.18	340.49	26.18	340.49
10/26/2020	9:57	MW394	URGA	378.50	30.20	0.00	53.13	325.37	53.13	325.37
10/26/2020	9:58	MW395	LRGA	379.17	30.20	0.00	53.80	325.37	53.80	325.37
10/26/2020	9:59	MW396	UCRS	378.803	30.20	0.00	10.40	368.40	10.40	368.40
10/26/2020	10:01	MW397	LRGA	387.05	30.20	0.00	61.68	325.37	61.68	325.37
10/26/2020	9:53	MW418	URGA	367.26	30.20	0.00	42.16	325.10	42.16	325.10
10/26/2020	9:54	MW419	LRGA	367.10	30.20	0.00	42.02	325.08	42.02	325.08

Reference Barometric Pressure

30.20

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

N/A = not available

*Assumes a barometric efficiency of 1.0

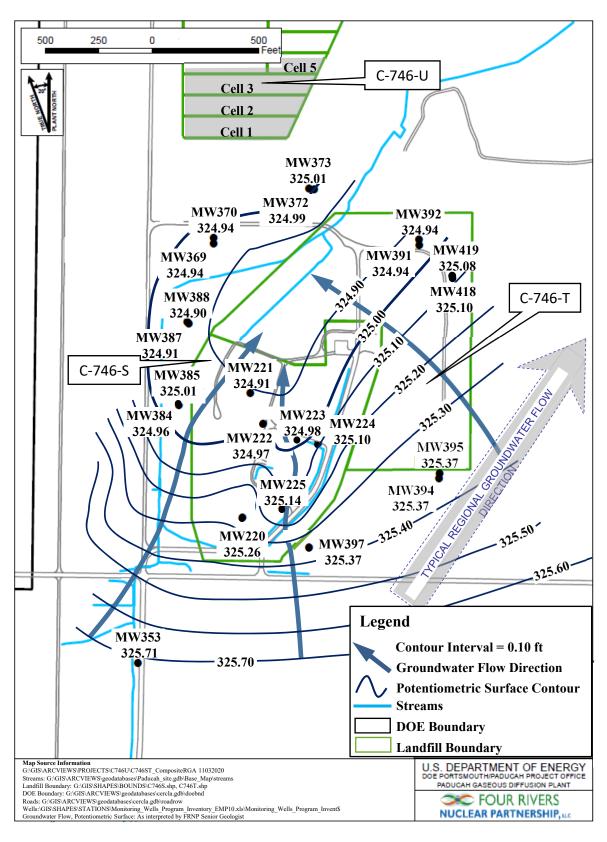


Figure E.2. Composite Potentiometric Surface of the Regional Gravel Aquifer at the C-746-S&T Landfills, October 26 and 27, 2020

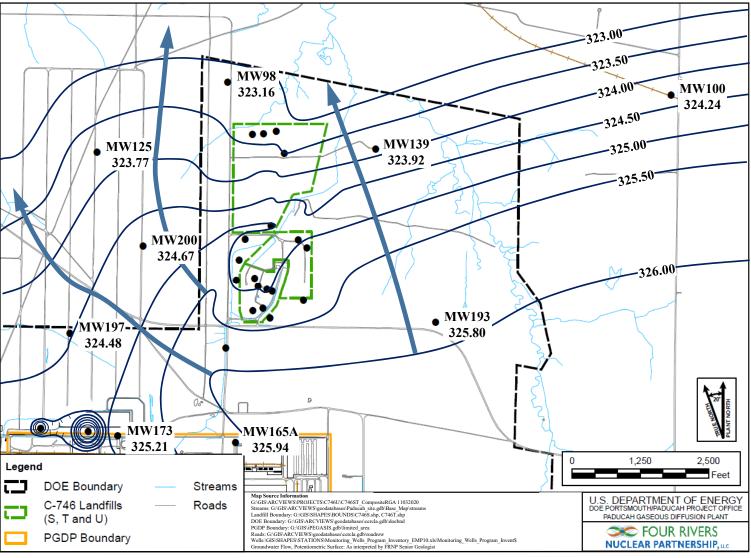
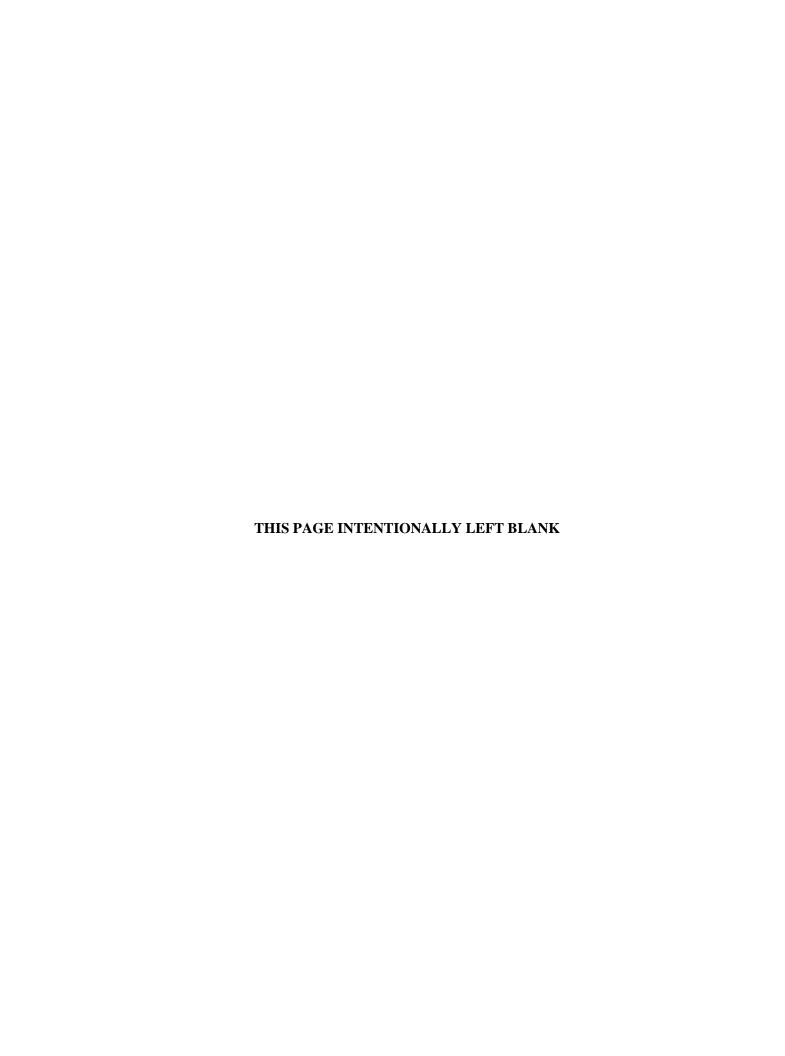


Figure E.3. Vicinity Potentiometric Surface of the Regional Gravel Aquifer October 26, 2020


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	5.45 × 10 ⁻⁴
Vicinity	5.79 × 10 ⁻⁴

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Conductivity (K)		Specific I	Discharge (q)	Average Linear Velocity (v)			
ft/day	cm/s	ft/day cm/s		ft/day	cm/s		
Beneath Landfill Mound							
725	0.256	0.395	1.40 × 10 ⁻⁴	1.58	5.58 × 10 ⁻⁴		
425	0.150	0.232	8.18 × 10 ⁻⁵	0.927	3.27 × 10 ⁻⁴		
Vicinity	Vicinity						
725	0.256	0.420	1.48 × 10 ⁻⁴	1.68	5.93 × 10 ⁻⁴		
425	0.150	0.246	8.69 × 10 ⁻⁵	0.984	3.47 × 10 ⁻⁴		

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the fourth quarter 2020 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan* for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW372 MW372, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW385

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

11/17/2020

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS

SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4818	MW370	Beta activity	9310	51.8	pCi/L	50
8004-4815	MW387	Beta activity	9310	207	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	9.53	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	14	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

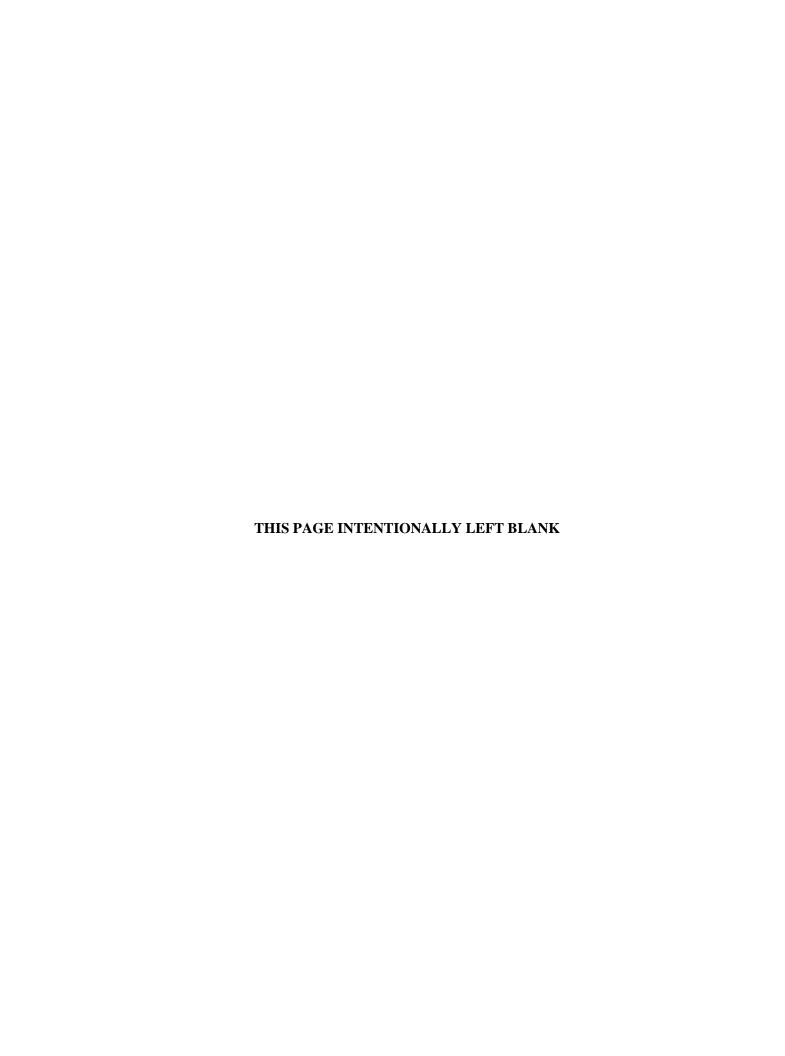


Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

Groundwater Flow System Gradient Monitoring Well ACETONE Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2005 Quarter 4, 2019	S 386	D 389	D 390	D	U	S	S	S	S	S	D	D	D	D	U	TT	c	_		ъ	ъ	U	
Monitoring Well ACETONE Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2005 Quarter 4, 2019	386	389	390	202	-						ע	ע	D	D	U	U	S	D	D	D	D	U	U
ACETONE Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2005 Quarter 4, 2019				393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2005 Quarter 4, 2019																							
Quarter 1, 2005 Quarter 4, 2019							*					*											
Quarter 1, 2005 Quarter 4, 2019											*								*				
									*														
																*							
ALPHA ACTIVITY																							
Quarter 4, 2002				_									_										
Quarter 4, 2008																							t
Quarter 4, 2010																							<u> </u>
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									T
Quarter 2, 2003			*				*						*	*									t
Quarter 3, 2003			*				*	*					*	*									1
Quarter 4, 2003							*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*		\vdash							\vdash
Quarter 4, 2004			*											-		\vdash							\vdash
Quarter 1, 2005			*																				\vdash
		-	*				*					-				\vdash							
Quarter 2, 2005	<u> </u>	-				_				<u> </u>												_	₩
Quarter 3, 2005			*				*			*	- JL	ļ									*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																<u> </u>
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008							-				*			-									
Quarter 4, 2008							*																-
			*				*				*												₩
Quarter 1, 2009			*				*				*												-
Quarter 1, 2010							不																<u> </u>
Quarter 2, 2010			*								*						-14						
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				
Quarter 3, 2012							*																
Quarter 1, 2013							*				*												
Quarter 3, 2013			*																				
Quarter 1, 2014							*																
Quarter 2, 2014											*												┢
Quarter 4, 2014		t	*																				\vdash
Quarter 1, 2016							*									H							\vdash
Quarter 2, 2016														*		\vdash							\vdash
Quarter 1, 2017							*							-		\vdash							\vdash
Quarter 4, 2017												 											*
Quarter 1, 2018	-	 				-	*					\vdash											Ë
Quarter 1, 2020	-	 				-	-					\vdash	*										\vdash
BARIUM																							
Quarter 3, 2003																							
Quarter 4, 2003	-	-	_				=	=		_	_	-							_	_		_	├
							_	_															
BETA ACTIVITY																							
Quarter 4, 2002	<u> </u>	 										<u> </u>											<u> </u>
Quarter 1, 2003						_							•				•						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	JRGA	Α.								LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004												_											
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006										Ŧ		_											
Quarter 3, 2006			_							Ŧ									1				
Quarter 4, 2006																							
Quarter 1, 2007	F	-		_		-	<u> </u>	_			_	÷		-	_						_	┝	\vdash
	-	-		_		-	<u> </u>	_			_	=	=	-	_						_	┝	\vdash
Quarter 2, 2007		-	-				-							-					_			\vdash	\vdash
Quarter 3, 2007	!	-					-							-									$\vdash\vdash$
Quarter 4, 2007	!	-					-		ļ					-					-				$\vdash\vdash$
Quarter 1, 2008		 							<u> </u>			_		<u> </u>								┢	\vdash
Quarter 2, 2008										_	_												
Quarter 3, 2008										_		_					•						
Quarter 4, 2008										•		_					•						
Quarter 1, 2009										•		_											
Quarter 2, 2009										•		•											
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																	•						
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014	1						1													1			
Quarter 2, 2014																							
Quarter 3, 2014	1		1				1																
Quarter 4, 2014										-													\vdash
Quarter 1, 2015										1		Ŧ											\vdash
Quarter 2, 2015										-													\vdash
Quarter 3, 2015	1		1				1			Ŧ									-				\vdash
Quarter 4, 2015	1		1				1												-				\vdash
Quarter 1, 2016	1	 				 			-	Ŧ		<u> </u>		 		\vdash	H			Ē		H	\vdash
Quarter 2, 2016	 	1	-				1			i				1						=		\vdash	\vdash
Quarter 3, 2016	-	-	<u> </u>	_		-	<u> </u>	_			_	_		-	_						_	┝	\vdash
	_	-	-				-			i				-				_				\vdash	\vdash
Quarter 4, 2016	!	-	-				-				-			-									$\vdash\vdash$
Quarter 1, 2017	-	-		_		<u> </u>										Щ							\vdash
Quarter 2, 2017	!	-	-				-							-									$\vdash\vdash$
Quarter 3, 2017			Щ		Щ		Щ			_			_			ш	ے	_	Щ	_		_	Щ

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

BETA ACTIVITY Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 5, 2004 Quarter 6, 2003 Quarter 7, 2004 Quarter 7, 2005 Quarter 8, 2004 Quarter 9, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2006 CALCUM Quarter 1, 2005 Quarter 4, 2006 Quarter 4, 2004 Quarter 2, 2005 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011	_						URGA									LRGA	1		
BETA ACTIVITY Quarter 4, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 4, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 BROMIDE Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2009 Quarter 4, 2003 W* Quarter 3, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 W* Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 W* Quarter 3, 2006 CALCIUM Quarter 3, 2006 CALCIUM Quarter 4, 2003 Quarter 4, 2004 Quarter 5, 2005 Quarter 4, 2004 Quarter 7, 2006 Quarter 4, 2006 Quarter 1, 2005 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2004 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011	S	D U	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
BETA ACTIVITY Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE Quarter 4, 2003 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2003 Quarter 4, 2003 R* Quarter 3, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2004 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2004 Quarter 5, 2005 Quarter 4, 2005 Quarter 7, 2006 Quarter 7, 2006 Quarter 7, 2006 Quarter 7, 2006 Quarter 1, 2005 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 1, 2006 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011	_		222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 BROMIDE Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2003 Quarter 2, 2004 Quarter 1, 2005 Quarter 2, 2004 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 4, 2004 Quarter 3, 2006 CALCIUM Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2006 CALCIUM Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 5, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 9, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2004 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011																			
Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2006 X Quarter 3, 2006 X Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 5, 2006 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011																			
Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 3, 2006 Quarter 4, 2003 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2003 Quarter 3, 2006 Quarter 4, 2003 Quarter 4, 2003 Quarter 5, 2004 Quarter 6, 2004 Quarter 7, 2005 Quarter 7, 2006 Quarter 8, 2006 Quarter 9, 2006 Quarter 9, 2006 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2011 Quarter 2, 2011																			
Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2009 Quarter 4, 2000 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2003 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2003 Quarter 4, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2011	Ī																		
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 1, 2005 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2006 CALCIUM Quarter 1, 2005 Quarter 3, 2006 Quarter 3, 2006 X Quarter 4, 2004 Quarter 2, 2003 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011	i i																		
Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2006 CALCIUM Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011																			
Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2003 Quarter 1, 2005 Quarter 1, 2003 Quarter 2, 2004 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2006 CALCIUM Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011																			
Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2006 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011						•			•										
Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2006 CALCIUM Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2006 CALCIUM Quarter 3, 2004 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011																			
Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 BROMIDE Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2006 CALCIUM Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2006 CALCIUM Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011																			
Quarter 3, 2020 Quarter 4, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011																			
Quarter 4, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2006 CALCIUM Quarter 3, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2006 CALCIUM Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 2, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011																			
BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2006 CALCIUM Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2003 Quarter 4, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011																			
Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2006 Quarter 1, 2005 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2006 CALCIUM Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 2, 2004 W Quarter 1, 2005 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011									_										
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011																			
Quarter 1, 2004	<u> </u>																		
Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2006 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2003 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011	Щ						<u> </u>						L_	<u> </u>		<u> </u>			<u> </u>
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011	Щ						<u> </u>						L_	<u> </u>		<u> </u>			<u> </u>
Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011	Щ						<u> </u>							<u> </u>		<u> </u>			<u> </u>
Quarter 1, 2005 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011	Щ						<u> </u>						L_	<u> </u>		<u> </u>			<u> </u>
Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011	Щ																		
CALCIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011	Щ																		
Quarter 1, 2003	<u> </u>																		
Quarter 2, 2003																			
Quarter 3, 2003																			
Quarter 4, 2003								*											
Quarter 1, 2004																			
Quarter 2, 2004								*							*				
Quarter 3, 2004								*		*					*				
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011								*							*				
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011		1						*							*				
Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011								*							*				
Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 2, 2011	1							*							*				
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011	Ī	İ						*							*				
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011	1							*							*				
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011	t							*							*				
Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011	T							*							*				
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011	T							*							*				
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011	t	1						*							*				
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011	t	1						*							*				
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011	t	1						*							*				
Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011	t	-+						*							*				
Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011	\vdash						-	*						-	*	-			
Quarter 1, 2011 Quarter 2, 2011	\vdash							*							*				
Quarter 2, 2011	 	-+					-	*					-	-	*	-			
	╂	-+					-	*	*				-	-	*	-			
	₩							*	-						*				<u> </u>
Quarter 3, 2011	₩		1																<u> </u>
Quarter 4, 2011	₩		1					*							*				<u> </u>
Quarter 1, 2012	₩						<u> </u>	*					<u> </u>	<u> </u>	*	<u> </u>			<u> </u>
Quarter 2, 2012	Ь							*							*				<u> </u>
Quarter 3, 2012	ᆫ	1				Ц.	<u> </u>	*	Ц.				Ц_	<u> </u>	*	<u> </u>			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						Ţ	JRGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017												*							*				
Quarter 3, 2017												*							*				
Quarter 4, 2017												*							*				
Quarter 1, 2018												*							*				
Quarter 2, 2018	\vdash					\vdash						*					\vdash		*				
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*							*				
Quarter 4, 2019												*	*						*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*							*				
Quarter 3, 2020												*	*						*				
Quarter 4, 2020												*	*						*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
Quarter 2, 2017												*	*						*				
CHEMICAL OXYGEN DEMANI)																						
Quarter 1, 2003				*																			
Quarter 2, 2003				*																			
Quarter 3, 2003				*			*			*													
Quarter 4, 2003				*																			
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						
-						_																	

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	3						Ţ	URG	4								LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well		_	390	393	396	221	222	223	224	384	369	372	_	391	220	394	385	370		388	392	395	
CHEMICAL OXYGEN DEMANI																							
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						_
Quarter 3, 2010	*																						_
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						_
Quarter 4, 2011	*																						_
Quarter 1, 2012	*																						_
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*								*				*					*					├
Quarter 4, 2014							*						-										
Quarter 2, 2015							-									*							
Quarter 3, 2015															*	-							├
Quarter 3, 2016			*								*				т.								1
			т.								т.						*						
Quarter 4, 2016	-	-	-			-	*			-	-	-	-	-	-		<u> </u>		-				
Quarter 2, 2017	*	-	-			-	*			-	-	-	-	-	*		-		-				
Quarter 3, 2017	<u> </u>					*		_							*		_			_		_	₩
Quarter 4, 2017	_					*								- VE			_					4 E	<u> </u>
Quarter 2, 2018	_					_						- VE		*			_					*	<u> </u>
Quarter 3, 2018	-	<u> </u>	-			-	-			-	<u> </u>	*	<u> </u>	<u> </u>	-		-		-				<u>.</u>
Quarter 4, 2018	<u> </u>	<u> </u>	<u> </u>		4.	<u> </u>	<u> </u>			<u> </u>	<u> </u>	120	<u> </u>	44	<u> </u>		<u> </u>		<u>.</u>				*
Quarter 2, 2019	_				*	<u> </u>						*	120	*			_		*			440	4
Quarter 3, 2019												*	*						*			*	*
Quarter 4, 2019	*			*				*			*	*				*							<u> </u>
Quarter 1, 2020					*				*												*		
Quarter 2, 2020															*								
Quarter 4, 2020																*							
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				<u> </u>
Quarter 3, 2003			*																				<u> </u>
Quarter 4, 2003			*																				<u> </u>
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				<u> </u>
Quarter 3, 2004			*																				<u> </u>
Quarter 4, 2004			*																				ļ
Quarter 1, 2005			*																				ļ
Quarter 2, 2005			*																				<u> </u>
Quarter 3, 2005			*																				<u> </u>
Quarter 4, 2005			*															٠.					<u> </u>
Quarter 1, 2006		<u> </u>	AL.								<u> </u>		<u> </u>	<u> </u>				*					<u> </u>
Quarter 2, 2006		<u> </u>	*								<u> </u>		<u> </u>	<u> </u>									<u> </u>
Quarter 3, 2006	<u> </u>	<u> </u>	*				<u> </u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>				<u> </u>
Quarter 4, 2006			*																				<u> </u>
Quarter 1, 2007			*																				<u> </u>
Quarter 2, 2007			*																				
Quarter 3, 2007			*																				
Quarter 4, 2007			*																				
Quarter 1, 2008			*																				
Quarter 2, 2008			*																				
Quarter 3, 2008			*																				L
Quarter 4, 2008			*																				L
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				T
Quarter 3, 2010			*																				\vdash
Quarter 4, 2010			*																				\vdash
,																							_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient S D D D U S S S S D D D U U S D D D U U S D<	Groundwater Flow System			UCR	S							URG	A								LRGA	Ι.		
Muniforing Well 386 389 390 390 366 221 222 223 224 384 369 372 373 391 220 384 385 370 373 388 392 392 392 392 392 392 393	·	S				U	S	S	S	S	_	_		D	D	U	U	S	D		_		U	U
CHIORIDE																							395	
Quarter 2, 2011		300	307	370	373	370	221		223	22.	50.	30)	3,2	507	571	220	57.	505	370	373	300	372	375	37,
Ounter 4, 2011 Ounter 6, 2012 Ounter 7, 2013 Ounter 6, 2014 Ounter 7, 2019 Ounter 7, 2019 Ounter 7, 2019 Ounter 7, 2009 Ounter 1, 2000 Ounter 7, 2000 Ounter 1, 2000 Ounter 7, 2000 Ounter 7, 2000 Ounter 1, 2000 Ounter 7, 2000 Ounter 7, 2000 Ounter 1, 2000 Ounter 7, 2000 Ounter				*																				
Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2020 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2009 Quarter 2, 2003 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2001 Quarter 3, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 200																								
Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 200		<u> </u>																						├
Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2002 Quarter 3, 2002 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2003 Quarter 3, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 201		<u> </u>																						├
Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2009 Quarter 1, 2009 Quarter 2, 2000 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 200		├																						1
Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2000 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 1, 2008 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2006 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2006 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 6, 200		<u> </u>																						
Quarter 2, 2019 CHROMUM Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2009 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2001 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012		<u> </u>																						
CHRONHIN Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2009 Quarter 1, 2019 COBALIT Quarter 3, 2003 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2000 Quarter 2, 2003 *	'	├		~																		*		-
Quarter 4.2002 Quarter 2.2003 Quarter 3.2009 Quarter 3.2000 Quarte																						*		
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2009 Quarter 1, 2019 Quarter 3, 2009 Quarter 1, 2019 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2001 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 201		<u> </u>							_															
Quarter 2, 2003 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 2, 2001 Quarter 3, 2002 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2002 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 5, 2002 Quarter 6, 200																								
Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2002 Quarter 4, 2001 Quarter 3, 2002 Quarter 4, 2001 Quarter 5, 2002 Quarter 6, 200		<u> </u>	<u> </u>					_															_	<u> </u>
Quarter 1, 2019 COBALT COBALT COMMENTATION CONDUCTIVITY Ouarter 2, 2003 A		<u> </u>	ļ				_	-	•															ļ
COBALT		<u> </u>	<u> </u>																					<u> </u>
Marter 3, 2003							Ľ																	
CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 *								14.																
Quarter 1, 2002 Quarter 1, 2003		_	<u> </u>				_	*	<u> </u>	<u> </u>	Ц_	Ц_		Ц_	<u> </u>			_	<u> </u>	<u> </u>	Ц_		<u> </u>	Щ
Quarter 1, 2003																				984				
Quarter 2, 2003		<u> </u>	<u> </u>	45									ļ					_						
Quarter 4, 2003		<u> </u>	<u> </u>																					<u> </u>
Quarter 1, 2003		<u> </u>	<u> </u>						,1.															<u> </u>
Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 ** Quarter 4, 2004 ** Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2008 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 5, 2012 Quarter 5, 2012 ** ** ** ** ** ** ** ** **									*															
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 5, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 5, 2011 Quarter 5, 2012 Quarter 5, 2011 Quarter 5, 2012 Quarter 5, 2012 Quarter 5, 2012 Quarter 5, 2012 Quarter 6, 2011 Quarter 6, 2011 Quarter 6, 2012 Quarter 7, 2012 Quarter 6, 2012		<u> </u>		*							*													
Quarter 3, 2004		<u> </u>																						
Quarter 1, 2004		<u> </u>																						
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2010 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2012 Quarter 7, 2012 Quarter 9, 2012 Quarter		<u> </u>																						
Quarter 2, 2005 * * * Quarter 3, 2005 * * * Quarter 4, 2005 * * * * Quarter 1, 2006 * * * * * Quarter 2, 2006 * * * * Quarter 3, 2006 * * * * Quarter 3, 2006 * * * * * Quarter 3, 2006 * * * * * * Quarter 3, 2006 * * * * * * Quarter 3, 2006 * * * * * * Quarter 3, 2006 *				*																				
Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2011 Quarter 2, 2012	•										*													
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012	Quarter 2, 2005												*											
Quarter 1, 2006 *																								
Quarter 2, 2006 * * * * Quarter 3, 2006 * * * * * Quarter 4, 2006 * * * * Quarter 4, 2007 * * * * * * Quarter 3, 2007 * * * * * Quarter 3, 2007 * * * * * * Quarter 3, 2007 * * * * * * * * * Quarter 3, 2007 * * * * * * * * * Quarter 3, 2007 * * * * * * Quarter 3, 2008 * * * * * * * * * Quarter 3, 2008 *	Quarter 4, 2005										*													
Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 ** ** ** Quarter 4, 2011 ** Quarter 2, 2012 ** ** ** ** Quarter 3, 2011 Quarter 4, 2011 ** Quarter 4, 2011 ** Quarter 2, 2012 ** ** ** ** Quarter 3, 2011 Quarter 4, 2011 ** Quarter 4, 2011 ** Quarter 2, 2012																								
Quarter 4, 2006																								
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 ** ** ** ** ** ** ** ** **	'												*											
Quarter 2, 2007 * * * * Quarter 3, 2007 *	Quarter 4, 2006																	*						
Quarter 3, 2007 * * * * Quarter 4, 2007 * * * * * Quarter 1, 2008 * <	Quarter 1, 2007												*											
Quarter 4, 2007 *	'																							
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 2, 2012																								
Quarter 2, 2008 *		<u> </u>	<u> </u>															*						
Quarter 3, 2008 *		Щ																						<u> </u>
Quarter 4, 2008 * * * * * Quarter 1, 2009 * <t< td=""><td></td><td><u> </u></td><td><u> </u></td><td></td><td>L</td><td>L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u></u></td></t<>		<u> </u>	<u> </u>		L	L																		<u></u>
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 7, 2010 Quarter 9, 2010 Quarter 1, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 201		<u> </u>	<u> </u>															*						<u> </u>
Quarter 2, 2009 * * * * * Page 1 *		Щ																						<u> </u>
Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 5, 2012 Quarter 6, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 8, 2012 Quarter 9, 2012 Quarter 9, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 2, 2012		<u> </u>	<u> </u>																					<u> </u>
Quarter 4, 2009		<u> </u>	<u> </u>																					
Quarter 1, 2010		Щ																						<u> </u>
Quarter 3, 2010 * * * Quarter 3, 2010 * * * Quarter 4, 2010 * * * Quarter 1, 2011 * * * Quarter 2, 2011 * * * Quarter 3, 2011 * * * Quarter 4, 2011 * * * Quarter 1, 2012 * * * Quarter 2, 2012 * * *		<u> </u>	<u> </u>		L	L												*						<u></u>
Quarter 3, 2010 * * * Quarter 4, 2010 * * * Quarter 1, 2011 * * * Quarter 2, 2011 * * * Quarter 3, 2011 * * * Quarter 4, 2011 * * * Quarter 1, 2012 * * * Quarter 2, 2012 * * *		<u> </u>	<u> </u>																					
Quarter 4, 2010 * * * * * Quarter 1, 2011 * <t< td=""><td></td><td>Щ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></t<>		Щ																						<u> </u>
Quarter 1, 2011 * * * * * * Puarter 2, 2011 * * * * * * * * * * * * * * * * * * *		<u> </u>	<u> </u>		L	L																		<u></u>
Quarter 2, 2011 * * * Quarter 3, 2011 * * * Quarter 4, 2011 * * * Quarter 1, 2012 * * * Quarter 2, 2012 * * *		<u> </u>	<u> </u>																					<u> </u>
Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * *		Щ									*													<u> </u>
Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * *																								
Quarter 1, 2012 * * Quarter 2, 2012 * *	Quarter 3, 2011	匚																						
Quarter 2, 2012 * * *																								
	1											*												
Quarter 3, 2012 * * *	Quarter 2, 2012	匚																						
	Quarter 3, 2012	L											*							*				L

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	Α								LRGA	\		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016																			*				
Quarter 3, 2016												*							*				
Quarter 4, 2016																			*				
Quarter 1, 2017																			*				
Quarter 2, 2017																			*				
Quarter 3, 2017																			*				<u> </u>
Quarter 4, 2017																			*				
Quarter 1, 2018																			*				
Quarter 2, 2018																			*				
Quarter 3, 2018																			*				
Quarter 4, 2018																			*				
Quarter 1, 2019																			*				
Quarter 2, 2019																			*				
Quarter 3, 2019																			*				
Quarter 4, 2019												*							*				
Quarter 1, 2020												*							*				
Quarter 2, 2020												*							*	*			
Quarter 3, 2020												*							*				
Quarter 4, 2020												*							*				
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																			414				
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*					-11		*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004	_	<u> </u>							<u> </u>	*		*					_		*				<u> </u>
Quarter 4, 2004	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		*		*	<u> </u>				<u> </u>		*	<u> </u>			
Quarter 1, 2005		<u> </u>							<u> </u>			*							*				<u> </u>
Quarter 2, 2005		<u> </u>							<u> </u>								L.		*	<u> </u>	L		<u> </u>
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008			1	1					1			*							*	1			
Quarter 3, 2008												*							*				
Quarter 4, 2008		-				_				*		*							*				-
Quarter 1, 2009										Ë		*							*				
Quarter 2, 2009									 			*	*						*				
Quarter 2, 2007	_	_			_	_	_	_	_		_				_		_						_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						ī	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				<u> </u>
Quarter 4, 2012												*	*						*				<u> </u>
Quarter 1, 2013										*		*							*				<u> </u>
Quarter 2, 2013												*							*				
Quarter 3, 2013						_						*					_		*				<u> </u>
Quarter 4, 2013												*	JU.						*				
Quarter 1, 2014						_						*	*				_		*			_	├
Quarter 2, 2014						_			*				JE.				_					_	├
Quarter 3, 2014						_			*			*	*				_		*			_	├
Quarter 4, 2014												*	不						*				
Quarter 1, 2015												*							*				
Quarter 2, 2015 Quarter 3, 2015												*							*				
									*			*						*	*				-
Quarter 4, 2015									٠			*						Ť	*				
Quarter 1, 2016 Quarter 2, 2016												*	*	*					*				-
Quarter 3, 2016												*	Ť	Ψ.					*				
Quarter 4, 2016												*							*				-
Quarter 1, 2017												*							*				-
Quarter 2, 2017 Quarter 2, 2017												*							*				-
Quarter 3, 2017												*		*	*				*				
Quarter 4, 2017												*							*				-
Quarter 1, 2018												*							*				-
Quarter 2, 2018												*							*				-
Quarter 3, 2018												*		*					*				-
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*	*						*				
Quarter 4, 2019												*							*				
Quarter 1, 2020												*	*						*				\vdash
Quarter 2, 2020												*	*						*				
Quarter 3, 2020										*		*	*				*		*				
Quarter 4, 2020												*	*						*				
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004		<u> </u>				<u> </u>				*									<u> </u>	<u> </u>			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S							URGA	4]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370		388	392	395	397
IRON																							
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2008												*											
Quarter 3, 2008												*											-
MAGNESIUM												-											
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				\vdash
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				<u> </u>
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				1
Quarter 1, 2007												*							*				-
Quarter 2, 2007												*							*				-
Quarter 3, 2007												*							*				-
Quarter 4, 2007												*							*				-
Quarter 1, 2008												*							*				-
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				-
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				-
-												*							*				-
Quarter 2, 2009 Quarter 3, 2009		-				_						*	*						*				
		-				_						*	~						*				
Quarter 1, 2010		-	-						 	-	-	*	-						*	-			₩
Quarter 1, 2010 Quarter 2, 2010		-	-						 	-	-	*	*						*	-			₩
Quarter 2, 2010 Quarter 3, 2010		-	-						 	-	-	*	*						*	-			-
` /									<u> </u>			*							*				
Quarter 4, 2010	_	-				<u> </u>			 			*					-		*				├
Quarter 1, 2011	_	-				<u> </u>			 			*	*				-		*				-
Quarter 2, 2011												4	*						ŧ				<u> </u>
Quarter 3, 2011			<u> </u>						-	<u> </u>	<u> </u>	*	<u> </u>						*	<u> </u>			<u> </u>
Quarter 4, 2011												*							*				
Quarter 1, 2012			<u> </u>						-	<u> </u>	<u> </u>	*	<u> </u>						*	<u> </u>			<u> </u>
Quarter 2, 2012									<u> </u>			*	120						*				
Quarter 3, 2012									<u> </u>			*	*						* +				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013									<u> </u>			*							*		Ш		
Quarter 2, 2013			<u> </u>							<u> </u>	<u> </u>	*	<u> </u>						*	<u> </u>			
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014										<u> </u>		<u> </u>	<u> </u>					*	*	<u> </u>			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	Ī		UCRS	S						ī	JRGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396			223	224	384		372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 2, 2014												*	*						*				
Quarter 3, 2014												*							*				
Quarter 4, 2014	1											*	*						*			-	-
Quarter 1, 2015	1											*	*						*			-	-
Quarter 2, 2015	\vdash	-										*	-						*			-	-
Quarter 3, 2015	1											*							*			-	├
Quarter 4, 2015	1											*							*			-	├
, ,	₩	-										*							*			-	₩
Quarter 1, 2016	-											*		*					*				_
Quarter 2, 2016	₽	<u> </u>										*		不					*			-	<u> </u>
Quarter 3, 2016	₽	<u> </u>										*		*					*			-	<u> </u>
Quarter 4, 2016	₽	<u> </u>																				-	<u> </u>
Quarter 1, 2017	ļ											*		*					*				
Quarter 2, 2017	<u> </u>	<u> </u>										*										<u> </u>	
Quarter 3, 2017												*		*									
Quarter 4, 2017												*							*				<u> </u>
Quarter 1, 2018	<u> </u>	<u> </u>	<u> </u>	<u> </u>								*	*						*			Ь—	₩
Quarter 2, 2018	<u> </u>	<u> </u>	<u> </u>	<u> </u>								*										<u> </u>	<u> </u>
Quarter 3, 2018												*											Щ
Quarter 4, 2018	匚											*	*	*					*				
Quarter 1, 2019	L		LT	LT					L			*		*					*			LĪ	L
Quarter 2, 2019												*							*				
Quarter 3, 2019												*	*						*				
Quarter 4, 2019												*	*						*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020	t											*	*						*				
Quarter 3, 2020	1											*	*						*				
Quarter 4, 2020	<u> </u>											*	*						*				
MANGANESE																							
Quarter 4, 2002																					*		
Quarter 3, 2003	1	-					*	*															
Quarter 4, 2003	₩	-					*	*														-	₩
	₩	-					*	•														-	₩
Quarter 1, 2004	₽	<u> </u>																				-	<u> </u>
Quarter 2, 2004	ļ						*	4															
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT	TENT	IAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005	1		*															*					
Quarter 2, 2005	*	1	*				1						1	1									1
Quarter 3, 2005	*		*																				
Quarter 4, 2005	Ė	1	*		-	1	1						1	1						-	-	t	\vdash
Quarter 2, 2006	1	1	*	1		1	 						 	 								 	+-
Quarter 3, 2006	 	1	*	1		1	1						1	1				*				 	\vdash
Quarter 4, 2006	├	-	*	-		1	-		-				 	 								 	\vdash
Quarter 4, 2006 Quarter 1, 2007	├	1	*	-			-						-	-			\vdash					 	₩
	 	1	*	-	-	 	*			-	-	-	 	 		-			-	-	-	 	₩
Quarter 2, 2007	₽—	 		 					<u> </u>													├	₩
Quarter 3, 2007	 	 	*		<u> </u>	<u> </u>	*						<u> </u>	<u> </u>						<u> </u>	<u> </u>		₩
Quarter 4, 2007	₽—	 	*	 		.			.								H					├	₩
Quarter 1, 2008		!	*			*	<u> </u>		*				,,,	<u> </u>			L,		,,,	,1.		₩	₩
Quarter 2, 2008	*	<u> </u>	*	*		*							*				*		*	*		Ь—	₩
Quarter 3, 2008	<u> </u>	<u> </u>	*	*		*	L.		L_				*				*		*	*		Ь—	₩
Quarter 4, 2008	<u> </u>	<u> </u>	*	*		*	*	*	*				*				*	*		*		<u> </u>	<u> </u>
Quarter 1, 2009			*				*	*	*				*	*				*		*			Ш
Quarter 3, 2009	匚		*	*		*											*	*	*	*			
Quarter 4, 2009	L^{T}	L	*	L^{T}	L	*	L		*	L	L	L	L	L		L		*	L	*	L	L	L
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 5, 2010																							

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						ī	JRGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION POT																							
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*	*		*			*		*		*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
Quarter 2, 2017	*		*	*	*												*			*	*		
Quarter 3, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 1, 2018	*		*	*	*	*												*	*	*	*		*
Quarter 2, 2018	*		*	*	*												*	*	*	*	*	*	*
Quarter 3, 2018	*		*	*	*	*	*	*	*								*	*	*	*	*	*	*
Quarter 4, 2018	*		*	*	*	*				*			*		*		*	*	*	*	*		*
Quarter 1, 2019	*		*	*	*	*	*	*			*						*	*	*	*	*	*	*
Quarter 2, 2019	*		*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2019	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2019	*		*	*	*				*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2020	*		*	*	*	*	*	*	*				*			*	*	*	*	*	*	*	L.,
Quarter 2, 2020	*		*	*	*	*	*	*	*	*			*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2020	*		*	*	*	*											*	*	*	*	*	*	*
Quarter 4, 2020	*		*	*	*	*		*						*			*	*	*	*	*	*	<u> </u>
PCB-1016								-11															
Quarter 4, 2003							*	*	*		*							*					<u> </u>
Quarter 3, 2004		<u> </u>	<u> </u>		<u> </u>		ىد			<u> </u>	*	<u> </u>	-				-	<u> </u>		<u> </u>	<u> </u>		<u> </u>
Quarter 3, 2005		<u> </u>	<u> </u>		<u> </u>		*			<u> </u>	*	<u> </u>	-				-	<u> </u>		<u> </u>	<u> </u>		<u> </u>
Quarter 1, 2006											*		ļ				_						<u> </u>
Quarter 2, 2006											*		-										<u> </u>
Quarter 4, 2006				_		<u> </u>					*	34z					_		_				<u> </u>
Quarter 1, 2007				_		<u> </u>					*	*					_		_				<u> </u>
Quarter 2, 2007		_			_						*	*					_			_			-
Quarter 3, 2007		-	-		-	-	-			-	*	*	-				-	-		-	-		<u> </u>
Quarter 2, 2008				_		<u> </u>					*	*					_		_				<u> </u>
Quarter 3, 2008				_		<u> </u>					*						_		_				<u> </u>
Quarter 4, 2008													ļ										<u> </u>
Quarter 1, 2009											*		ļ				_						<u> </u>
Quarter 2, 2009											*												
Quarter 3, 2009											*												
Quarter 4, 2009											*												<u> </u>
Quarter 1, 2010											*												
Quarter 2, 2010											*												
Quarter 3, 2010											*												
Quarter 4, 2010											*												

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Monitoring Well 386 3 PCB-1232 Quarter 1, 2011 PCB-1248 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 PH Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 2, 2016 POTASSIUM Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006	D 389	D 390	D 393	U 396	S 221	\$ 222	S 223	S 224	S 384	D 369 *	D 372 *	D 387	D 391	U 220	U 394	S 385	D 370	D 373	D 388	D 392	U 395	U 397
PCB-1232 Quarter 1, 2011 PCB-1248 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 PH Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006	389	390	393	396	221		223	224	384			387	391	220	394	385		373	388	392	395	397
PCB-1232 Quarter 1, 2011 PCB-1248 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 PH Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2009 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2011 Quarter 1, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 4, 2004 Quarter 4, 2014 Quarter 4, 2016 POTASSIUM Quarter 2, 2016 POTASSIUM Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006						*											*					
PCB-1248 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 pH Quarter 4, 2002 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006						*				*	*						*					
PCB-1248 Quarter 2, 2008 PCB-1260 Quarter 2, 2006 pH Quarter 4, 2002 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006						*					*						*					
Quarter 2, 2008 PCB-1260 Quarter 2, 2006 pH Quarter 4, 2002 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2006 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2002 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006						*					*						*					
PCB-1260 Quarter 2, 2006 pH Quarter 4, 2002 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006						*											*					
Quarter 2, 2006 pH Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006						*											*					
PH Quarter 4, 2002 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 2, 2006 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2002 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006						*										'						1
Quarter 4, 2002 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2007 Quarter 4, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006						*																
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006						*										*						
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006						*										*						
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 2, 2006 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006						*										*	$\overline{}$					
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006																*	$\overline{}$					
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006						*										*	$\overline{}$					
Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2009 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006																*	$\overline{}$					
Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2019 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006																*						
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006																*						
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006				 	1	-	-		*							*	$\overline{}$	\vdash	\vdash	*		
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 2, 2005 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006			1	<u> </u>	-				*								-			*		<u> </u>
Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2019 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006			1	 	<u> </u>			<u> </u>	*							*						_
Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006			<u> </u>	<u> </u>		<u> </u>	<u> </u>									*		\vdash	\vdash			—
Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 4, 2002 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006	_		 	!		<u> </u>	<u> </u>									*	<u> </u>	ш	ш			<u> </u>
Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006			 	!		<u> </u>	<u> </u>									*	<u> </u>	ш	ш			<u> </u>
Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006			<u> </u>	<u> </u>												*	<u> </u>					<u> </u>
Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006																*						
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006																*						
Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006																*						
Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006																*						
Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006										*												
Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006										*							ı					
Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006													*									
Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006									*			*				*						
Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006																				*		
Quarter 4, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006																	*	*				
Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006																						
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006																	*	*				
Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006																		*				
Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006																		*				
Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006																		*				
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006																		*				
Quarter 3, 2006 Quarter 4, 2006																		*				
Quarter 4, 2006																		*				
																		*				
Quarter 4, 2008																	$\overline{}$	*				
Quarter 3, 2012																	_	*				\vdash
Quarter 1, 2013			 	1													_	*				
Quarter 2, 2013	-	 	1	1	1			-		\vdash		\vdash				\vdash	_	*	H			\vdash
Quarter 3, 2013	-+	1	1	1	1	 	 									\vdash	$\overline{}$	*	\vdash			
RADIUM-226																		Ė				
Quarter 4, 2002		*										*	*							*		
		~	 	 	1	 	 					*	ጥ			$\vdash \vdash$	$\overline{}$	*	\vdash	Α		
Quarter 2, 2004		-	 	 	1	 	 	*								$\vdash \vdash$	$\overline{}$	*	\vdash			
Quarter 2, 2005		-		<u> </u>	-			*		*						\vdash						
Quarter 1, 2009			<u> </u>	<u> </u>		<u> </u>	<u> </u>	.		*						$\displaystyle igspace$	-	ш	ш			<u> </u>
Quarter 3, 2014		45	<u> </u>	<u> </u>		<u> </u>	<u> </u>	*		J	*					\longmapsto	- JE	\vdash	\vdash			<u> </u>
Quarter 4, 2014		*	<u> </u>	<u> </u>		L.			L_	*	47:					Ш	*					<u> </u>
Quarter 1, 2015		*	<u> </u>	<u> </u>		*			*		*						*					<u> </u>
Quarter 2, 2015			<u> </u>	<u> </u>		*	ļ		*		*						*					<u> </u>
Quarter 3, 2015		*	1	l	1	l	l	1	i									, ,	1 '			<u></u>

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	URGA	A								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
RADIUM-226																							
Quarter 4, 2015					*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016																		*					
Quarter 4, 2016	*		*			*			*				*		*					*		*	
Quarter 1, 2017			*							*	*							*					
Quarter 2, 2017																	*	*		*	*		
Quarter 3, 2017					*				*	*	*									*			
Quarter 4, 2017																		*		*			
Quarter 1, 2018												*						*		*			
Quarter 4, 2018													*				*						
Quarter 1, 2020																	*						
Quarter 2, 2020															*								
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005									•														
Quarter 1, 2006																							
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						
Quarter 1, 2007									*			*											
Quarter 2, 2007									*	*													
Quarter 3, 2007									*														
Quarter 4, 2007									*														t
Quarter 1, 2008									*														
Quarter 3, 2008				1			1			1	1	*											t
Quarter 4, 2008									*	*													
Quarter 1, 2009									*			*							*				
Quarter 3, 2009			-	1			1			1	1	*											1
Quarter 4, 2009									*			*											
Quarter 1, 2010									-			*											
Quarter 2, 2010	-	-		<u> </u>			<u> </u>	_		*	<u> </u>	*		_				_	_	_		_	
Quarter 2, 2010 Quarter 3, 2010		-	-	-		-	-			*	-	•											-
	<u> </u>	-				<u> </u>			<u> </u>	*							-		_				<u> </u>
Quarter 4, 2010						_			*														<u> </u>
Quarter 1, 2011									41.	*													
		ĺ	l	l	1		l		*	l	l								1				
Quarter 2, 2011 Quarter 4, 2011		_																	*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System Gradient Monitoring Well SODIUM Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012	S 386	D 389	D 390	D 393	U	S	S	S	S	S	JRGA D	D	D	D	U	U	-	ъ		LRGA	_	U	7 7
Monitoring Well SODIUM Quarter 1, 2012 Quarter 3, 2012	386	389	390	202						د	ע	ע		יי		U	S	D	D	D	D	U	U
SODIUM Quarter 1, 2012 Quarter 3, 2012				393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2012																							
											*												
Quarter 4, 2012												*							*				
												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014									*	*		*	*										
Quarter 1, 2015									_				*										
Quarter 2, 2015												*											
Quarter 3, 2015										*		*											
Quarter 4, 2015									*	*		*											
Quarter 2, 2016									-	-	*												
Quarter 3, 2016						Н					*												*
Quarter 1, 2017		 								*	*	-	*				-	*		 	-		Ė
Quarter 2, 2017									*	*	*												
Quarter 2, 2017 Quarter 2, 2018													*										\vdash
Quarter 3, 2018						Н							H	*									\vdash
Quarter 1, 2019													*	-									
Quarter 2, 2019													*										T
Quarter 4, 2019												*											
Quarter 1, 2020											*	*							*				
Quarter 2, 2020											*		*						*				
Quarter 3, 2020											*	*											
Quarter 4, 2020												*											
STRONTIUM-90																							
Quarter 2, 2003																							
Quarter 1, 2004																							
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				\vdash
Quarter 3, 2005										*		*	*				*	*	*				\vdash
Quarter 4, 2005										*		*	*					*	*	*			T
Quarter 1, 2006										*		*	*				*	*	*	*			T
Quarter 2, 2006	-	 							*	*		*	*				*	*	*	*	-		\vdash
Quarter 3, 2006									*	*		*	*				*		*	*			\vdash
Quarter 4, 2006									*	*		*	*				*		*	-			\vdash
Quarter 1, 2007	-	-							*	*		*	*				*		*	*	-		\vdash
Quarter 1, 2007 Quarter 2, 2007	-	-							*	*		*	*			\vdash	*		*	*	-		₩
	-	-							*	*		*	*			\vdash	*		*	*	-		₩
Quarter 3, 2007	_								*									. Ju				_	├
Quarter 4, 2007	-	<u> </u>								*		*	*				*	*	*	*	-		₩
Quarter 1, 2008								JU V		*	ىلو	*	*	JU V			*	*	*	*			<u> </u>
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient S D D D D U S S S S S D D D D U S S S S	Groundwater Flow System		1	UCRS	3							URGA	4								LRGA	A.		
NULFAFE Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Qu	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Quarter 2, 2010	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Double C 2010	SULFATE																							
Quarter 4, 2019	Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 201	Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 2, 2011	Quarter 4, 2010	*									*		*	*				*	*	*				
Quanter 3, 2011 Quanter 4, 2012 Quanter 4, 2012 Quanter 3, 2013 Quanter 1, 2013 Quanter 1, 2013 Quanter 1, 2013 Quanter 1, 2013 Quanter 3, 2014 Quanter 3, 2013 Quanter 3, 2014 Quanter 4, 2014 Quanter 4, 2014 Quanter 4, 2015 Quanter 1, 2016 Quanter 2, 2016 Quanter 3, 2014 Quanter 4, 2016 Quanter 3, 2016 Quanter 4, 2017 Quanter 4, 2016 Quanter 4, 2016 Quanter 4, 2016 Quanter 4, 2017 Quanter 4, 2017 Quanter 4, 2017 Quanter 4, 2017 Quanter 4, 2016 Quanter 4, 2007 Quanter 6, 200	Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 1, 2017 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2009 Quarter 4,	Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 1, 2012	Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2013 Quarter 1, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2017 Quarter 4, 2007 Quarter 3, 2019 Quarter 4, 2007 Quarter 5, 2006 Quarter 6, 2007 Quarter 6, 200	Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2015 Quarter 1, 2016 Quarter 3, 2015 Quarter 1, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 200	Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 2, 2016 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2017 Quarter 4, 2019 Quarter 5, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2,	Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2019 Quarter 4, 2017 Quarter 2, 2019 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2019 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2009 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 200	Quarter 3, 2012	*									*		*	*				*	*	*	*			
Double 1, 2013											*		*	*				*	*	*	*			
Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 3, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2006 Quarter 3, 200	•										*		*	*				*	*	*	*			
Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 2, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2019 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2006 Quarter 2, 200	` '										*		*	*	*			*	*	*	*			
Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 8, 2019 Quarter 9, 2009 Quarter 9, 200											*		*	*				*	*	*	*			
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 \$\begin{align*} \text{\$\beta\$} & \$\b																								
Quarter 2, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 3, 2016 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2009 Quarter 4, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 2006 Quarter 6, 2006 Quarter 7, 200									*															
Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 5, 2018 Quarter 6, 2018 Quarter 6, 2018 Quarter 6, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2030 Quarter 4, 2030 Quarter 4, 2030 Quarter 7, 20016 Quarter 1, 2000 Quarter 7, 20006 Quarter 2, 20006 Quarter 2, 20006 Quarter 3, 20006 Quarter 2, 20006 Quarter 3, 20006 Quarter 2, 20006 Quarter 2, 20006 Quarter 2, 20006 Quarter 3, 20006 Quarter 2, 20006 Quarter 2, 20006 Quarter 3, 20006 Quarter 2, 20006 Quarter 3, 20006 Quarter 3,		-	-						_			-			*	-								
Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2000 Parter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 2005 Parter 8, 2005 Parter 8, 2005 Parter 9, 2006 Parter 6, 2006 Quarter 7, 2006 Quarter 7, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 6, 2006 Parter 6, 2006 P		-	-									-				-								
Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 6, 2003 Quarter 6, 2003 Quarter 7, 2005 \$\begin{align*} \text{*} \tex		-	-									-			~	-								
Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2020 Quarter 1, 2020 Quarter 1, 2020 Quarter 1, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 2, 2030 Quarter 3, 203		-	-									-			-	-								
Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 6, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 1, 2020 Quarter 6, 2020 Quarter 1, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006												*			*	*								
Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 200		-	-						*			*												
Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 3, 2019 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2030 Quarter 1, 2030 Quarter 1, 2030 Quarter 3, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *		-	-						*			-				*			*					
Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2018 Quarter 1, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2010 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2010 Quarter 2, 2019 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 200									*										*					
Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2000 Quarter 2, 2000 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2005 ** Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 ** Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 ** Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 ** Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 ** Quarter 4, 2006 ** Quarter 4, 2006 Quarter 4, 2007 ** ** ** ** ** ** ** ** **																*								
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2002 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2005 Quarter 2, 2004 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 7, 2006 Quarter 6, 2006 Quarter 8, 2006 Quarter 9, 200																								
Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 ** ** ** ** ** ** ** ** ** ** ** ** **									~															
Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 3, 2020 ** ** ** ** ** ** ** ** ** ** ** ** **																								
Quarter 3, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 ** * * * * * * * * * * * * * * * * *									*															
Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 \$\begin{array}{cccccccccccccccccccccccccccccccccccc																								
Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 ** * * * * * * * * * * * * * * * * *									~															
Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 ** * * * * * * * * * * * * * * * * *																т.								
Quarter 3, 2018	` '								*			*				*								
Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019												-4"												
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 ** * * * * * * * * * * * * * * * * *														*										
Quarter 2, 2019 Quarter 3, 2019 ** ** ** ** ** ** ** ** **									*							*								
Quarter 3, 2019																								
Quarter 4, 2019				*																		*		
Quarter 1, 2020																								
Quarter 2, 2020									*							*								
Quarter 3, 2020																								
Quarter 4, 2020				*					-						_	-								
TECHNETIUM-99 Quarter 4, 2002 Quarter 7, 2003 Quarter 7, 2003 Quarter 7, 2003 X X X X X X X X X X X X X X X X X X		\vdash	_	<u> </u>								_			_	_						<u> </u>		
Quarter 4, 2002											Ë		Ë	Ë				Ë	Ë	Ë	Ë			
Quarter 1, 2003																				*				
Quarter 2, 2003														*				*						
Quarter 3, 2003		*		*							*									Ë				
Quarter 4, 2003		Ë	_								<u> </u>	_	_		_	_			_	_	*			
Quarter 1, 2004											*		*							*				
Quarter 2, 2004											Ë										Ë			
Quarter 3, 2004 * <td></td> <td>*</td> <td></td> <td></td> <td></td>																					*			
Quarter 4, 2004 *														-							-			
Quarter 1, 2005 *											*			*					*					
Quarter 2, 2005 *																			_	<u> </u>	*			
Quarter 3, 2005 * <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td>		-	-									-	-		-	-			*	*				
Quarter 4, 2005 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>							_																	
Quarter 1, 2006 * * * * * * Quarter 2, 2006 *	'	_					<u> </u>						34c						*					_
Quarter 2, 2006 * * * * * * Quarter 3, 2006 * * * * * * * Quarter 4, 2006 * * * * * * *				*																				
Quarter 3, 2006 *		_											*					L.						
Quarter 4, 2006 * * * * * * * * *																								
Q , = 0.00	, ,			*									L					*	*					
Quarter 1, 2007 *	Quarter 4, 2006	*											*											
	Quarter 1, 2007			*							*			*				*		*	*			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	3							URGA	Α								LRGA	Α		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			
Quarter 1, 2015			*							*	*	*	*				*			*			
Quarter 2, 2015			*							*	*		*				*			*			
Quarter 3, 2015			*							*	*	*	*				*	*	*	*			
Quarter 4, 2015			*							*	*	*	*				*	*	-14	*			
Quarter 1, 2016			*							*	*		*				*		*	*			
Quarter 2, 2016			*			*				*		46	*				*	*		*			
Quarter 3, 2016			*							*	4	*	*				*	*		*			-
Quarter 4, 2016			*							*	*		*				*	4		*			-
Quarter 1, 2017			*							*			*				*	*		*			
Quarter 2, 2017			*							*	4		*				*	*		*			-
Quarter 3, 2017			*							*	*	¥	*				*	*		*			
Quarter 4, 2017			*							*	<u>.</u>	*	*				*	*		*			
Quarter 1, 2018			*							*	*	<u> </u>	*				*	*		*			
Quarter 2, 2018	_		*			<u> </u>				*	*	*	*				*	*		*			
Quarter 4, 2018	_		*			<u> </u>				*	*	*	*				*	*		*			
Quarter 4, 2018 Quarter 1, 2019	!		*			-				*	*	*	*				*	*		*			
Quarter 1, 2019 Quarter 2, 2019			*							*	*	*	*				*	*		*			
Quarter 2, 2019 Quarter 3, 2019			*							*	*	*	*				*	*		*			
Quarter 4, 2019	 		*							*	<u> </u>	*	*		<u> </u>		*	*	*	*			_
Quarter 1, 2020	 		*			-				*	-	*	*		-		*	*	<u> </u>	*			
Quarter 1, 2020 Quarter 2, 2020	1		*			_				*	-	*	*		-		*	*		*			_
Quarter 3, 2020			*							*		*	*				*	*		*			
Quarter 4, 2020	1		*			-				*	-	*	*		-		*	*					_
THORIUM-230			Ė							Ė							Ė						
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*		*																				\vdash
Quarter 3, 2015	*								*	*			*		*								
Quarter 1, 2017			*							*							*						
THORIUM-234																							
Quarter 2, 2003						*			*					*									
Quarter 4, 2007									*														

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	3						1	URG	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370		388	392	395	397
TOLUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2003				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003							*		*	*													
Quarter 1, 2004										*													
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 2, 2005										*											*		
Quarter 3, 2005										*		*									*		
Quarter 4, 2005	1									*											*		
Quarter 1, 2006	1									*													
Quarter 2, 2006	1									*		*											
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2011											*												
Quarter 3, 2012	*																						
Quarter 3, 2016																			*				
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						
Quarter 4, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																				*		
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						<u> </u>
Quarter 1, 2010	*																						
Quarter 2, 2010	*				<u> </u>		<u> </u>			<u> </u>	<u> </u>		<u> </u>		<u> </u>				<u> </u>	<u> </u>			<u> </u>
Quarter 3, 2010	*																						<u> </u>
Quarter 4, 2010	*																						_
Quarter 1, 2011	*											ļ					_				4		<u> </u>
Quarter 3, 2013			\Box			_											_				*		_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S							JRGA	Α.								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004												•											
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 2, 2007																							T
Quarter 3, 2007																							T
Quarter 4, 2007	1														t								
Quarter 1, 2008																							
Quarter 2, 2008	1																						
Quarter 3, 2008	1											_									1		
Quarter 4, 2008	1																				1		
Quarter 1, 2009																					Ħ		
Quarter 2, 2009	1																				1		
Quarter 3, 2009	1													Ī									
Quarter 4, 2009	1											ī		Ŧ							Ħ		
Quarter 1, 2010	1										_	Ŧ											-
Quarter 2, 2010	1											Ŧ		i		=			=		Ħ		-
Quarter 3, 2010	1											i		i					-		H		
Quarter 4, 2010	1											Ŧ		i		i			i		Ħ	i	-
Quarter 1, 2011	1											Ŧ		i		i			=		Ħ	i	-
Quarter 2, 2011	1											i		i							H	Ι-	<u> </u>
	1											i		i					H		H		<u> </u>
Quarter 3, 2011	╂											÷			-					-	H		-
Quarter 4, 2011	╂													-						-			-
Quarter 1, 2012	╂											÷				-				-	H	-	-
Quarter 2, 2012	1-																						
Quarter 3, 2012	1										_	_		_									
Quarter 4, 2012	1-										•	_		_									
Quarter 1, 2013	1											_		_									
Quarter 2, 2013												_		_					<u> </u>		<u> </u>		Ь—
Quarter 3, 2013	1													_									
Quarter 4, 2013												_		_		_			_		<u> </u>		Ь—
Quarter 1, 2014	1											_		_	<u> </u>								<u> </u>
Quarter 2, 2014	1											_		_	<u> </u>				<u> </u>				<u> </u>
Quarter 3, 2014	1											_		_	<u> </u>	L_			<u> </u>		<u> </u>		Щ
Quarter 4, 2014	1											•		•	<u> </u>	•							<u> </u>
Quarter 1, 2015												_		_	<u> </u>								<u> </u>
Quarter 2, 2015		L										-			<u> </u>			L				L	<u> </u>
Quarter 3, 2015															-	<u> </u>							<u> </u>
Quarter 4, 2015												-		•		•							<u> </u>
Quarter 1, 2016	1																						
Quarter 2, 2016												-		•									
Quarter 3, 2016												•											
Quarter 4, 2016												•											
Quarter 1, 2017																							
Quarter 2, 2017																							
Quarter 3, 2017																							
Quarter 4, 2017																							
	_	_					_	_		_	_				•						•		_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR	S						Ţ	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019																							
Quarter 3, 2019																							
Quarter 4, 2019																							
Quarter 1, 2020																							
Quarter 2, 2020																							
Quarter 3, 2020																							
Quarter 4, 2020																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007	1						*	*	*														

^{*} Statistical test results indicate an elevated concentration (i.e., a statistically significant increase).

MCL Exceedance

Previously reported as an MCL exceedance; however, result was equal to MCL.

UCRS = Upper Continental Recharge System

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer
S = Sidegradient; D = Downgradient; U = Upgradient

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	12/0	8/2	020	C			Time:	090	00		Monitor:	Ro	be	rt Kirby
Weather Co Sunny, Slight			Dea	rees	F	•								
Monitoring RAE Systems	Equipm	ent::	:										***************************************	
					M	lonito	oring Lo	catio	n					Reading (% LEL)
Ogden Landi Road Entrand		Ch	eck	ced	at g	ırou	nd leve	el	***************************************					0
North Landfil	II Gate	Ch	eck	ced	at g	rou	nd leve	el						0
West Side of Landfill: North 37° West 88°	07.652	Che	ecke	ed a	ıt gro	ound	level							0
East Side of Landfill: North 37° West 88°		Che		ed a	it gro	ound	level							0
Cell 1 Gas Ve	ent (17)	0	2 0	3 0	0	5 0 (6 7	8 0 0	9 10 11 0 0			16 <i>1</i>	17	0
Cell 2 Gas V	ent (3)	1 0	2 0	3 0										0
Cell 3 Gas V	ent (7)	0	0	3 0	4 0	5 0 (6 7							0
Landfil	l Office	Ch	eck	ed	at fl	oor	level							0
Suspect or P	roblem Areas	There	e was	a bro	ken ve	nt on o	ell #3. I re	ported i	t to the landfill	l manage	er(not corrected as	s of 12/	/8).	NA
Remarks:														
AL	L VENT	S CH	HECI	KED	1" FF	ROM	THE MC	OUTH	OF VENT					
Performed b	DV:		1	/ /							, ,			
. 311311134 N		/1	al	1 /6	2					12/	15/20			
					Sig	natu	re			/				Date

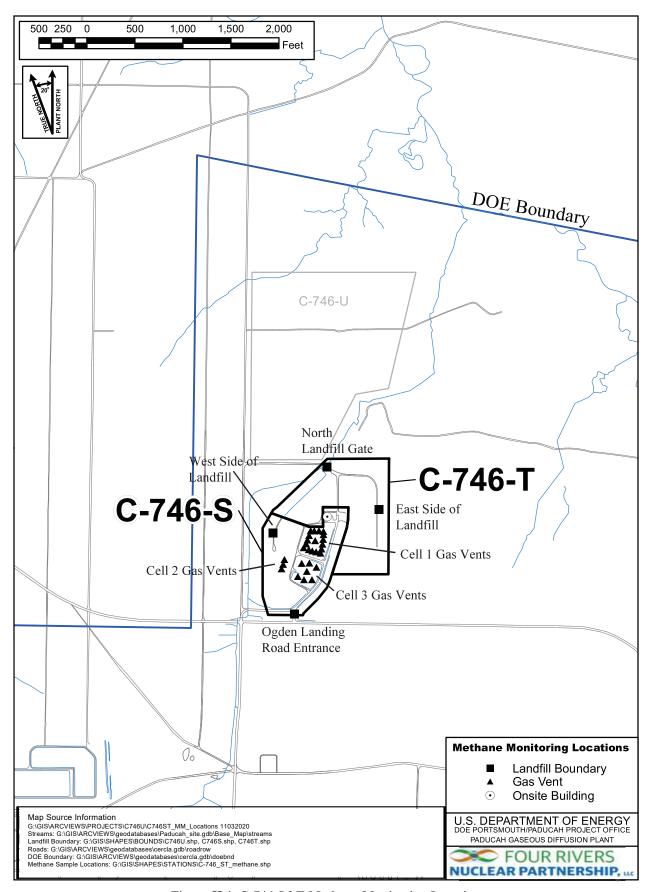


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "DO	OWNSTREAM")	L135 UPSTREA	ΑM	L154 DOWNSTR	EAM	L136 AT SIT	Έ	F. BLAN	K
Sample Sequer	ce	#				1		1		1		1	
If sample is a	a Bl	lank, specify Type: (F)ield, (T) r:	ip, (M) ethod	, or (E)quipment	NA		NA		NA		F	
Sample Date a	ınd	Time (Month/Day/Year hour: m	inu	tes)		10/19/2020 10:	45	10/19/2020 10:	32	10/19/2020 10):59	10/19/2020	10:48
Duplicate ("Y	?" c	or "N") ¹				N		N		N		N	
Split ('Y' or	: "1	N") ²				N		N		N		N	
Facility Samp	le	ID Number (if applicable)				L135SS1-21		L154US1-21		L136SS1-2	1	FB1SS1-2	21
Laboratory Sa	mp]	Le ID Number (if applicable)				524774002		524847004		524774003	3	52477400)4
Date of Analy	sis	s (Month/Day/Year)				11/5/2020		11/3/2020		11/3/2020		11/3/202	0
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
A200-00-0	0	Flow	Т	MGD	Field		*		*		*		*
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	2.04		1.59		1.53		0.341	
14808-79-8	0	Sulfate	т	mg/L	300.0	3.39		3.21		2.98		<0.4	
7439-89-6	0	Iron	Т	mg/L	200.8	0.496		0.464		0.219		<0.1	
7440-23-5	0	Sodium	Т	mg/L	200.8	0.898		0.675		0.496		<0.25	
s0268	0	Organic Carbon ⁶	Т	mg/L	9060	14.6		14.7		15.6			*
s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		*
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	<20	*	42.3	*	34.9	*		*

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

<u>I-3</u>

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: sw07300014, sw07300015, sw07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

SURFACE WATER SAMPLE ANALYSIS - (Cont.) For Official Use Only

Monitoring Po	int	(KPDES Discharge Number, o	r "(JPSTREAM" or	"DOWNSTREAM")	L135 UPSTR	EAM	L154 DOWNST	REAM	L136 AT S	TE	F. BLANK	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G						
s0145	1	Specific Conductance	Т	µhmo/cm	Field	76		69		87			*
s0270	0	Total Suspended Solids	Т	mg/L	160.2	13.1		33.8		4			*
S0266	0	Total Dissolved Solids	Т	mg/L	160.1	65.7		67.1		95.7			*
s0269	0	Total Solids	Т	mg/L	SM-2540B	101		129		77			*
s0296	0	рН	Т	Units	Field	7.14		7.96		7.14			*
7440-61-1		Uranium	Т	mg/L	200.8	0.000996		0.000493		0.000077	J	<0.0002	
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	0.256	*	2.53	*	-0.99	*	-4.26	*
12587-47-2		Gross Beta (β)	т	pCi/L	9310	16.1	*	18.1	*	18.6	*	0.631	*
			-										
			-										
			-										
			-										
			-										

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS

Monitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")						L135 UPSTRE	AM						
Sample Sequence #						1	1						
If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						NA	NA						,
Sample Date and Time (Month/Day/lear hour. minutes)						10/19/2020 10:45							
Duplicate ("Y	?" c	or "N") ¹				Υ							
Split ('Y' or "N") ²						N							
Facility Samp	Facility Sample ID Number (if applicable)					L135DSS1-2	21						
Laboratory Sa	Laboratory Sample ID Number (if applicable)					524774001					$\overline{}$		
Date of Analy	Date of Analysis (Month/Day/Year)					11/3/2020							
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OF FQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G
A200-00-0	0	Flow	Т	MGD	Field		*						
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	1.97							
14808-79-8	0	Sulfate	Т	MG/L	300.0	3.35			$\overline{/}$				
7439-89-6	0	Iron	Т	MG/L	200.8	0.551							
7440-23-5	0	Sodium	т	MG/L	200.8	0.908							
S0268	0	Organic Carbon ⁶	т	MG/L	9060	13.9							
s0097	0	BOD ⁶	т	MG/L	not applicable		*						
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.4	42.3	*						

¹Respond "Y" if the sample was a duplicate of another sample in this report

- STANDARD FLAGS: * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: sw07300014, sw07300015, sw07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

SURFACE WATER SAMPLE ANALYSIS - (Cont.) For Official Use Only

						7 0 0 11						
Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM")					L135 UPSTR					/		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQD ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F A G S ⁷	DETECTED F L OR A PQL ⁵ G S ⁷
S0145	1	Specific Conductance	т	µhmo/cm	Field		*					
s0270	0	Total Suspended Solids	Т	mg/L	160.2	15.4						
s0266	0	Total Dissolved Solids	т	mg/L	160.1	72.9			$\overline{}$			
s0269	0	Total Solids	т	mg/L	SM-2540B	94						
s0296	0	рН	т	Units	Field		*					
7440-61-1		Uranium	т	mg/L	200.8	0.00108						
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	0.966	*					
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	27.9	*			\setminus		
										/\		
									_/			
									\angle			
								V				\

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit:	KY8-890-008-982 /	1
LAB ID:	None	_
For Official Us	se Only	

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
L135	L135SS1-21	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control lim
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.06. Rad error is 4.06.
		Beta activity		TPU is 7.02. Rad error is 6.52.
L154	L154US1-21	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control lim
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.74. Rad error is 5.71.
		Beta activity		TPU is 8.33. Rad error is 7.79.
L136	L136SS1-21	Flow Rate		Insufficient flow to collect a sample.
		Biochemical Oxygen Demand (BOD)		Insufficient flow to collect a sample.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control lin
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.34. Rad error is 4.34.
		Beta activity		TPU is 10.2. Rad error is 9.74.
QC FB1SS1-21	Flow Rate		Analysis of constituent not required and not performed	
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed
		Conductivity		Analysis of constituent not required and not performed
		Suspended Solids		Analysis of constituent not required and not performed
		Dissolved Solids		Analysis of constituent not required and not performed
		Total Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.91. Rad error is 3.91.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.17. Rad error is 4.17.
L135	L135DSS1-21	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Chemical Oxygen Demand (COD)	Ν	Sample spike (MS/MSD) recovery not within control lin
		Conductivity		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5. Rad error is 5.
		Beta activity		TPU is 10.8. Rad error is 9.74.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

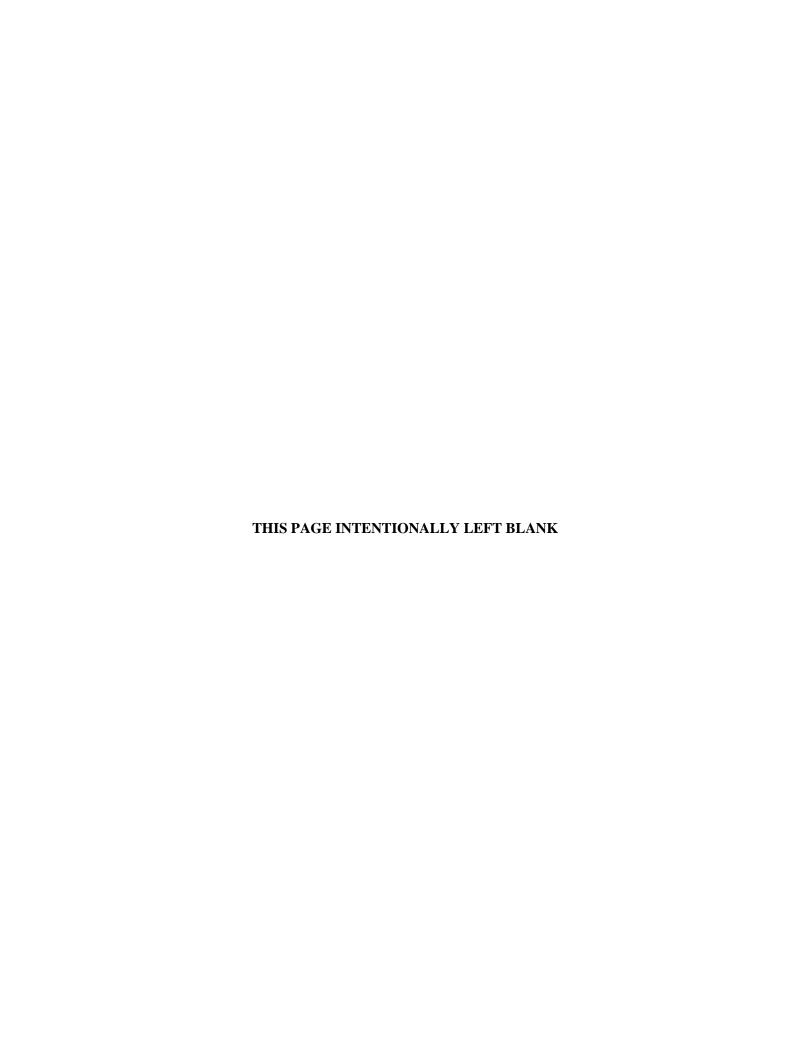
Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DOD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

APPENDIX K LABORATORY ANALYTICAL METHODS



LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and 1,2,3-
		Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L MICROPURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-S&T Landfills

							Letter Le				
	V220 MW221						July State of State o	à /			
W220 (Fight Care Line Line Line Line Line Line Line Lin						nd's	> /				
		/ _C O	Carrie		Men			/ _C O	CHILL	/	TOPIT
		Mille /	idita /	Unit'	904,	G,		Mile /	with /	Jan.	904,
		i Jane		, \\ g\4		" /	Z. S	die	i Car	, \\ ² 9 ₁₄	
	Kott	\@\ <u></u>	inited States	1 0 th	Zill.	/	KON	Conduc	Jenetha Sta	Dig	So digital side
MW220											
Date Collected: 10/14/2020						Date Collected: 10/14/2020					
0928	61.6	347	6.34	3.02	2.3	0628	59.4	391	6.10	5.14	11.4
0931	61.1	335	6.18	2.78	0.0	0631	59.4	391	6.04	4.42	10.6
0934 MW222	61.1	338	6.16	2.80	0.0	0634 MW223	59.5	390	6.05	4.40	10.0
Date Collected: 10/14/2020						Date Collected: 10/14/2020					
0758	61.5	345	6.40	3.95	0.0	0713	60.6	367	6.34	4.01	4.4
0801	61.3	344	6.26	3.64	0.0	0716	60.6	368	6.16	3.68	4.0
0804	61.4	344	6.28	3.59	0.0	0719	60.5	363	6.14	3.60	3.7
MW224			0.20	0.07		MW369					
Date Collected: 10/14/2020						Date Collected: 10/12/2020					
0843	61.9	410	6.38	2.25	9.5	0617	61.3	377	6.23	2.90	14.0
0846	62.1	410	6.19	1.89	9.7	0620	61.7	376	6.12	1.93	7.7
0849	62.2	406	6.20	1.82	9.3	0623	61.8	373	6.14	1.88	6.9
MW370						MW372					
Date Collected: 10/12/2020						Date Collected: 10/12/2020					
0657	61.5	458	6.19	3.70	0.0	0828	61.9	774	6.51	3.38	0.3
0700	61.6	459	6.08	3.48	0.0	0831	62.1	777	6.25	1.99	0.0
0703 MW373	61.6	458	6.06	3.45	0.0	0834 MW384	62.2	778	6.23	1.94	0.0
Date Collected: 10/12/2020						Date Collected: 10/13/2020					
0907	61.6	842	6.22	2.40	1.0	0827	60.2	432	6.31	3.33	1.1
0910	62.1	845	6.15	1.78	0.0	0830	60.1	427	6.12	3.24	0.3
0913	62.3	841	6.17	1.77	0.0	0833	60.1	425	6.12	3.25	0.4
MW385	02.3	0.11	0.17	11,7,	0.0	MW386	00.1	120	0.112	5.25	0
Date Collected: 10/13/2020						Date Collected: 10/13/2020					
0909	60.6	480	6.47	1.91	0.5	0947	61.0	564	6.82	2.87	0.8
0912	60.8	474	6.31	1.68	0.7	0950	60.8	561	6.67	0.96	0.7
0915	60.8	476	6.30	1.73	0.6	0953	60.9	562	6.67	0.87	0.4
MW387						MW388					
Date Collected: 10/13/2020						Date Collected: 10/13/2020					
0708	60.0	599	6.47	4.49	7.4	0748	60.4	406	6.31	2.99	3.2
0711	60.0	602	6.27	3.29	6.1	0751	61.1	402	6.12	2.87	3.0
0714 MW390	60.1	597	6.28	3.20	5.9	0754 MW391	61.3	401	6.11	2.85	2.9
MW390 Date Collected: 10/13/2020						Date Collected: 10/14/2020					
0615	57.2	668	6.55	3.39	15.1	1020	60.8	396	6.28	3.99	1.1
0618	57.3	670	6.30	3.05	14.8	1023	61.0	400	6.11	3.75	0.4
0621	57.3	669	6.27	3.03	14.7	1026	61.1	401	6.11	3.77	0.0
MW392			0.127	0.00	- 117	MW393					
Date Collected: 10/14/2020						Date Collected: 10/14/2020					
1102	60.4	390	6.33	2.57	0.0	1139	60.7	400	6.37	1.21	2.6
1105	60.7	383	6.11	2.35	0.0	1142	61.1	396	6.19	0.82	3.3
1108	60.9	383	6.12	2.30	0.0	1145	61.2	394	6.19	0.80	3.4
MW394						MW395					
Date Collected: 10/22/2020						Date Collected: 10/22/2020					
0708	59.6	384	6.10	4.22	0.0	0759	59.9	359	6.20	4.37	0.0
0711	59.4	379	5.97	3.82	0.0	0802	60.5	357	6.09	4.23	0.0
0714	59.4	375	5.95	3.85	0.0	0805	60.6	358	6.10	4.20	0.0
MW396						MW397					
Date Collected: 10/22/2020						Date Collected: 10/22/2020					
0837	61.2	696	6.47	2.37	0.0	0921	61.4	335	6.47	3.28	0.0
0840 0843	61.5	706	6.35	2.06	0.0	0924	61.8	325	6.22	3.36	0.0
1043	61.7	708	6.38	2.03	0.0	0927	61.9	324	6.20	3.40	0.0

