

# **Department of Energy**

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

November 19, 2020

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-S&T LANDFILLS THIRD QUARTER CALENDAR YEAR 2020 (JULY-SEPTEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0152/V3, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

Enclosed is the subject report for the third quarter calendar year (CY) 2020. This report is required in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). The report includes groundwater analytical data, surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the third quarter CY 2020 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Monitoring Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance (1989). This report also serves as the statistical increase notification for the third quarter CY 2020, in accordance with Monitoring Condition GSTR0003, Standard Requirement 5, of the Permit.

PPPO-02-10008620-21B

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Yennifer Woodard Paducah Site Lead

Portsmouth/Paducah Project Office

unifer Woodard

#### Enclosure:

C-746-S&T Landfills Third Quarter CY 2020 (July–September) Compliance Monitoring Report, FRNP-RPT-0152/V3

#### cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.webb@ky.gov, KDEP arcorrespondence@pad.pppo.gov brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.woodard@pppo.gov, PPPO joel.bradburne@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP lauren.linehan@ky.gov, KDEP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov robert.edwards@pppo.gov, PPPO robinc.green@ky.gov, KDEP stephaniec.brock@ky.gov, KYRHB teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP tracey.duncan@pppo.gov, PPPO

C-746-S&T Landfills
Third Quarter Calendar Year 2020
(July-September)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky



This document is approved for public release per review by:

FRNP Classification Support

11-18-2020 Date

C-746-S&T Landfills
Third Quarter Calendar Year 2020
(July–September)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—November 2020

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895



# **CONTENTS**

| FI | GURE | S      |                                                   | v    |
|----|------|--------|---------------------------------------------------|------|
| TA | BLES | S      |                                                   | v    |
| ΑC | CRON | YMS    |                                                   | vii  |
| 1. | INTI | RODUC  | TION                                              | 1    |
|    | 1.1  |        | GROUND                                            |      |
|    | 1.2  | MONI   | TORING PERIOD ACTIVITIES                          | 1    |
|    |      | 1.2.1  | Groundwater Monitoring                            |      |
|    |      | 1.2.2  | Methane Monitoring                                |      |
|    |      | 1.2.3  | Surface Water Monitoring                          |      |
|    | 1.3  | KEY R  | ESULTS                                            | 5    |
| 2. |      |        | LUATION/STATISTICAL SYNOPSIS                      |      |
|    | 2.1  |        | STICAL ANALYSIS OF GROUNDWATER DATA               |      |
|    |      | 2.1.1  | Upper Continental Recharge System                 |      |
|    |      | 2.1.2  | Upper Regional Gravel Aquifer                     |      |
|    |      | 2.1.3  | Lower Regional Gravel Aquifer                     |      |
|    | 2.2  | DATA   | VERIFICATION AND VALIDATION                       | 13   |
| 3. | PRO  | FESSIO | NAL GEOLOGIST AUTHORIZATION                       | 15   |
| 4. | REF  | ERENC: | ES                                                | 17   |
| AF | PENI | OIX A: | GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE |      |
|    |      |        | MONITORING SAMPLE DATA REPORTING FORM             | A-1  |
| AF | PENI | OIX B: | FACILITY INFORMATION SHEET                        | B-1  |
| AF | PENI | OIX C: | GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS  | C-1  |
| AF | PENI | DIX D: | STATISTICAL ANALYSES AND QUALIFICATION STATEMENT  | D-1  |
| AF | PENI | OIX E: | GROUNDWATER FLOW RATE AND DIRECTION               | E-1  |
| AF | PENI | OIX F: | NOTIFICATIONS                                     | F-1  |
| AF | PENI | OIX G: | CHART OF MCL AND UTL EXCEEDANCES                  | G-1  |
| AF | PENI | OIX H: | METHANE MONITORING DATA                           | H-1  |
| AF | PENI | OIX I: | SURFACE WATER ANALYSES AND WRITTEN COMMENTS       | I-1  |
| AF | PENI | OIX J: | ANALYTICAL LABORATORY CERTIFICATION               | J-1  |
| AF | PENI | OIX K: | LABORATORY ANALYTICAL METHODS                     | K-1  |
| ΔΙ | PENI | NX I · | MICRO-PURGING STABILITY PARAMETERS                | I -1 |



# **FIGURES**

| 1. | C-746-S&T Landfills Groundwater Monitoring Well Network                           | 2 |
|----|-----------------------------------------------------------------------------------|---|
| 2. | C-746-S&T Landfills Surface Water Monitoring Locations                            | 4 |
|    |                                                                                   |   |
|    | TABLES                                                                            |   |
| 1. | Summary of MCL Exceedances                                                        | 5 |
|    | Exceedances of Statistically Derived Historical Background Concentrations         |   |
|    | Exceedances of Current Background UTL in Downgradient Wells                       |   |
| 4. | C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight |   |
|    | Quarters                                                                          | 7 |
| 5. | Exceedances of Current Background UTL in Downgradient UCRS Wells                  |   |
|    | Monitoring Wells Included in Statistical Analysis                                 |   |



### **ACRONYMS**

CFR Code of Federal Regulations
COD chemical oxygen demand

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit

MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit



#### 1. INTRODUCTION

This report, C-746-S&T Landfills Third Quarter Calendar Year 2020 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

#### 1.1 BACKGROUND

The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

#### 1.2 MONITORING PERIOD ACTIVITIES

#### 1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter,

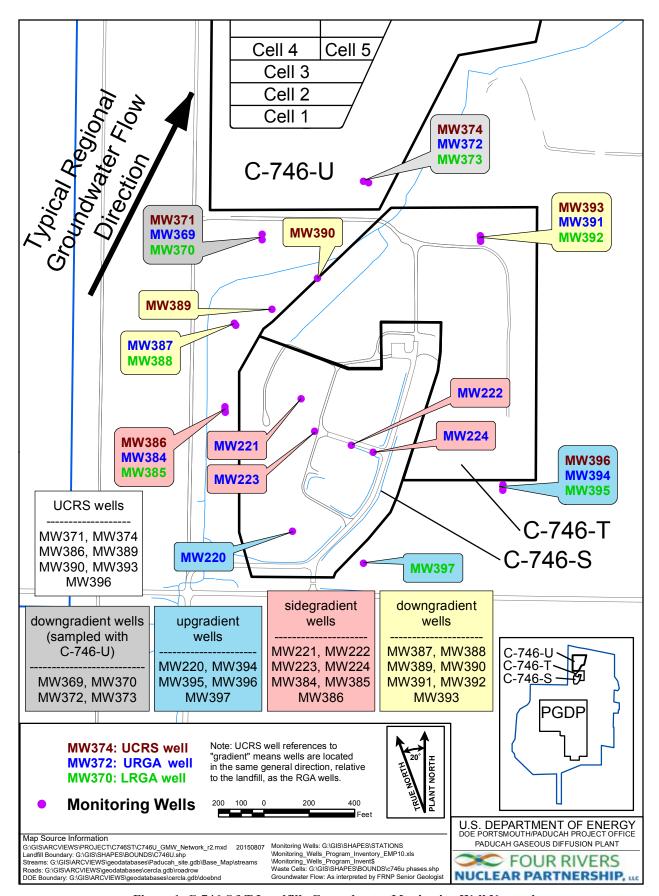



Figure 1. C-746-S&T Landfills Groundwater Monitoring Well Network

except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the third quarter 2020 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Groundwater sampling for the third quarter 2020 was conducted in July 2020. Resampling was performed for MW369 only, due to the laboratory receiving coolers outside temperature specifications because of problems with the sample courier. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on July 27, 2020, in MWs of the C-746-S&T Landfills (see Appendix E, Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Appendix E, Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During July, RGA groundwater flow in the area of the landfill was oriented northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in July was  $6.07 \times 10^{-4}$  ft/ft, while the gradient beneath the C-746-S&T Landfills was approximately  $6.28 \times 10^{-4}$  ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 1.07 to 1.82 ft/day (see Appendix E, Table E.3).

#### 1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on September 9, 2020. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Log provided in Appendix H.

#### 1.2.3 Surface Water Monitoring

Surface water sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills: (1) upstream location, L135; (2) downstream location, L154; and (3) L136, a location capturing

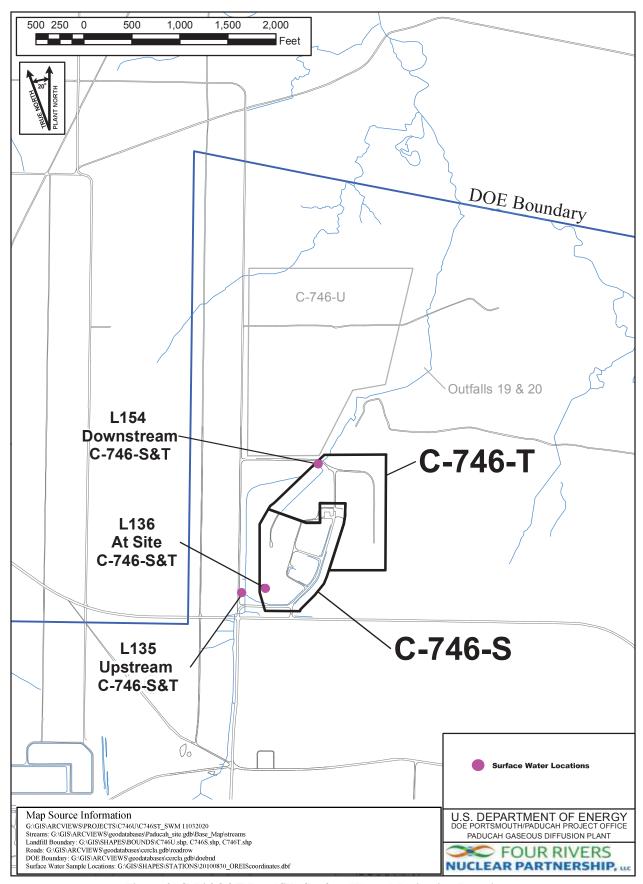



Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

runoff from the landfill surface. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application, Attachment 24, of the Solid Waste Landfill Permit. Surface water results are provided in Appendix I.

#### 1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters that exceeded their MCL and also exceeded their historical background UTL, as well as other parameters that do not have MCLs but have concentrations that exceeded the statistically derived historical background UTL<sup>1</sup> during the third quarter 2020. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells designated as background wells (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), the MCL exceedances for TCE in MW391 and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW370, MW372, and MW387 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. None of the wells evaluated for beta activity showed an increasing Mann-Kendall trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

**Table 1. Summary of MCL Exceedances** 

| UCRS | URGA                   | LRGA                   |
|------|------------------------|------------------------|
| None | MW372: Beta activity   | MW370: Beta activity   |
|      | MW387: Beta activity   | MW392: Trichloroethene |
|      | MW391: Trichloroethene |                        |

5

<sup>&</sup>lt;sup>1</sup> The UTL comparison for pH uses a two-sided test, both UTL and LTL.

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

| UCRS*                                                        | URGA                                                                                                     | LRGA                                                                                                       |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| MW386: Oxidation-reduction potential                         | MW221: Oxidation-reduction potential                                                                     | MW370: Beta activity, oxidation-reduction potential, sulfate, technetium-99                                |
| MW390: Oxidation-reduction potential, sulfate, technetium-99 | MW369: Sodium                                                                                            | MW373: Calcium, conductivity,<br>dissolved solids, magnesium,<br>oxidation-reduction potential,<br>sulfate |
| MW393: Oxidation-reduction potential                         | MW372: Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99 | MW385:Dissolved solids, oxidation-reduction potential, sulfate, technetium-99                              |
| MW396: Oxidation-reduction potential                         | MW384: Dissolved solids, sulfate, technetium-99                                                          | MW388: Oxidation-reduction potential, sulfate, technetium-99                                               |
|                                                              | MW387: Beta activity, calcium, dissolved solids, magnesium, sulfate, technetium-99                       | MW392: Oxidation-reduction potential, sulfate                                                              |
|                                                              |                                                                                                          | MW395: Oxidation-reduction potential                                                                       |
|                                                              |                                                                                                          | MW397: Oxidation-reduction potential                                                                       |

<sup>\*</sup>Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.
Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Background wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Background UTL in **Downgradient Wells** 

| URGA                                                                                                     | LRGA                                                               |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| MW369: Sodium                                                                                            | MW370: Beta activity, sulfate, technetium-99                       |
| MW372: Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99 | MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate |
| MW387: Beta activity, calcium, dissolved solids, magnesium, sulfate, technetium-99                       | MW388: Sulfate, technetium-99                                      |
|                                                                                                          | MW392: Sulfate                                                     |

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

| Location | Well ID      | Parameter        | Sample<br>Size | Alpha <sup>1</sup> | p-Value <sup>2</sup> | $S^3$ | Decision <sup>4</sup> |
|----------|--------------|------------------|----------------|--------------------|----------------------|-------|-----------------------|
|          | MW369        | Sodium           | 8              | 0.05               | 0.054                | 15    | No Trend              |
|          |              | Beta activity    | 8              | 0.05               | 0.119                | -8    | No Trend              |
|          | MW370        | Sulfate          | 8              | 0.05               | 0.548                | 0     | No Trend              |
|          |              | Technetium-99    | 8              | 0.05               | 0.054                | -14   | No Trend              |
|          |              | Beta activity    | 8              | 0.05               | 0.36                 | -4    | No Trend              |
|          |              | Calcium          | 8              | 0.05               | 0.016                | 19    | Increasing            |
|          |              | Conductivity     | 8              | 0.05               | 0.002                | 22    | Increasing            |
|          | MW372        | Dissolved Solids | 8              | 0.05               | 0.119                | 8     | No Trend              |
|          | 1V1 VV 3 / 2 | Magnesium        | 8              | 0.05               | 0.031                | 16    | Increasing            |
|          |              | Sodium           | 8              | 0.05               | 0.031                | 16    | Increasing            |
|          |              | Sulfate          | 8              | 0.05               | 0.007                | 20    | Increasing            |
| C-746-   |              | Technetium-99    | 8              | 0.05               | 0.452                | 2     | No Trend              |
| S&T      | MW373        | Calcium          | 8              | 0.05               | 0.002                | 22    | Increasing            |
| Landfill |              | Conductivity     | 8              | 0.05               | 0                    | 26    | Increasing            |
| Landini  |              | Dissolved Solids | 8              | 0.05               | 0.054                | 14    | No Trend              |
|          |              | Magnesium        | 8              | 0.05               | 0.054                | 14    | No Trend              |
|          |              | Sulfate          | 8              | 0.05               | 0.089                | 12    | No Trend              |
|          | MW387        | Beta activity    | 8              | 0.05               | 0.138                | 10    | No Trend              |
|          |              | Calcium          | 8              | 0.05               | 0.031                | 16    | Increasing            |
|          |              | Dissolved Solids | 8              | 0.05               | 0.031                | 16    | Increasing            |
|          |              | Magnesium        | 8              | 0.05               | 0.089                | 12    | No Trend              |
|          |              | Sulfate          | 8              | 0.05               | 0.119                | 8     | No Trend              |
|          |              | Technetium-99    | 8              | 0.05               | 0.031                | 16    | Increasing            |
|          | MW388        | Sulfate          | 8              | 0.05               | 0.119                | -8    | No Trend              |
|          | 1VI VV 308   | Technetium-99    | 8              | 0.05               | 0.031                | -16   | Decreasing            |
| MW392    |              | Sulfate          | 8              | 0.05               | 0.007                | 20    | Increasing            |

<sup>&</sup>lt;sup>1</sup> An alpha of 0.05 represents a 95% confidence interval.

Note: Statistics generated using ProUCL.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as background wells, to identify if the current downgradient well concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-S&T Landfills source; therefore, they are a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan (LATA Kentucky 2014). To evaluate these preliminary Type 2 exceedances further, the

<sup>&</sup>lt;sup>2</sup> The p-value represents the risk of acceptance the H<sub>a</sub> hypothesis of a trend, in terms of a percentage.

<sup>&</sup>lt;sup>3</sup> The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

<sup>&</sup>lt;sup>4</sup> The Mann-Kendall decision operates on two hypotheses; the H<sub>0</sub> and H<sub>a</sub>. H<sub>0</sub> assumes there is no trend in the data, whereas H<sub>a</sub> assumes either a positive or negative trend.

parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. Fifteen of the 26 preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Eleven of the 26 preliminary Type 2 exceedances in downgradient wells have an increasing trend. Specifically, the Mann-Kendall statistical test indicates that there are increasing trends of groundwater constituents in MW372, MW373, MW387, and MW392 over the past eight quarters. Constituents in MW372 that showed increasing trends were calcium, conductivity, magnesium, sodium, and sulfate. Constituents that showed increasing trends in MW373 were calcium and conductivity. Constituents in MW387 showed increasing trends for calcium, dissolved solids, and technetium-99. Sulfate concentrations showed an increasing trend in MW392.

Levels of calcium, and conductivity in both MW372 and MW373 and magnesium, sodium, and sulfate in MW372 all exceed the UTLs for historical and current background and exhibit similar increasing trends. These occurrences are indicators of high ionic strength of the area groundwater. Because levels of calcium, magnesium, and conductivity are lower in MW372 (URGA) than in MW373 (LRGA), these trends do not appear to be associated with the C-746-S&T Landfills. (Influence of the landfill should have a greater impact on the URGA well.) These trends should be considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. In MW372, trends of sodium and sulfate mirror trends of calcium, conductivity, and magnesium. Therefore, these occurrences of sodium and sulfate also are indicators of the high ionic strength of the area groundwater and should be considered Type 1 exceedances.

The July 2020 MW387 levels of technetium-99 (an analyte that exceeded both historical and current background UTL) and beta activity have similar trends, corroborating the recent higher activities in MW387. These occurrences are attributed to a known upgradient regional source of dissolved technetium-99. The increasing trend of technetium-99 in MW387 should be considered to be a Type 1 exceedance.

MW387 concentrations of calcium and dissolved solids (additional analytes that exceeded both historical and current background UTL) have similar trends, indicating the dissolved solids are being determined by the ionic strength of the groundwater. The recent trends of both of these analytes are similar to the MW387 technetium-99 and beta activity trends, indicating the same source. These trends should be considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Sulfate levels in MW392 (LRGA) increased significantly in April 2019 and remained at higher levels subsequently. A decreasing trend for sulfate levels was observed in MW391 (URGA) over the past 8 quarters. Sulfate levels in MW391 (URGA) are now lower than those of MW392 (LRGA), indicating the sulfate in MW392 is not associated with the C-746-S&T Landfills. (Influence of the landfill should have a greater impact on the URGA well). The increased sulfate should be considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS well MW390 with sulfate and technetium-99 values that exceed both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the

C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T Landfills sources and is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells\*

| UCRS                                                            |
|-----------------------------------------------------------------|
| MW390: sulfate and technetium-99                                |
| *In the same direction (relative to the landfill) as RGA wells. |

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.



#### 2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2020 groundwater data collected from the C-746-S&T Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as downgradient wells) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient well concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance—could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

To calculate the UTL, the data were divided into censored (non-detects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs historically included in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis<sup>a</sup>

| UCRS               | URGA               | LRGA               |
|--------------------|--------------------|--------------------|
| MW386              | MW220 (background) | MW370              |
| MW389 <sup>b</sup> | MW221              | MW373              |
| MW390              | MW222              | MW385              |
| MW393              | MW223              | MW388              |
| MW396°             | MW224              | MW392              |
|                    | MW369              | MW395 (background) |
|                    | MW372              | MW397 (background) |
|                    | MW384              | , ,                |
|                    | MW387              |                    |
|                    | MW391              |                    |
|                    | MW394 (background) |                    |

<sup>&</sup>lt;sup>a</sup> map showing the MW locations is shown on Figure 1.

#### 2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient well concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

#### 2.1.1 Upper Continental Recharge System

In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the UCRS. During the third quarter, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Both sulfate and technetium-99 exceeded the current background UTL in downgradient wells and is included in Table 5.

#### 2.1.2 Upper Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the URGA. During the third quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

<sup>&</sup>lt;sup>b</sup> Well had insufficient water to permit a water sample for laboratory analysis.

<sup>&</sup>lt;sup>c</sup> In the same direction (relative to the landfill) as RGA wells considered to be background.

#### 2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the third quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

#### 2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.



#### 3. PROFESSIONAL GEOLOGIST AUTHORIZATION

**DOCUMENT IDENTIFICATION:** 

C-746-S&T Landfills

Third Quarter Calendar Year 2020 (July-September)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0152/V3)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Residence of the A. Deliginary of the A. Deliginary

November 18, 2000

Kenneth R. Davis

PG113927



#### 4. REFERENCES

- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.



# **APPENDIX A**

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM



## GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

# NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

| Facility Name:                                                                                                                                           |                                                                                                                                                           | Paducah Gased<br>ally shown on DW                                                                                                                         | ous Diffusion Plant /M Permit Face)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Activity: _                                                                                                                                                                    | C-746-S&T Landfills                                                                                                                                                                                                                                         |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SW07300014, Permit No: SW07300015, SW07300045                                                                                                            |                                                                                                                                                           | 5, I                                                                                                                                                      | Finds/Unit No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quarter & Year                                                                                                                                                                 | 3rd Qtr. CY 2020                                                                                                                                                                                                                                            |  |
| Please check the j                                                                                                                                       | following as ap                                                                                                                                           | plicable:                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                                                                                                                                                                                                                             |  |
| Character                                                                                                                                                | zation X                                                                                                                                                  | Quarterly                                                                                                                                                 | Semiannual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Annual                                                                                                                                                                         | Assessment                                                                                                                                                                                                                                                  |  |
| Please check appl                                                                                                                                        | icable submitte                                                                                                                                           | al(s): X                                                                                                                                                  | Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XS                                                                                                                                                                             | Surface Water                                                                                                                                                                                                                                               |  |
|                                                                                                                                                          |                                                                                                                                                           |                                                                                                                                                           | Leachate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X1                                                                                                                                                                             | Methane Monitoring                                                                                                                                                                                                                                          |  |
| 45:160) or by statute jurisdiction of the Di hours of making the lab report is NOT co I certify under penalty with a system design inquiry of the person | (Kentucky Rev<br>vision of Waste<br>determination<br>nsidered notific<br>of law that this<br>ed to assure that<br>or persons direct,<br>true, accurate, a | ised Statues Ch<br>Management. Y<br>using statistical<br>ation. Instruction<br>document and a<br>t qualified personally responsible in<br>and complete. I | apter 224) to conduct great and the comparison of analyses, direct comparisons for completing the formal attachments were preparational properly gather and for gathering the information am aware that there are significant to conduct the conduct of the conduct o | oundwater and surface lication of contaminates ison, or other similar to are attached. Do not so are dunder my direction of evaluate the information, the information sulface. | ations-401 KAR 48:300 and water monitoring under the ion within forty-eight (48) techniques. Submitting the submit the instruction pages. or supervision in accordance on submitted. Based on my omitted is, to the best of my ubmitting false information, |  |
| Myrna E. Redfie                                                                                                                                          | d Program N                                                                                                                                               | Manager                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                                                                                                                                                                           | 19090                                                                                                                                                                                                                                                       |  |
| Four Rivers Nuc                                                                                                                                          |                                                                                                                                                           |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                                                                                                                                                                           |                                                                                                                                                                                                                                                             |  |
| Jennife                                                                                                                                                  | Woo                                                                                                                                                       | dard                                                                                                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11/1                                                                                                                                                                           | 9/2020                                                                                                                                                                                                                                                      |  |
| U.S. Department                                                                                                                                          | d, Paducah Si<br>of Energy                                                                                                                                | ite Lead                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Daye                                                                                                                                                                           | ,                                                                                                                                                                                                                                                           |  |



# APPENDIX B FACILITY INFORMATION SHEET



# FACILITY INFORMATION SHEET

|                   | Groundwater: July 2020<br>Surface water: September | 2020                                            |                     |             | SW07300014,<br>SW07300015, |
|-------------------|----------------------------------------------------|-------------------------------------------------|---------------------|-------------|----------------------------|
| Sampling Date:    | Methane: September 2020                            |                                                 | McCracken           | Permit Nos. | SW07300045                 |
| Facility Name:    | U.S. DOE—Paducah Gase                              | ous Diffusion Plant                             | · ·                 |             |                            |
|                   | (As office                                         | ially shown on DWM Permit Face)                 |                     |             |                            |
| Site Address:     | 5600 Hobbs Road                                    | Kevil, Kentucky                                 | •                   |             | 42053                      |
|                   | Street                                             | City/State                                      |                     |             | Zip                        |
| Phone No:         | (270) 441-6800                                     | N 37° 07' 37                                    | 7.70" L             | Longitude:  | W 88° 47' 55.41"           |
|                   |                                                    | OWNER INFORMATION                               |                     |             |                            |
| Facility Owner:   | U.S. DOE, Robert E. Edwa                           | rds III, Manager                                |                     | Phone No:   | (859) 227-5020             |
| Contact Person:   | Bruce Ford                                         | <u></u>                                         |                     | Phone No:   | (270) 441-5357             |
| Contact Person Ti | tle: Director, Environme                           | ental Services, Four Rivers Nuclear             | Partnership, LLC    | С           |                            |
| Mailing Address:  | 5511 Hobbs Road                                    | Kevil, Kentucky                                 | у                   |             | 42053                      |
|                   | Street                                             | City/State                                      |                     |             | Zip                        |
|                   | (IF OT                                             | SAMPLING PERSONNEL<br>THER THAN LANDFILL OR LAN |                     |             |                            |
| Company:          | GEO Consultants Corpor                             | ration                                          |                     |             |                            |
| Contact Person:   | Jason Boulton                                      |                                                 |                     | Phone No:   | (270) 816-3415             |
| Mailing Address:  | 199 Kentucky Avenue                                | Kevil, Kentucky                                 | V                   |             | 42053                      |
|                   | Street                                             | City/State                                      |                     |             | Zip                        |
|                   |                                                    | LABORATORY RECORD #                             | <b>‡1</b>           |             |                            |
| Laboratory:       | GEL Laboratories, LLC                              | I                                               | ab ID No: <u>KY</u> | 90129       |                            |
| Contact Person:   | Valerie Davis                                      |                                                 | I                   | Phone No:   | (843) 769-7391             |
| Mailing Address:  | 2040 Savage Road                                   | Charleston, South Ca                            | rolina              |             | 29407                      |
|                   | Street                                             | City/State                                      |                     |             | Zip                        |
|                   |                                                    | LABORATORY RECORD #                             | <b>‡2</b>           |             |                            |
| Laboratory:       | N/A                                                |                                                 | Lab ID No:          | N/A         |                            |
| Contact Person:   | N/A                                                |                                                 |                     | Phone No:   | N/A                        |
| Mailing Address:  | N/A                                                |                                                 |                     |             |                            |
|                   | Street                                             | City/State                                      |                     |             | Zip                        |
|                   |                                                    | LABORATORY RECORD #                             | <del>‡</del> 3      |             |                            |
| Laboratory:       | N/A                                                |                                                 | Lab ID No:          | N/A         |                            |
| Contact Person:   | N/A                                                |                                                 | _                   | Phone No:   | N/A                        |
| Mailing Address:  | N/A                                                |                                                 |                     | •           |                            |
|                   | Street                                             | City/State                                      |                     |             | Zip                        |



# APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS



Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

## GROUNDWATER SAMPLE ANALYSIS (S)

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number                         |             |                       |          | 8000-520 <sup>-</sup>                       | 1                                  | 8000-52                                     | 202                   | 8000-52                                     | 242                   | 8000-524                                    | 43               |
|---------------------------|-------------------------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., N                    | /W−1        | , MW-2, etc           | :.)      | 220                                         |                                    | 221                                         |                       | 222                                         |                       | 223                                         |                  |
| Sample Sequen             | ce #                                                  |             |                       |          | 1                                           |                                    | 1                                           |                       | 1                                           |                       | 1                                           |                  |
| If sample is a            | Blank, specify Type: (F)ield, (T)rip,                 | (M) e       | thod, or (E)          | quipment | NA                                          |                                    | NA                                          |                       | NA                                          |                       | NA                                          |                  |
| Sample Date a             | nd Time (Month/Day/Year hour: minu                    | tes         | )                     |          | 7/28/2020 09                                | 9:22                               | 7/28/2020                                   | 06:27                 | 7/28/2020                                   | 07:46                 | 7/28/2020 0                                 | 7:08             |
| Duplicate ("Y             | " or "N") <sup>2</sup>                                |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Split ("Y" or             | "N") <sup>3</sup>                                     |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Facility Samp             | cility Sample ID Number (if applicable)               |             |                       |          |                                             | -20                                | MW221S0                                     | G4-20                 | MW222S0                                     | G4-20                 | MW223SG                                     | 4-20             |
| Laboratory San            | aboratory Sample ID Number (if applicable)            |             |                       |          |                                             | 1                                  | 516914                                      | 003                   | 5169140                                     | 005                   | 5169140                                     | 07               |
| Date of Analy             | ate of Analysis (Month/Day/Year) For Volatile Organic |             |                       | ysis.    | 7/31/2020                                   | )                                  | 7/31/20                                     | 20                    | 7/31/20                                     | 20                    | 7/31/202                                    | <u>'</u> 0       |
| Gradient with             | respect to Monitored Unit (UP, DC                     | , NWC       | SIDE, UNKN            | IOWN)    | UP                                          |                                    | SIDE                                        |                       | SIDE                                        |                       | SIDE                                        |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                                           | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                | Bromide                                               | т           | mg/L                  | 9056     | 0.232                                       |                                    | 0.476                                       |                       | 0.435                                       |                       | 0.412                                       |                  |
| 16887-00-6                | Chloride(s)                                           | т           | mg/L                  | 9056     | 19.8                                        |                                    | 36.6                                        |                       | 31.6                                        |                       | 31.5                                        |                  |
| 16984-48-8                |                                                       |             |                       | 9056     | 0.222                                       |                                    | 0.214                                       |                       | 0.274                                       |                       | 0.285                                       |                  |
| s0595                     | Nitrate & Nitrite                                     | т           | mg/L                  | 9056     | 1.11                                        |                                    | 1.04                                        |                       | 0.957                                       |                       | 1.1                                         |                  |
| 14808-79-8                | Sulfate                                               | т           | mg/L                  | 9056     | 15.3                                        |                                    | 14.2                                        |                       | 13.2                                        |                       | 14.3                                        |                  |
| NS1894                    | Barometric Pressure Reading                           | т           | Inches/Hg             | Field    | 30.02                                       |                                    | 29.99                                       |                       | 30                                          |                       | 30                                          |                  |
| S0145                     | Specific Conductance                                  | Т           | μ <b>MH</b> 0/cm      | Field    | 354                                         |                                    | 396                                         |                       | 369                                         |                       | 376                                         |                  |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
   of a secondary dilution

<sup>&</sup>lt;sup>2</sup>Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

 $<sup>^4</sup>$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>&</sup>lt;sup>6</sup>"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

<sup>7</sup>Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number        |                |                       |          | 8000-520                                    | 1                     | 8000-520                                    | 2                     | 8000-5242                                   | )                     | 8000-5243                                   |                       |
|---------------------------|--------------------------------------|----------------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Lo             | ocal Well or Spring Number (e.g., MW | <b>I-1</b> , 1 | MW-2, BLANK-          | F, etc.) | 220                                         |                       | 221                                         |                       | 222                                         |                       | 223                                         |                       |
| CAS RN <sup>4</sup>       | CONSTITUENT                          | T<br>D<br>5    | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| s0906                     | Static Water Level Elevation         | т              | Ft. MSL               | Field    | 328.25                                      |                       | 328.04                                      |                       | 328.27                                      |                       | 328.31                                      |                       |
| N238                      | Dissolved Oxygen                     | т              | mg/L                  | Field    | 4.41                                        |                       | 4.81                                        |                       | 2.9                                         |                       | 3.4                                         |                       |
| s0266                     | Total Dissolved Solids               | Т              | mg/L                  | 160.1    | 191                                         |                       | 151                                         |                       | 194                                         |                       | 191                                         |                       |
| s0296                     | рн                                   | Т              | Units                 | Field    | 6.14                                        |                       | 6.02                                        |                       | 6.15                                        |                       | 6.12                                        |                       |
| NS215                     | Eh                                   | Т              | mV                    | Field    | 375                                         |                       | 407                                         |                       | 378                                         |                       | 379                                         |                       |
| s0907                     | Temperature                          | Т              | °c                    | Field    | 18.22                                       |                       | 17.94                                       |                       | 18.39                                       |                       | 18.67                                       |                       |
| 7429-90-5                 | Aluminum                             | Т              | mg/L                  | 6020     | 0.0226                                      | J                     | <0.05                                       |                       | <0.05                                       |                       | <0.05                                       |                       |
| 7440-36-0                 | Antimony                             | Т              | mg/L                  | 6020     | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       |
| 7440-38-2                 | Arsenic                              | Т              | mg/L                  | 6020     | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7440-39-3                 | Barium                               | Т              | mg/L                  | 6020     | 0.187                                       |                       | 0.208                                       |                       | 0.267                                       |                       | 0.229                                       |                       |
| 7440-41-7                 | Beryllium                            | Т              | mg/L                  | 6020     | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                       |
| 7440-42-8                 | Boron                                | Т              | mg/L                  | 6020     | 0.0111                                      | J                     | 0.0196                                      |                       | 0.0117                                      | J                     | 0.00879                                     | J                     |
| 7440-43-9                 | Cadmium                              | Т              | mg/L                  | 6020     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-70-2                 | Calcium                              | т              | mg/L                  | 6020     | 20.6                                        |                       | 21.5                                        |                       | 19.4                                        |                       | 21.5                                        |                       |
| 7440-47-3                 | Chromium                             | Т              | mg/L                  | 6020     | <0.01                                       |                       | <0.01                                       |                       | <0.01                                       |                       | 0.0114                                      |                       |
| 7440-48-4                 | Cobalt                               | Т              | mg/L                  | 6020     | <0.001                                      |                       | <0.001                                      |                       | 0.000401                                    | J                     | 0.000468                                    | J                     |
| 7440-50-8                 | Copper                               | т              | mg/L                  | 6020     | 0.000628                                    | J                     | 0.000934                                    | J                     | 0.000501                                    | J                     | 0.000721                                    | J                     |
| 7439-89-6                 | Iron                                 | Т              | mg/L                  | 6020     | 0.0838                                      | J                     | <0.1                                        |                       | <0.1                                        |                       | 0.0512                                      | J                     |
| 7439-92-1                 | Lead                                 | Т              | mg/L                  | 6020     | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       |
| 7439-95-4                 | Magnesium                            | т              | mg/L                  | 6020     | 8.24                                        |                       | 9.03                                        |                       | 8.23                                        |                       | 8.3                                         |                       |
| 7439-96-5                 | Manganese                            | т              | mg/L                  | 6020     | 0.00144                                     | J                     | <0.005                                      |                       | 0.0024                                      | J                     | 0.00611                                     |                       |
| 7439-97-6                 | Mercury                              | т              | mg/L                  | 7470     | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER        | <sup>1</sup> , Facility Well/Spring Number |             |                       |        | 8000-520                                    | 01                    | 8000-52                                     | :02                   | 8000-52                                     | 42                    | 8000-52                                     | 43                    |
|---------------------|--------------------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's L        | ocal Well or Spring Number (e.g.,          | MW-         | 1, MW-2, e            | tc.)   | 220                                         |                       | 221                                         |                       | 222                                         |                       | 223                                         |                       |
| CAS RN <sup>4</sup> | CONSTITUENT                                | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 7439-98-7           | Molybdenum                                 | т           | mg/L                  | 6020   | 0.000427                                    | J                     | 0.00157                                     |                       | 0.00123                                     |                       | 0.00443                                     |                       |
| 7440-02-0           | Nickel                                     | т           | mg/L                  | 6020   | 0.0121                                      |                       | 0.0139                                      |                       | 0.0574                                      |                       | 0.0841                                      |                       |
| 7440-09-7           | Potassium                                  | т           | mg/L                  | 6020   | 2.15                                        |                       | 1.28                                        |                       | 0.695                                       |                       | 1.55                                        |                       |
| 7440-16-6           | Rhodium                                    | т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7782-49-2           | Selenium                                   | т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7440-22-4           | Silver                                     | т           | mg/L                  | 6020   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-23-5           | Sodium                                     | т           | mg/L                  | 6020   | 38.3                                        |                       | 46                                          |                       | 45.4                                        |                       | 44.2                                        |                       |
| 7440-25-7           | Tantalum                                   | Т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7440-28-0           | Thallium                                   | Т           | mg/L                  | 6020   | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       |
| 7440-61-1           | Uranium                                    | T           | mg/L                  | 6020   | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       |
| 7440-62-2           | Vanadium                                   | T           | mg/L                  | 6020   | <0.02                                       |                       | <0.02                                       |                       | <0.02                                       |                       | <0.02                                       |                       |
| 7440-66-6           | Zinc                                       | Т           | mg/L                  | 6020   | 0.00492                                     | BJ                    | 0.00861                                     | BJ                    | 0.00564                                     | BJ                    | 0.00612                                     | BJ                    |
| 108-05-4            | Vinyl acetate                              | т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 67-64-1             | Acetone                                    | т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 107-02-8            | Acrolein                                   | т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 107-13-1            | Acrylonitrile                              | т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 71-43-2             | Benzene                                    | т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 108-90-7            | Chlorobenzene                              | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 1330-20-7           | Xylenes                                    | Т           | mg/L                  | 8260   | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       |
| 100-42-5            | Styrene                                    | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 108-88-3            | Toluene                                    | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 74-97-5             | Chlorobromomethane                         | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |

## C-6

## RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |             |                       |        | 8000-520                                    | 1                | 8000-520                                    | )2                    | 8000-52                                     | 242                   | 8000-52                                     | 243              |
|-----------------------------|------------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., 1 | MW-         | 1, MW-2, et           | cc.)   | 220                                         |                  | 221                                         |                       | 222                                         |                       | 223                                         |                  |
| CAS RN⁴                     | CONSTITUENT                        | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 75-27-4                     | Bromodichloromethane               | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-25-2                     | Tribromomethane                    | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-83-9                     | Methyl bromide                     | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 78-93-3                     | Methyl ethyl ketone                | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 110-57-6                    | trans-1,4-Dichloro-2-butene        | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 75-15-0                     | Carbon disulfide                   | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 75-00-3                     | Chloroethane                       | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 67-66-3                     | Chloroform                         | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-87-3                     | Methyl chloride                    | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 156-59-2                    | cis-1,2-Dichloroethene             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-95-3                     | Methylene bromide                  | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-34-3                     | 1,1-Dichloroethane                 | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 107-06-2                    | 1,2-Dichloroethane                 | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-35-4                     | 1,1-Dichloroethylene               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 106-93-4                    | Ethane, 1,2-dibromo                | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-34-5                     | Ethane, 1,1,2,2-Tetrachloro        | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 71-55-6                     | Ethane, 1,1,1-Trichloro-           | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-00-5                     | Ethane, 1,1,2-Trichloro            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 630-20-6                    | Ethane, 1,1,1,2-Tetrachloro        | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-01-4                     | Vinyl chloride                     | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 127-18-4                    | Ethene, Tetrachloro-               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-01-6                     | Ethene, Trichloro-                 | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

## GROUNDWATER SAMPLE ANALYSIS - (Cont.)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |              |                       |        | 8000-520                                    | 1                | 8000-5202                                   | 2                     | 8000-524                                    | 42                    | 8000-52                                     | 43               |
|-----------------------------|-----------------------------------|--------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | al Well or Spring Number (e.g., M | <b>1</b> ₩−1 | 1, MW-2, et           | cc.)   | 220                                         |                  | 221                                         |                       | 222                                         |                       | 223                                         |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | T<br>D<br>5  | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 100-41-4                    | Ethylbenzene                      | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 591-78-6                    | 2-Hexanone                        | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 74-88-4                     | Iodomethane                       | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 124-48-1                    | Methane, Dibromochloro-           | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 56-23-5                     | Carbon Tetrachloride              | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-09-2                     | Dichloromethane                   | т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 108-10-1                    | Methyl isobutyl ketone            | т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro     | т            | mg/L                  | 8011   | <0.0000199                                  |                  | <0.0000196                                  |                       | <0.0000196                                  |                       | <0.0000197                                  |                  |
| 78-87-5                     | Propane, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene      | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene        | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 156-60-5                    | trans-1,2-Dichloroethene          | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-69-4                     | Trichlorofluoromethane            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 96-18-4                     | 1,2,3-Trichloropropane            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 95-50-1                     | Benzene, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 106-46-7                    | Benzene, 1,4-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 1336-36-3                   | PCB,Total                         | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 12674-11-2                  | PCB-1016                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 11104-28-2                  | PCB-1221                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 11141-16-5                  | PCB-1232                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 53469-21-9                  | PCB-1242                          | Т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 12672-29-6                  | PCB-1248                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |

C-7

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |             |                       |          | 8000-5201                                   |                  | 8000-5202                                   |                       | 8000-524                                    | 2                     | 8000-524                                    | 13                    |
|---------------------------|----------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | cc.)     | 220                                         |                  | 221                                         |                       | 222                                         |                       | 223                                         |                       |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 11097-69-1                | PCB-1254                         | Т           | ug/L                  | 8082     |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                     |
| 11096-82-5                | PCB-1260                         | Т           | ug/L                  | 8082     |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                     |
| 11100-14-4                | PCB-1268                         | Т           | ug/L                  | 8082     |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                     |
| 12587-46-1                | Gross Alpha                      | Т           | pCi/L                 | 9310     | 4.34                                        | *                | 5.74                                        | *                     | -3.07                                       | *                     | 0.155                                       | *                     |
| 12587-47-2                | Gross Beta                       | Т           | pCi/L                 | 9310     | 18.9                                        | *                | 8.54                                        | *                     | 4.76                                        | *                     | 6.09                                        | *                     |
| 10043-66-0                | Iodine-131                       | Т           | pCi/L                 |          |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                     |
| 13982-63-3                | Radium-226                       | Т           | pCi/L                 | AN-1418  | 0.221                                       | *                | 0.0168                                      | *                     | -0.364                                      | *                     | 0.0158                                      | *                     |
| 10098-97-2                | Strontium-90                     | Т           | pCi/L                 | 905.0    | 2.4                                         | *                | -0.321                                      | *                     | 2.42                                        | *                     | -1.55                                       | *                     |
| 14133-76-7                | Technetium-99                    | Т           | pCi/L                 | Tc-02-RC | 19                                          | *                | 12.7                                        | *                     | -5.08                                       | *                     | 0.866                                       | *                     |
| 14269-63-7                | Thorium-230                      | Т           | pCi/L                 | Th-01-RC | -0.125                                      | *                | -0.205                                      | *                     | 1.12                                        | *                     | 0.0714                                      | *                     |
| 10028-17-8                | Tritium                          | Т           | pCi/L                 | 906.0    | 172                                         | *                | 135                                         | *                     | 136                                         | *                     | 98.3                                        | *                     |
| s0130                     | Chemical Oxygen Demand           | Т           | mg/L                  | 410.4    | <20                                         |                  | 16                                          | J                     | 16                                          | J                     | 16                                          | J                     |
| 57-12-5                   | Cyanide                          | Т           | mg/L                  | 9012     | <0.2                                        |                  | <0.2                                        |                       | <0.2                                        |                       | <0.2                                        |                       |
| 20461-54-5                | Iodide                           | т           | mg/L                  | 300.0    | <0.5                                        |                  | <0.5                                        |                       | <0.5                                        |                       | <0.5                                        |                       |
| s0268                     | Total Organic Carbon             | Т           | mg/L                  | 9060     | 1.16                                        | J                | 1.12                                        | J                     | 1.13                                        | J                     | 1.02                                        | J                     |
| s0586                     | Total Organic Halides            | Т           | mg/L                  | 9020     | <0.01                                       |                  | 0.00334                                     | J                     | 0.0047                                      | J                     | <0.01                                       |                       |
|                           |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                           |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                           |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                           |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |
|                           |                                  |             |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                       |

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

## GROUNDWATER SAMPLE ANALYSIS (S)

| AKGWA NUMBER <sup>1</sup> , | , Facility Well/Spring Number                              |             |                       |          | 8000-5244                                   | 4                                  | 8004-48                                     | 320                   | 8004-48                                     | 318                   | 8004-480                                    | )8               |
|-----------------------------|------------------------------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., N                         | 1W−1        | ., MW-2, etc          | .)       | 224                                         |                                    | 369                                         |                       | 370                                         |                       | 372                                         |                  |
| Sample Sequence             | ce #                                                       |             |                       |          | 1                                           |                                    | 1                                           |                       | 1                                           |                       | 1                                           |                  |
| If sample is a              | Blank, specify Type: (F)ield, (T)rip,                      | (M) e       | thod, or (E)          | quipment | NA                                          |                                    | NA                                          |                       | NA                                          |                       | NA                                          |                  |
| Sample Date an              | nd Time (Month/Day/Year hour: minu                         | tes         | )                     |          | 7/28/2020 08                                | 3:27                               | 7/20/2020                                   | 06:43                 | 7/23/2020                                   | 07:26                 | 7/23/2020 0                                 | 8:44             |
| Duplicate ("Y               | " or "N") <sup>2</sup>                                     |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Split ("Y" or               | "N") <sup>3</sup>                                          |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Facility Samp               | acility Sample ID Number (if applicable)                   |             |                       |          |                                             | -20                                | MW369U0                                     | G4-20                 | MW370UG                                     | 4-20R                 | MW372UG4                                    | -20R             |
| Laboratory San              | aboratory Sample ID Number (if applicable)                 |             |                       |          |                                             | 1                                  | 516422                                      | 001                   | 5165920                                     | 004                   | 5165920                                     | 08               |
| Date of Analys              | ate of Analysis (Month/Day/Year) For Volatile Organics Ana |             |                       |          | 7/31/2020                                   | )                                  | NA                                          |                       | 7/28/20                                     | 20                    | 7/28/202                                    | :0               |
| Gradient with               | respect to Monitored Unit (UP, DC                          | , NWC       | SIDE, UNKN            | OWN)     | SIDE                                        |                                    | DOW                                         | N                     | DOWI                                        | N                     | DOWN                                        | ı                |
| CAS RN <sup>4</sup>         | CONSTITUENT                                                | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                  | Bromide                                                    | т           | mg/L                  | 9056     | 0.403                                       |                                    | 0.345                                       |                       | 0.457                                       |                       | 0.572                                       |                  |
| 16887-00-6                  | Chloride(s)                                                | Т           | mg/L                  | 9056     | 29.4                                        |                                    | 29.9                                        |                       | 35.6                                        |                       | 44.2                                        |                  |
| 16984-48-8                  | Fluoride                                                   | Т           | mg/L                  | 9056     | 0.297                                       |                                    | 0.244                                       |                       | 0.18                                        |                       | 0.187                                       |                  |
| s0595                       | Nitrate & Nitrite                                          | т           | mg/L                  | 9056     | 0.804                                       |                                    | 0.76                                        | *                     | 1                                           |                       | 1.12                                        |                  |
| 14808-79-8                  | Sulfate                                                    | т           | mg/L                  | 9056     | 13                                          |                                    | 5.48                                        |                       | 20.7                                        |                       | 124                                         |                  |
| NS1894                      | Barometric Pressure Reading                                | т           | Inches/Hg             | Field    | 30.01                                       |                                    | 29.99                                       |                       | 30.09                                       |                       | 30.1                                        |                  |
| S0145                       | Specific Conductance                                       | т           | μ <b>M</b> H0/cm      | Field    | 432                                         |                                    | 373                                         |                       | 452                                         |                       | 770                                         |                  |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $<sup>^{2}</sup>$ Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

 $<sup>^4</sup>$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |             |                       |          | 8000-524                                    | 4                     | 8004-482                                    | 0                     | 8004-4818                                   | 3                     | 8004-4808                                   |                  |
|-----------------------------|------------------------------------|-------------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | al Well or Spring Number (e.g., MW | -1, 1       | MW-2, BLANK-          | F, etc.) | 224                                         |                       | 369                                         |                       | 370                                         |                       | 372                                         |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| s0906                       | Static Water Level Elevation       | Т           | Ft. MSL               | Field    | 328.43                                      |                       | 328.84                                      |                       | 328.53                                      |                       | 328.61                                      |                  |
| N238                        | Dissolved Oxygen                   | Т           | mg/L                  | Field    | 1.72                                        |                       | 3.21                                        |                       | 2.86                                        |                       | 1.78                                        |                  |
| s0266                       | Total Dissolved Solids             | Т           | mg/L                  | 160.1    | 239                                         |                       | 186                                         | *                     | 241                                         |                       | 436                                         |                  |
| s0296                       | рН                                 | Т           | Units                 | Field    | 6.17                                        |                       | 6.21                                        |                       | 6.07                                        |                       | 6.16                                        |                  |
| NS215                       | Eh                                 | Т           | mV                    | Field    | 376                                         |                       | 366                                         |                       | 366                                         |                       | 365                                         |                  |
| s0907                       | Temperature                        | Т           | ပ                     | Field    | 18.17                                       |                       | 17.83                                       |                       | 17.89                                       |                       | 18.39                                       |                  |
| 7429-90-5                   | Aluminum                           | Т           | mg/L                  | 6020     | <0.05                                       |                       | <0.05                                       |                       | <0.05                                       |                       | <0.05                                       |                  |
| 7440-36-0                   | Antimony                           | Т           | mg/L                  | 6020     | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                  |
| 7440-38-2                   | Arsenic                            | Т           | mg/L                  | 6020     | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 7440-39-3                   | Barium                             | Т           | mg/L                  | 6020     | 0.199                                       |                       | 0.371                                       |                       | 0.26                                        |                       | 0.0657                                      |                  |
| 7440-41-7                   | Beryllium                          | Т           | mg/L                  | 6020     | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                  |
| 7440-42-8                   | Boron                              | Т           | mg/L                  | 6020     | 0.0171                                      |                       | 0.0152                                      |                       | 0.15                                        | *                     | 1.21                                        |                  |
| 7440-43-9                   | Cadmium                            | Т           | mg/L                  | 6020     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 7440-70-2                   | Calcium                            | T           | mg/L                  | 6020     | 22.3                                        |                       | 16.5                                        |                       | 30.6                                        |                       | 62.4                                        |                  |
| 7440-47-3                   | Chromium                           | Т           | mg/L                  | 6020     | 0.0194                                      |                       | <0.01                                       |                       | <0.01                                       |                       | <0.01                                       |                  |
| 7440-48-4                   | Cobalt                             | T           | mg/L                  | 6020     | 0.000886                                    | J                     | 0.00419                                     |                       | <0.001                                      |                       | <0.001                                      |                  |
| 7440-50-8                   | Copper                             | Т           | mg/L                  | 6020     | 0.000876                                    | J                     | 0.00228                                     |                       | 0.000383                                    | J                     | <0.002                                      |                  |
| 7439-89-6                   | Iron                               | Т           | mg/L                  | 6020     | 0.227                                       |                       | 0.135                                       |                       | <0.1                                        |                       | 0.0355                                      | J                |
| 7439-92-1                   | Lead                               | Т           | mg/L                  | 6020     | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                  |
| 7439-95-4                   | Magnesium                          | Т           | mg/L                  | 6020     | 9.33                                        |                       | 6.51                                        |                       | 13                                          |                       | 21.4                                        |                  |
| 7439-96-5                   | Manganese                          | Т           | mg/L                  | 6020     | 0.00442                                     | J                     | 0.00886                                     |                       | 0.0022                                      | J                     | <0.005                                      |                  |
| 7439-97-6                   | Mercury                            | Т           | mg/L                  | 7470     | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                  |

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER        | 1, Facility Well/Spring Number   |             |                       |        | 8000-524                                    | 44                    | 8004-48                                     | 20                    | 8004-48                                     | 18                    | 8004-48                                     | 08                    |
|---------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's L        | ocal Well or Spring Number (e.g. | , MW-       | -1, MW-2, e           | tc.)   | 224                                         |                       | 369                                         |                       | 370                                         |                       | 372                                         |                       |
| CAS RN <sup>4</sup> | CONSTITUENT                      | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 7439-98-7           | Molybdenum                       | т           | mg/L                  | 6020   | 0.00141                                     |                       | <0.001                                      |                       | 0.000262                                    | J                     | <0.001                                      |                       |
| 7440-02-0           | Nickel                           | т           | mg/L                  | 6020   | 0.0775                                      |                       | 0.0191                                      |                       | 0.00383                                     |                       | 0.00253                                     |                       |
| 7440-09-7           | Potassium                        | т           | mg/L                  | 6020   | 0.829                                       |                       | 0.485                                       |                       | 2.8                                         |                       | 2.22                                        |                       |
| 7440-16-6           | Rhodium                          | т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7782-49-2           | Selenium                         | т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | 0.00202                                     | J                     |
| 7440-22-4           | Silver                           | т           | mg/L                  | 6020   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-23-5           | Sodium                           | Т           | mg/L                  | 6020   | 54.8                                        |                       | 59.6                                        |                       | 46.2                                        |                       | 63.8                                        |                       |
| 7440-25-7           | Tantalum                         | Т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7440-28-0           | Thallium                         | Т           | mg/L                  | 6020   | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       |
| 7440-61-1           | Uranium                          | Т           | mg/L                  | 6020   | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       |
| 7440-62-2           | Vanadium                         | Т           | mg/L                  | 6020   | <0.02                                       |                       | <0.02                                       |                       | <0.02                                       |                       | <0.02                                       |                       |
| 7440-66-6           | Zinc                             | Т           | mg/L                  | 6020   | 0.00794                                     | BJ                    | 0.00913                                     | J                     | 0.00334                                     | J                     | 0.00373                                     | BJ                    |
| 108-05-4            | Vinyl acetate                    | Т           | mg/L                  | 8260   | <0.005                                      |                       |                                             | *                     | <0.005                                      |                       | <0.005                                      |                       |
| 67-64-1             | Acetone                          | Т           | mg/L                  | 8260   | <0.005                                      |                       |                                             | *                     | <0.005                                      |                       | <0.005                                      |                       |
| 107-02-8            | Acrolein                         | Т           | mg/L                  | 8260   | <0.005                                      |                       |                                             | *                     | <0.005                                      |                       | <0.005                                      |                       |
| 107-13-1            | Acrylonitrile                    | Т           | mg/L                  | 8260   | <0.005                                      |                       |                                             | *                     | <0.005                                      |                       | <0.005                                      |                       |
| 71-43-2             | Benzene                          | Т           | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       |
| 108-90-7            | Chlorobenzene                    | Т           | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       |
| 1330-20-7           | Xylenes                          | Т           | mg/L                  | 8260   | <0.003                                      |                       |                                             | *                     | <0.003                                      |                       | <0.003                                      |                       |
| 100-42-5            | Styrene                          | Т           | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       |
| 108-88-3            | Toluene                          | Т           | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       |
| 74-97-5             | Chlorobromomethane               | т           | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                     | <0.001                                      |                       | <0.001                                      |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number      |              |                       |        | 8000-524                                    | 4                | 8004-4820                                   | )                | 8004-4818                                   | 3                     | 8004-4808                                   |                  |
|-----------------------------|----------------------------------|--------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo               | cal Well or Spring Number (e.g., | MW-:         | 1, MW-2, et           | .c.)   | 224                                         |                  | 369                                         |                  | 370                                         |                       | 372                                         |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                      | <b>T</b> D 5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 75-27-4                     | Bromodichloromethane             | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 75-25-2                     | Tribromomethane                  | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 74-83-9                     | Methyl bromide                   | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 78-93-3                     | Methyl ethyl ketone              | Т            | mg/L                  | 8260   | <0.005                                      |                  |                                             | *                | <0.005                                      |                       | <0.005                                      |                  |
| 110-57-6                    | trans-1,4-Dichloro-2-butene      | Т            | mg/L                  | 8260   | <0.005                                      |                  |                                             | *                | <0.005                                      |                       | <0.005                                      |                  |
| 75-15-0                     | Carbon disulfide                 | Т            | mg/L                  | 8260   | <0.005                                      |                  |                                             | *                | <0.005                                      |                       | <0.005                                      |                  |
| 75-00-3                     | Chloroethane                     | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 67-66-3                     | Chloroform                       | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 74-87-3                     | Methyl chloride                  | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 156-59-2                    | cis-1,2-Dichloroethene           | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 74-95-3                     | Methylene bromide                | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 75-34-3                     | 1,1-Dichloroethane               | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 107-06-2                    | 1,2-Dichloroethane               | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 75-35-4                     | 1,1-Dichloroethylene             | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 106-93-4                    | Ethane, 1,2-dibromo              | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 79-34-5                     | Ethane, 1,1,2,2-Tetrachloro      | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 71-55-6                     | Ethane, 1,1,1-Trichloro-         | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 79-00-5                     | Ethane, 1,1,2-Trichloro          | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 630-20-6                    | Ethane, 1,1,1,2-Tetrachloro      | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 75-01-4                     | Vinyl chloride                   | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 127-18-4                    | Ethene, Tetrachloro-             | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | <0.001                                      |                       | <0.001                                      |                  |
| 79-01-6                     | Ethene, Trichloro-               | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                             | *                | 0.00058                                     | J                     | 0.00293                                     |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |              |                       |        | 8000-5244                                   | 4                     | 8004-4820                                   | )                | 8004-48                                     | 18                    | 8004-480                                    | 08                    |
|-----------------------------|-----------------------------------|--------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | al Well or Spring Number (e.g., M | w−1          | L, MW-2, et           | cc.)   | 224                                         |                       | 369                                         |                  | 370                                         |                       | 372                                         |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | <b>T</b> D 5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 100-41-4                    | Ethylbenzene                      | т            | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                | <0.001                                      |                       | <0.001                                      |                       |
| 591-78-6                    | 2-Hexanone                        | т            | mg/L                  | 8260   | <0.005                                      |                       |                                             | *                | <0.005                                      |                       | <0.005                                      |                       |
| 74-88-4                     | Iodomethane                       | т            | mg/L                  | 8260   | <0.005                                      |                       |                                             | *                | <0.005                                      |                       | <0.005                                      |                       |
| 124-48-1                    | Methane, Dibromochloro-           | Т            | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                | <0.001                                      |                       | <0.001                                      |                       |
| 56-23-5                     | Carbon Tetrachloride              | т            | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                | <0.001                                      |                       | <0.001                                      |                       |
| 75-09-2                     | Dichloromethane                   | т            | mg/L                  | 8260   | <0.005                                      |                       |                                             | *                | <0.005                                      |                       | <0.005                                      |                       |
| 108-10-1                    | Methyl isobutyl ketone            | т            | mg/L                  | 8260   | <0.005                                      |                       |                                             | *                | <0.005                                      |                       | <0.005                                      |                       |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro     | т            | mg/L                  | 8011   | <0.0000197                                  |                       |                                             | *                | <0.00002                                    |                       | <0.0000199                                  |                       |
| 78-87-5                     | Propane, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                | <0.001                                      |                       | <0.001                                      |                       |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene      | T            | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                | <0.001                                      |                       | <0.001                                      |                       |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene        | т            | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                | <0.001                                      |                       | <0.001                                      |                       |
| 156-60-5                    | trans-1,2-Dichloroethene          | т            | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                | <0.001                                      |                       | <0.001                                      |                       |
| 75-69-4                     | Trichlorofluoromethane            | т            | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                | <0.001                                      |                       | <0.001                                      |                       |
| 96-18-4                     | 1,2,3-Trichloropropane            | т            | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                | <0.001                                      |                       | <0.001                                      |                       |
| 95-50-1                     | Benzene, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                | <0.001                                      |                       | <0.001                                      |                       |
| 106-46-7                    | Benzene, 1,4-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                       |                                             | *                | <0.001                                      |                       | <0.001                                      |                       |
| 1336-36-3                   | PCB,Total                         | т            | ug/L                  | 8082   |                                             | *                     | <0.095                                      |                  | <0.0941                                     |                       | <0.096                                      |                       |
| 12674-11-2                  | PCB-1016                          | т            | ug/L                  | 8082   |                                             | *                     | <0.095                                      |                  | <0.0941                                     |                       | <0.096                                      |                       |
| 11104-28-2                  | PCB-1221                          | т            | ug/L                  | 8082   |                                             | *                     | <0.095                                      |                  | <0.0941                                     |                       | <0.096                                      |                       |
| 11141-16-5                  | PCB-1232                          | т            | ug/L                  | 8082   |                                             | *                     | <0.095                                      |                  | <0.0941                                     |                       | <0.096                                      |                       |
| 53469-21-9                  | PCB-1242                          | т            | ug/L                  | 8082   |                                             | *                     | <0.095                                      |                  | <0.0941                                     |                       | <0.096                                      |                       |
| 12672-29-6                  | PCB-1248                          | т            | ug/L                  | 8082   |                                             | *                     | <0.095                                      |                  | <0.0941                                     |                       | <0.096                                      |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

## GROUNDWATER SAMPLE ANALYSIS - (Cont.)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number      |             |                       |          | 8000-5244                                   | ļ                | 8004-4820                                   | ١                | 8004-481                                    | 8                     | 8004-480                                    | )8               |
|-----------------------------|----------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., | MW-1        | ., MW-2, et           | .c.)     | 224                                         |                  | 369                                         |                  | 370                                         |                       | 372                                         |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 11097-69-1                  | PCB-1254                         | т           | ug/L                  | 8082     |                                             | *                | <0.095                                      |                  | <0.0941                                     |                       | <0.096                                      |                  |
| 11096-82-5                  | PCB-1260                         | т           | ug/L                  | 8082     |                                             | *                | <0.095                                      |                  | <0.0941                                     |                       | <0.096                                      |                  |
| 11100-14-4                  | PCB-1268                         | т           | ug/L                  | 8082     |                                             | *                | <0.095                                      |                  | <0.0941                                     |                       | <0.096                                      |                  |
| 12587-46-1                  | Gross Alpha                      | т           | pCi/L                 | 9310     | 4.33                                        | *                | -0.906                                      | *                | 5.19                                        | *                     | 4.75                                        | *                |
| 12587-47-2                  | Gross Beta                       | Т           | pCi/L                 | 9310     | 2.72                                        | *                | 17.8                                        | *                | 65.5                                        | *                     | 76.1                                        | *                |
| 10043-66-0                  | Iodine-131                       | Т           | pCi/L                 |          |                                             | *                |                                             | *                |                                             | *                     |                                             | *                |
| 13982-63-3                  | Radium-226                       | Т           | pCi/L                 | AN-1418  | 0.461                                       | *                | 0.227                                       | *                | 0.199                                       | *                     | 0.00321                                     | *                |
| 10098-97-2                  | Strontium-90                     | Т           | pCi/L                 | 905.0    | 0.0177                                      | *                | 2.22                                        | *                | -0.928                                      | *                     | -1.31                                       | *                |
| 14133-76-7                  | Technetium-99                    | Т           | pCi/L                 | Tc-02-RC | -1.26                                       | *                | 20                                          | *                | 67.3                                        | *                     | 106                                         | *                |
| 14269-63-7                  | Thorium-230                      | Т           | pCi/L                 | Th-01-RC | 0.329                                       | *                | -0.273                                      | *                | -0.144                                      | *                     | 0.366                                       | *                |
| 10028-17-8                  | Tritium                          | Т           | pCi/L                 | 906.0    | 117                                         | *                | -41.2                                       | *                | -75.4                                       | *                     | -72.3                                       | *                |
| s0130                       | Chemical Oxygen Demand           | Т           | mg/L                  | 410.4    | <20                                         |                  | 10.1                                        | J                | 22                                          |                       | 26.8                                        |                  |
| 57-12-5                     | Cyanide                          | Т           | mg/L                  | 9012     | <0.2                                        |                  | <0.2                                        |                  | <0.2                                        |                       | <0.2                                        |                  |
| 20461-54-5                  | Iodide                           | т           | mg/L                  | 300.0    | <0.5                                        |                  | <0.5                                        |                  | <0.5                                        |                       | <0.5                                        |                  |
| S0268                       | Total Organic Carbon             | Т           | mg/L                  | 9060     | 1.09                                        | J                | 1.37                                        | J                | 1.02                                        | J                     | 1.09                                        | J                |
| S0586                       | Total Organic Halides            | т           | mg/L                  | 9020     | 0.00774                                     | J                | 0.0122                                      |                  | 0.0092                                      | J                     | 0.0206                                      |                  |
|                             |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                  |
|                             |                                  |             |                       |          |                                             |                  |                                             | _                |                                             |                       |                                             |                  |
|                             |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                  |
|                             |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                  |
|                             |                                  |             |                       |          |                                             | <u> </u>         |                                             |                  |                                             |                       | l                                           |                  |

C-14

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

## GROUNDWATER SAMPLE ANALYSIS (S)

| AKGWA NUMBER <sup>1</sup> , | , Facility Well/Spring Number                               |             |                       |          | 8004-4792                                   | 2                | 8004-48                                     | 309                   | 8004-48                                     | 10                    | 8004-480                                    | )4               |
|-----------------------------|-------------------------------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo               | cal Well or Spring Number (e.g., N                          | /W−1        | L, MW-2, etc          | :.)      | 373                                         |                  | 384                                         |                       | 385                                         |                       | 386                                         |                  |
| Sample Sequen               | ce #                                                        |             |                       |          | 1                                           |                  | 1                                           |                       | 1                                           |                       | 1                                           |                  |
| If sample is a              | Blank, specify Type: (F)ield, (T)rip,                       | (M) e       | ethod, or (E)         | quipment | NA                                          |                  | NA                                          |                       | NA                                          |                       | NA                                          |                  |
| Sample Date a               | nd Time (Month/Day/Year hour: minu                          | tes         | )                     |          | 7/23/2020 09                                | 9:24             | 7/27/2020                                   | 08:20                 | 7/27/2020                                   | 08:55                 | 7/27/2020 0                                 | 9:29             |
| Duplicate ("Y               | " or "N") <sup>2</sup>                                      |             |                       |          | N                                           |                  | N                                           |                       | N                                           |                       | N                                           |                  |
| Split ("Y" or               | "N") <sup>3</sup>                                           |             |                       |          | N                                           |                  | N                                           |                       | N                                           |                       | N                                           |                  |
| Facility Samp               | le ID Number (if applicable)                                |             |                       |          | MW373UG4-                                   | 20R              | MW384S0                                     | G4-20                 | MW385S0                                     | G4-20                 | MW386SG4                                    | 4-20             |
| Laboratory San              | oratory Sample ID Number (if applicable)                    |             |                       |          |                                             | 0                | 516846                                      | 003                   | 5168460                                     | 005                   | 51684600                                    | 07               |
| Date of Analys              | te of Analysis (Month/Day/Year) For Volatile Organics Analy |             |                       |          | 7/28/2020                                   | )                | 7/30/20                                     | 20                    | 7/30/20                                     | 20                    | 7/30/202                                    | 0                |
| Gradient with               | adient with respect to Monitored Unit (UP,                  |             |                       | IOWN)    | DOWN                                        |                  | SIDE                                        |                       | SIDE                                        |                       | SIDE                                        |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                                                 | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                  | Bromide                                                     | т           | mg/L                  | 9056     | 0.552                                       |                  | 0.307                                       |                       | 0.306                                       |                       | 0.166                                       | J                |
| 16887-00-6                  | Chloride(s)                                                 | т           | mg/L                  | 9056     | 39.3                                        |                  | 27.5                                        | *                     | 27.1                                        | *                     | 14.6                                        | *                |
| 16984-48-8                  | Fluoride                                                    | т           | mg/L                  | 9056     | 0.204                                       |                  | 0.169                                       |                       | 0.172                                       |                       | 0.682                                       |                  |
| s0595                       | Nitrate & Nitrite                                           | т           | mg/L                  | 9056     | 0.814                                       |                  | 0.796                                       |                       | 0.52                                        |                       | 0.0644                                      | J                |
| 14808-79-8                  | Sulfate                                                     | т           | mg/L                  | 9056     | 169                                         |                  | 23.7                                        |                       | 24.3                                        |                       | 48.7                                        |                  |
| NS1894                      | Barometric Pressure Reading                                 | т           | Inches/Hg             | Field    | 30.1                                        |                  | 30.05                                       |                       | 30.06                                       |                       | 30.06                                       |                  |
| S0145                       | Specific Conductance                                        | Т           | μ <b>MH</b> 0/cm      | Field    | 859                                         |                  | 446                                         |                       | 507                                         |                       | 562                                         |                  |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
   of a secondary dilution

<sup>&</sup>lt;sup>2</sup>Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

 $<sup>^4</sup>$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |             |                       |          | 8004-479                                    | 2                | 8004-480                                    | 9                     | 8004-4810                                   | )                     | 8004-4804                                   |                  |
|-----------------------------|------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | al Well or Spring Number (e.g., MW | -1, N       | MW-2, BLANK-1         | F, etc.) | 373                                         |                  | 384                                         |                       | 385                                         |                       | 386                                         |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| s0906                       | Static Water Level Elevation       | Т           | Ft. MSL               | Field    | 328.61                                      |                  | 328                                         |                       | 328.03                                      |                       | 343.86                                      |                  |
| N238                        | Dissolved Oxygen                   | Т           | mg/L                  | Field    | 1.41                                        |                  | 3.68                                        |                       | 1.18                                        |                       | 2.24                                        |                  |
| s0266                       | Total Dissolved Solids             | Т           | mg/L                  | 160.1    | 476                                         |                  | 304                                         |                       | 314                                         |                       | 334                                         |                  |
| s0296                       | рН                                 | Т           | Units                 | Field    | 6.11                                        |                  | 6.07                                        |                       | 6.33                                        |                       | 6.74                                        |                  |
| NS215                       | Eh                                 | Т           | mV                    | Field    | 377                                         |                  | 373                                         |                       | 364                                         |                       | 322                                         |                  |
| s0907                       | Temperature                        | Т           | °C                    | Field    | 18.33                                       |                  | 18.11                                       |                       | 17.5                                        |                       | 18.28                                       |                  |
| 7429-90-5                   | Aluminum                           | т           | mg/L                  | 6020     | <0.05                                       |                  | <0.05                                       |                       | 0.0221                                      | J                     | <0.05                                       |                  |
| 7440-36-0                   | Antimony                           | Т           | mg/L                  | 6020     | <0.003                                      |                  | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                  |
| 7440-38-2                   | Arsenic                            | Т           | mg/L                  | 6020     | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 7440-39-3                   | Barium                             | Т           | mg/L                  | 6020     | 0.0337                                      |                  | 0.219                                       |                       | 0.311                                       |                       | 0.148                                       |                  |
| 7440-41-7                   | Beryllium                          | т           | mg/L                  | 6020     | <0.0005                                     |                  | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                  |
| 7440-42-8                   | Boron                              | Т           | mg/L                  | 6020     | 1.97                                        |                  | 0.0691                                      |                       | 0.0661                                      |                       | <0.015                                      |                  |
| 7440-43-9                   | Cadmium                            | т           | mg/L                  | 6020     | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 7440-70-2                   | Calcium                            | T           | mg/L                  | 6020     | 72.2                                        |                  | 24.8                                        |                       | 35.5                                        |                       | 21.7                                        |                  |
| 7440-47-3                   | Chromium                           | Т           | mg/L                  | 6020     | <0.01                                       |                  | <0.01                                       |                       | <0.01                                       |                       | <0.01                                       |                  |
| 7440-48-4                   | Cobalt                             | Т           | mg/L                  | 6020     | 0.000837                                    | J                | <0.001                                      |                       | <0.001                                      |                       | 0.000331                                    | J                |
| 7440-50-8                   | Copper                             | Т           | mg/L                  | 6020     | 0.000322                                    | J                | 0.000508                                    | J                     | 0.000577                                    | J                     | 0.000627                                    | J                |
| 7439-89-6                   | Iron                               | Т           | mg/L                  | 6020     | 0.037                                       | J                | 0.14                                        |                       | 0.0506                                      | J                     | 0.0868                                      | J                |
| 7439-92-1                   | Lead                               | Т           | mg/L                  | 6020     | <0.002                                      |                  | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                  |
| 7439-95-4                   | Magnesium                          | Т           | mg/L                  | 6020     | 26.6                                        |                  | 10.5                                        |                       | 14                                          |                       | 9.1                                         |                  |
| 7439-96-5                   | Manganese                          | Т           | mg/L                  | 6020     | 0.0374                                      |                  | 0.00352                                     | J                     | 0.00994                                     |                       | 0.0298                                      |                  |
| 7439-97-6                   | Mercury                            | Т           | mg/L                  | 7470     | <0.0002                                     |                  | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                  |

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER        | 1, Facility Well/Spring Number   |             |                       |        | 8004-479                                    | 92               | 8004-48                                     | 09                    | 8004-48                                     | 10               | 8004-48                                     | 04               |
|---------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|
| Facility's L        | ocal Well or Spring Number (e.g. | , MW-       | 1, MW-2, e            | tc.)   | 373                                         |                  | 384                                         |                       | 385                                         |                  | 386                                         |                  |
| CAS RN <sup>4</sup> | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 7439-98-7           | Molybdenum                       | Т           | mg/L                  | 6020   | <0.001                                      |                  | <0.001                                      |                       | 0.000407                                    | J                | 0.000561                                    | J                |
| 7440-02-0           | Nickel                           | т           | mg/L                  | 6020   | 0.00399                                     |                  | 0.00656                                     |                       | 0.00549                                     |                  | 0.00256                                     |                  |
| 7440-09-7           | Potassium                        | т           | mg/L                  | 6020   | 2.77                                        |                  | 1.52                                        |                       | 1.88                                        |                  | 0.278                                       | J                |
| 7440-16-6           | Rhodium                          | Т           | mg/L                  | 6020   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                  | <0.005                                      |                  |
| 7782-49-2           | Selenium                         | Т           | mg/L                  | 6020   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                  | <0.005                                      |                  |
| 7440-22-4           | Silver                           | T           | mg/L                  | 6020   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                  | <0.001                                      |                  |
| 7440-23-5           | Sodium                           | Т           | mg/L                  | 6020   | 64.1                                        |                  | 48.3                                        |                       | 44.5                                        |                  | 90.9                                        |                  |
| 7440-25-7           | Tantalum                         | Т           | mg/L                  | 6020   | <0.005                                      |                  | <0.005                                      | *                     | <0.005                                      | *                | <0.005                                      | *                |
| 7440-28-0           | Thallium                         | Т           | mg/L                  | 6020   | <0.002                                      |                  | <0.002                                      |                       | <0.002                                      |                  | <0.002                                      |                  |
| 7440-61-1           | Uranium                          | T           | mg/L                  | 6020   | 0.000078                                    | J                | <0.0002                                     |                       | 0.000173                                    | BJ               | 0.000127                                    | BJ               |
| 7440-62-2           | Vanadium                         | Т           | mg/L                  | 6020   | <0.02                                       |                  | <0.02                                       |                       | <0.02                                       |                  | <0.02                                       |                  |
| 7440-66-6           | Zinc                             | Т           | mg/L                  | 6020   | 0.00448                                     | BJ               | 0.00485                                     | J                     | 0.0052                                      | J                | 0.00483                                     | J                |
| 108-05-4            | Vinyl acetate                    | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                  | <0.005                                      |                  |
| 67-64-1             | Acetone                          | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                  | <0.005                                      |                  |
| 107-02-8            | Acrolein                         | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                  | <0.005                                      |                  |
| 107-13-1            | Acrylonitrile                    | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                  | <0.005                                      |                  |
| 71-43-2             | Benzene                          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                  | <0.001                                      |                  |
| 108-90-7            | Chlorobenzene                    | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                  | <0.001                                      |                  |
| 1330-20-7           | Xylenes                          | Т           | mg/L                  | 8260   | <0.003                                      |                  | <0.003                                      |                       | <0.003                                      |                  | <0.003                                      |                  |
| 100-42-5            | Styrene                          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                  | <0.001                                      |                  |
| 108-88-3            | Toluene                          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                  | <0.001                                      |                  |
| 74-97-5             | Chlorobromomethane               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                  | <0.001                                      |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number     |             |                       |        | 8004-479                                    | 2                | 8004-480                                    | 09               | 8004-48                                     | 310              | 8004-48                                     | 304                   |
|---------------------------|-----------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|
| Facility's Lo             | ocal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | cc.)   | 373                                         |                  | 384                                         |                  | 385                                         |                  | 386                                         | i                     |
| CAS RN <sup>4</sup>       | CONSTITUENT                       | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 75-27-4                   | Bromodichloromethane              | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      | <u> </u>              |
| 75-25-2                   | Tribromomethane                   | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 74-83-9                   | Methyl bromide                    | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 78-93-3                   | Methyl ethyl ketone               | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                       |
| 110-57-6                  | trans-1,4-Dichloro-2-butene       | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                       |
| 75-15-0                   | Carbon disulfide                  | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                       |
| 75-00-3                   | Chloroethane                      | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 67-66-3                   | Chloroform                        | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 74-87-3                   | Methyl chloride                   | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 156-59-2                  | cis-1,2-Dichloroethene            | Т           | mg/L                  | 8260   | <0.001                                      |                  | 0.00038                                     | J                | <0.001                                      |                  | <0.001                                      |                       |
| 74-95-3                   | Methylene bromide                 | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 75-34-3                   | 1,1-Dichloroethane                | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 107-06-2                  | 1,2-Dichloroethane                | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 75-35-4                   | 1,1-Dichloroethylene              | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 106-93-4                  | Ethane, 1,2-dibromo               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 79-34-5                   | Ethane, 1,1,2,2-Tetrachloro       | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 71-55-6                   | Ethane, 1,1,1-Trichloro-          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 79-00-5                   | Ethane, 1,1,2-Trichloro           | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 630-20-6                  | Ethane, 1,1,1,2-Tetrachloro       | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 75-01-4                   | Vinyl chloride                    | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 127-18-4                  | Ethene, Tetrachloro-              | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 79-01-6                   | Ethene, Trichloro-                | Т           | mg/L                  | 8260   | 0.00382                                     |                  | 0.00076                                     | J                | 0.00041                                     | J                | <0.001                                      |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |              |                       |        | 8004-479                                    | 2                | 8004-4809                                   | 9                     | 8004-481                                    | 10                    | 8004-480                                    | 04               |
|-----------------------------|------------------------------------|--------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., N | <b>4W</b> −1 | ., MW-2, et           | .c.)   | 373                                         |                  | 384                                         |                       | 385                                         |                       | 386                                         |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | T<br>D<br>5  | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 100-41-4                    | Ethylbenzene                       | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 591-78-6                    | 2-Hexanone                         | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 74-88-4                     | Iodomethane                        | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 124-48-1                    | Methane, Dibromochloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 56-23-5                     | Carbon Tetrachloride               | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-09-2                     | Dichloromethane                    | т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 108-10-1                    | Methyl isobutyl ketone             | т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro      | Т            | mg/L                  | 8011   | <0.00002                                    |                  | <0.0000198                                  |                       | <0.0000198                                  |                       | <0.0000196                                  |                  |
| 78-87-5                     | Propane, 1,2-Dichloro-             | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene       | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene         | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 156-60-5                    | trans-1,2-Dichloroethene           | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-69-4                     | Trichlorofluoromethane             | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 96-18-4                     | 1,2,3-Trichloropropane             | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 95-50-1                     | Benzene, 1,2-Dichloro-             | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 106-46-7                    | Benzene, 1,4-Dichloro-             | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      | *                     | <0.001                                      | *                     | <0.001                                      | *                |
| 1336-36-3                   | PCB, Total                         | Т            | ug/L                  | 8082   | <0.0958                                     |                  |                                             | *                     |                                             | *                     |                                             | *                |
| 12674-11-2                  | PCB-1016                           | Т            | ug/L                  | 8082   | <0.0958                                     |                  |                                             | *                     |                                             | *                     |                                             | *                |
| 11104-28-2                  | PCB-1221                           | Т            | ug/L                  | 8082   | <0.0958                                     |                  |                                             | *                     |                                             | *                     |                                             | *                |
| 11141-16-5                  | PCB-1232                           | Т            | ug/L                  | 8082   | <0.0958                                     |                  |                                             | *                     |                                             | *                     |                                             | *                |
| 53469-21-9                  | PCB-1242                           | Т            | ug/L                  | 8082   | <0.0958                                     |                  |                                             | *                     |                                             | *                     |                                             | *                |
| 12672-29-6                  | PCB-1248                           | т            | ug/L                  | 8082   | <0.0958                                     |                  |                                             | *                     |                                             | *                     |                                             | *                |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |             |                       |          | 8004-4792                                   |                  | 8004-4809                                   | )                | 8004-481                                    | 0                | 8004-480                                    | )4               |
|---------------------------|----------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-1        | L, MW-2, et           | .c.)     | 373                                         |                  | 384                                         |                  | 385                                         |                  | 386                                         |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 11097-69-1                | PCB-1254                         | Т           | ug/L                  | 8082     | <0.0958                                     |                  |                                             | *                |                                             | *                |                                             | *                |
| 11096-82-5                | PCB-1260                         | Т           | ug/L                  | 8082     | <0.0958                                     |                  |                                             | *                |                                             | *                |                                             | *                |
| 11100-14-4                | PCB-1268                         | Т           | ug/L                  | 8082     | <0.0958                                     |                  |                                             | *                |                                             | *                |                                             | *                |
| 12587-46-1                | Gross Alpha                      | Т           | pCi/L                 | 9310     | 9.82                                        | *                | 0.975                                       | *                | 2.09                                        | *                | -1.87                                       | *                |
| 12587-47-2                | Gross Beta                       | Т           | pCi/L                 | 9310     | 19.4                                        | *                | 42.7                                        | *                | 39.1                                        | *                | 4.19                                        | *                |
| 10043-66-0                | Iodine-131                       | Т           | pCi/L                 |          |                                             | *                |                                             | *                |                                             | *                |                                             | *                |
| 13982-63-3                | Radium-226                       | Т           | pCi/L                 | AN-1418  | 0.285                                       | *                | 0.577                                       | *                | 0.659                                       | *                | -0.322                                      | *                |
| 10098-97-2                | Strontium-90                     | Т           | pCi/L                 | 905.0    | 0.391                                       | *                | -1.48                                       | *                | 0.314                                       | *                | 3.97                                        | *                |
| 14133-76-7                | Technetium-99                    | Т           | pCi/L                 | Tc-02-RC | 18.4                                        | *                | 48.7                                        | *                | 64.6                                        | *                | -4.03                                       | *                |
| 14269-63-7                | Thorium-230                      | Т           | pCi/L                 | Th-01-RC | 0.6                                         | *                | 0.0958                                      | *                | -0.29                                       | *                | 0.0689                                      | *                |
| 10028-17-8                | Tritium                          | Т           | pCi/L                 | 906.0    | -21.3                                       | *                | -10.3                                       | *                | -27.5                                       | *                | 32.2                                        | *                |
| s0130                     | Chemical Oxygen Demand           | Т           | mg/L                  | 410.4    | <20                                         |                  | 14.8                                        | J                | 14.8                                        | J                | 11.8                                        | J                |
| 57-12-5                   | Cyanide                          | Т           | mg/L                  | 9012     | <0.2                                        |                  | <0.2                                        |                  | <0.2                                        |                  | <0.2                                        |                  |
| 20461-54-5                | Iodide                           | т           | mg/L                  | 300.0    | <0.5                                        |                  | <0.5                                        |                  | <0.5                                        |                  | <0.5                                        |                  |
| S0268                     | Total Organic Carbon             | Т           | mg/L                  | 9060     | 1.1                                         | J                | 1.27                                        | J                | 1.38                                        | J                | 3.66                                        |                  |
| S0586                     | Total Organic Halides            | Т           | mg/L                  | 9020     | 0.0163                                      |                  | 0.00572                                     | J                | <0.01                                       |                  | 0.0817                                      |                  |
|                           |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                  |                                             |                  |
|                           |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                  |                                             |                  |
|                           |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                  |                                             |                  |
|                           |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                  |                                             |                  |
|                           |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                  |                                             |                  |

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

## GROUNDWATER SAMPLE ANALYSIS (S)

| AKGWA NUMBER <sup>1</sup> , | , Facility Well/Spring Number                                |             |                       |          | 8004-481                                    | 5                                  | 8004-48                                     | 316              | 8004-48                                     | 312                   | 8004-4811                                   |                  |
|-----------------------------|--------------------------------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., N                           | ∕W-1        | ., MW-2, etc          | .)       | 387                                         |                                    | 388                                         |                  | 389                                         |                       | 390                                         |                  |
| Sample Sequence             | ce #                                                         |             |                       |          | 1                                           |                                    | 1                                           |                  | 1                                           |                       | 1                                           |                  |
| If sample is a              | Blank, specify Type: (F)ield, (T)rip,                        | (M) e       | thod, or (E)          | quipment | NA                                          |                                    | NA                                          |                  | NA                                          |                       | NA                                          |                  |
| Sample Date an              | nd Time (Month/Day/Year hour: minu                           | tes         | )                     |          | 7/27/2020 07                                | 7:08                               | 7/27/2020                                   | 07:45            | NA                                          |                       | 7/27/2020 06                                | 3:32             |
| Duplicate ("Y               | " or "N") <sup>2</sup>                                       |             |                       |          | N                                           |                                    | N                                           |                  | N                                           |                       | N                                           |                  |
| Split ("Y" or               | "N") <sup>3</sup>                                            |             |                       |          | N                                           |                                    | N                                           |                  | N                                           |                       | N                                           |                  |
| Facility Samp               | le ID Number (if applicable)                                 |             |                       |          | MW387SG4                                    | -20                                | MW388S                                      | G4-20            | NA                                          |                       | MW390SG4                                    | -20              |
| Laboratory San              | ooratory Sample ID Number (if applicable)                    |             |                       |          |                                             | 9                                  | 516846                                      | 011              | NA                                          |                       | 51684601                                    | 3                |
| Date of Analys              | te of Analysis (Month/Day/Year) For Volatile Organics Analys |             |                       |          |                                             | )                                  | 7/30/20                                     | 20               | NA                                          |                       | 7/30/202                                    | 0                |
| Gradient with               | respect to Monitored Unit (UP, DC                            | , NWC       | SIDE, UNKN            | OWN)     | DOWN                                        |                                    | DOW                                         | N                | DOWN                                        |                       | DOWN                                        |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                                                  | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                  | Bromide                                                      | т           | mg/L                  | 9056     | 0.536                                       |                                    | 0.443                                       |                  |                                             | *                     | 0.367                                       |                  |
| 16887-00-6                  | Chloride(s)                                                  | т           | mg/L                  | 9056     | 41.3                                        | *                                  | 36.9                                        | *                |                                             | *                     | 38                                          | *                |
| 16984-48-8                  | Fluoride                                                     | т           | mg/L                  | 9056     | 0.706                                       |                                    | 0.2                                         |                  |                                             | *                     | 0.308                                       |                  |
| s0595                       | Nitrate & Nitrite                                            | т           | mg/L                  | 9056     | 1.18                                        |                                    | 1                                           |                  |                                             | *                     | 1.72                                        |                  |
| 14808-79-8                  | Sulfate                                                      | т           | mg/L                  | 9056     | 37.6                                        |                                    | 18.7                                        |                  |                                             | *                     | 56.8                                        |                  |
| NS1894                      | Barometric Pressure Reading                                  | т           | Inches/Hg             | Field    | 30.06                                       |                                    | 30.06                                       |                  |                                             | *                     | 30.04                                       |                  |
| S0145                       | Specific Conductance                                         | т           | μ <b>M</b> H0/cm      | Field    | 604                                         |                                    | 421                                         |                  |                                             | *                     | 707                                         |                  |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
   of a secondary dilution

 $<sup>^{2}</sup>$ Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

 $<sup>^4</sup>$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |       |                       |          | 8004-481                                    | 5                     | 8004-481                                    | 6                     | 8004-4812                                   | 2                     | 8004-4811                                   |                  |
|-----------------------------|------------------------------------|-------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | al Well or Spring Number (e.g., MW | -1, 1 | MW-2, BLANK-          | F, etc.) | 387                                         |                       | 388                                         |                       | 389                                         |                       | 390                                         |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | T D 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| s0906                       | Static Water Level Elevation       | Т     | Ft. MSL               | Field    | 328.04                                      |                       | 328                                         |                       |                                             | *                     | 328.22                                      |                  |
| N238                        | Dissolved Oxygen                   | Т     | mg/L                  | Field    | 3.29                                        |                       | 3.49                                        |                       |                                             | *                     | 4.22                                        |                  |
| s0266                       | Total Dissolved Solids             | Т     | mg/L                  | 160.1    | 347                                         |                       | 244                                         |                       |                                             | *                     | 446                                         |                  |
| s0296                       | рн                                 | Т     | Units                 | Field    | 6.23                                        |                       | 6.1                                         |                       |                                             | *                     | 6.31                                        |                  |
| NS215                       | Eh                                 | Т     | mV                    | Field    | 364                                         |                       | 353                                         |                       |                                             | *                     | 412                                         |                  |
| s0907                       | Temperature                        | Т     | °C                    | Field    | 17.83                                       |                       | 18.39                                       |                       |                                             | *                     | 17.89                                       |                  |
| 7429-90-5                   | Aluminum                           | Т     | mg/L                  | 6020     | 0.0466                                      | J                     | <0.05                                       |                       |                                             | *                     | 0.0374                                      | J                |
| 7440-36-0                   | Antimony                           | Т     | mg/L                  | 6020     | <0.003                                      |                       | <0.003                                      |                       |                                             | *                     | <0.003                                      |                  |
| 7440-38-2                   | Arsenic                            | Т     | mg/L                  | 6020     | 0.00382                                     | J                     | <0.005                                      |                       |                                             | *                     | <0.005                                      |                  |
| 7440-39-3                   | Barium                             | Т     | mg/L                  | 6020     | 0.157                                       |                       | 0.178                                       |                       |                                             | *                     | 0.203                                       |                  |
| 7440-41-7                   | Beryllium                          | т     | mg/L                  | 6020     | <0.0005                                     |                       | <0.0005                                     |                       |                                             | *                     | <0.0005                                     |                  |
| 7440-42-8                   | Boron                              | Т     | mg/L                  | 6020     | 0.0305                                      |                       | 0.0222                                      |                       |                                             | *                     | 0.0204                                      |                  |
| 7440-43-9                   | Cadmium                            | т     | mg/L                  | 6020     | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     | <0.001                                      |                  |
| 7440-70-2                   | Calcium                            | Т     | mg/L                  | 6020     | 43.2                                        |                       | 25.9                                        |                       |                                             | *                     | 32.1                                        |                  |
| 7440-47-3                   | Chromium                           | Т     | mg/L                  | 6020     | 0.00911                                     | J                     | <0.01                                       |                       |                                             | *                     | <0.01                                       |                  |
| 7440-48-4                   | Cobalt                             | т     | mg/L                  | 6020     | <0.001                                      |                       | <0.001                                      |                       |                                             | *                     | <0.001                                      |                  |
| 7440-50-8                   | Copper                             | Т     | mg/L                  | 6020     | 0.000528                                    | J                     | 0.000431                                    | J                     |                                             | *                     | 0.00101                                     | J                |
| 7439-89-6                   | Iron                               | Т     | mg/L                  | 6020     | 0.251                                       |                       | 0.0898                                      | J                     |                                             | *                     | 0.0727                                      | J                |
| 7439-92-1                   | Lead                               | Т     | mg/L                  | 6020     | <0.002                                      |                       | <0.002                                      |                       |                                             | *                     | <0.002                                      |                  |
| 7439-95-4                   | Magnesium                          | Т     | mg/L                  | 6020     | 17.9                                        |                       | 11.3                                        |                       |                                             | *                     | 13.4                                        |                  |
| 7439-96-5                   | Manganese                          | Т     | mg/L                  | 6020     | 0.023                                       |                       | 0.00251                                     | J                     |                                             | *                     | <0.005                                      |                  |
| 7439-97-6                   | Mercury                            | Т     | mg/L                  | 7470     | <0.0002                                     |                       | <0.0002                                     |                       |                                             | *                     | <0.0002                                     |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER        | 1, Facility Well/Spring Number   |             |                       |        | 8004-48                                     | 15               | 8004-48                                     | 16               | 8004-48                                     | 12                    | 8004-481                                    | 1                |
|---------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's L        | ocal Well or Spring Number (e.g. | , MW-       | ·1, MW-2, e           | tc.)   | 387                                         |                  | 388                                         |                  | 389                                         |                       | 390                                         |                  |
| CAS RN <sup>4</sup> | CONSTITUENT                      | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 7439-98-7           | Molybdenum                       | т           | mg/L                  | 6020   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                     | 0.000602                                    | J                |
| 7440-02-0           | Nickel                           | т           | mg/L                  | 6020   | 0.0193                                      |                  | 0.00785                                     |                  |                                             | *                     | 0.0122                                      |                  |
| 7440-09-7           | Potassium                        | т           | mg/L                  | 6020   | 1.9                                         |                  | 1.97                                        |                  |                                             | *                     | 0.353                                       |                  |
| 7440-16-6           | Rhodium                          | т           | mg/L                  | 6020   | <0.005                                      |                  | <0.005                                      |                  |                                             | *                     | <0.005                                      |                  |
| 7782-49-2           | Selenium                         | т           | mg/L                  | 6020   | <0.005                                      |                  | <0.005                                      |                  |                                             | *                     | <0.005                                      |                  |
| 7440-22-4           | Silver                           | Т           | mg/L                  | 6020   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 7440-23-5           | Sodium                           | Т           | mg/L                  | 6020   | 56.5                                        |                  | 43.1                                        |                  |                                             | *                     | 107                                         |                  |
| 7440-25-7           | Tantalum                         | Т           | mg/L                  | 6020   | <0.005                                      | *                | <0.005                                      | *                |                                             | *                     | <0.005                                      | *                |
| 7440-28-0           | Thallium                         | Т           | mg/L                  | 6020   | <0.002                                      |                  | <0.002                                      |                  |                                             | *                     | <0.002                                      |                  |
| 7440-61-1           | Uranium                          | Т           | mg/L                  | 6020   | <0.0002                                     |                  | <0.0002                                     |                  |                                             | *                     | 0.000221                                    | В                |
| 7440-62-2           | Vanadium                         | Т           | mg/L                  | 6020   | <0.02                                       |                  | <0.02                                       |                  |                                             | *                     | <0.02                                       |                  |
| 7440-66-6           | Zinc                             | Т           | mg/L                  | 6020   | 0.00452                                     | J                | 0.00534                                     | J                |                                             | *                     | 0.00518                                     | J                |
| 108-05-4            | Vinyl acetate                    | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  |                                             | *                     | <0.005                                      |                  |
| 67-64-1             | Acetone                          | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  |                                             | *                     | <0.005                                      |                  |
| 107-02-8            | Acrolein                         | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  |                                             | *                     | <0.005                                      |                  |
| 107-13-1            | Acrylonitrile                    | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  |                                             | *                     | <0.005                                      |                  |
| 71-43-2             | Benzene                          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 108-90-7            | Chlorobenzene                    | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 1330-20-7           | Xylenes                          | Т           | mg/L                  | 8260   | <0.003                                      |                  | <0.003                                      |                  |                                             | *                     | <0.003                                      |                  |
| 100-42-5            | Styrene                          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 108-88-3            | Toluene                          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 74-97-5             | Chlorobromomethane               | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number     |             |                       |        | 8004-481                                    | 5                | 8004-48                                     | 16               | 8004-48                                     | 312              | 8004-48                                     | 11               |
|---------------------------|-----------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|
| Facility's Lo             | ocal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | cc.)   | 387                                         |                  | 388                                         |                  | 389                                         |                  | 390                                         |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                       | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 75-27-4                   | Bromodichloromethane              | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 75-25-2                   | Tribromomethane                   | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 74-83-9                   | Methyl bromide                    | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 78-93-3                   | Methyl ethyl ketone               | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  |                                             | *                | <0.005                                      |                  |
| 110-57-6                  | trans-1,4-Dichloro-2-butene       | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  |                                             | *                | <0.005                                      |                  |
| 75-15-0                   | Carbon disulfide                  | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  |                                             | *                | <0.005                                      |                  |
| 75-00-3                   | Chloroethane                      | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 67-66-3                   | Chloroform                        | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 74-87-3                   | Methyl chloride                   | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 156-59-2                  | cis-1,2-Dichloroethene            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 74-95-3                   | Methylene bromide                 | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 75-34-3                   | 1,1-Dichloroethane                | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 107-06-2                  | 1,2-Dichloroethane                | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 75-35-4                   | 1,1-Dichloroethylene              | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 106-93-4                  | Ethane, 1,2-dibromo               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 79-34-5                   | Ethane, 1,1,2,2-Tetrachloro       | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 71-55-6                   | Ethane, 1,1,1-Trichloro-          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 79-00-5                   | Ethane, 1,1,2-Trichloro           | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 630-20-6                  | Ethane, 1,1,1,2-Tetrachloro       | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 75-01-4                   | Vinyl chloride                    | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 127-18-4                  | Ethene, Tetrachloro-              | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  |                                             | *                | <0.001                                      |                  |
| 79-01-6                   | Ethene, Trichloro-                | Т           | mg/L                  | 8260   | 0.00102                                     |                  | 0.00048                                     | J                |                                             | *                | <0.001                                      |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |              |                       |        | 8004-481                                    | 5                     | 8004-4816                                   | 3                | 8004-48                                     | 12                    | 8004-4811                                   |                  |
|-----------------------------|-----------------------------------|--------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | al Well or Spring Number (e.g., M | <b>1</b> ₩−1 | 1, MW-2, et           | cc.)   | 387                                         |                       | 388                                         |                  | 389                                         |                       | 390                                         |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | T<br>D<br>5  | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 100-41-4                    | Ethylbenzene                      | т            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 591-78-6                    | 2-Hexanone                        | Т            | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                  |                                             | *                     | <0.005                                      |                  |
| 74-88-4                     | Iodomethane                       | Т            | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                  |                                             | *                     | <0.005                                      |                  |
| 124-48-1                    | Methane, Dibromochloro-           | т            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 56-23-5                     | Carbon Tetrachloride              | т            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 75-09-2                     | Dichloromethane                   | т            | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                  |                                             | *                     | <0.005                                      |                  |
| 108-10-1                    | Methyl isobutyl ketone            | т            | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                  |                                             | *                     | <0.005                                      |                  |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro     | Т            | mg/L                  | 8011   | <0.0000197                                  |                       | <0.0000198                                  |                  |                                             | *                     | <0.0000196                                  |                  |
| 78-87-5                     | Propane, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene      | Т            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene        | Т            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 156-60-5                    | trans-1,2-Dichloroethene          | т            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 75-69-4                     | Trichlorofluoromethane            | т            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 96-18-4                     | 1,2,3-Trichloropropane            | т            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 95-50-1                     | Benzene, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  |                                             | *                     | <0.001                                      |                  |
| 106-46-7                    | Benzene, 1,4-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      | *                     | <0.001                                      | *                |                                             | *                     | <0.001                                      | *                |
| 1336-36-3                   | PCB,Total                         | Т            | ug/L                  | 8082   |                                             | *                     |                                             | *                |                                             | *                     |                                             | *                |
| 12674-11-2                  | PCB-1016                          | т            | ug/L                  | 8082   |                                             | *                     |                                             | *                |                                             | *                     |                                             | *                |
| 11104-28-2                  | PCB-1221                          | Т            | ug/L                  | 8082   |                                             | *                     |                                             | *                |                                             | *                     |                                             | *                |
| 11141-16-5                  | PCB-1232                          | т            | ug/L                  | 8082   |                                             | *                     |                                             | *                |                                             | *                     |                                             | *                |
| 53469-21-9                  | PCB-1242                          | т            | ug/L                  | 8082   |                                             | *                     |                                             | *                |                                             | *                     |                                             | *                |
| 12672-29-6                  | PCB-1248                          | Т            | ug/L                  | 8082   |                                             | *                     |                                             | *                |                                             | *                     |                                             | *                |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |             |                       |          | 8004-4815                                   |                  | 8004-4816                                   | ì                | 8004-481                                    | 2                     | 8004-4811                                   |                  |
|---------------------------|----------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | tc.)     | 387                                         |                  | 388                                         |                  | 389                                         |                       | 390                                         |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 11097-69-1                | PCB-1254                         | т           | ug/L                  | 8082     |                                             | *                |                                             | *                |                                             | *                     |                                             | *                |
| 11096-82-5                | PCB-1260                         | т           | ug/L                  | 8082     |                                             | *                |                                             | *                |                                             | *                     |                                             | *                |
| 11100-14-4                | PCB-1268                         | Т           | ug/L                  | 8082     |                                             | *                |                                             | *                |                                             | *                     |                                             | *                |
| 12587-46-1                | Gross Alpha                      | Т           | pCi/L                 | 9310     | 2.98                                        | *                | -0.532                                      | *                |                                             | *                     | 4.17                                        | *                |
| 12587-47-2                | Gross Beta                       | т           | pCi/L                 | 9310     | 330                                         | *                | 14.9                                        | *                |                                             | *                     | 30.6                                        | *                |
| 10043-66-0                | Iodine-131                       | т           | pCi/L                 |          |                                             | *                |                                             | *                |                                             | *                     |                                             | *                |
| 13982-63-3                | Radium-226                       | т           | pCi/L                 | AN-1418  | 0.224                                       | *                | 0.383                                       | *                |                                             | *                     | 0.429                                       | *                |
| 10098-97-2                | Strontium-90                     | т           | pCi/L                 | 905.0    | 2.35                                        | *                | 2.46                                        | *                |                                             | *                     | 0.311                                       | *                |
| 14133-76-7                | Technetium-99                    | т           | pCi/L                 | Tc-02-RC | 420                                         | *                | 38.4                                        | *                |                                             | *                     | 54.9                                        | *                |
| 14269-63-7                | Thorium-230                      | Т           | pCi/L                 | Th-01-RC | 0.764                                       | *                | 0.0173                                      | *                |                                             | *                     | 0.0825                                      | *                |
| 10028-17-8                | Tritium                          | Т           | pCi/L                 | 906.0    | -85.8                                       | *                | -60.9                                       | *                |                                             | *                     | 62.1                                        | *                |
| s0130                     | Chemical Oxygen Demand           | Т           | mg/L                  | 410.4    | 17.8                                        | J                | 20.9                                        |                  |                                             | *                     | <20                                         |                  |
| 57-12-5                   | Cyanide                          | т           | mg/L                  | 9012     | <0.2                                        |                  | <0.2                                        |                  |                                             | *                     | <0.2                                        |                  |
| 20461-54-5                | Iodide                           | т           | mg/L                  | 300.0    | <0.5                                        |                  | <0.5                                        |                  |                                             | *                     | <0.5                                        |                  |
| S0268                     | Total Organic Carbon             | т           | mg/L                  | 9060     | 1.48                                        | J                | 1.18                                        | J                |                                             | *                     | 2.89                                        |                  |
| s0586                     | Total Organic Halides            | Т           | mg/L                  | 9020     | 0.00838                                     | J                | 0.00596                                     | J                |                                             | *                     | 0.0299                                      |                  |
|                           |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                  |
|                           |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                  |
|                           |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                  |
|                           |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                  |
|                           |                                  |             |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                  |

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

## GROUNDWATER SAMPLE ANALYSIS (S)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number                 |             |                       |          | 8004-4805                                   | 5                | 8004-48                                     | 306              | 8004-48                                     | 307                   | 8004-4802                                   |                       |
|-----------------------------|---------------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., M          | w−1         | l, MW-2, etc          | :.)      | 391                                         |                  | 392                                         |                  | 393                                         |                       | 394                                         |                       |
| Sample Sequenc              | ce #                                        |             |                       |          | 1                                           |                  | 1                                           |                  | 1                                           |                       | 1                                           |                       |
| If sample is a E            | Blank, specify Type: (F)ield, (T)rip,       | (M) e       | ethod, or (E)         | quipment | NA                                          |                  | NA                                          |                  | NA                                          |                       | NA                                          |                       |
| Sample Date an              | nd Time (Month/Day/Year hour: minu          | tes         | )                     |          | 7/29/2020 06                                | 6:23             | 7/29/2020                                   | 06:59            | 7/29/2020                                   | 07:32                 | 7/29/2020 0                                 | 8:09                  |
| Duplicate ("Y"              | or "N") <sup>2</sup>                        |             |                       |          | N                                           |                  | N                                           |                  | N                                           |                       | N                                           |                       |
| Split ("Y" or               | Split ("Y" or "N") <sup>3</sup>             |             |                       |          |                                             |                  | N                                           |                  | N                                           |                       | N                                           |                       |
| Facility Sampl              | Facility Sample ID Number (if applicable)   |             |                       |          |                                             | -20              | MW392S0                                     | G4-20            | MW393S0                                     | G4-20                 | MW394SG                                     | 4-20                  |
| Laboratory Sam              | Laboratory Sample ID Number (if applicable) |             |                       |          |                                             | 1                | 517035                                      | 003              | 517035                                      | 005                   | 5170350                                     | 07                    |
| Date of Analys              | sis (Month/Day/Year) For <u>Volatile</u>    | Or          | ganics Analysis       |          | 8/4/2020                                    |                  | 8/4/2020                                    |                  | 8/4/2020                                    |                       | 8/4/2020                                    | )                     |
| Gradient with               | respect to Monitored Unit (UP, DO           | , NW        | , SIDE, UNKN          | IOWN)    | DOWN                                        |                  | DOWN                                        |                  | DOWN                                        |                       | UP                                          |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                                 | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 24959-67-9                  | Bromide                                     | т           | mg/L                  | 9056     | 0.579                                       |                  | 0.619                                       |                  | 0.165                                       | J                     | 0.574                                       |                       |
| 16887-00-6                  | Chloride(s)                                 | т           | mg/L                  | 9056     | 43.4                                        |                  | 47.4                                        |                  | 12.3                                        |                       | 43.9                                        |                       |
| 16984-48-8                  | Fluoride                                    | т           | mg/L                  | 9056     | 0.168                                       |                  | 0.196                                       |                  | 0.184                                       |                       | 0.165                                       |                       |
| s0595                       | Nitrate & Nitrite                           | т           | mg/L                  | 9056     | 1.06                                        |                  | 0.782                                       |                  | 0.113                                       |                       | 1.14                                        |                       |
| 14808-79-8                  | Sulfate                                     | т           | mg/L                  | 9056     | 16.3                                        |                  | 25.3                                        |                  | 16.5                                        |                       | 11.7                                        |                       |
| NS1894                      | Barometric Pressure Reading                 | т           | Inches/Hg             | Field    | 29.96                                       |                  | 29.98                                       |                  | 29.96                                       |                       | 29.99                                       |                       |
| s0145                       | Specific Conductance                        | Т           | μ <b>MH</b> 0/cm      | Field    | 407                                         |                  | 439                                         |                  | 406                                         |                       | 379                                         |                       |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $<sup>^{2}</sup>$ Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

 $<sup>^4</sup>$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number        |             |                       |          | 8004-480                                    | 5                     | 8004-4806                                   |                       | 8004-4807                                   |                       | 8004-4802                                   |                  |
|---------------------------|--------------------------------------|-------------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo             | ocal Well or Spring Number (e.g., MW | r-1, 1      | MW-2, BLANK-          | F, etc.) | 391                                         |                       | 392                                         |                       | 393                                         |                       | 394                                         |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                          | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| s0906                     | Static Water Level Elevation         | т           | Ft. MSL               | Field    | 328.09                                      |                       | 328.05                                      |                       | 341.67                                      |                       | 328.53                                      |                  |
| N238                      | Dissolved Oxygen                     | Т           | mg/L                  | Field    | 3.5                                         |                       | 1.93                                        |                       | 1.9                                         |                       | 2.6                                         |                  |
| S0266                     | Total Dissolved Solids               | т           | mg/L                  | 160.1    | 210                                         | В                     | 231                                         | В                     | 231                                         | В                     | 213                                         | В                |
| s0296                     | рн                                   | т           | Units                 | Field    | 6.03                                        |                       | 6.11                                        |                       | 6.19                                        |                       | 6.07                                        |                  |
| NS215                     | Eh                                   | т           | mV                    | Field    | 386                                         |                       | 384                                         |                       | 373                                         |                       | 356                                         |                  |
| s0907                     | Temperature                          | т           | °C                    | Field    | 17.89                                       |                       | 17.39                                       |                       | 17.39                                       |                       | 17.17                                       |                  |
| 7429-90-5                 | Aluminum                             | Т           | mg/L                  | 6020     | 0.0362                                      | J                     | <0.05                                       |                       | 0.0213                                      | J                     | 0.0457                                      | J                |
| 7440-36-0                 | Antimony                             | т           | mg/L                  | 6020     | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                  |
| 7440-38-2                 | Arsenic                              | т           | mg/L                  | 6020     | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 7440-39-3                 | Barium                               | т           | mg/L                  | 6020     | 0.185                                       |                       | 0.216                                       |                       | 0.103                                       |                       | 0.224                                       |                  |
| 7440-41-7                 | Beryllium                            | т           | mg/L                  | 6020     | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                  |
| 7440-42-8                 | Boron                                | т           | mg/L                  | 6020     | 0.0543                                      | В                     | 0.0322                                      | В                     | 0.0225                                      | В                     | 0.0261                                      | В                |
| 7440-43-9                 | Cadmium                              | т           | mg/L                  | 6020     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 7440-70-2                 | Calcium                              | т           | mg/L                  | 6020     | 28.6                                        |                       | 32.4                                        |                       | 13.6                                        |                       | 26                                          |                  |
| 7440-47-3                 | Chromium                             | т           | mg/L                  | 6020     | <0.01                                       |                       | <0.01                                       |                       | <0.01                                       |                       | <0.01                                       |                  |
| 7440-48-4                 | Cobalt                               | Т           | mg/L                  | 6020     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 7440-50-8                 | Copper                               | т           | mg/L                  | 6020     | 0.000798                                    | J                     | 0.000487                                    | J                     | 0.000514                                    | J                     | 0.000373                                    | J                |
| 7439-89-6                 | Iron                                 | т           | mg/L                  | 6020     | 0.0784                                      | J                     | 0.0807                                      | J                     | 0.206                                       |                       | 0.108                                       |                  |
| 7439-92-1                 | Lead                                 | т           | mg/L                  | 6020     | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                  |
| 7439-95-4                 | Magnesium                            | т           | mg/L                  | 6020     | 12.4                                        |                       | 12.6                                        |                       | 3.58                                        |                       | 11.2                                        |                  |
| 7439-96-5                 | Manganese                            | Т           | mg/L                  | 6020     | 0.00239                                     | J                     | 0.00789                                     |                       | 0.0267                                      |                       | 0.00395                                     | J                |
| 7439-97-6                 | Mercury                              | т           | mg/L                  | 7470     | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBE         | R <sup>1</sup> , Facility Well | l/Spring Number       |             |        | 8004-480                                    | 05                    | 8004-48                                     | 06                    | 8004-480                                    | 07                    | 8004-48                                     | 02               |
|---------------------|--------------------------------|-----------------------|-------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's          | Local Well or Sp               | ring Number (e.g., MW | -1, MW-2, e | etc.)  | 391                                         |                       | 392                                         |                       | 393                                         |                       | 394                                         |                  |
| CAS RN <sup>4</sup> | CON                            | STITUENT T D 5        |             | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 7439-98-7           | Molybdenum                     | т                     | mg/L        | 6020   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 7440-02-0           | Nickel                         | т                     | mg/L        | 6020   | 0.00417                                     |                       | 0.00225                                     |                       | 0.00183                                     | J                     | 0.00827                                     |                  |
| 7440-09-7           | Potassium                      | Т                     | mg/L        | 6020   | 1.62                                        |                       | 1.88                                        |                       | 0.399                                       |                       | 1.18                                        |                  |
| 7440-16-6           | Rhodium                        | Т                     | mg/L        | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 7782-49-2           | Selenium                       | Т                     | mg/L        | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 7440-22-4           | Silver                         | Т                     | mg/L        | 6020   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 7440-23-5           | Sodium                         | Т                     | mg/L        | 6020   | 37.4                                        |                       | 36.5                                        |                       | 76.9                                        |                       | 33.7                                        |                  |
| 7440-25-7           | Tantalum                       | Т                     | mg/L        | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 7440-28-0           | Thallium                       | Т                     | mg/L        | 6020   | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                  |
| 7440-61-1           | Uranium                        | Т                     | mg/L        | 6020   | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                  |
| 7440-62-2           | Vanadium                       | Т                     | mg/L        | 6020   | <0.02                                       |                       | <0.02                                       |                       | <0.02                                       |                       | <0.02                                       |                  |
| 7440-66-6           | Zinc                           | Т                     | mg/L        | 6020   | 0.00672                                     | BJ                    | 0.00846                                     | BJ                    | 0.00775                                     | BJ                    | 0.00512                                     | BJ               |
| 108-05-4            | Vinyl acetat                   | е Т                   | mg/L        | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 67-64-1             | Acetone                        | Т                     | mg/L        | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 107-02-8            | Acrolein                       | Т                     | mg/L        | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 107-13-1            | Acrylonitril                   | е Т                   | mg/L        | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 71-43-2             | Benzene                        | Т                     | mg/L        | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 108-90-7            | Chlorobenzen                   | е Т                   | mg/L        | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 1330-20-7           | Xylenes                        | Т                     | mg/L        | 8260   | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                  |
| 100-42-5            | Styrene                        | Т                     | mg/L        | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 108-88-3            | Toluene                        | Т                     | mg/L        | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-97-5             | Chlorobromom                   | ethane T              | mg/L        | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |             |                       |        | 8004-480                                    | 5                | 8004-480                                    | 06                    | 8004-4807                                   |                       | 8004-48                                     | 302              |
|-----------------------------|------------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., 1 | MW-         | 1, MW-2, et           | cc.)   | 391                                         |                  | 392                                         |                       | 393                                         |                       | 394                                         |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 75-27-4                     | Bromodichloromethane               | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-25-2                     | Tribromomethane                    | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-83-9                     | Methyl bromide                     | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 78-93-3                     | Methyl ethyl ketone                | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 110-57-6                    | trans-1,4-Dichloro-2-butene        | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 75-15-0                     | Carbon disulfide                   | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 75-00-3                     | Chloroethane                       | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 67-66-3                     | Chloroform                         | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-87-3                     | Methyl chloride                    | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 156-59-2                    | cis-1,2-Dichloroethene             | Т           | mg/L                  | 8260   | 0.00044                                     | J                | 0.00096                                     | J                     | <0.001                                      |                       | <0.001                                      |                  |
| 74-95-3                     | Methylene bromide                  | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-34-3                     | 1,1-Dichloroethane                 | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 107-06-2                    | 1,2-Dichloroethane                 | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-35-4                     | 1,1-Dichloroethylene               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 106-93-4                    | Ethane, 1,2-dibromo                | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-34-5                     | Ethane, 1,1,2,2-Tetrachloro        | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 71-55-6                     | Ethane, 1,1,1-Trichloro-           | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-00-5                     | Ethane, 1,1,2-Trichloro            | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 630-20-6                    | Ethane, 1,1,1,2-Tetrachloro        | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-01-4                     | Vinyl chloride                     | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 127-18-4                    | Ethene, Tetrachloro-               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 79-01-6                     | Ethene, Trichloro-                 | Т           | mg/L                  | 8260   | 0.0103                                      |                  | 0.0153                                      |                       | <0.001                                      |                       | 0.00349                                     |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |              |                       |        | 8004-480                                    | 5                | 8004-4806                                   | 3                     | 8004-480                                    | 07                    | 8004-48                                     | 02               |
|-----------------------------|-----------------------------------|--------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | al Well or Spring Number (e.g., M | <b>IW</b> −1 | L, MW-2, et           | cc.)   | 391                                         |                  | 392                                         |                       | 393                                         |                       | 394                                         |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | T<br>D<br>5  | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 100-41-4                    | Ethylbenzene                      | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 591-78-6                    | 2-Hexanone                        | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 74-88-4                     | Iodomethane                       | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 124-48-1                    | Methane, Dibromochloro-           | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 56-23-5                     | Carbon Tetrachloride              | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-09-2                     | Dichloromethane                   | т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 108-10-1                    | Methyl isobutyl ketone            | т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro     | т            | mg/L                  | 8011   | <0.0000199                                  |                  | <0.0000197                                  |                       | <0.0000196                                  |                       | <0.0000198                                  |                  |
| 78-87-5                     | Propane, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene      | T            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene        | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 156-60-5                    | trans-1,2-Dichloroethene          | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-69-4                     | Trichlorofluoromethane            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 96-18-4                     | 1,2,3-Trichloropropane            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 95-50-1                     | Benzene, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 106-46-7                    | Benzene, 1,4-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 1336-36-3                   | PCB,Total                         | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 12674-11-2                  | PCB-1016                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 11104-28-2                  | PCB-1221                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 11141-16-5                  | PCB-1232                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 53469-21-9                  | PCB-1242                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 12672-29-6                  | PCB-1248                          | Т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

\_\_\_\_\_

For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |             |                       |          | 8004-4805                                   |                       | 8004-4806                                   |                       | 8004-480                                    | 7                     | 8004-4802                                   |                  |
|---------------------------|----------------------------------|-------------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | .c.)     | 391                                         |                       | 392                                         |                       | 393                                         |                       | 394                                         |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 11097-69-1                | PCB-1254                         | т           | ug/L                  | 8082     |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                |
| 11096-82-5                | PCB-1260                         | т           | ug/L                  | 8082     |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                |
| 11100-14-4                | PCB-1268                         | т           | ug/L                  | 8082     |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                |
| 12587-46-1                | Gross Alpha                      | т           | pCi/L                 | 9310     | -1.15                                       | *                     | 0.269                                       | *                     | 2.46                                        | *                     | 1.26                                        | *                |
| 12587-47-2                | Gross Beta                       | т           | pCi/L                 | 9310     | 3.7                                         | *                     | 2.18                                        | *                     | -5.45                                       | *                     | 12                                          | *                |
| 10043-66-0                | Iodine-131                       | Т           | pCi/L                 |          |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                |
| 13982-63-3                | Radium-226                       | Т           | pCi/L                 | AN-1418  | 0.156                                       | *                     | 0.119                                       | *                     | -0.29                                       | *                     | 0.0874                                      | *                |
| 10098-97-2                | Strontium-90                     | т           | pCi/L                 | 905.0    | -1.15                                       | *                     | 0.741                                       | *                     | -0.095                                      | *                     | -0.0154                                     | *                |
| 14133-76-7                | Technetium-99                    | Т           | pCi/L                 | Tc-02-RC | 8.04                                        | *                     | 10.1                                        | *                     | 1.27                                        | *                     | 9.21                                        | *                |
| 14269-63-7                | Thorium-230                      | Т           | pCi/L                 | Th-01-RC | -0.265                                      | *                     | 0.824                                       | *                     | 0.293                                       | *                     | 1.38                                        | *                |
| 10028-17-8                | Tritium                          | т           | pCi/L                 | 906.0    | -21.7                                       | *                     | 22.3                                        | *                     | -46.8                                       | *                     | 98.4                                        | *                |
| s0130                     | Chemical Oxygen Demand           | т           | mg/L                  | 410.4    | 9.07                                        | J                     | 12.5                                        | J                     | 19.4                                        | J                     | 16                                          | J                |
| 57-12-5                   | Cyanide                          | т           | mg/L                  | 9012     | <0.2                                        |                       | <0.2                                        |                       | <0.2                                        |                       | <0.2                                        |                  |
| 20461-54-5                | Iodide                           | т           | mg/L                  | 300.0    | <0.5                                        |                       | <0.5                                        |                       | <0.5                                        |                       | <0.5                                        |                  |
| s0268                     | Total Organic Carbon             | т           | mg/L                  | 9060     | 1.08                                        | J                     | 1.17                                        | J                     | 2.61                                        |                       | 0.89                                        | J                |
| s0586                     | Total Organic Halides            | т           | mg/L                  | 9020     | 0.0061                                      | J                     | 0.0173                                      |                       | 0.0094                                      | J                     | 0.00496                                     | J                |
|                           |                                  |             |                       |          |                                             |                       |                                             |                       |                                             |                       |                                             |                  |
|                           |                                  |             |                       |          |                                             |                       |                                             |                       |                                             |                       |                                             |                  |
|                           |                                  |             |                       |          |                                             |                       |                                             |                       |                                             |                       |                                             |                  |
|                           |                                  |             |                       |          |                                             |                       |                                             |                       |                                             |                       |                                             |                  |
|                           |                                  |             |                       |          |                                             |                       |                                             |                       |                                             |                       |                                             |                  |

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

## GROUNDWATER SAMPLE ANALYSIS (S)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number                 |             |                       |          | 8004-480                                    | 1                                  | 8004-48                                     | 303                   | 8004-48                                     | 317                   | 0000-0000                                   |                  |
|-----------------------------|---------------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | al Well or Spring Number (e.g., N           | /W−1        | ., MW-2, etc          | :.)      | 395                                         |                                    | 396                                         |                       | 397                                         |                       | E. BLANK                                    |                  |
| Sample Sequenc              | e #                                         |             |                       |          | 1                                           |                                    | 1                                           |                       | 1                                           |                       | 1                                           |                  |
| If sample is a B            | lank, specify Type: (F)ield, (T)rip,        | (M) e       | thod, or (E)          | quipment | NA                                          |                                    | NA                                          |                       | NA                                          |                       | Е                                           |                  |
| Sample Date an              | d Time (Month/Day/Year hour: minu           | tes         | )                     |          | 7/29/2020 08                                | 8:45                               | 7/29/2020                                   | 09:19                 | 7/27/2020                                   | 10:08                 | 7/28/2020 0                                 | 5:40             |
| Duplicate ("Y"              | or "N") <sup>2</sup>                        |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Split ("Y" or               | "N") <sup>3</sup>                           |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Facility Sampl              |                                             | MW395SG4    | -20                   | MW396S   | G4-20                                       | MW397S0                            | G4-20                                       | RI1SG4-2              | 20                                          |                       |                                             |                  |
| Laboratory Sam              | Laboratory Sample ID Number (if applicable) |             |                       |          |                                             | 9                                  | 517035                                      | 011                   | 516846                                      | 001                   | 516914014                                   |                  |
| Date of Analys              | is (Month/Day/Year) For Volatile            | e Or        | ganics Anal           | ysis.    | 8/4/2020 8/4/2020                           |                                    | 20                                          | 7/30/2020             |                                             | 7/31/202              | 0                                           |                  |
| Gradient with               | respect to Monitored Unit (UP, DC           | , NWC       | SIDE, UNKN            | IOWN)    | UP                                          |                                    | UP                                          |                       | UP                                          |                       | NA                                          |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                                 | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                  | Bromide                                     | т           | mg/L                  | 9056     | 0.486                                       |                                    | 0.839                                       |                       | 0.407                                       |                       |                                             | *                |
| 16887-00-6                  | Chloride(s)                                 | т           | mg/L                  | 9056     | 38.9                                        |                                    | 54.2                                        |                       | 36.3                                        | *                     |                                             | *                |
| 16984-48-8                  | Fluoride                                    | Т           | mg/L                  | 9056     | 0.146                                       |                                    | 0.63                                        |                       | 0.158                                       |                       |                                             | *                |
| s0595                       | Nitrate & Nitrite                           | Т           | mg/L                  | 9056     | 1.43                                        |                                    | 0.0902                                      | J                     | 1.17                                        |                       |                                             | *                |
| 14808-79-8                  | Sulfate                                     | т           | mg/L                  | 9056     | 12                                          |                                    | 28.5                                        |                       | 11.7                                        |                       |                                             | *                |
| NS1894                      | Barometric Pressure Reading                 | т           | Inches/Hg             | Field    | 29.99                                       |                                    | 29.99                                       |                       | 30.05                                       |                       |                                             | *                |
| S0145                       | Specific Conductance                        | т           | μ <b>MH</b> 0/cm      | Field    | 354                                         |                                    | 715                                         | _                     | 322                                         |                       |                                             | *                |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
   of a secondary dilution

<sup>&</sup>lt;sup>2</sup>Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

<sup>&</sup>lt;sup>4</sup>Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number        |                |                       |          | 8004-480                                    | 1                     | 8004-480                                    | 3                     | 8004-4817                                   | 7                     | 0000-0000                                   |                       |
|---------------------------|--------------------------------------|----------------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Lo             | ocal Well or Spring Number (e.g., MW | <b>i-1</b> , 1 | MW-2, BLANK-          | F, etc.) | 395                                         |                       | 396                                         |                       | 397                                         |                       | E. BLANK                                    |                       |
| CAS RN <sup>4</sup>       | CONSTITUENT                          | T<br>D<br>5    | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| s0906                     | Static Water Level Elevation         | т              | Ft. MSL               | Field    | 328.89                                      |                       | 368.5                                       |                       | 328.55                                      |                       |                                             | *                     |
| N238                      | Dissolved Oxygen                     | Т              | mg/L                  | Field    | 3.82                                        |                       | 1.08                                        |                       | 4.65                                        |                       |                                             | *                     |
| s0266                     | Total Dissolved Solids               | Т              | mg/L                  | 160.1    | 173                                         | В                     | 389                                         | В                     | 179                                         |                       |                                             | *                     |
| s0296                     | рН                                   | Т              | Units                 | Field    | 6.03                                        |                       | 6.55                                        |                       | 6.14                                        |                       |                                             | *                     |
| NS215                     | Eh                                   | Т              | mV                    | Field    | 366                                         |                       | 346                                         |                       | 360                                         |                       |                                             | *                     |
| s0907                     | Temperature                          | Т              | °C                    | Field    | 17.33                                       |                       | 17.44                                       |                       | 18.44                                       |                       |                                             | *                     |
| 7429-90-5                 | Aluminum                             | Т              | mg/L                  | 6020     | 0.0259                                      | J                     | 0.0556                                      |                       | 0.274                                       |                       | <0.05                                       |                       |
| 7440-36-0                 | Antimony                             | Т              | mg/L                  | 6020     | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       |
| 7440-38-2                 | Arsenic                              | Т              | mg/L                  | 6020     | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       |
| 7440-39-3                 | Barium                               | Т              | mg/L                  | 6020     | 0.229                                       |                       | 0.368                                       |                       | 0.127                                       |                       | <0.004                                      |                       |
| 7440-41-7                 | Beryllium                            | Т              | mg/L                  | 6020     | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                       | <0.0005                                     |                       |
| 7440-42-8                 | Boron                                | Т              | mg/L                  | 6020     | 0.0254                                      | В                     | 0.0185                                      | В                     | 0.0462                                      |                       | <0.015                                      |                       |
| 7440-43-9                 | Cadmium                              | Т              | mg/L                  | 6020     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-70-2                 | Calcium                              | т              | mg/L                  | 6020     | 24.7                                        |                       | 33.8                                        |                       | 18.9                                        |                       | <0.2                                        |                       |
| 7440-47-3                 | Chromium                             | Т              | mg/L                  | 6020     | <0.01                                       |                       | <0.01                                       |                       | <0.01                                       |                       | <0.01                                       |                       |
| 7440-48-4                 | Cobalt                               | Т              | mg/L                  | 6020     | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       |
| 7440-50-8                 | Copper                               | т              | mg/L                  | 6020     | 0.000333                                    | J                     | 0.0255                                      |                       | 0.000403                                    | J                     | 0.000482                                    | J                     |
| 7439-89-6                 | Iron                                 | Т              | mg/L                  | 6020     | 0.0505                                      | J                     | 0.162                                       |                       | 0.2                                         |                       | <0.1                                        |                       |
| 7439-92-1                 | Lead                                 | Т              | mg/L                  | 6020     | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       |
| 7439-95-4                 | Magnesium                            | т              | mg/L                  | 6020     | 10.4                                        |                       | 15.3                                        |                       | 7.7                                         |                       | <0.03                                       |                       |
| 7439-96-5                 | Manganese                            | Т              | mg/L                  | 6020     | 0.00117                                     | J                     | 0.144                                       |                       | 0.00487                                     | J                     | <0.005                                      |                       |
| 7439-97-6                 | Mercury                              | т              | mg/L                  | 7470     | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       | <0.0002                                     |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER        | 1, Facility Well/Spring Number   |             |                       |        | 8004-480                                    | 01                    | 8004-48                                     | 03                    | 8004-48                                     | 17                    | 0000-00                                     | 00               |
|---------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's L        | ocal Well or Spring Number (e.g. | , MW-       | 1, MW-2, e            | tc.)   | 395                                         |                       | 396                                         |                       | 397                                         |                       | E. BLAN                                     | 1K               |
| CAS RN <sup>4</sup> | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 7439-98-7           | Molybdenum                       | т           | mg/L                  | 6020   | <0.001                                      |                       | 0.000378                                    | J                     | <0.001                                      |                       | <0.001                                      |                  |
| 7440-02-0           | Nickel                           | т           | mg/L                  | 6020   | 0.00316                                     |                       | 0.0116                                      |                       | 0.00448                                     |                       | <0.002                                      |                  |
| 7440-09-7           | Potassium                        | т           | mg/L                  | 6020   | 1.52                                        |                       | 0.874                                       |                       | 1.78                                        |                       | <0.3                                        |                  |
| 7440-16-6           | Rhodium                          | т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 7782-49-2           | Selenium                         | т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 7440-22-4           | Silver                           | Т           | mg/L                  | 6020   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 7440-23-5           | Sodium                           | Т           | mg/L                  | 6020   | 31.6                                        |                       | 111                                         |                       | 32.6                                        |                       | <0.25                                       |                  |
| 7440-25-7           | Tantalum                         | Т           | mg/L                  | 6020   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      | *                     | <0.005                                      |                  |
| 7440-28-0           | Thallium                         | Т           | mg/L                  | 6020   | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                       | <0.002                                      |                  |
| 7440-61-1           | Uranium                          | Т           | mg/L                  | 6020   | <0.0002                                     |                       | 0.000083                                    | J                     | <0.0002                                     |                       | <0.0002                                     |                  |
| 7440-62-2           | Vanadium                         | Т           | mg/L                  | 6020   | <0.02                                       |                       | <0.02                                       |                       | <0.02                                       |                       | <0.02                                       |                  |
| 7440-66-6           | Zinc                             | Т           | mg/L                  | 6020   | 0.00648                                     | BJ                    | 0.0159                                      | BJ                    | 0.00536                                     | J                     | <0.02                                       |                  |
| 108-05-4            | Vinyl acetate                    | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 67-64-1             | Acetone                          | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | 0.007                                       |                  |
| 107-02-8            | Acrolein                         | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 107-13-1            | Acrylonitrile                    | Т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 71-43-2             | Benzene                          | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 108-90-7            | Chlorobenzene                    | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 1330-20-7           | Xylenes                          | Т           | mg/L                  | 8260   | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                       | <0.003                                      |                  |
| 100-42-5            | Styrene                          | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 108-88-3            | Toluene                          | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 74-97-5             | Chlorobromomethane               | т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |             |                       |        | 8004-480                                    | 1                | 8004-480                                    | 03               | 8004-48                                     | 317              | 0000-00                                     | 000                   |
|---------------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | .c.)   | 395                                         |                  | 396                                         |                  | 397                                         |                  | E. BLA                                      | .NK                   |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 75-27-4                   | Bromodichloromethane             | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 75-25-2                   | Tribromomethane                  | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 74-83-9                   | Methyl bromide                   | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 78-93-3                   | Methyl ethyl ketone              | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                       |
| 110-57-6                  | trans-1,4-Dichloro-2-butene      | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                       |
| 75-15-0                   | Carbon disulfide                 | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                       |
| 75-00-3                   | Chloroethane                     | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 67-66-3                   | Chloroform                       | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 74-87-3                   | Methyl chloride                  | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 156-59-2                  | cis-1,2-Dichloroethene           | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 74-95-3                   | Methylene bromide                | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 75-34-3                   | 1,1-Dichloroethane               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 107-06-2                  | 1,2-Dichloroethane               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 75-35-4                   | 1,1-Dichloroethylene             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 106-93-4                  | Ethane, 1,2-dibromo              | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 79-34-5                   | Ethane, 1,1,2,2-Tetrachloro      | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 71-55-6                   | Ethane, 1,1,1-Trichloro-         | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 79-00-5                   | Ethane, 1,1,2-Trichloro          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 630-20-6                  | Ethane, 1,1,1,2-Tetrachloro      | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 75-01-4                   | Vinyl chloride                   | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 127-18-4                  | Ethene, Tetrachloro-             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |
| 79-01-6                   | Ethene, Trichloro-               | Т           | mg/L                  | 8260   | 0.00185                                     |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |              |                       |        | 8004-480                                    | 1                | 8004-4803                                   | 3                     | 8004-48                                     | 17                    | 0000-00                                     | 00               |
|-----------------------------|-----------------------------------|--------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | al Well or Spring Number (e.g., M | <b>IW</b> −1 | L, MW-2, et           | cc.)   | 395                                         |                  | 396                                         |                       | 397                                         |                       | E. BLAN                                     | 1K               |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | T<br>D<br>5  | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 100-41-4                    | Ethylbenzene                      | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 591-78-6                    | 2-Hexanone                        | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 74-88-4                     | Iodomethane                       | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 124-48-1                    | Methane, Dibromochloro-           | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 56-23-5                     | Carbon Tetrachloride              | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-09-2                     | Dichloromethane                   | т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 108-10-1                    | Methyl isobutyl ketone            | т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro     | т            | mg/L                  | 8011   | <0.0000198                                  |                  | <0.0000195                                  |                       | <0.0000197                                  |                       | <0.0000193                                  |                  |
| 78-87-5                     | Propane, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene      | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene        | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 156-60-5                    | trans-1,2-Dichloroethene          | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-69-4                     | Trichlorofluoromethane            | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 96-18-4                     | 1,2,3-Trichloropropane            | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 95-50-1                     | Benzene, 1,2-Dichloro-            | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 106-46-7                    | Benzene, 1,4-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      | *                     | <0.001                                      |                  |
| 1336-36-3                   | PCB,Total                         | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 12674-11-2                  | PCB-1016                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 11104-28-2                  | PCB-1221                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 11141-16-5                  | PCB-1232                          | Т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 53469-21-9                  | PCB-1242                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 12672-29-6                  | PCB-1248                          | Т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number      |              |                       |          | 8004-4801                                   |                  | 8004-4803                                   | }                     | 8004-481                                    | 7                     | 0000-000                                    | 00               |
|-----------------------------|----------------------------------|--------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo               | cal Well or Spring Number (e.g., | MW-          | 1, MW-2, et           | tc.)     | 395                                         |                  | 396                                         |                       | 397                                         |                       | E. BLAN                                     | K                |
| CAS RN <sup>4</sup>         | CONSTITUENT                      | <b>T D</b> 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 11097-69-1                  | PCB-1254                         | т            | ug/L                  | 8082     |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 11096-82-5                  | PCB-1260                         | Т            | ug/L                  | 8082     |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 11100-14-4                  | PCB-1268                         | Т            | ug/L                  | 8082     |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 12587-46-1                  | Gross Alpha                      | Т            | pCi/L                 | 9310     | 0.312                                       | *                | 4.91                                        | *                     | -3.14                                       | *                     | 3.61                                        | *                |
| 12587-47-2                  | Gross Beta                       | Т            | pCi/L                 | 9310     | 13                                          | *                | 5.35                                        | *                     | 17.7                                        | *                     | -7.26                                       | *                |
| 10043-66-0                  | Iodine-131                       | Т            | pCi/L                 |          |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 13982-63-3                  | Radium-226                       | Т            | pCi/L                 | AN-1418  | 0.426                                       | *                | 0.48                                        | *                     | 0.55                                        | *                     | 0.382                                       | *                |
| 10098-97-2                  | Strontium-90                     | Т            | pCi/L                 | 905.0    | -2.33                                       | *                | 1.79                                        | *                     | 4.64                                        | *                     | 3.6                                         | *                |
| 14133-76-7                  | Technetium-99                    | Т            | pCi/L                 | Tc-02-RC | 12.2                                        | *                | -0.35                                       | *                     | 20.1                                        | *                     | -6.96                                       | *                |
| 14269-63-7                  | Thorium-230                      | Т            | pCi/L                 | Th-01-RC | 0.284                                       | *                | -0.474                                      | *                     | 0.36                                        | *                     | 0.586                                       | *                |
| 10028-17-8                  | Tritium                          | Т            | pCi/L                 | 906.0    | 23.3                                        | *                | -5.93                                       | *                     | -53.7                                       | *                     | 200                                         | *                |
| s0130                       | Chemical Oxygen Demand           | Т            | mg/L                  | 410.4    | 19.4                                        | J                | 26.3                                        |                       | 14.8                                        | J                     |                                             | *                |
| 57-12-5                     | Cyanide                          | Т            | mg/L                  | 9012     | <0.2                                        |                  | <0.2                                        |                       | <0.2                                        |                       |                                             | *                |
| 20461-54-5                  | Iodide                           | Т            | mg/L                  | 300.0    | <0.5                                        |                  | 0.442                                       | J                     | <0.5                                        |                       | <0.5                                        |                  |
| S0268                       | Total Organic Carbon             | Т            | mg/L                  | 9060     | 0.856                                       | J                | 4.61                                        |                       | 0.769                                       | J                     |                                             | *                |
| s0586                       | Total Organic Halides            | Т            | mg/L                  | 9020     | <0.01                                       |                  | 0.0462                                      |                       | 0.0069                                      | J                     |                                             | *                |
|                             |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                  |
|                             |                                  | _            |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                  |
|                             |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                  |
|                             |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                  |
|                             |                                  |              |                       |          |                                             |                  |                                             |                       |                                             |                       |                                             |                  |

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

### GROUNDWATER SAMPLE ANALYSIS (S)

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number                                   |             |                       |          | 000-000                                     | 00                                 | 0000-00                                     | 00                    | 0000-000                                    | 00                    | 0000-000                                    | 0                |
|-----------------------------|---------------------------------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | al Well or Spring Number (e.g., N                             | 1W−1        | L, MW-2, etc          | :.)      | F. BLAN                                     | K                                  | T. BLAN                                     | K 1                   | T. BLAN                                     | (2                    | T. BLANK                                    | 3                |
| Sample Sequenc              | ce #                                                          |             |                       |          | 1                                           |                                    | 1                                           |                       | 1                                           |                       | 1                                           |                  |
| If sample is a B            | Blank, specify Type: (F)ield, (T)rip,                         | (M) ∈       | ethod, or (E)         | quipment | F                                           |                                    | Т                                           |                       | Т                                           |                       | Т                                           |                  |
| Sample Date an              | nd Time (Month/Day/Year hour: minu                            | tes         | )                     |          | 7/28/2020 0                                 | 8:29                               | 7/27/2020                                   | 05:50                 | 7/28/2020 (                                 | 5:30                  | 7/29/2020 0                                 | 5:35             |
| Duplicate ("Y"              | or "N") <sup>2</sup>                                          |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Split ("Y" or               | "N") <sup>3</sup>                                             |             |                       |          | N                                           |                                    | N                                           |                       | N                                           |                       | N                                           |                  |
| Facility Sampl              | e ID Number (if applicable)                                   |             |                       |          | FB1SG4-                                     | 20                                 | TB1SG4                                      | -20                   | TB2SG4-                                     | 20                    | TB3SG4-2                                    | 20               |
| Laboratory Sam              | oratory Sample ID Number (if applicable)                      |             |                       |          |                                             |                                    | 5168460                                     | 15                    | 5169140                                     | 15                    | 51703501                                    | 13               |
| Date of Analys              | e of Analysis (Month/Day/Year) For Volatile Organics Analysis |             |                       |          |                                             | 0                                  | 7/30/20                                     | 20                    | 7/31/202                                    | 20                    | 8/4/2020                                    | )                |
| Gradient with               | respect to Monitored Unit (UP, DO                             | , NW        | , SIDE, UNKN          | IOWN)    | NA                                          |                                    | NA                                          |                       | NA                                          |                       | NA                                          |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                                                   | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                  | Bromide                                                       | т           | mg/L                  | 9056     |                                             | *                                  |                                             | *                     |                                             | *                     |                                             | *                |
| 16887-00-6                  | Chloride(s)                                                   | т           | mg/L                  | 9056     |                                             | *                                  |                                             | *                     |                                             | *                     |                                             | *                |
| 16984-48-8                  | Fluoride                                                      | Т           | mg/L                  | 9056     |                                             | *                                  |                                             | *                     |                                             | *                     |                                             | *                |
| s0595                       | <del>                                      </del>             |             |                       | 9056     |                                             | *                                  |                                             | *                     |                                             | *                     |                                             | *                |
| 14808-79-8                  | Sulfate                                                       | Т           | mg/L                  | 9056     |                                             | *                                  |                                             | *                     |                                             | *                     |                                             | *                |
| NS1894                      | Barometric Pressure Reading                                   | Т           | Inches/Hg             | Field    | _                                           | *                                  | _                                           | *                     | _                                           | *                     |                                             | *                |
| S0145                       | Specific Conductance                                          | Т           | μ <b>MH0/cm</b>       | Field    |                                             | *                                  |                                             | *                     |                                             | *                     |                                             | *                |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

<sup>&</sup>lt;sup>2</sup>Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

<sup>&</sup>lt;sup>4</sup>Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number         |       |                       |          | 0000-000                                    | 0                     | 0000-000                                    | 0                     | 0000-0000                                   | )                     | 0000-0000                                   |                  |
|-----------------------------|-------------------------------------|-------|-----------------------|----------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | cal Well or Spring Number (e.g., MW | -1, 1 | MW-2, BLANK-F         | ', etc.) | F. BLAN                                     | <                     | T. BLANK                                    | 1                     | T. BLANK                                    | 2                     | T. BLANK 3                                  | ;                |
| CAS RN <sup>4</sup>         | CONSTITUENT                         | T D 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| s0906                       | Static Water Level Elevation        | Т     | Ft. MSL               | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                |
| N238                        | Dissolved Oxygen                    | Т     | mg/L                  | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                |
| s0266                       | Total Dissolved Solids              | Т     | mg/L                  | 160.1    |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                |
| S0296                       | рН                                  | Т     | Units                 | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                |
| NS215                       | Eh                                  | Т     | mV                    | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                |
| s0907                       | Temperature                         | Т     | °c                    | Field    |                                             | *                     |                                             | *                     |                                             | *                     |                                             | *                |
| 7429-90-5                   | Aluminum                            | Т     | mg/L                  | 6020     | <0.05                                       |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7440-36-0                   | Antimony                            | Т     | mg/L                  | 6020     | <0.003                                      |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7440-38-2                   | Arsenic                             | Т     | mg/L                  | 6020     | <0.005                                      |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7440-39-3                   | Barium                              | Т     | mg/L                  | 6020     | <0.004                                      |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7440-41-7                   | Beryllium                           | т     | mg/L                  | 6020     | <0.0005                                     |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7440-42-8                   | Boron                               | Т     | mg/L                  | 6020     | <0.015                                      |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7440-43-9                   | Cadmium                             | Т     | mg/L                  | 6020     | <0.001                                      |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7440-70-2                   | Calcium                             | т     | mg/L                  | 6020     | <0.2                                        |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7440-47-3                   | Chromium                            | Т     | mg/L                  | 6020     | <0.01                                       |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7440-48-4                   | Cobalt                              | Т     | mg/L                  | 6020     | <0.001                                      |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7440-50-8                   | Copper                              | Т     | mg/L                  | 6020     | <0.002                                      |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7439-89-6                   | Iron                                | Т     | mg/L                  | 6020     | <0.1                                        |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7439-92-1                   | Lead                                | Т     | mg/L                  | 6020     | <0.002                                      |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7439-95-4                   | Magnesium                           | Т     | mg/L                  | 6020     | <0.03                                       |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7439-96-5                   | Manganese                           | Т     | mg/L                  | 6020     | <0.005                                      |                       |                                             | *                     |                                             | *                     |                                             | *                |
| 7439-97-6                   | Mercury                             | Т     | mg/L                  | 7470     | <0.0002                                     |                       |                                             | *                     |                                             | *                     |                                             | *                |

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER        | 1, Facility Well/Spring Number   |             | 0000-000              | 00     | 0000-00                                     | 00                    | 0000-00                                     | 00               | 0000-00                                     | 00               |                                             |                  |
|---------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|
| Facility's I        | ocal Well or Spring Number (e.g. | MW-         | -1, MW-2, e           | tc.)   | F. BLAN                                     | IK                    | T. BLAN                                     | K 1              | T. BLAN                                     | K 2              | T. BLAN                                     | K 3              |
| CAS RN <sup>4</sup> | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 7439-98-7           | Molybdenum                       | т           | mg/L                  | 6020   | <0.001                                      |                       |                                             | *                |                                             | *                |                                             | *                |
| 7440-02-0           | Nickel                           | т           | mg/L                  | 6020   | <0.002                                      |                       |                                             | *                |                                             | *                |                                             | *                |
| 7440-09-7           | Potassium                        | т           | mg/L                  | 6020   | <0.3                                        |                       |                                             | *                |                                             | *                |                                             | *                |
| 7440-16-6           | Rhodium                          | т           | mg/L                  | 6020   | <0.005                                      |                       |                                             | *                |                                             | *                |                                             | *                |
| 7782-49-2           | Selenium                         | т           | mg/L                  | 6020   | <0.005                                      |                       |                                             | *                |                                             | *                |                                             | *                |
| 7440-22-4           | Silver                           | Т           | mg/L                  | 6020   | <0.001                                      |                       |                                             | *                |                                             | *                |                                             | *                |
| 7440-23-5           | Sodium                           | Т           | mg/L                  | 6020   | <0.25                                       |                       |                                             | *                |                                             | *                |                                             | *                |
| 7440-25-7           | Tantalum                         | Т           | mg/L                  | 6020   | <0.005                                      |                       |                                             | *                |                                             | *                |                                             | *                |
| 7440-28-0           | Thallium                         | т           | mg/L                  | 6020   | <0.002                                      |                       |                                             | *                |                                             | *                |                                             | *                |
| 7440-61-1           | Uranium                          | т           | mg/L                  | 6020   | <0.0002                                     |                       |                                             | *                |                                             | *                |                                             | *                |
| 7440-62-2           | Vanadium                         | т           | mg/L                  | 6020   | <0.02                                       |                       |                                             | *                |                                             | *                |                                             | *                |
| 7440-66-6           | Zinc                             | т           | mg/L                  | 6020   | 0.00495                                     | BJ                    |                                             | *                |                                             | *                |                                             | *                |
| 108-05-4            | Vinyl acetate                    | т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  |
| 67-64-1             | Acetone                          | т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  |
| 107-02-8            | Acrolein                         | т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  |
| 107-13-1            | Acrylonitrile                    | т           | mg/L                  | 8260   | <0.005                                      |                       | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  |
| 71-43-2             | Benzene                          | т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 108-90-7            | Chlorobenzene                    | т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 1330-20-7           | Xylenes                          | т           | mg/L                  | 8260   | <0.003                                      |                       | <0.003                                      |                  | <0.003                                      |                  | <0.003                                      |                  |
| 100-42-5            | Styrene                          | т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 108-88-3            | Toluene                          | т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 74-97-5             | Chlorobromomethane               | Т           | mg/L                  | 8260   | <0.001                                      |                       | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number      |             |                       |        | 0000-0000                                   | )                | 0000-000                                    | 00               | 0000-00                                     | 000              | 0000-00                                     | 000              |
|-----------------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|
| Facility's Lo               | cal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | cc.)   | F. BLAN                                     | (                | T. BLAN                                     | (1               | T. BLAN                                     | √1K 2            | T. BLAN                                     | NK 3             |
| CAS RN⁴                     | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 75-27-4                     | Bromodichloromethane             | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 75-25-2                     | Tribromomethane                  | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 74-83-9                     | Methyl bromide                   | т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 78-93-3                     | Methyl ethyl ketone              | т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  |
| 110-57-6                    | trans-1,4-Dichloro-2-butene      | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  |
| 75-15-0                     | Carbon disulfide                 | Т           | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  | <0.005                                      |                  |
| 75-00-3                     | Chloroethane                     | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 67-66-3                     | Chloroform                       | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 74-87-3                     | Methyl chloride                  | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 156-59-2                    | cis-1,2-Dichloroethene           | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 74-95-3                     | Methylene bromide                | T           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 75-34-3                     | 1,1-Dichloroethane               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 107-06-2                    | 1,2-Dichloroethane               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 75-35-4                     | 1,1-Dichloroethylene             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 106-93-4                    | Ethane, 1,2-dibromo              | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 79-34-5                     | Ethane, 1,1,2,2-Tetrachloro      | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 71-55-6                     | Ethane, 1,1,1-Trichloro-         | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 79-00-5                     | Ethane, 1,1,2-Trichloro          | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 630-20-6                    | Ethane, 1,1,1,2-Tetrachloro      | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 75-01-4                     | Vinyl chloride                   | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 127-18-4                    | Ethene, Tetrachloro-             | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |
| 79-01-6                     | Ethene, Trichloro-               | Т           | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  | <0.001                                      |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |              |                       |        | 0000-0000                                   | 0                | 0000-0000                                   | )                     | 0000-000                                    | 00                    | 0000-00                                     | 00               |
|-----------------------------|-----------------------------------|--------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Loc              | al Well or Spring Number (e.g., M | <b>1</b> ₩−1 | 1, MW-2, et           | cc.)   | F. BLAN                                     | (                | T. BLANK                                    | 1                     | T. BLAN                                     | < 2                   | T. BLANI                                    | K 3              |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | T<br>D<br>5  | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 100-41-4                    | Ethylbenzene                      | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 591-78-6                    | 2-Hexanone                        | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 74-88-4                     | Iodomethane                       | Т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 124-48-1                    | Methane, Dibromochloro-           | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 56-23-5                     | Carbon Tetrachloride              | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-09-2                     | Dichloromethane                   | т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 108-10-1                    | Methyl isobutyl ketone            | т            | mg/L                  | 8260   | <0.005                                      |                  | <0.005                                      |                       | <0.005                                      |                       | <0.005                                      |                  |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro     | Т            | mg/L                  | 8011   | <0.0000197                                  |                  | <0.000196                                   |                       | <0.0000198                                  |                       | <0.0000198                                  |                  |
| 78-87-5                     | Propane, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene      | Т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene        | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 156-60-5                    | trans-1,2-Dichloroethene          | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 75-69-4                     | Trichlorofluoromethane            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 96-18-4                     | 1,2,3-Trichloropropane            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 95-50-1                     | Benzene, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      |                       | <0.001                                      |                       | <0.001                                      |                  |
| 106-46-7                    | Benzene, 1,4-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  | <0.001                                      | *                     | <0.001                                      |                       | <0.001                                      |                  |
| 1336-36-3                   | PCB,Total                         | Т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 12674-11-2                  | PCB-1016                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 11104-28-2                  | PCB-1221                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 11141-16-5                  | PCB-1232                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 53469-21-9                  | PCB-1242                          | т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |
| 12672-29-6                  | PCB-1248                          | Т            | ug/L                  | 8082   |                                             | *                |                                             | *                     |                                             | *                     |                                             | *                |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |              |                       |          | 0000-0000                                   | 1                | 0000-0000                                   |                  | 0000-0000                                   |                       | 0000-0000                                   |                       |
|---------------------------|----------------------------------|--------------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-          | 1, MW-2, et           | tc.)     | F. BLANK                                    |                  | T. BLANK 1                                  |                  | T. BLANK 2                                  |                       | T. BLANK 3                                  | 3                     |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | <b>T</b> D 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 11097-69-1                | PCB-1254                         | Т            | ug/L                  | 8082     |                                             | *                |                                             | *                |                                             | *                     |                                             | *                     |
| 11096-82-5                | PCB-1260                         | Т            | ug/L                  | 8082     |                                             | *                |                                             | *                |                                             | *                     |                                             | *                     |
| 11100-14-4                | PCB-1268                         | Т            | ug/L                  | 8082     |                                             | *                |                                             | *                |                                             | *                     |                                             | *                     |
| 12587-46-1                | Gross Alpha                      | Т            | pCi/L                 | 9310     | -1.02                                       | *                |                                             | *                |                                             | *                     |                                             | *                     |
| 12587-47-2                | Gross Beta                       | Т            | pCi/L                 | 9310     | -2.43                                       | *                |                                             | *                |                                             | *                     |                                             | *                     |
| 10043-66-0                | Iodine-131                       | Т            | pCi/L                 |          |                                             | *                |                                             | *                |                                             | *                     |                                             | *                     |
| 13982-63-3                | Radium-226                       | Т            | pCi/L                 | AN-1418  | -0.104                                      | *                |                                             | *                |                                             | *                     |                                             | *                     |
| 10098-97-2                | Strontium-90                     | Т            | pCi/L                 | 905.0    | -0.0599                                     | *                |                                             | *                |                                             | *                     |                                             | *                     |
| 14133-76-7                | Technetium-99                    | Т            | pCi/L                 | Tc-02-RC | -5.75                                       | *                |                                             | *                |                                             | *                     |                                             | *                     |
| 14269-63-7                | Thorium-230                      | Т            | pCi/L                 | Th-01-RC | 0.718                                       | *                |                                             | *                |                                             | *                     |                                             | *                     |
| 10028-17-8                | Tritium                          | Т            | pCi/L                 | 906.0    | 34.8                                        | *                |                                             | *                |                                             | *                     |                                             | *                     |
| s0130                     | Chemical Oxygen Demand           | Т            | mg/L                  | 410.4    |                                             | *                |                                             | *                |                                             | *                     |                                             | *                     |
| 57-12-5                   | Cyanide                          | Т            | mg/L                  | 9012     |                                             | *                |                                             | *                |                                             | *                     |                                             | *                     |
| 20461-54-5                | Iodide                           | Т            | mg/L                  | 300.0    | <0.5                                        |                  |                                             | *                |                                             | *                     |                                             | *                     |
| S0268                     | Total Organic Carbon             | Т            | mg/L                  | 9060     |                                             | *                |                                             | *                |                                             | *                     |                                             | *                     |
| s0586                     | Total Organic Halides            | Т            | mg/L                  | 9020     |                                             | *                |                                             | *                |                                             | *                     |                                             | *                     |
|                           |                                  |              |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                       |
|                           |                                  |              |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                       |
|                           |                                  |              |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                       |
|                           |                                  |              |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                       |
|                           |                                  |              |                       |          |                                             |                  |                                             |                  |                                             |                       |                                             |                       |

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

## GROUNDWATER SAMPLE ANALYSIS (S)

|                             |                                                                                                                                     |       |                       |          | i e                                         |                  | N                                           |                  |                                             |                  | i -                                         |                  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|----------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|
| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number                                                                                                         |       |                       |          | 8000-5244                                   | 1                |                                             |                  |                                             |                  |                                             |                  |
| Facility's Loc              | al Well or Spring Number (e.g., M                                                                                                   | ſW−1  | , MW-2, etc           | .)       | 224                                         |                  |                                             |                  |                                             |                  |                                             |                  |
| Sample Sequenc              | e #                                                                                                                                 |       |                       |          | 1                                           |                  |                                             |                  |                                             |                  | /                                           | <u>/</u>         |
| If sample is a B            | Blank, specify Type: (F)ield, (T)rip,                                                                                               | (M) e | thod, or (E)          | quipment | NA                                          |                  |                                             |                  |                                             |                  |                                             |                  |
| Sample Date an              | d Time (Month/Day/Year hour: minu                                                                                                   | tes   | )                     |          | 7/28/2020 08                                | 3:27             |                                             |                  |                                             |                  |                                             |                  |
| Duplicate ("Y"              | or "N") <sup>2</sup>                                                                                                                |       |                       |          | N                                           |                  |                                             |                  |                                             |                  |                                             |                  |
| Split ("Y" or               | "N") <sup>3</sup>                                                                                                                   |       |                       |          | N                                           |                  |                                             |                  |                                             |                  |                                             |                  |
| Facility Sampl              | e ID Number (if applicable)                                                                                                         |       |                       |          | MW224DSG4                                   | 4-20             |                                             |                  |                                             | /                |                                             |                  |
| Laboratory Sam              | oratory Sample ID Number (if applicable)                                                                                            |       |                       |          |                                             |                  |                                             |                  |                                             |                  |                                             |                  |
| Date of Analys              | e of Analysis (Month/Day/Year) For Volatile Organics Analysis                                                                       |       |                       |          |                                             | )                |                                             |                  |                                             |                  |                                             |                  |
| Gradient with               | e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis dient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) |       |                       |          | SIDE                                        |                  |                                             |                  | X                                           | /                |                                             |                  |
| CAS RN <sup>4</sup>         | CONSTITUENT                                                                                                                         | T D 5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                  | Bromide                                                                                                                             | т     | mg/L                  | 9056     | 0.403                                       |                  |                                             |                  |                                             |                  |                                             |                  |
| 16887-00-6                  | Chloride(s)                                                                                                                         | Т     | mg/L                  | 9056     | 29.2                                        |                  |                                             |                  |                                             |                  |                                             |                  |
| 16984-48-8                  |                                                                                                                                     |       |                       |          |                                             |                  |                                             |                  |                                             |                  |                                             |                  |
| s0595                       | 0595 Nitrate & Nitrite T mg/L                                                                                                       |       |                       |          | 0.803                                       |                  |                                             |                  | _                                           |                  |                                             |                  |
| 14808-79-8                  | Sulfate                                                                                                                             | Т     | mg/L                  | 9056     | 13.1                                        |                  |                                             |                  | _                                           |                  |                                             | $\sqrt{}$        |
| NS1894                      | Barometric Pressure Reading                                                                                                         | т     | Inches/Hg             | Field    |                                             | *                |                                             |                  |                                             |                  |                                             |                  |
| S0145                       | Specific Conductance                                                                                                                | Т     | μ <b>MH0/cm</b>       | Field    |                                             | *                |                                             |                  |                                             |                  |                                             |                  |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $<sup>^{2}</sup>$ Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

 $<sup>^4</sup>$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

|                           |                                    |             |                       |          | (00::0                                      |                  |                                |                       |                                             |                       |                                             |                       |
|---------------------------|------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|--------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number      |             |                       |          | 8000-524                                    | 4                |                                |                       |                                             |                       |                                             |                       |
| Facility's Lo             | cal Well or Spring Number (e.g., M | √-1, I      | MW-2, BLANK-          | F, etc.) | 224                                         |                  |                                |                       |                                             |                       |                                             |                       |
| CAS RN <sup>4</sup>       | CONSTITUENT                        | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| s0906                     | Static Water Level Elevation       | Т           | Ft. MSL               | Field    |                                             | *                |                                |                       |                                             |                       |                                             |                       |
| N238                      | Dissolved Oxygen                   | т           | mg/L                  | Field    |                                             | *                | ,                              |                       |                                             |                       |                                             |                       |
| s0266                     | Total Dissolved Solids             | т           | mg/L                  | 160.1    | 219                                         |                  |                                |                       |                                             |                       |                                             |                       |
| s0296                     | рН                                 | Т           | Units                 | Field    |                                             | *                |                                |                       |                                             |                       | /                                           |                       |
| NS215                     | Eh                                 | Т           | mV                    | Field    |                                             | *                |                                |                       |                                             |                       |                                             |                       |
| s0907                     | Temperature                        | Т           | °c                    | Field    |                                             | *                |                                |                       |                                             | /                     |                                             |                       |
| 7429-90-5                 | Aluminum                           | т           | mg/L                  | 6020     | <0.05                                       |                  |                                |                       |                                             | /                     |                                             |                       |
| 7440-36-0                 | Antimony                           | т           | mg/L                  | 6020     | <0.003                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 7440-38-2                 | Arsenic                            | Т           | mg/L                  | 6020     | <0.005                                      |                  |                                |                       | X                                           |                       |                                             |                       |
| 7440-39-3                 | Barium                             | Т           | mg/L                  | 6020     | 0.207                                       |                  |                                |                       |                                             |                       |                                             |                       |
| 7440-41-7                 | Beryllium                          | Т           | mg/L                  | 6020     | <0.0005                                     |                  |                                |                       |                                             |                       |                                             |                       |
| 7440-42-8                 | Boron                              | Т           | mg/L                  | 6020     | 0.0178                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 7440-43-9                 | Cadmium                            | Т           | mg/L                  | 6020     | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 7440-70-2                 | Calcium                            | т           | mg/L                  | 6020     | 22.1                                        |                  |                                |                       |                                             |                       |                                             |                       |
| 7440-47-3                 | Chromium                           | Т           | mg/L                  | 6020     | 0.017                                       |                  |                                |                       |                                             |                       |                                             |                       |
| 7440-48-4                 | Cobalt                             | Т           | mg/L                  | 6020     | 0.000898                                    | J                | ,                              | 7                     |                                             |                       |                                             |                       |
| 7440-50-8                 | Copper                             | Т           | mg/L                  | 6020     | 0.000821                                    | J                |                                |                       |                                             |                       |                                             |                       |
| 7439-89-6                 | Iron                               | Т           | mg/L                  | 6020     | 0.204                                       |                  |                                |                       |                                             |                       |                                             |                       |
| 7439-92-1                 | Lead                               | Т           | mg/L                  | 6020     | <0.002                                      |                  |                                |                       |                                             |                       | \                                           |                       |
| 7439-95-4                 | Magnesium                          | Т           | mg/L                  | 6020     | 9.28                                        |                  |                                |                       |                                             |                       |                                             |                       |
| 7439-96-5                 | Manganese                          | Т           | mg/L                  | 6020     | 0.00444                                     | J                |                                |                       |                                             |                       |                                             |                       |
| 7439-97-6                 | Mercury                            | Т           | mg/L                  | 7470     | <0.0002                                     |                  | $\sqrt{}$                      |                       |                                             |                       |                                             |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER        | , Facility Well/Spring Number     |             |                       |        | 8000-524                                    | 44                    | \                              |                       |                                             |                       |                                             |                  |
|---------------------|-----------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|--------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|
| Facility's Lo       | ocal Well or Spring Number (e.g., | MW-         | 1, MW-2, e            | tc.)   | 224                                         |                       |                                |                       |                                             |                       |                                             |                  |
| CAS RN <sup>4</sup> | CONSTITUENT                       | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 7439-98-7           | Molybdenum                        | т           | mg/L                  | 6020   | 0.00155                                     |                       |                                |                       |                                             |                       |                                             |                  |
| 7440-02-0           | Nickel                            | т           | mg/L                  | 6020   | 0.0797                                      |                       |                                |                       |                                             |                       |                                             |                  |
| 7440-09-7           | Potassium                         | т           | mg/L                  | 6020   | 0.813                                       |                       |                                |                       |                                             |                       |                                             |                  |
| 7440-16-6           | Rhodium                           | т           | mg/L                  | 6020   | <0.005                                      |                       |                                |                       |                                             |                       |                                             |                  |
| 7782-49-2           | Selenium                          | т           | mg/L                  | 6020   | <0.005                                      |                       |                                |                       |                                             |                       |                                             |                  |
| 7440-22-4           | Silver                            | т           | mg/L                  | 6020   | <0.001                                      |                       |                                |                       |                                             |                       |                                             |                  |
| 7440-23-5           | Sodium                            | т           | mg/L                  | 6020   | 56.2                                        |                       |                                |                       |                                             |                       |                                             |                  |
| 7440-25-7           | Tantalum                          | т           | mg/L                  | 6020   | <0.005                                      |                       |                                |                       |                                             |                       |                                             |                  |
| 7440-28-0           | Thallium                          | т           | mg/L                  | 6020   | <0.002                                      |                       |                                |                       | X                                           |                       |                                             |                  |
| 7440-61-1           | Uranium                           | Т           | mg/L                  | 6020   | <0.0002                                     |                       |                                |                       |                                             |                       |                                             |                  |
| 7440-62-2           | Vanadium                          | Т           | mg/L                  | 6020   | <0.02                                       |                       |                                |                       |                                             |                       |                                             |                  |
| 7440-66-6           | Zinc                              | Т           | mg/L                  | 6020   | 0.00331                                     | BJ                    |                                |                       |                                             |                       |                                             |                  |
| 108-05-4            | Vinyl acetate                     | Т           | mg/L                  | 8260   | <0.005                                      |                       |                                |                       |                                             |                       |                                             |                  |
| 67-64-1             | Acetone                           | Т           | mg/L                  | 8260   | <0.005                                      |                       |                                |                       | /                                           |                       |                                             |                  |
| 107-02-8            | Acrolein                          | Т           | mg/L                  | 8260   | <0.005                                      |                       |                                |                       |                                             |                       |                                             |                  |
| 107-13-1            | Acrylonitrile                     | Т           | mg/L                  | 8260   | <0.005                                      |                       |                                |                       |                                             |                       |                                             |                  |
| 71-43-2             | Benzene                           | Т           | mg/L                  | 8260   | <0.001                                      |                       | /                              |                       |                                             |                       |                                             |                  |
| 108-90-7            | Chlorobenzene                     | т           | mg/L                  | 8260   | <0.001                                      |                       |                                |                       |                                             |                       |                                             |                  |
| 1330-20-7           | Xylenes                           | Т           | mg/L                  | 8260   | <0.003                                      |                       |                                |                       |                                             |                       |                                             |                  |
| 100-42-5            | Styrene                           | Т           | mg/L                  | 8260   | <0.001                                      |                       |                                |                       |                                             |                       |                                             |                  |
| 108-88-3            | Toluene                           | Т           | mg/L                  | 8260   | <0.001                                      |                       |                                |                       |                                             |                       |                                             |                  |
| 74-97-5             | Chlorobromomethane                | т           | mg/L                  | 8260   | <0.001                                      |                       |                                |                       |                                             |                       |                                             |                  |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER1       | , Facility Well/Spring Number     |                             |        | 8000-524                                    | 4                | $\setminus$                    |                  |                                             |                       |                                             | /                     |
|---------------------|-----------------------------------|-----------------------------|--------|---------------------------------------------|------------------|--------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Lo       | ocal Well or Spring Number (e.g., | MW-1, MW-2, e               | tc.)   | 224                                         |                  |                                |                  |                                             |                       |                                             |                       |
| CAS RN <sup>4</sup> | CONSTITUENT                       | T Unit<br>D OF<br>5 MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DENECTED<br>VALUE<br>OR<br>PQL | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 75-27-4             | Bromodichloromethane              | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 75-25-2             | Tribromomethane                   | T mg/L                      | 8260   | <0.001                                      |                  | ,                              |                  |                                             |                       |                                             |                       |
| 74-83-9             | Methyl bromide                    | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 78-93-3             | Methyl ethyl ketone               | T mg/L                      | 8260   | <0.005                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 110-57-6            | trans-1,4-Dichloro-2-butene       | T mg/L                      | 8260   | <0.005                                      |                  |                                |                  |                                             | /                     | /                                           |                       |
| 75-15-0             | Carbon disulfide                  | T mg/L                      | 8260   | <0.005                                      |                  |                                |                  |                                             | /                     |                                             |                       |
| 75-00-3             | Chloroethane                      | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 67-66-3             | Chloroform                        | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 74-87-3             | Methyl chloride                   | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  | X                                           |                       |                                             |                       |
| 156-59-2            | cis-1,2-Dichloroethene            | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 74-95-3             | Methylene bromide                 | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 75-34-3             | 1,1-Dichloroethane                | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 107-06-2            | 1,2-Dichloroethane                | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  | /                                           |                       |                                             |                       |
| 75-35-4             | 1,1-Dichloroethylene              | T mg/L                      | 8260   | <0.001                                      |                  |                                | /                | Ŷ                                           |                       |                                             |                       |
| 106-93-4            | Ethane, 1,2-dibromo               | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 79-34-5             | Ethane, 1,1,2,2-Tetrachloro       | T mg/L                      | 8260   | <0.001                                      |                  |                                | /                |                                             |                       |                                             |                       |
| 71-55-6             | Ethane, 1,1,1-Trichloro-          | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 79-00-5             | Ethane, 1,1,2-Trichloro           | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 630-20-6            | Ethane, 1,1,1,2-Tetrachloro       | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 75-01-4             | Vinyl chloride                    | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |
| 127-18-4            | Ethene, Tetrachloro-              | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             | $\Box$                |
| 79-01-6             | Ethene, Trichloro-                | T mg/L                      | 8260   | <0.001                                      |                  |                                |                  |                                             |                       |                                             |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |              |                       |        | 8000-5244                                   | 4                |                                             |                       |                                             |                       |                                             | $\overline{}$         |
|-----------------------------|-----------------------------------|--------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | al Well or Spring Number (e.g., M | <b>1W</b> −1 | ., M₩-2, et           | .c.)   | 224                                         |                  |                                             |                       |                                             |                       |                                             |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | T<br>D<br>5  | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQD <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 100-41-4                    | Ethylbenzene                      | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 591-78-6                    | 2-Hexanone                        | т            | mg/L                  | 8260   | <0.005                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 74-88-4                     | Iodomethane                       | т            | mg/L                  | 8260   | <0.005                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 124-48-1                    | Methane, Dibromochloro-           | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 56-23-5                     | Carbon Tetrachloride              | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 75-09-2                     | Dichloromethane                   | Т            | mg/L                  | 8260   | <0.005                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 108-10-1                    | Methyl isobutyl ketone            | Т            | mg/L                  | 8260   | <0.005                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro     | т            | mg/L                  | 8011   | <0.0000196                                  |                  |                                             |                       |                                             |                       |                                             |                       |
| 78-87-5                     | Propane, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       | X                                           |                       |                                             |                       |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene      | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene        | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 156-60-5                    | trans-1,2-Dichloroethene          | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 75-69-4                     | Trichlorofluoromethane            | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 96-18-4                     | 1,2,3-Trichloropropane            | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 95-50-1                     | Benzene, 1,2-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 106-46-7                    | Benzene, 1,4-Dichloro-            | т            | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 1336-36-3                   | PCB,Total                         | т            | ug/L                  | 8082   |                                             | *                |                                             |                       |                                             |                       |                                             |                       |
| 12674-11-2                  | PCB-1016                          | т            | ug/L                  | 8082   |                                             | *                |                                             |                       |                                             |                       |                                             |                       |
| 11104-28-2                  | PCB-1221                          | т            | ug/L                  | 8082   |                                             | *                |                                             |                       |                                             |                       |                                             |                       |
| 11141-16-5                  | PCB-1232                          | т            | ug/L                  | 8082   |                                             | *                |                                             |                       |                                             |                       |                                             |                       |
| 53469-21-9                  | PCB-1242                          | т            | ug/L                  | 8082   |                                             | *                |                                             |                       |                                             |                       |                                             |                       |
| 12672-29-6                  | PCB-1248                          | т            | ug/L                  | 8082   |                                             | *                | /                                           |                       |                                             |                       |                                             |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

|                           | DWAIER SAMPLE                    |             |                       |          | COIIC.                                      |                  |                                |                  |                                             |                  |                                             |                       |
|---------------------------|----------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|--------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|
| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |             |                       |          | 8000-5244                                   |                  |                                |                  |                                             |                  |                                             |                       |
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-         | 1, MW-2, et           | .c.)     | 224                                         |                  |                                |                  |                                             |                  |                                             |                       |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 11097-69-1                | PCB-1254                         | т           | ug/L                  | 8082     |                                             | *                |                                |                  |                                             |                  |                                             |                       |
| 11096-82-5                | PCB-1260                         | т           | ug/L                  | 8082     |                                             | *                | •                              |                  |                                             |                  |                                             |                       |
| 11100-14-4                | PCB-1268                         | Т           | ug/L                  | 8082     |                                             | *                |                                |                  |                                             |                  |                                             |                       |
| 12587-46-1                | Gross Alpha                      | т           | pCi/L                 | 9310     | -0.899                                      | *                |                                |                  |                                             |                  |                                             |                       |
| 12587-47-2                | Gross Beta                       | т           | pCi/L                 | 9310     | 7.19                                        | *                |                                |                  |                                             |                  |                                             |                       |
| 10043-66-0                | Iodine-131                       | Т           | pCi/L                 |          |                                             | *                |                                |                  |                                             |                  |                                             |                       |
| 13982-63-3                | Radium-226                       | т           | pCi/L                 | AN-1418  | -0.0801                                     | *                |                                |                  |                                             | 1                |                                             |                       |
| 10098-97-2                | Strontium-90                     | т           | pCi/L                 | 905.0    | -1.59                                       | *                |                                |                  |                                             |                  |                                             |                       |
| 14133-76-7                | Technetium-99                    | Т           | pCi/L                 | Tc-02-RC | 1.12                                        | *                |                                |                  |                                             |                  |                                             |                       |
| 14269-63-7                | Thorium-230                      | Т           | pCi/L                 | Th-01-RC | 0.113                                       | *                |                                |                  | / \                                         |                  |                                             |                       |
| 10028-17-8                | Tritium                          | Т           | pCi/L                 | 906.0    | 108                                         | *                |                                |                  |                                             |                  |                                             |                       |
| s0130                     | Chemical Oxygen Demand           | т           | mg/L                  | 410.4    | 16                                          | J                |                                |                  | /                                           |                  |                                             |                       |
| 57-12-5                   | Cyanide                          | Т           | mg/L                  | 9012     | <0.2                                        |                  |                                | /                | ĺ                                           |                  |                                             |                       |
| 20461-54-5                | Iodide                           | т           | mg/L                  | 300.0    | <0.5                                        |                  |                                |                  |                                             |                  |                                             |                       |
| s0268                     | Total Organic Carbon             | т           | mg/L                  | 9060     | 1.09                                        | J                | ,                              | /                |                                             |                  |                                             |                       |
| s0586                     | Total Organic Halides            | Т           | mg/L                  | 9020     | 0.00462                                     | J                |                                |                  |                                             |                  |                                             |                       |
|                           |                                  |             |                       |          |                                             |                  |                                |                  |                                             |                  |                                             |                       |
|                           |                                  |             |                       |          |                                             |                  |                                |                  |                                             |                  |                                             |                       |
|                           |                                  |             |                       |          |                                             |                  |                                |                  |                                             |                  | `                                           |                       |
|                           |                                  |             |                       |          |                                             |                  |                                |                  |                                             |                  |                                             |                       |
|                           |                                  |             |                       |          |                                             |                  | /                              |                  |                                             |                  |                                             |                       |

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

### GROUNDWATER SAMPLE ANALYSIS (S)

| AKCMA MIMPEP <sup>1</sup> | Facility Well/Spring Number          |             |                       |          | 8004-48                                     | 20                                 | N                                           |                       |                                             |                  |                                             |                  |
|---------------------------|--------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------------------------|---------------------------------------------|-----------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|
|                           |                                      |             |                       |          |                                             |                                    |                                             |                       |                                             |                  |                                             | -/               |
| Facility's Loc            | al Well or Spring Number (e.g., N    | 4W−1        | L, MW-2, etc          | :.)      | MW369                                       | 9                                  |                                             |                       |                                             |                  |                                             | $-\!\!\!/-$      |
| Sample Sequenc            | e #                                  |             |                       |          | 3                                           |                                    |                                             |                       |                                             |                  | /                                           |                  |
| If sample is a B          | lank, specify Type: (F)ield, (T)rip, | (M) ∈       | ethod, or (E)         | quipment | NA                                          |                                    |                                             |                       |                                             |                  |                                             |                  |
| Sample Date an            | d Time (Month/Day/Year hour: minu    | tes         | )                     |          | 7/23/2020                                   | 07:03                              | `                                           |                       |                                             |                  |                                             |                  |
| Duplicate ("Y"            | or "N") <sup>2</sup>                 |             |                       |          | N                                           |                                    |                                             |                       |                                             |                  |                                             |                  |
| Split ("Y" or             | "N") <sup>3</sup>                    |             |                       |          | N                                           |                                    |                                             |                       |                                             |                  |                                             |                  |
| Facility Sampl            | e ID Number (if applicable)          |             |                       |          | MW369UG4-                                   | -20R                               |                                             |                       |                                             | /                |                                             |                  |
| Laboratory Sam            | ple ID Number (if applicable)        |             |                       |          | 51659200                                    | )3                                 |                                             |                       |                                             |                  |                                             |                  |
| Date of Analys            | is (Month/Day/Year) For Volatile     | e Or        | rganics Anal          | ysis     | 7/28/202                                    | 0                                  |                                             |                       |                                             |                  |                                             |                  |
| Gradient with             | respect to Monitored Unit (UP, DC    | , NWC       | , SIDE, UNKN          | IOWN)    | UP                                          |                                    |                                             |                       | $\setminus$                                 | /                |                                             |                  |
| CAS RN <sup>4</sup>       | CONSTITUENT                          | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G |
| 24959-67-9                | Bromide                              | т           | mg/L                  | 9056     |                                             | *                                  |                                             |                       |                                             |                  |                                             |                  |
| 16887-00-6                | Chloride(s)                          | т           | mg/L                  | 9056     |                                             | *                                  |                                             |                       |                                             |                  |                                             |                  |
| 16984-48-8                | Fluoride                             | Т           | mg/L                  | 9056     |                                             | *                                  |                                             |                       |                                             |                  |                                             |                  |
| s0595                     | Nitrate & Nitrite                    | Т           | mg/L                  | 9056     |                                             | *                                  |                                             |                       |                                             |                  |                                             |                  |
| 14808-79-8                | Sulfate                              | т           | mg/L                  | 9056     |                                             | *                                  |                                             |                       |                                             |                  |                                             |                  |
| NS1894                    | Barometric Pressure Reading          | т           | Inches/Hg             | Field    | 30.09                                       |                                    |                                             |                       |                                             |                  |                                             |                  |
| S0145                     | Specific Conductance                 | т           | μ <b>M</b> H0/cm      | Field    | 372                                         |                                    |                                             |                       |                                             |                  |                                             | \                |

<sup>&</sup>lt;sup>1</sup>AKGWA # is 0000-0000 for any type of blank.

#### STANDARD FLAGS:

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

<sup>&</sup>lt;sup>2</sup>Respond "Y" if the sample was a duplicate of another sample in this report.

<sup>&</sup>lt;sup>3</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

 $<sup>^4</sup>$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>5&</sup>quot;T" = Total; "D" = Dissolved

<sup>6&</sup>quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number        |             |                       |          | 8004-4820                                   | )                | $\overline{N}$                 |                  |                                             |                       |                                             |                       |
|-----------------------------|------------------------------------|-------------|-----------------------|----------|---------------------------------------------|------------------|--------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | al Well or Spring Number (e.g., MW | -1, 1       | W−2, BLANK-           | F, etc.) | 369                                         |                  |                                |                  |                                             |                       |                                             |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                        | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD   | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| s0906                       | Static Water Level Elevation       | Т           | Ft. MSL               | Field    | 328.55                                      |                  |                                |                  |                                             |                       |                                             |                       |
| N238                        | Dissolved Oxygen                   | т           | mg/L                  | Field    | 2.66                                        |                  |                                |                  |                                             |                       |                                             |                       |
| s0266                       | Total Dissolved Solids             | Т           | mg/L                  | 160.1    |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| s0296                       | рН                                 | т           | Units                 | Field    | 6.2                                         |                  |                                |                  |                                             |                       |                                             |                       |
| NS215                       | Eh                                 | Т           | mV                    | Field    | 353                                         |                  |                                |                  |                                             |                       |                                             |                       |
| s0907                       | Temperature                        | т           | °C                    | Field    | 17.44                                       |                  |                                |                  |                                             |                       |                                             |                       |
| 7429-90-5                   | Aluminum                           | Т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| 7440-36-0                   | Antimony                           | т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| 7440-38-2                   | Arsenic                            | т           | mg/L                  | 6020     |                                             | *                |                                |                  | X                                           |                       |                                             |                       |
| 7440-39-3                   | Barium                             | Т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| 7440-41-7                   | Beryllium                          | т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             | $\setminus$           |                                             |                       |
| 7440-42-8                   | Boron                              | т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| 7440-43-9                   | Cadmium                            | т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| 7440-70-2                   | Calcium                            | т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| 7440-47-3                   | Chromium                           | т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| 7440-48-4                   | Cobalt                             | т           | mg/L                  | 6020     |                                             | *                |                                | <u>/</u>         |                                             |                       |                                             |                       |
| 7440-50-8                   | Copper                             | Т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| 7439-89-6                   | Iron                               | Т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| 7439-92-1                   | Lead                               | Т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| 7439-95-4                   | Magnesium                          | Т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| 7439-96-5                   | Manganese                          | Т           | mg/L                  | 6020     |                                             | *                |                                |                  |                                             |                       |                                             |                       |
| 7439-97-6                   | Mercury                            | Т           | mg/L                  | 7470     |                                             | *                |                                |                  |                                             |                       |                                             |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |             |                       |        | 8004-482                                    | 0                     | $\setminus$                    |                       |                                             |                       |                                             | /                     |
|---------------------------|----------------------------------|-------------|-----------------------|--------|---------------------------------------------|-----------------------|--------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-         | 1, MW-2, e            | tc.)   | 369                                         |                       |                                |                       |                                             |                       |                                             |                       |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | Т<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 7439-98-7                 | Molybdenum                       | Т           | mg/L                  | 6020   |                                             | *                     |                                |                       |                                             |                       |                                             |                       |
| 7440-02-0                 | Nickel                           | Т           | mg/L                  | 6020   |                                             | *                     |                                |                       |                                             |                       |                                             |                       |
| 7440-09-7                 | Potassium                        | Т           | mg/L                  | 6020   |                                             | *                     |                                |                       |                                             |                       |                                             |                       |
| 7440-16-6                 | Rhodium                          | T           | mg/L                  | 6020   |                                             | *                     |                                | '                     |                                             |                       | /                                           |                       |
| 7782-49-2                 | Selenium                         | Т           | mg/L                  | 6020   |                                             | *                     |                                |                       |                                             |                       |                                             |                       |
| 7440-22-4                 | Silver                           | T           | mg/L                  | 6020   |                                             | *                     |                                |                       |                                             |                       |                                             |                       |
| 7440-23-5                 | Sodium                           | Т           | mg/L                  | 6020   |                                             | *                     |                                |                       |                                             | /                     |                                             |                       |
| 7440-25-7                 | Tantalum                         | Т           | mg/L                  | 6020   |                                             | *                     |                                |                       |                                             |                       |                                             |                       |
| 7440-28-0                 | Thallium                         | Т           | mg/L                  | 6020   |                                             | *                     |                                |                       | X                                           |                       |                                             |                       |
| 7440-61-1                 | Uranium                          | Т           | mg/L                  | 6020   |                                             | *                     |                                |                       |                                             |                       |                                             |                       |
| 7440-62-2                 | Vanadium                         | Т           | mg/L                  | 6020   |                                             | *                     |                                |                       |                                             | $\setminus$           |                                             |                       |
| 7440-66-6                 | Zinc                             | Т           | mg/L                  | 6020   |                                             | *                     |                                |                       |                                             |                       |                                             |                       |
| 108-05-4                  | Vinyl acetate                    | Т           | mg/L                  | 8260   | <0.005                                      |                       |                                |                       |                                             |                       |                                             |                       |
| 67-64-1                   | Acetone                          | Т           | mg/L                  | 8260   | <0.005                                      |                       |                                |                       |                                             |                       |                                             |                       |
| 107-02-8                  | Acrolein                         | Т           | mg/L                  | 8260   | <0.005                                      |                       |                                |                       |                                             |                       |                                             |                       |
| 107-13-1                  | Acrylonitrile                    | Т           | mg/L                  | 8260   | <0.005                                      |                       |                                |                       |                                             |                       |                                             |                       |
| 71-43-2                   | Benzene                          | Т           | mg/L                  | 8260   | <0.001                                      |                       |                                |                       |                                             |                       |                                             |                       |
| 108-90-7                  | Chlorobenzene                    | Т           | mg/L                  | 8260   | <0.001                                      |                       |                                |                       |                                             |                       |                                             |                       |
| 1330-20-7                 | Xylenes                          | Т           | mg/L                  | 8260   | <0.003                                      |                       |                                |                       |                                             |                       | \                                           |                       |
| 100-42-5                  | Styrene                          | Т           | mg/L                  | 8260   | <0.001                                      |                       |                                |                       |                                             |                       |                                             |                       |
| 108-88-3                  | Toluene                          | Т           | mg/L                  | 8260   | <0.001                                      |                       |                                |                       |                                             |                       |                                             |                       |
| 74-97-5                   | Chlorobromomethane               | т           | mg/L                  | 8260   | <0.001                                      |                       |                                |                       |                                             |                       |                                             | \                     |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> | , Facility Well/Spring Number    |              |                       |        | 8004-4820                                   | )                | $\setminus$                    |                       |                                             |                       |                                             |                       |
|---------------------------|----------------------------------|--------------|-----------------------|--------|---------------------------------------------|------------------|--------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Lo             | cal Well or Spring Number (e.g., | MW-:         | L, MW-2, et           | .c.)   | 369                                         |                  |                                |                       |                                             |                       |                                             |                       |
| CAS RN <sup>4</sup>       | CONSTITUENT                      | <b>T</b> D 5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 75-27-4                   | Bromodichloromethane             | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 75-25-2                   | Tribromomethane                  | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 74-83-9                   | Methyl bromide                   | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 78-93-3                   | Methyl ethyl ketone              | Т            | mg/L                  | 8260   | <0.005                                      |                  |                                |                       |                                             |                       | /                                           |                       |
| 110-57-6                  | trans-1,4-Dichloro-2-butene      | Т            | mg/L                  | 8260   | <0.005                                      |                  |                                |                       |                                             | /                     |                                             |                       |
| 75-15-0                   | Carbon disulfide                 | Т            | mg/L                  | 8260   | <0.005                                      |                  |                                |                       |                                             | 7                     |                                             |                       |
| 75-00-3                   | Chloroethane                     | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             | /                     |                                             |                       |
| 67-66-3                   | Chloroform                       | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 74-87-3                   | Methyl chloride                  | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       | X                                           |                       |                                             |                       |
| 156-59-2                  | cis-1,2-Dichloroethene           | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       | _ / \                                       |                       |                                             |                       |
| 74-95-3                   | Methylene bromide                | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 75-34-3                   | 1,1-Dichloroethane               | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 107-06-2                  | 1,2-Dichloroethane               | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 75-35-4                   | 1,1-Dichloroethylene             | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 106-93-4                  | Ethane, 1,2-dibromo              | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 79-34-5                   | Ethane, 1,1,2,2-Tetrachloro      | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 71-55-6                   | Ethane, 1,1,1-Trichloro-         | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 79-00-5                   | Ethane, 1,1,2-Trichloro          | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 630-20-6                  | Ethane, 1,1,1,2-Tetrachloro      | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 75-01-4                   | Vinyl chloride                   | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 127-18-4                  | Ethene, Tetrachloro-             | Т            | mg/L                  | 8260   | <0.001                                      |                  |                                |                       |                                             |                       |                                             |                       |
| 79-01-6                   | Ethene, Trichloro-               | T            | mg/L                  | 8260   | 0.00065                                     | J                | /                              |                       |                                             |                       |                                             |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

**Permit Number:** SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

| AKGWA NUMBER <sup>1</sup> , | Facility Well/Spring Number       |             |                       |        | 8004-482                                    | 0                | $\setminus$                                 |                       |                                             |                       |                                             | /                     |
|-----------------------------|-----------------------------------|-------------|-----------------------|--------|---------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| Facility's Loc              | al Well or Spring Number (e.g., M | ſW−1        | ., <b>M</b> ₩-2, et   | .c.)   | 369                                         |                  |                                             |                       |                                             |                       |                                             |                       |
| CAS RN <sup>4</sup>         | CONSTITUENT                       | T<br>D<br>5 | Unit<br>OF<br>MEASURE | METHOD | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S | DETECTED<br>VALUE<br>OR<br>PQL <sup>6</sup> | F<br>L<br>A<br>G<br>S |
| 100-41-4                    | Ethylbenzene                      | Т           | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 591-78-6                    | 2-Hexanone                        | Т           | mg/L                  | 8260   | <0.005                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 74-88-4                     | Iodomethane                       | Т           | mg/L                  | 8260   | <0.005                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 124-48-1                    | Methane, Dibromochloro-           | Т           | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 56-23-5                     | Carbon Tetrachloride              | Т           | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 75-09-2                     | Dichloromethane                   | Т           | mg/L                  | 8260   | <0.005                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 108-10-1                    | Methyl isobutyl ketone            | Т           | mg/L                  | 8260   | <0.005                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 96-12-8                     | Propane, 1,2-Dibromo-3-chloro     | Т           | mg/L                  | 8011   | <0.0000196                                  |                  |                                             |                       |                                             |                       |                                             |                       |
| 78-87-5                     | Propane, 1,2-Dichloro-            | Т           | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       | X                                           |                       |                                             |                       |
| 10061-02-6                  | trans-1,3-Dichloro-1-propene      | Т           | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 10061-01-5                  | cis-1,3-Dichloro-1-propene        | Т           | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 156-60-5                    | trans-1,2-Dichloroethene          | т           | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 75-69-4                     | Trichlorofluoromethane            | т           | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       | \                                           |                       |
| 96-18-4                     | 1,2,3-Trichloropropane            | Т           | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 95-50-1                     | Benzene, 1,2-Dichloro-            | т           | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 106-46-7                    | Benzene, 1,4-Dichloro-            | Т           | mg/L                  | 8260   | <0.001                                      |                  |                                             |                       |                                             |                       |                                             |                       |
| 1336-36-3                   | PCB,Total                         | т           | ug/L                  | 8082   |                                             | *                |                                             |                       |                                             |                       |                                             |                       |
| 12674-11-2                  | PCB-1016                          | т           | ug/L                  | 8082   |                                             | *                |                                             |                       |                                             |                       |                                             |                       |
| 11104-28-2                  | PCB-1221                          | Т           | ug/L                  | 8082   |                                             | *                |                                             |                       |                                             |                       | \                                           |                       |
| 11141-16-5                  | PCB-1232                          | Т           | ug/L                  | 8082   |                                             | *                |                                             |                       |                                             |                       |                                             |                       |
| 53469-21-9                  | PCB-1242                          | Т           | ug/L                  | 8082   |                                             | *                | /                                           |                       |                                             |                       |                                             |                       |
| 12672-29-6                  | PCB-1248                          | Т           | ug/L                  | 8082   |                                             | *                | /                                           |                       |                                             |                       |                                             |                       |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Gross beta Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detec is 0.895. Rad error is 7.83.  Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detec is 0.895. Rad error is 0.895.  Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detec is 3.24. Rad error is 3.22.  Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detec is 13.2. Rad error is 3.2.  Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detec is 13.2. Rad error is 0.653.  Tritium U Indicates analyte/nuclide was analyzed for, but not detec is 138. Rad error is 0.653.  Tritium U Indicates analyte/nuclide was analyzed for, but not detec is 138. Rad error is 0.653.  Rad error is 0.653.  Rad error is 0.653.  Tritium U Indicates analyte/nuclide was analyzed for, but not detec is 138. Rad error is 0.653.  Analysis of constituent not required and not performed.  Analysis of constituent not required and not performed.  Analysis of constituent not required and not performed.  PCB-1221 Analysis of constituent not required and not performed.  PCB-1242 Analysis of constituent not required and not performed.  PCB-1254 Analysis of constituent not required and not performed.  PCB-1268 Analysis of constituent not required and not performed.  PCB-1268 Analysis of constituent not required and not performed.  PCB-1268 Analysis of constituent not required and not performed.  PCB-1268 Analysis of constituent not required and not performed.  Indicates analyte/nuclide was analyzed for, but not detec is 5.84. Rad error is 5.76.  Indicates analyte/nuclide was analyzed for, but not detec is 7.68. Rad error is 7.55.  Indicates analyte/nuclide was analyzed for, but not detec is 3.72. Rad error is 3.72.  Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detec is 13.1. Indicates analyte/nuclide was analyzed for, but not detec is 3.72. Rad error is 3.72.  Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detec is 0.703. Red error is 3.73.                 | •                   | cility<br>mple ID | Constituent   | Flag | Description                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|---------------|------|-----------------------------------------------------------------------------------------------|
| PCB-1221 PCB-1232 PCB-1242 PCB-1242 PCB-1244 PCB-1254 PCB-1254 PCB-1256 PCB-1260 PCB-1260 PCB-1260 PCB-1268 Analysis of constituent not required and not performed. Indicates analyte/muclide was analyzed for, but not detect is 5.39. Rad error is 8.34. TPu is 8.41. Rad error is 7.83. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Tritium  Unidicates analyte/muclide was analyzed for, but not detect is 3.24. Rad error is 13. Thorium-230 Unidicates analyte/muclide was analyzed for, but not detect is 13.24. Rad error is 13. Thorium-230 Unidicates analyte/muclide was analyzed for, but not detect is 13.24. Rad error is 13. Thorium-230 Unidicates analyte/muclide was analyzed for, but not detect is 10.654. Rad error is 13. Thorium-230 Unidicates analyte/muclide was analyzed for, but not detect is 10.654. Rad error is 13. Analysis of constituent not required and not performed. Analysis of constituent not required a | 3000-5201 MW220 MW2 | 20SG4-20          | PCB, Total    |      | Analysis of constituent not required and not performed.                                       |
| PCB-1232 PCB-1242 PCB-1248 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCB-1260 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1269 PCB-1269 PCB-1269 PCB-1269 PCB-1260 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1269 PCB-1269 PCB-1269 PCB-1269 PCB-1269 PCB-1269 PCB-1269 PCB-1268 PCB-1269 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1269 PCB-1268 PCB-1269 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1268 PCB-1269 PCB-1268 PCB |                     |                   | PCB-1016      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1242 PCB-1254 PCB-1254 PCB-1254 PCB-1260 PCB-1268 PCB-1268 PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detect is 5.3 a. Rad error is 7.8 a. Indicates analyte/nuclide was analyzed for, but not detect is 0.895. Rad error is 7.8 a. Indicates analyte/nuclide was analyzed for, but not detect is 0.895. Rad error is 7.8 a. Indicates analyte/nuclide was analyzed for, but not detect is 1.3 a. Rad error is 3.2 a. Indicates analyte/nuclide was analyzed for, but not detect is 1.3 a. Rad error is 1.3 a. Indicates analyte/nuclide was analyzed for, but not detect is 1.3 a. Rad error is 1.3 a. Indicates analyte/nuclide was analyzed for, but not detect is 1.3 a. Rad error is 1.3 a. Indicates analyte/nuclide was analyzed for, but not detect is 1.3 a. Rad error is 1.3 a. Indicates analyte/nuclide was analyzed for, but not detect is 1.3 a. Rad error is 1.3 a. Indicates analyte/nuclide was analyzed for, but not detect is 1.3 a. Rad error is 1.3 a. Indicates analyte/nuclide was analyzed for, but not detect is 1.3 a. Rad error is 1.3 a. Indicates analyte/nuclide was analyzed for, but not detect is 1.3 a. Rad error is 1.3 a. Indicates analyte/nuclide was analyzed for, but not detect is 1.3 a. Rad error is 1.3 a. Indicates analyte/nuclide was analyzed for, but not detect is 1.3 a. Rad error is 7.5 a. Indicates analyte/nuclide was analyzed for, but not detect is 1.3 a. Rad error is 7.5 a. Indicates analyte/nuclide was analyzed for, but not detect is 5.8 a. Rad error is 7.5 a. Indicates analyte/nuclide was analyzed for, but not detect is 5.8 a. Rad error is 7.5 a. Indicates analyte/nuclide was analyzed for, but not |                     |                   | PCB-1221      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1248 PCB-1254 PCB-1260 PCB-1260 PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detec is 5.39. Rad error is 7.33. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detec is 0.895. Rad error is 0.895. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detec is 3.24. Rad error is 3.24. Rad error is 3.24. Rad error is 3.25. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detec is 13.2 Rad error is 1.30. Tritium U Indicates analyte/nuclide was analyzed for, but not detec is 13.2 Rad error is 1.30. Indicates analyte/nuclide was analyzed for, but not detec is 13.2 Rad error is 1.30. Indicates analyte/nuclide was analyzed for, but not detec is 13.8 Rad error is 0.654. Rad error is 0.756. Indicates analyte error is 0.654. Rad error is 0.756. Indicates analyte error is 0.755. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detec is 0.768. Rad error is 0.765. Analysis of constituent not required and  |                     |                   | PCB-1232      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1254 PCB-1260 PCB-1268 Analysis of constituent not required and not performed. Indicates analyte/muclide was analyzed for, but not detect is 5.39. Rad error is 7.83. Analysis of constituent not required and not performed. Tritium Undicates analyte/muclide was analyzed for, but not detect is 13.2. Rad error is 3.22. Tritium Undicates analyte/muclide was analyzed for, but not detect is 13.2. Rad error is 3.2. Tritium Undicates analyte/muclide was analyzed for, but not detect is 13.2. Rad error is 13.2. Tritium Undicates analyte/muclide was analyzed for, but not detect is 13.8. Rad error is 13.8. Analysis of constituent not required and not performed. Analysis of constituent not required and  |                     |                   | PCB-1242      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1260 PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detec is 5.39. Rad error is 7.83. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detec is 0.895. Rad error is 0.895. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detec is 0.895. Rad error is 0.395. Trechnetium-99 U Indicates analyte/nuclide was analyzed for, but not detec is 3.24. Rad error is 3.22. Indicates analyte/nuclide was analyzed for, but not detec is 1.32. Rad error is 0.653. Tritium U Indicates analyte/nuclide was analyzed for, but not detec is 1.38. Rad error is 0.53. Tritium U Indicates analyte/nuclide was analyzed for, but not detec is 1.38. Rad error is 0.53. Analysis of constituent not required and not performed. Analysis of constituent not requir |                     |                   | PCB-1248      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1268 Gross alpha Gross peta Gross beta Gross beta Indicates analyte/fuclide was analyzed for, but not detec is 5.39. Rad error is 7.34.  Iodine-131 Radium-226 U Indicates analyte/fuclide was analyzed for, but not detec is 0.39. Rad error is 7.85.  Iodine-131 Radium-226 U Indicates analyte/fuclide was analyzed for, but not detec is 0.895. Rad error is 0.895.  Strontium-90 U Indicates analyte/fuclide was analyzed for, but not detec is 3.24. Rad error is 3.22. Technetium-99 U Indicates analyte/fuclide was analyzed for, but not detec is 3.24. Rad error is 3.22. Technetium-99 U Indicates analyte/fuclide was analyzed for, but not detec is 1.32. Rad error is 1.33. Thorium-230 U Indicates analyte/fuclide was analyzed for, but not detec is 1.32. Rad error is 1.053. Tritium U Indicates analyte/fuclide was analyzed for, but not detec is 1.38. Rad error is 1.053. Analysis of constituent not required and not performed. PCB-1016 PCB-1016 PCB-1016 Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 |                     |                   | PCB-1254      |      | Analysis of constituent not required and not performed.                                       |
| Gross alpha Gross beta Gross beta Gross beta Gross beta Gross beta U Indicates analyte/nuclide was analyzed for, but not detect is 5.39. Rad error is 5.34. TPU is 8.41. Rad error is 7.83. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect is 0.995. Rad error is 0.895. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect is 3.24. Rad error is 0.895. Trictium U Indicates analyte/nuclide was analyzed for, but not detect is 3.24. Rad error is 3.22. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect is 13.2. Rad error is 13.5. Tritium U Indicates analyte/nuclide was analyzed for, but not detect is 0.654. Rad error is 1.655. Tritium U Indicates analyte/nuclide was analyzed for, but not detect is 0.654. Rad error is 0.655. Tritium U Indicates analyte/nuclide was analyzed for, but not detect is 138. Rad error is 0.654. Rad error is 0.742. Rad er |                     |                   | PCB-1260      |      | Analysis of constituent not required and not performed.                                       |
| is 5.39. Rad error is 5.34.  TPU is 8.41. Rad error is 7.83. Iodine-131  Radium-226  U Indicates analyte/nuclide was analyzed for, but not detection is 0.895. Rad error is 0.795. Rad err |                     |                   | PCB-1268      |      | Analysis of constituent not required and not performed.                                       |
| lodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detec is 0.895. Rad error is 0.895. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detec is 3.24. Rad error is 0.22. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detec is 3.24. Rad error is 0.25. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detec is 13.2. Rad error is 13. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detec is 0.654. Rad error is 0.653. Tritium U Indicates analyte/nuclide was analyzed for, but not detec is 0.854. Rad error is 0.653. Analysis of constituent not required and not performed. PCB-1016 Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1244 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1269 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Ana |                     |                   | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 5.39. Rad error is 5.34.   |
| Radium-226  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detec is 0.895. Rad error is 0.895. Rade fror is 0.895. Rade fror is 0.895. Rade fror is 0.895. Indicates analyte/nuclide was analyzed for, but not detec is 3.24. Rad error is 3.22.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detec is 13.2. Rad error is 13.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detec is 0.654. Rad error is 16.35.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detec is 10.654. Rad error is 0.653.  Rad error is 0.653.  Rad error is 0.654. Rad error is 0.764. Rad error is 0.765. Indicates analyte/nuclide was analyzed for, but not detec is 0.764. Rad error is 0.764. Rad error is 0.764. Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detec is 0.764. Rad error is 0.764. Rad error is 0.742. Rad error is 0.764. Indicates analyte/nuclide was analyzed for, but not detec is 0.765. Rad error is 0.764. Indicates analyte/nuclide was analyzed for, but not detec is 0.765. Rad error is 0.742. Rad error is 0.765. Indicates analyte/nuclide was analyzed for, but not detec is 0.765. Rad error is 0.765. Indicates analyte/nuclide was analyzed for, but not detec is 0.765. Rad error is 0.765. Indicates analyte/nuclide was a |                     |                   | Gross beta    |      | TPU is 8.41. Rad error is 7.83.                                                               |
| is 0.895. Rad error is 0.895.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detec is 3.24. Rad error is 3.22.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detec is 13.2. Rad error is 3.22.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detec is 0.654. Rad error is 0.655.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detec is 0.654. Rad error is 0.655.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detec is 13.8. Rad error is 0.651.  Rad error is 0.652.  PCB, Total  PCB-1016  PCB-1016  PCB-1221  Analysis of constituent not required and not performed.  PCB-1232  Analysis of constituent not required and not performed.  PCB-1242  Analysis of constituent not required and not performed.  Analysis of constituent not required and not performed |                     |                   | lodine-131    |      | Analysis of constituent not required and not performed.                                       |
| Technetium-99  Technetium-99  Technetium-99  Technetium-99  Torium-230  Thorium-230  Tiriium  Tritium  Torium-230  Tritium  Tritium  Torium-230  Torium-230  Tritium  Torium-230  Torium-230  Tritium  Torium-230  Torium-30  Tritium  Torium-230  Torium-30  Tritium  Torium-230  Tritium  Torium-230  Tritium  Torium-230  Tritium  Torium-24  Torium-25  Torium-30  Tritium  Torium-30  Tritium  Torium-30  Tor |                     |                   | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 0.895. Rad error is 0.895. |
| is 13.2. Rad error is 13.  Thorium-230  Tritium  U Indicates analyte/nuclide was analyzed for, but not detec is 0.654. Rad error is 0.653.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detec is 138. Rad error is 133.  Analysis of constituent not required and not performed.  PCB-1016  PCB-1021  PCB-1221  PCB-1232  PCB-1242  PCB-1242  PCB-1248  PCB-1248  PCB-1254  PCB-1256  PCB-1260  PCB-1260  PCB-1260  PCB-1268  Gross alpha  Gross alpha  Gross alpha  Gross alpha  Gross beta  U Indicates analyte/nuclide was analyzed for, but not detec is 7.68. Rad error is 7.55.  Iodine-131  Radium-226  Strontium-90  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detec is 0.742. Rad error is 0.742.  Indicates analyte/nuclide was analyzed for, but not detec is 13.72. Rad error is 3.72.  Indicates analyte/nuclide was analyzed for, but not detec is 13.72. Rad error is 13.1.  Thorium-230  Tritium  U Indicates analyte/nuclide was analyzed for, but not detec is 0.703. Rad error is 13.7.  Indicates analyte/nuclide was analyzed for, but not detec is 13.72. Rad error is 0.742.  Indicates analyte/nuclide was analyzed for, but not detec is 13.72. Rad error is 0.742.  Indicates analyte/nuclide was analyzed for, but not detec is 13.73. Rad error is 0.742.  Indicates analyte/nuclide was analyzed for, but not detec is 13.73. Rad error is 0.742.  Indicates analyte/nuclide was analyzed for, but not detec is 13.73. Rad error is 13.1.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detec is 0.703. Rad error is 0.703.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detec is 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                               |                     |                   | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 3.24. Rad error is 3.22.   |
| is 0.654. Rad error is 0.653.  Tritium  U indicates analyte/nuclide was analyzed for, but not detect is 138. Rad error is 0.653.  Tritium  U indicates analyte/nuclide was analyzed for, but not detect is 138. Rad error is 133.  Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detect is 7.68. Rad error is 5.76.  Indicates analyte/nuclide was analyzed for, but not detect is 0.742. Rad error is 0.742.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detect is 3.72. Rad error is 3.72.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                   | Technetium-99 | U    |                                                                                               |
| is 138. Rad error is 133.  Analysis of constituent not required and not performed.  PCB-1016 PCB-1221 Analysis of constituent not required and not performed.  PCB-1232 Analysis of constituent not required and not performed.  PCB-1232 Analysis of constituent not required and not performed.  PCB-1242 Analysis of constituent not required and not performed.  PCB-1248 Analysis of constituent not required and not performed.  PCB-1254 Analysis of constituent not required and not performed.  PCB-1260 Analysis of constituent not required and not performed.  PCB-1268 Analysis of constituent not required and not performed.  Analysis of constituent not required and not performed.  Analysis of constituent not required and not performed.  Indicates analyte/nuclide was analyzed for, but not detec is 7.68. Rad error is 7.55.  Iodine-131 Radium-226 Undicates analyte/nuclide was analyzed for, but not detec is 0.742. Rad error is 0.742.  Strontium-90 Undicates analyte/nuclide was analyzed for, but not detec is 3.72. Rad error is 0.742.  Technetium-99 Undicates analyte/nuclide was analyzed for, but not detec is 13.1. Rad error is 13.1.  Thorium-230 Undicates analyte/nuclide was analyzed for, but not detec is 0.703. Rad error is 0.703.  Tritium Undicates analyte/nuclide was analyzed for, but not detec is 0.703.  Indicates analyte/nuclide was analyzed for, but not detec is 0.703.  Indicates analyte/nuclide was analyzed for, but not detec is 0.703.  Indicates analyte/nuclide was analyzed for, but not detec is 0.703.  Indicates analyte/nuclide was analyzed for, but not detec is 0.703.  Indicates analyte/nuclide was analyzed for, but not detec is 0.703.  Indicates analyte/nuclide was analyzed for, but not detec is 0.703.  Indicates analyte/nuclide was analyzed for, but not detec is 0.703.  Indicates analyte/nuclide was analyzed for, but not detec is 0.703.  Indicates analyte/nuclide was analyzed for, but not detec is 0.703.                                                                                                                   |                     |                   |               |      |                                                                                               |
| PCB-1016 PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Gross alpha Undicates analyte/nuclide was analyzed for, but not detection is 5.84. Rad error is 5.76. Gross beta Undicates analyte/nuclide was analyzed for, but not detection is 7.68. Rad error is 7.55. Analysis of constituent not required and not performed. Undicates analyte/nuclide was analyzed for, but not detection is 7.68. Rad error is 7.55. Analysis of constituent not required and not performed. Undicates analyte/nuclide was analyzed for, but not detection is 7.42. Rad error is 0.742. Strontium-90 Undicates analyte/nuclide was analyzed for, but not detection is 3.72. Rad error is 3.72. Technetium-99 Undicates analyte/nuclide was analyzed for, but not detection is 0.703. Rad error is 13.1. Thorium-230 Undicates analyte/nuclide was analyzed for, but not detection is 0.703. Rad error is 0.703. Tritium Undicates analyte/nuclide was analyzed for, but not detection is 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                   |               | U    |                                                                                               |
| PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detection is 7.88. Rad error is 5.76. Indicates analyte/nuclide was analyzed for, but not detection is 7.68. Rad error is 0.742. Indicates analyte/nuclide was analyzed for, but not detection is 3.72. Rad error is 0.742. Technetium-90 Undicates analyte/nuclide was analyzed for, but not detection is 3.72. Rad error is 3.72. Technetium-99 Undicates analyte/nuclide was analyzed for, but not detection in 3.1. Indicates analyte/nuclide was analyzed for, but not detection is 0.703. Rad error is 0.703. Rad error is 0.703. Rad error is 0.703. Indicates analyte/nuclide was analyzed for, but not detection 0.703. Indicates analyte/nuclide was analyzed for, but not detection 0.703. Indicates analyte/nuclide was analyzed for, but not detection 0.703. Indicates analyte/nuclide was analyzed for, but not detection 0.703. Indicates analyte/nuclide was analyzed for, but not detection 0.703. Indicates analyte/nuclide was analyzed for, but not detection 0.703. Indicates analyte/nuclide was analyzed for, but not detection 0.703. Indicates analyte/nuclide was analyzed for, but not detection 0.703. Indicates analyte/nuclide was analyzed for, but not detection 0.703. Indicates analyte/nuclide was analyzed for, but not detection 0.703. Indicates analyte/nuclide was analyzed for, but not detection 0.703. Indicates analyte/nuclide was analyzed for, b | 000-5202 MW221 MW2  | 21SG4-20          | PCB, Total    |      | Analysis of constituent not required and not performed.                                       |
| PCB-1232 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Gross alpha Undicates analyte/nuclide was analyzed for, but not detection is 5.84. Rad error is 5.76. Gross beta Undicates analyte/nuclide was analyzed for, but not detection is 7.68. Rad error is 7.55. Indicates analyte/nuclide was analyzed for, but not detection is 0.742. Rad error is 0.742. Strontium-90 Undicates analyte/nuclide was analyzed for, but not detection is 3.72. Rad error is 3.72. Technetium-99 Undicates analyte/nuclide was analyzed for, but not detection is 3.72. Rad error is 3.73. Thorium-230 Undicates analyte/nuclide was analyzed for, but not detection is 0.703. Rad error is 0.703. Tritium Undicates analyte/nuclide was analyzed for, but not detection is 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                   | PCB-1016      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1242 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detection is 5.84. Rad error is 5.76. Gross beta U Indicates analyte/nuclide was analyzed for, but not detection is 7.88. Rad error is 7.55. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. U Indicates analyte/nuclide was analyzed for, but not detection is 0.742. Rad error is 0.742. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detection is 3.72. Rad error is 3.72. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detection is 13.1. Rad error is 13.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detection is 0.703. Rad error is 0.703. Tritium U Indicates analyte/nuclide was analyzed for, but not detection is 0.703. Tritium U Indicates analyte/nuclide was analyzed for, but not detection is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                   | PCB-1221      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1248 PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detection is 5.84. Rad error is 5.76. Gross beta U Indicates analyte/nuclide was analyzed for, but not detection is 7.68. Rad error is 7.55. Indicates analyte/nuclide was analyzed for, but not detection is 0.742. Rad error is 0.742. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detection is 3.72. Rad error is 3.72. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detection is 3.72. Rad error is 3.73. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detection is 0.703. Rad error is 0.703. Rad error is 0.703. Tritium U Indicates analyte/nuclide was analyzed for, but not detection 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                   | PCB-1232      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detection is 5.84. Rad error is 5.76. Gross beta U Indicates analyte/nuclide was analyzed for, but not detection is 7.68. Rad error is 7.55. Indicates analyte/nuclide was analyzed for, but not detection is 0.742. Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detection is 0.742. Rad error is 0.742. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detection is 3.72. Rad error is 3.72. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detection is 13.1. Rad error is 13.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detection 0.703. Rad error is 0.703. Tritium U Indicates analyte/nuclide was analyzed for, but not detection 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                   | PCB-1242      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed.  Gross alpha U Indicates analyte/nuclide was analyzed for, but not detection is 5.84. Rad error is 5.76.  Gross beta U Indicates analyte/nuclide was analyzed for, but not detection is 7.68. Rad error is 7.55.  Iodine-131 Analysis of constituent not required and not performed.  Radium-226 U Indicates analyte/nuclide was analyzed for, but not detection is 0.742. Rad error is 0.742.  Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detection is 3.72. Rad error is 3.72. Rad error is 3.72.  Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detection is 13.1.  Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detection 0.703. Rad error is 0.703.  Tritium U Indicates analyte/nuclide was analyzed for, but not detection 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                   | PCB-1248      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1268  Gross alpha  U Indicates analyte/nuclide was analyzed for, but not detect is 5.84. Rad error is 5.76.  Gross beta  U Indicates analyte/nuclide was analyzed for, but not detect is 7.68. Rad error is 7.55.  Iodine-131  Radium-226  U Indicates analyte/nuclide was analyzed for, but not detect is 0.742. Rad error is 0.742.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detect is 3.72. Rad error is 3.72.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detect is 13.1. Rad error is 13.1.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                   | PCB-1254      |      | Analysis of constituent not required and not performed.                                       |
| Gross alpha  U Indicates analyte/nuclide was analyzed for, but not detect is 5.84. Rad error is 5.76.  Gross beta  U Indicates analyte/nuclide was analyzed for, but not detect is 7.68. Rad error is 7.55.  Iodine-131  Radium-226  U Indicates analyte/nuclide was analyzed for, but not detect is 0.742. Rad error is 0.742.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detect is 3.72. Rad error is 3.72.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detect is 13.1. Rad error is 13.1.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                   | PCB-1260      |      | Analysis of constituent not required and not performed.                                       |
| is 5.84. Rad error is 5.76.  Gross beta  U Indicates analyte/nuclide was analyzed for, but not detection is 7.68. Rad error is 7.55.  Iodine-131  Radium-226  U Indicates analyte/nuclide was analyzed for, but not detection is 0.742. Rad error is 0.742.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detection is 3.72. Rad error is 3.72.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detection is 13.1. Rad error is 13.1.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detection is 0.703. Rad error is 0.703.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detection is 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                   | PCB-1268      |      | Analysis of constituent not required and not performed.                                       |
| is 7.68. Rad error is 7.55.  Iodine-131 Analysis of constituent not required and not performed.  Radium-226 U Indicates analyte/nuclide was analyzed for, but not detect is 0.742. Rad error is 0.742.  Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detect is 3.72. Rad error is 3.72.  Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detect is 13.1. Rad error is 13.1.  Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.  Tritium U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                   | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 5.84. Rad error is 5.76.   |
| Radium-226  U Indicates analyte/nuclide was analyzed for, but not detect is 0.742. Rad error is 0.742.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detect is 3.72. Rad error is 3.72.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detect is 13.1. Rad error is 13.1.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                   | Gross beta    | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 7.68. Rad error is 7.55.   |
| is 0.742. Rad error is 0.742.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detect is 3.72. Rad error is 3.72.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detect is 13.1. Rad error is 13.1.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                   | lodine-131    |      | Analysis of constituent not required and not performed.                                       |
| is 3.72. Rad error is 3.72.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detect is 13.1. Rad error is 13.1.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Indicates analyte/nuclide was analyzed for, but not detect is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                   | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 0.742. Rad error is 0.742. |
| is 13.1. Rad error is 13.1.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703. Rad error is 0.703.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detect is 0.703.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                   |               |      |                                                                                               |
| is 0.703. Rad error is 0.703.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                   | Technetium-99 | U    |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   |               |      |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                   | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 132. Rad error is 130.     |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent   | Flag  | Description                                                                                   |
|---------------------|-----------------------|---------------|-------|-----------------------------------------------------------------------------------------------|
| 3000-5242 MW222     | 2 MW222SG4-20         | PCB, Total    |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1016      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1221      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1232      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1242      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1248      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1254      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1260      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1268      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | Gross alpha   | U     | Indicates analyte/nuclide was analyzed for, but not detected. T is 2.18. Rad error is 2.18.   |
|                     |                       | Gross beta    | U     | Indicates analyte/nuclide was analyzed for, but not detected. T is 6.4. Rad error is 6.36.    |
|                     |                       | lodine-131    |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | Radium-226    | U     | Indicates analyte/nuclide was analyzed for, but not detected. T is 0.583. Rad error is 0.582. |
|                     |                       | Strontium-90  | U     | Indicates analyte/nuclide was analyzed for, but not detected. T is 3.42. Rad error is 3.4.    |
|                     |                       | Technetium-99 | U<br> | Indicates analyte/nuclide was analyzed for, but not detected. I is 12.4. Rad error is 12.4.   |
|                     |                       | Thorium-230   | U     | Indicates analyte/nuclide was analyzed for, but not detected. I is 1.71. Rad error is 1.7.    |
|                     |                       | Tritium       | U     | Indicates analyte/nuclide was analyzed for, but not detected. I is 135. Rad error is 132.     |
| 000-5243 MW223      | 3 MW223SG4-20         | PCB, Total    |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1016      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1221      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1232      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1242      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1248      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1254      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1260      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1268      |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | Gross alpha   | U     | Indicates analyte/nuclide was analyzed for, but not detected. T is 4.67. Rad error is 4.66.   |
|                     |                       | Gross beta    | U     | Indicates analyte/nuclide was analyzed for, but not detected. T is 8.05. Rad error is 7.98.   |
|                     |                       | lodine-131    |       | Analysis of constituent not required and not performed.                                       |
|                     |                       | Radium-226    | U     | Indicates analyte/nuclide was analyzed for, but not detected. T is 0.698. Rad error is 0.698. |
|                     |                       | Strontium-90  | U     | Indicates analyte/nuclide was analyzed for, but not detected. T is 1.92. Rad error is 1.92.   |
|                     |                       | Technetium-99 | U     | Indicates analyte/nuclide was analyzed for, but not detected. T is 13. Rad error is 13.       |
|                     |                       | Thorium-230   | U     | Indicates analyte/nuclide was analyzed for, but not detected. I is 0.9. Rad error is 0.899.   |
|                     |                       | Tritium       | U     | Indicates analyte/nuclide was analyzed for, but not detected. I is 132. Rad error is 131.     |
|                     |                       |               |       |                                                                                               |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent   | Flag | Description                                                                                   |
|---------------------|-----------------------|---------------|------|-----------------------------------------------------------------------------------------------|
| 000-5244 MW22       | 24 MW224SG4-20        | PCB, Total    |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1016      |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1221      |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1232      |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1242      |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1248      |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1254      |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1260      |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1268      |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 5.18. Rad error is 5.13.   |
|                     |                       | Gross beta    | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 5.27. Rad error is 5.25.   |
|                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 0.724. Rad error is 0.723. |
|                     |                       | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 1.04. Rad error is 1.04.   |
|                     |                       | Technetium-99 | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 12. Rad error is 12.       |
|                     |                       | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 0.998. Rad error is 0.994. |
|                     |                       | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. I is 134. Rad error is 133.     |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitori<br>Point | ng    | Facility<br>Sample ID | Constituent                 | Flag | Description                                                    |
|-------------------|-------|-----------------------|-----------------------------|------|----------------------------------------------------------------|
| 004-4820          | MW369 | MW369UG4-20           | Nitrate & Nitrite           | Н    | Analysis performed outside holding time requirement            |
|                   |       |                       | Total Dissolved Solids      | *    | Duplicate analysis not within control limits.                  |
|                   |       |                       | Vinyl acetate               |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Acetone                     |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Acrolein                    |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Acrylonitrile               |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Benzene                     |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Chlorobenzene               |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Xylenes                     |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Styrene                     |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Toluene                     |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Chlorobromomethane          |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Bromodichloromethane        |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Tribromomethane             |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Methyl bromide              |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Methyl Ethyl Ketone         |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | trans-1,4-Dichloro-2-butene |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Carbon disulfide            |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Chloroethane                |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Chloroform                  |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Methyl chloride             |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | cis-1,2-Dichloroethene      |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Methylene bromide           |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | 1,1-Dichloroethane          |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | 1,2-Dichloroethane          |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | 1,1-Dichloroethylene        |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | 1,2-Dibromoethane           |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | 1,1,2,2-Tetrachloroethane   |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | 1,1,1-Trichloroethane       |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | 1,1,2-Trichloroethane       |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | 1,1,1,2-Tetrachloroethane   |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Vinyl chloride              |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Tetrachloroethene           |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Trichloroethene             |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Ethylbenzene                |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | 2-Hexanone                  |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | lodomethane                 |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Dibromochloromethane        |      | Sample received out of temperature at lab; resample result rep |
|                   |       |                       | Carbon tetrachloride        |      | Sample received out of temperature at lab; resample result rep |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

|               | Sample ID    | Constituent                 | Flag | Description                                                                                    |
|---------------|--------------|-----------------------------|------|------------------------------------------------------------------------------------------------|
| 04-4820 MW369 | MW369UG4-20  | Dichloromethane             |      | Sample received out of temperature at lab; resample result repo                                |
|               |              | Methyl Isobutyl Ketone      |      | Sample received out of temperature at lab; resample result repo                                |
|               |              | 1,2-Dibromo-3-chloropropane |      | Sample received out of temperature at lab; resample result repo                                |
|               |              | 1,2-Dichloropropane         |      | Sample received out of temperature at lab; resample result repo                                |
|               |              | trans-1,3-Dichloropropene   |      | Sample received out of temperature at lab; resample result repo                                |
|               |              | cis-1,3-Dichloropropene     |      | Sample received out of temperature at lab; resample result repo                                |
|               |              | trans-1,2-Dichloroethene    |      | Sample received out of temperature at lab; resample result repo                                |
|               |              | Trichlorofluoromethane      |      | Sample received out of temperature at lab; resample result repo                                |
|               |              | 1,2,3-Trichloropropane      |      | Sample received out of temperature at lab; resample result repo                                |
|               |              | 1,2-Dichlorobenzene         |      | Sample received out of temperature at lab; resample result repo                                |
|               |              | 1,4-Dichlorobenzene         |      | Sample received out of temperature at lab; resample result repo                                |
|               |              | Gross alpha                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. This 5.5. Rad error is 5.5.      |
|               |              | Gross beta                  |      | TPU is 9.58. Rad error is 9.12.                                                                |
|               |              | lodine-131                  |      | Analysis of constituent not required and not performed.                                        |
|               |              | Radium-226                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.557. Rad error is 0.557. |
|               |              | Strontium-90                | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF is 3.21. Rad error is 3.19.   |
|               |              | Technetium-99               |      | TPU is 11.3. Rad error is 11.1.                                                                |
|               |              | Thorium-230                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.44. Rad error is 0.44.   |
|               |              | Tritium                     | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF is 135. Rad error is 135.     |
| 04-4818 MW370 | MW370UG4-20R | Boron                       | N    | Sample spike (MS/MSD) recovery not within control limits                                       |
|               |              | Gross alpha                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF is 5.83. Rad error is 5.76.   |
|               |              | Gross beta                  |      | TPU is 15.2. Rad error is 10.9.                                                                |
|               |              | lodine-131                  |      | Analysis of constituent not required and not performed.                                        |
|               |              | Radium-226                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.44. Rad error is 0.44.   |
|               |              | Strontium-90                | U    | Indicates analyte/nuclide was analyzed for, but not detected. This 2.96. Rad error is 2.96.    |
|               |              | Technetium-99               |      | TPU is 16.8. Rad error is 15.1.                                                                |
|               |              | Thorium-230                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.662. Rad error is 0.661. |
|               |              | Tritium                     | U    | Indicates analyte/nuclide was analyzed for, but not detected. The is 133. Rad error is 133.    |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent   | Flag | Description                                                                                     |
|---------------------|-----------------------|---------------|------|-------------------------------------------------------------------------------------------------|
| 3004-4808 MW372     | MW372UG4-20R          | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. This 6.18. Rad error is 6.12.     |
|                     |                       | Gross beta    |      | TPU is 17. Rad error is 11.7.                                                                   |
|                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                         |
|                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. This 0.238. Rad error is 0.238.   |
|                     |                       | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. The is 3.87. Rad error is 3.87.   |
|                     |                       | Technetium-99 |      | TPU is 19.4. Rad error is 15.5.                                                                 |
|                     |                       | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected. The is 1.11. Rad error is 1.1.    |
|                     |                       | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. The is 120. Rad error is 120.     |
| 004-4792 MW373      | MW373UG4-20R          | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. The is 9.57. Rad error is 9.42.   |
|                     |                       | Gross beta    |      | TPU is 8.68. Rad error is 8.03.                                                                 |
|                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                         |
|                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. This 0.592. Rad error is 0.592.   |
|                     |                       | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. The is 3.97. Rad error is 3.97.   |
|                     |                       | Technetium-99 | U    | Indicates analyte/nuclide was analyzed for, but not detected. The is 13.9. Rad error is 13.7.   |
|                     |                       | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected. The is 0.943. Rad error is 0.935. |
|                     |                       | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. The is 124. Rad error is 124.     |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent         | Flag | Description                                                                                 |
|---------------------|-----------------------|---------------------|------|---------------------------------------------------------------------------------------------|
| 8004-4809 MW38      | 34 MW384SG4-20        | Chloride            | W    | Post-digestion spike recovery out of control limits.                                        |
|                     |                       | Tantalum            | N    | Sample spike (MS/MSD) recovery not within control limits                                    |
|                     |                       | 1,4-Dichlorobenzene | Y2   | MS/MSD RPD outside acceptance criteria                                                      |
|                     |                       | PCB, Total          |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1016            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1221            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1232            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1242            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1248            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1254            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1260            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1268            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Gross alpha         | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 4.59. Rad error is 4.58.   |
|                     |                       | Gross beta          |      | TPU is 12.1. Rad error is 9.74.                                                             |
|                     |                       | lodine-131          |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Radium-226          | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 0.795. Rad error is 0.794. |
|                     |                       | Strontium-90        | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 2.26. Rad error is 2.26.   |
|                     |                       | Technetium-99       |      | TPU is 14.7. Rad error is 13.6.                                                             |
|                     |                       | Thorium-230         | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 0.912. Rad error is 0.91.  |
|                     |                       | Tritium             | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 153. Rad error is 153.     |
|                     |                       |                     |      |                                                                                             |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent         | Flag | Description                                                                                 |
|---------------------|-----------------------|---------------------|------|---------------------------------------------------------------------------------------------|
| 004-4810 MW38       | 35 MW385SG4-20        | Chloride            | W    | Post-digestion spike recovery out of control limits.                                        |
|                     |                       | Tantalum            | N    | Sample spike (MS/MSD) recovery not within control limits                                    |
|                     |                       | 1,4-Dichlorobenzene | Y2   | MS/MSD RPD outside acceptance criteria                                                      |
|                     |                       | PCB, Total          |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1016            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1221            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1232            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1242            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1248            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1254            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1260            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1268            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Gross alpha         | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 5.92. Rad error is 5.91.   |
|                     |                       | Gross beta          |      | TPU is 10.6. Rad error is 8.48.                                                             |
|                     |                       | lodine-131          |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Radium-226          | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 0.908. Rad error is 0.907. |
|                     |                       | Strontium-90        | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 3.23. Rad error is 3.23.   |
|                     |                       | Technetium-99       |      | TPU is 15.8. Rad error is 14.                                                               |
|                     |                       | Thorium-230         | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 0.746. Rad error is 0.746. |
|                     |                       | Tritium             | U    | Indicates analyte/nuclide was analyzed for, but not detected is 147. Rad error is 147.      |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent         | Flag | Description                                                                                |
|---------------------|-----------------------|---------------------|------|--------------------------------------------------------------------------------------------|
| 04-4804 MW38        | 36 MW386SG4-20        | Chloride            | W    | Post-digestion spike recovery out of control limits.                                       |
|                     |                       | Tantalum            | N    | Sample spike (MS/MSD) recovery not within control limits                                   |
|                     |                       | 1,4-Dichlorobenzene | Y2   | MS/MSD RPD outside acceptance criteria                                                     |
|                     |                       | PCB, Total          |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1016            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1221            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1232            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1242            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1248            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1254            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1260            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1268            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Gross alpha         | U    | Indicates analyte/nuclide was analyzed for, but not detected is 4.04. Rad error is 4.03.   |
|                     |                       | Gross beta          | U    | Indicates analyte/nuclide was analyzed for, but not detected is 8.31. Rad error is 8.28.   |
|                     |                       | lodine-131          |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Radium-226          | U    | Indicates analyte/nuclide was analyzed for, but not detected is 0.515. Rad error is 0.515. |
|                     |                       | Strontium-90        | U    | Indicates analyte/nuclide was analyzed for, but not detected is 3.63. Rad error is 3.57.   |
|                     |                       | Technetium-99       | U    | Indicates analyte/nuclide was analyzed for, but not detected is 11.8. Rad error is 11.8.   |
|                     |                       | Thorium-230         | U    | Indicates analyte/nuclide was analyzed for, but not detected is 0.685. Rad error is 0.684. |
|                     |                       | Tritium             | U    | Indicates analyte/nuclide was analyzed for, but not detected is 152. Rad error is 152.     |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent         | Flag | Description                                                                                |
|---------------------|-----------------------|---------------------|------|--------------------------------------------------------------------------------------------|
| 04-4815 MW38        | 7 MW387SG4-20         | Chloride            | W    | Post-digestion spike recovery out of control limits.                                       |
|                     |                       | Tantalum            | N    | Sample spike (MS/MSD) recovery not within control limits                                   |
|                     |                       | 1,4-Dichlorobenzene | Y2   | MS/MSD RPD outside acceptance criteria                                                     |
|                     |                       | PCB, Total          |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1016            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1221            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1232            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1242            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1248            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1254            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1260            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1268            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Gross alpha         | U    | Indicates analyte/nuclide was analyzed for, but not detected is 5.67. Rad error is 5.65.   |
|                     |                       | Gross beta          |      | TPU is 59.2. Rad error is 22.8.                                                            |
|                     |                       | lodine-131          |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Radium-226          | U    | Indicates analyte/nuclide was analyzed for, but not detected is 0.604. Rad error is 0.603. |
|                     |                       | Strontium-90        | U    | Indicates analyte/nuclide was analyzed for, but not detected is 2.54. Rad error is 2.51.   |
|                     |                       | Technetium-99       |      | TPU is 51.2. Rad error is 21.1.                                                            |
|                     |                       | Thorium-230         | U    | Indicates analyte/nuclide was analyzed for, but not detected is 1.32. Rad error is 1.31.   |
|                     |                       | Tritium             | U    | Indicates analyte/nuclide was analyzed for, but not detected is 160. Rad error is 160.     |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent         | Flag | Description                                                                                 |
|---------------------|-----------------------|---------------------|------|---------------------------------------------------------------------------------------------|
| 004-4816 MW38       | 38 MW388SG4-20        | Chloride            | W    | Post-digestion spike recovery out of control limits.                                        |
|                     |                       | Tantalum            | N    | Sample spike (MS/MSD) recovery not within control limits                                    |
|                     |                       | 1,4-Dichlorobenzene | Y2   | MS/MSD RPD outside acceptance criteria                                                      |
|                     |                       | PCB, Total          |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1016            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1221            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1232            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1242            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1248            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1254            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1260            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1268            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Gross alpha         | U    | Indicates analyte/nuclide was analyzed for, but not detected is 4.51. Rad error is 4.5.     |
|                     |                       | Gross beta          |      | TPU is 7.92. Rad error is 7.51.                                                             |
|                     |                       | lodine-131          |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Radium-226          | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 0.701. Rad error is 0.701. |
|                     |                       | Strontium-90        | U    | Indicates analyte/nuclide was analyzed for, but not detected is 1.76. Rad error is 1.72.    |
|                     |                       | Technetium-99       |      | TPU is 14.7. Rad error is 14.1.                                                             |
|                     |                       | Thorium-230         | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 0.737. Rad error is 0.736. |
|                     |                       | Tritium             | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 160. Rad error is 160.     |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                                            |
|---------------------|-----------------------|------------------------------|------|------------------------------------------------------------------------|
| 004-4812 MW389      |                       | Bromide                      |      | During sampling, the well was dry; therefore, no sample was collected. |
|                     |                       | Chloride                     |      | During sampling, the well was dry; therefore, no sample wa collected.  |
|                     |                       | Fluoride                     |      | During sampling, the well was dry; therefore, no sample was collected. |
|                     |                       | Nitrate & Nitrite            |      | During sampling, the well was dry; therefore, no sample was collected. |
|                     |                       | Sulfate                      |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Barometric Pressure Reading  |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Specific Conductance         |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Static Water Level Elevation |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Dissolved Oxygen             |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Total Dissolved Solids       |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | рН                           |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Eh                           |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Temperature                  |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Aluminum                     |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Antimony                     |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Arsenic                      |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Barium                       |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Beryllium                    |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Boron                        |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Cadmium                      |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Calcium                      |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Chromium                     |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Cobalt                       |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Copper                       |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Iron                         |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Lead                         |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Magnesium                    |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Manganese                    |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Mercury                      |      | During sampling, the well was dry; therefore, no sample w collected.   |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                 | Flag | Description                                                            |
|---------------------|-----------------------|-----------------------------|------|------------------------------------------------------------------------|
| 004-4812 MW389      |                       | Molybdenum                  |      | During sampling, the well was dry; therefore, no sample was collected. |
|                     |                       | Nickel                      |      | During sampling, the well was dry; therefore, no sample was collected. |
|                     |                       | Potassium                   |      | During sampling, the well was dry; therefore, no sample was collected. |
|                     |                       | Rhodium                     |      | During sampling, the well was dry; therefore, no sample was collected. |
|                     |                       | Selenium                    |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Silver                      |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Sodium                      |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Tantalum                    |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Thallium                    |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Uranium                     |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Vanadium                    |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Zinc                        |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Vinyl acetate               |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Acetone                     |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Acrolein                    |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Acrylonitrile               |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Benzene                     |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Chlorobenzene               |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Xylenes                     |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Styrene                     |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Toluene                     |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Chlorobromomethane          |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Bromodichloromethane        |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Tribromomethane             |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Methyl bromide              |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Methyl Ethyl Ketone         |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | trans-1,4-Dichloro-2-butene |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Carbon disulfide            |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | Chloroethane                |      | During sampling, the well was dry; therefore, no sample w collected.   |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                 | Flag | Description                                                            |
|---------------------|-----------------------|-----------------------------|------|------------------------------------------------------------------------|
| 004-4812 MW389      |                       | Chloroform                  |      | During sampling, the well was dry; therefore, no sample was collected. |
|                     |                       | Methyl chloride             |      | During sampling, the well was dry; therefore, no sample was collected. |
|                     |                       | cis-1,2-Dichloroethene      |      | During sampling, the well was dry; therefore, no sample was collected. |
|                     |                       | Methylene bromide           |      | During sampling, the well was dry; therefore, no sample was collected. |
|                     |                       | 1,1-Dichloroethane          |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | 1,2-Dichloroethane          |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | 1,1-Dichloroethylene        |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | 1,2-Dibromoethane           |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | 1,1,2,2-Tetrachloroethane   |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | 1,1,1-Trichloroethane       |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | 1,1,2-Trichloroethane       |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | 1,1,1,2-Tetrachloroethane   |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | Vinyl chloride              |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | Tetrachloroethene           |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | Trichloroethene             |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | Ethylbenzene                |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | 2-Hexanone                  |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | Iodomethane                 |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | Dibromochloromethane        |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | Carbon tetrachloride        |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | Dichloromethane             |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | Methyl Isobutyl Ketone      |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | 1,2-Dibromo-3-chloropropane |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | 1,2-Dichloropropane         |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | trans-1,3-Dichloropropene   |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | cis-1,3-Dichloropropene     |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | trans-1,2-Dichloroethene    |      | During sampling, the well was dry; therefore, no sample v collected.   |
|                     |                       | Trichlorofluoromethane      |      | During sampling, the well was dry; therefore, no sample w collected.   |
|                     |                       | 1,2,3-Trichloropropane      |      | During sampling, the well was dry; therefore, no sample v collected.   |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent            | Flag | Description                                                          |
|---------------------|-----------------------|------------------------|------|----------------------------------------------------------------------|
| 004-4812 MW389      |                       | 1,2-Dichlorobenzene    |      | During sampling, the well was dry; therefore, no sample woollected.  |
|                     |                       | 1,4-Dichlorobenzene    |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | PCB, Total             |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | PCB-1016               |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | PCB-1221               |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | PCB-1232               |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | PCB-1242               |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | PCB-1248               |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | PCB-1254               |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | PCB-1260               |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | PCB-1268               |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | Gross alpha            |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | Gross beta             |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | lodine-131             |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | Radium-226             |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | Strontium-90           |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | Technetium-99          |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | Thorium-230            |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | Tritium                |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | Chemical Oxygen Demand |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | Cyanide                |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | lodide                 |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | Total Organic Carbon   |      | During sampling, the well was dry; therefore, no sample w collected. |
|                     |                       | Total Organic Halides  |      | During sampling, the well was dry; therefore, no sample w collected. |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent         | Flag                                                                                     | Description                                                                                |
|---------------------|-----------------------|---------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 004-4811 MW39       | 0 MW390SG4-20         | Chloride            | W                                                                                        | Post-digestion spike recovery out of control limits.                                       |
|                     |                       | Tantalum            | N                                                                                        | Sample spike (MS/MSD) recovery not within control limits                                   |
|                     |                       | 1,4-Dichlorobenzene | Y2                                                                                       | MS/MSD RPD outside acceptance criteria                                                     |
|                     |                       | PCB, Total          |                                                                                          | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1016            |                                                                                          | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1221            |                                                                                          | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1232            |                                                                                          | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1242            |                                                                                          | Analysis of constituent not required and not performed.                                    |
|                     | PCB-1248              |                     | Analysis of constituent not required and not performed.                                  |                                                                                            |
|                     |                       | PCB-1254            |                                                                                          | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1260            |                                                                                          | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1268            |                                                                                          | Analysis of constituent not required and not performed.                                    |
|                     |                       | Gross alpha         | U                                                                                        | Indicates analyte/nuclide was analyzed for, but not detected. is 7.74. Rad error is 7.71.  |
|                     |                       | Gross beta          |                                                                                          | TPU is 10.1. Rad error is 8.81.                                                            |
|                     |                       | lodine-131          |                                                                                          | Analysis of constituent not required and not performed.                                    |
|                     |                       | Radium-226          | U                                                                                        | Indicates analyte/nuclide was analyzed for, but not detected is 0.714. Rad error is 0.714. |
|                     | Strontium-90          | U                   | Indicates analyte/nuclide was analyzed for, but not detected is 1.95. Rad error is 1.95. |                                                                                            |
|                     |                       | Technetium-99       |                                                                                          | TPU is 15.2. Rad error is 13.9.                                                            |
|                     |                       | Thorium-230         | U                                                                                        | Indicates analyte/nuclide was analyzed for, but not detected is 0.787. Rad error is 0.785. |
|                     |                       | Tritium             | U                                                                                        | Indicates analyte/nuclide was analyzed for, but not detected. is 168. Rad error is 168.    |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent   | Flag | Description                                                                                            |
|---------------------|-----------------------|---------------|------|--------------------------------------------------------------------------------------------------------|
| 004-4805 MW391      | MW391SG4-20           | PCB, Total    |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1016      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1221      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1232      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1242      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1248      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1254      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1260      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1268      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. <sup>7</sup> is 3.36. Rad error is 3.35. |
|                     |                       | Gross beta    | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 6.53. Rad error is 6.51.              |
|                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 0.4. Rad error is 0.4.                |
|                     |                       | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 2.11. Rad error is 2.11.              |
|                     |                       | Technetium-99 | U    | Indicates analyte/nuclide was analyzed for, but not detected is 13.9. Rad error is 13.8.               |
|                     |                       | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected is 0.898. Rad error is 0.897.             |
|                     |                       | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected is 139. Rad error is 139.                 |
| 004-4806 MW392      | MW392SG4-20           | PCB, Total    |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1016      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1221      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1232      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1242      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1248      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1254      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1260      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | PCB-1268      |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 4.44. Rad error is 4.44.              |
|                     |                       | Gross beta    | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 6.68. Rad error is 6.67.              |
|                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                                |
|                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 0.373. Rad error is 0.373.            |
|                     |                       | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected is 2.07. Rad error is 2.07.               |
|                     |                       | Technetium-99 | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 13.7. Rad error is 13.7.              |
|                     |                       | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 1.39. Rad error is 1.38.              |
|                     |                       | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 141. Rad error is 141.                |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| is 5.8. Rad error is 5.78.  Gross beta U indicates analyte/huclide was analyzed for, but not detected. is 5.54. Rad error is 5.54.  Iodine-131 Radium-226 U indicates analyte/huclide was analyzed for, but not detected. is 0.319. Rad error is 0.319. Strontium-90 U indicates analyte/huclide was analyzed for, but not detected. is 2.87. Rad error is 0.319. Technetium-99 U indicates analyte/huclide was analyzed for, but not detected. is 2.87. Rad error is 2.87. Technetium-99 U indicates analyte/huclide was analyzed for, but not detected. is 2.87. Rad error is 1.3. Thorium-230 U indicates analyte/huclide was analyzed for, but not detected. is 1.27. Rad error is 1.26. Tritium U indicates analyte/huclide was analyzed for, but not detected. is 1.27. Rad error is 1.26. Tritium U indicates analyte/huclide was analyzed for, but not detected. is 1.38. Rad error is 1.36. Thorium-230 PCB-1016 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detected. is 0.9.8. Rad error is 4.93. Tho | Monitoring<br>Point | Facility<br>Sample ID | Constituent   | Flag | Description                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|---------------|------|-----------------------------------------------------------------------------------------------|
| PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. Indicates analyte/muclide was analyzed for, but not detected. is 5.8. Rad error is 5.78. Indicates analyte/muclide was analyzed for, but not detected. is 0.319. Rad error is 0.319.  | 8004-4807 MW393 N   | MW393SG4-20           | PCB, Total    |      | Analysis of constituent not required and not performed.                                       |
| PCB-1232 PCB-1242 PCB-1248 PCB-1254 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Indicates analyte/muclide was analyzed for, but not detected is 5.8. Rad error is 5.75. Analysis of constituent not required and not performed. Indicates analyte/muclide was analyzed for, but not detected is 5.54. Rad error is 5.54. Analysis of constituent not required and not performed. Indicates analyte/muclide was analyzed for, but not detected is 2.87. Rad error is 2.87. Technetium-99 Undicates analyte/muclide was analyzed for, but not detected is 1.8. Rad error is 1.8. Thorium-230 Undicates analyte/muclide was analyzed for, but not detected is 1.8. Rad error is 1.8. Indicates analyte/muclide was analyzed for, but not detected is 1.8. Rad error is 1.8. Indicates analyte/muclide was analyzed for, but not detected is 1.8. Rad error is 1.8. Indicates analyte/muclide was analyzed for, but not detected is 1.8. Rad error is 1.8. Analysis of constituent not required and not performed. Indicates analyte/muclide was analyzed for, but not detected is 0.3.9. Rad error is 7.69. Analysis of constituent not required  |                     |                       | PCB-1016      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1242 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCB-1260 PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Gross alpha Unidicates analyte/nuclide was analyzed for, but not detected. is 5.48. Analysis of constituent not required and not performed. Radium-226 Unidicates analyte/nuclide was analyzed for, but not detected. is 0.319. Rad error is 5.73. Technetium-90 Unidicates analyte/nuclide was analyzed for, but not detected. is 2.87. Rad error is 1.30. Tritium Unidicates analyte/nuclide was analyzed for, but not detected. is 1.37. Rad error is 1.30. Tritium Unidicates analyte/nuclide was analyzed for, but not detected. is 1.37. Rad error is 1.30. Analysis of constituent not required and not performed. Analysis of constit |                     |                       | PCB-1221      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1248 PCB-1254 PCB-1260 PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detected is 5.8. Rad error is 5.78. Indicates analyte/nuclide was analyzed for, but not detected is 5.54. Rad error is 5.54. Analysis of constituent not required and not performed. Radium-226 Unidicates analyte/nuclide was analyzed for, but not detected is 5.54. Rad error is 5.54. Analysis of constituent not required and not performed. Radium-226 Unidicates analyte/nuclide was analyzed for, but not detected is 5.34. Rad error is 1.3. Technetium-99 Unidicates analyte/nuclide was analyzed for, but not detected is 1.51. Rad error is 1.3. Thorium-230 Unidicates analyte/nuclide was analyzed for, but not detected is 1.51. Rad error is 1.3. Thorium-230 Unidicates analyte/nuclide was analyzed for, but not detected is 1.51. Rad error is 1.3. Thorium-230 Unidicates analyte/nuclide was analyzed for, but not detected is 1.51. Rad error is 1.3. Analysis of constituent not required and not performed. Analysis of constituent not required and  |                     |                       | PCB-1232      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1254 PCB-1260 PCB-1260 PCB-1268 Analysis of constituent not required and not performed. Indicates analyferulcide was analyzed for, but not detected. is 5.8. Rad error is 5.78. Indicates analyferulcide was analyzed for, but not detected. is 5.4. Rad error is 5.54. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Brown analyzed for, but not detected. is 0.319. Rad error is 0.319. Brown analyzed for, but not detected. is 2.87. Rad error is 1.28. Tritium Unicates analyferulcide was analyzed for, but not detected. is 1.27. Rad error is 1.28. Tritium Unicates analyferulcide was analyzed for, but not detected. is 1.27. Rad error is 1.28. Tritium Unicates analyferulcide was analyzed for, but not detected. is 1.27. Rad error is 1.28. Analysis of constituent not required and not performed. Analysis of  |                     |                       | PCB-1242      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1260 PCB-1268 Analysis of constituent not required and not performed.  Gross alpha Gross alpha U indicates analyterhucide was analyzed for, but not detected. is 5.8. Rad error is 5.5.4. Rad error is 5.5.4. Rad error is 5.5.4. Analysis of constituent not required and not performed.  Radium-226 U indicates analyterhucide was analyzed for, but not detected. is 5.4. Rad error is 5.5.4. Rad error is 5.5.4. Rad error is 5.5.4. Rad error is 0.319. Strontium-90 U indicates analyterhucide was analyzed for, but not detected. is 2.8.7. Rad error is 0.319.  Strontium-90 U indicates analyterhucide was analyzed for, but not detected. is 2.8.7. Rad error is 1.26.  Tritium U indicates analyterhucide was analyzed for, but not detected. is 1.3. Rad error is 1.26.  Tritium U indicates analyterhucide was analyzed for, but not detected. is 1.3. Rad error is 1.26.  Tritium U indicates analyterhucide was analyzed for, but not detected. is 1.3. Rad error is 1.26.  Tritium U indicates analyterhucide was analyzed for, but not detected. is 1.36. Rad error is 1.26.  Analysis of constituent not required and not performed. Analysis of constituent not require |                     |                       | PCB-1248      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1268 Gross alpha Gross alpha U indicates analyterinculde was analyzed for, but not detected. is 5.8. Rad error is 5.75. Gross beta U indicates analyterinculde was analyzed for, but not detected. is 5.8. Rad error is 5.54. Analysis of constituent not required and not performed. Radium-226 U indicates analyterinculde was analyzed for, but not detected. is 0.319. Rad error is 0.319. Strontium-90 U indicates analyterinculde was analyzed for, but not detected. is 2.8.7 Rad error is 2.87. Technetium-99 U indicates analyterinculde was analyzed for, but not detected. is 13. Rad error is 1.26. Thorium-230 U indicates analyterinculde was analyzed for, but not detected. is 13. Rad error is 1.26. Tritium U indicates analyterinculde was analyzed for, but not detected. is 13. Rad error is 1.26. Tritium U indicates analyterinculde was analyzed for, but not detected. is 13. Rad error is 1.26. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1222 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysis of constituent not required and no |                     |                       | PCB-1254      |      | Analysis of constituent not required and not performed.                                       |
| Gross alpha  Gross beta  Gross beta  Gross beta  Gross beta  U Indicates analyte/nuclide was analyzed for, but not detected. is 5.8. Rad error is 5.78.  Iodine-131  Radium-226  U Indicates analyte/nuclide was analyzed for, but not detected. is 5.54. Rad error is 0.319.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detected. is 0.319. Rad error is 0.319.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detected. is 2.87. Rad error is 2.87. Tad error is 1.3. Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detected. is 1.27. Rad error is 1.3.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detected. is 1.27. Rad error is 1.26.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected. is 1.27. Rad error is 1.26.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected. is 1.27. Rad error is 1.26.  Analysis of constituent not required and not performed. Is 4.94. Rad error is 4.93.  Gross beta  U Indicates analyte/nuclide was analyzed for, but not detected. is 4.94. Rad error is 4.93.  The is 7.92. Rad error is 0.39.  Strontium-90  U Indicate |                     |                       | PCB-1260      |      | Analysis of constituent not required and not performed.                                       |
| Gross beta  Gross  |                     |                       | PCB-1268      |      | Analysis of constituent not required and not performed.                                       |
| is 5.54. Rad error is 5.54. Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.319. Rad error is 0.319. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 2.87. Rad error is 2.87. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 2.87. Rad error is 2.87. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 13. Rad error is 13. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 13. Rad error is 13. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 13. Rad error is 1.26. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 136. Analysis of constituent not required and not performed. PCB-1016 PCB-1021 Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysis of constituent not required and not perf |                     |                       | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 5.8. Rad error is 5.78.    |
| Radium-226  Brontium-90  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detected. is 0.319. Rad error is 0.319.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detected. is 2.87. Rad error is 2.87.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detected. is 1.38. Rad error is 1.30.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detected. is 1.27. Rad error is 1.26.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected. is 1.27. Rad error is 1.26.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected. is 1.36. Rad error is 1.36.  Analysis of constituent not required and not performed.  Indicates analyte/nuclide was analyzed for, but not detected. is 1.9.4. Rad error is 0.39.  Analysis of constituent not required and not performed.  Indicates analyte/nuclide was analyzed f |                     |                       | Gross beta    | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 5.54. Rad error is 5.54.   |
| is 0.319. Rad error is 0.319,  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detected. is 2.87. Rad error is 2.87.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detected. is 13.8 reformed is 1.27. Rad error is 1.28.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected. is 1.27. Rad error is 1.26.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 1.26.  Tritium  DO4-4802 MW394 MW394SG4-20  PCB, Total  PCB-1016  PCB-1016  PCB-1221  Analysis of constituent not required and not performed.  Analysis of constituent not required and not performed.  PCB-1222  Analysis of constituent not required and not performed.  Analysis  |                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                       |
| Technetium-99  Technetium-99  Technetium-99  Technetium-99  Thorium-230  Thorium-230  Thorium-230  Tritium  U  Indicates analyte/nuclide was analyzed for, but not detected. is 13. Rad error is 13.  Tritium  U  Indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 136.  Tritium  U  Indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 136.  Analysis of constituent not required and not performed.  Indicates analyte/nuclide was analyzed for, but not detected. is 4.94. Rad error is 7.65.  Analysis of constituent not required and not performed.  Indicates analyte/nuclide was analyzed for, but not detected. is 0.39. Rad error is 1.66.  Technetium-99  U  Indicates analyte/nuclide was analyzed for, but not detected. is 1.66. Rad error is 1.66.  Torium-230  U  Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 1.2.  Thorium-230  U  Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16.                                                               |                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 0.319. Rad error is 0.319. |
| is 13. Rad error is 13.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detected. is 12.7. Rad error is 1.26.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 1.36.  Analysis of constituent not required and not performed.  PCB-1016  PCB-1221  Analysis of constituent not required and not performed.  PCB-1232  Analysis of constituent not required and not performed.  PCB-1242  Analysis of constituent not required and not performed.  PCB-1248  PCB-1254  PCB-1254  Analysis of constituent not required and not performed.  PCB-1260  Analysis of constituent not required and not performed.  Analysis of constituent  |                     |                       | Strontium-90  | U    |                                                                                               |
| is 1.27. Rad error is 1.26.  Tritium  U indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 136.  D04-4802 MW394 MW394SG4-20  PCB, Total PCB-1016 PCB-1021 Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detected. is 0.39. Rad error is 1.99.  Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.66. Rad error is 1.32. Rad error is 1.32. Rad error is 1.32. Rad error is 1.32. Rad error is 2.16. Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16. Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16. Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16.                                                                                                                                                                                                                                                                                                                          |                     |                       |               |      |                                                                                               |
| is 136. Rad error is 136. Analysis of constituent not required and not performed. PCB-1016 PCB-1021 Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Brown analyse for, but not detected. Indicates analyte/nuclide was analyzed for, bu |                     |                       |               |      | is 1.27. Rad error is 1.26.                                                                   |
| PCB-1016 PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detected. is 0.39. Rad error is 0.39.  Strontium-90 Undicates analyte/nuclide was analyzed for, but not detected. is 1.66. Rad error is 1.66. PCB-1269 Undicates analyte/nuclide was analyzed for, but not detected. is 1.3.2. Rad error is 1.3.2. PRod error is 1.3.2. PRod error is 1.3.2. Prorium-230 Undicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16. Pritium Undicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                       |               | U    | is 136. Rad error is 136.                                                                     |
| PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detected is 4.94. Rad error is 4.93. TPU is 7.92. Rad error is 7.65.  Indicates analyte/nuclide was analyzed for, but not detected is 0.39. Rad error is 0.39.  Strontium-90 Undicates analyte/nuclide was analyzed for, but not detected is 13.2. Rad error is 13.2. Thorium-230 Undicates analyte/nuclide was analyzed for, but not detected is 2.19. Rad error is 2.16. Tritium Undicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 004-4802 MW394 N    | MW394SG4-20           | •             |      |                                                                                               |
| PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1269 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1269 Analysis of constituent not required and not performed. Analysis of constituent n |                     |                       | PCB-1016      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1242 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected is 4.94. Rad error is 4.93. TPU is 7.92. Rad error is 7.65. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.39. Rad error is 0.39. Rad error is 1.66. Rad error is 1.60. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected is 13.2. Rad error is 1.3.2. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16. Tritium U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                       | PCB-1221      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1248 PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed.  Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 4.94. Rad error is 4.93. Gross beta TPU is 7.92. Rad error is 7.65.  Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.39. Rad error is 0.39. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.66. Rad error is 1.66. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 13.2. Rad error is 13.2. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16. Tritium U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                       | PCB-1232      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1254 PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed.  Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 4.94. Rad error is 4.93. TPU is 7.92. Rad error is 7.65.  Iodine-131 Analysis of constituent not required and not performed.  Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.39. Rad error is 0.39.  Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.66. Rad error is 1.66. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.3.2. Rad error is 13.2. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16. Tritium U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                       | PCB-1242      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1260 Analysis of constituent not required and not performed.  PCB-1268 Analysis of constituent not required and not performed.  Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected is 4.94. Rad error is 4.93.  Gross beta TPU is 7.92. Rad error is 7.65.  Iodine-131 Analysis of constituent not required and not performed.  Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.39. Rad error is 0.39.  Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 1.66. Rad error is 1.66.  Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected is 13.2. Rad error is 13.2.  Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.19. Rad error is 2.16.  Tritium U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                       | PCB-1248      |      | Analysis of constituent not required and not performed.                                       |
| PCB-1268 Analysis of constituent not required and not performed.  Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 4.94. Rad error is 4.93.  Gross beta TPU is 7.92. Rad error is 7.65.  Iodine-131 Analysis of constituent not required and not performed.  Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.39. Rad error is 0.39.  Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.66. Rad error is 1.66.  Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 13.2. Rad error is 13.2.  Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16.  Tritium U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                       | PCB-1254      |      | Analysis of constituent not required and not performed.                                       |
| Gross alpha  U Indicates analyte/nuclide was analyzed for, but not detected. is 4.94. Rad error is 4.93.  Gross beta  IDDI is 7.92. Rad error is 7.65.  IDDI indicates analyte/nuclide was analyzed for, but not detected. is 0.39. Rad error is 0.39.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detected. is 1.66. Rad error is 1.66.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detected. is 13.2. Rad error is 13.2.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                       | PCB-1260      |      | Analysis of constituent not required and not performed.                                       |
| is 4.94. Rad error is 4.93.  Gross beta  TPU is 7.92. Rad error is 7.65.  Iodine-131  Radium-226  U Indicates analyte/nuclide was analyzed for, but not detected is 0.39. Rad error is 1.60.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detected is 1.66. Rad error is 1.66.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detected is 13.2. Rad error is 13.2.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detected is 2.19. Rad error is 2.16.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                       | PCB-1268      |      | Analysis of constituent not required and not performed.                                       |
| Iodine-131  Analysis of constituent not required and not performed.  Radium-226  U Indicates analyte/nuclide was analyzed for, but not detected. is 0.39. Rad error is 0.39.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detected. is 1.66. Rad error is 1.66.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detected. is 13.2. Rad error is 13.2.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                       | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. 7 is 4.94. Rad error is 4.93.   |
| Radium-226  U Indicates analyte/nuclide was analyzed for, but not detected is 0.39. Rad error is 0.39.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detected is 1.66. Rad error is 1.66.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detected is 13.2. Rad error is 13.2.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detected is 2.19. Rad error is 2.16.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                       | Gross beta    |      | TPU is 7.92. Rad error is 7.65.                                                               |
| is 0.39. Rad error is 0.39.  Strontium-90  U Indicates analyte/nuclide was analyzed for, but not detected. is 1.66. Rad error is 1.66.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detected. is 13.2. Rad error is 13.2.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                       | lodine-131    |      | Analysis of constituent not required and not performed.                                       |
| is 1.66. Rad error is 1.66.  Technetium-99  U Indicates analyte/nuclide was analyzed for, but not detected. is 13.2. Rad error is 13.2.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                       | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 0.39. Rad error is 0.39.     |
| is 13.2. Rad error is 13.2.  Thorium-230  U Indicates analyte/nuclide was analyzed for, but not detected. is 2.19. Rad error is 2.16.  Tritium  U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                       | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. Tis 1.66. Rad error is 1.66.    |
| is 2.19. Rad error is 2.16.  Tritium U Indicates analyte/nuclide was analyzed for, but not detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                       | Technetium-99 | U    |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                       |               |      |                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                       | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 146. Rad error is 145.       |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring Facility Point Sample ID | Constituent   | Flag | Description                                                                                    |
|-------------------------------------|---------------|------|------------------------------------------------------------------------------------------------|
| 004-4801 MW395 MW395SG4-20          | PCB, Total    |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1016      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1221      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1232      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1242      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1248      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1254      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1260      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1268      |      | Analysis of constituent not required and not performed.                                        |
|                                     | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 3.86. Rad error is 3.86.   |
|                                     | Gross beta    |      | TPU is 7.36. Rad error is 7.05.                                                                |
|                                     | lodine-131    |      | Analysis of constituent not required and not performed.                                        |
|                                     | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.448. Rad error is 0.448. |
|                                     | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.93. Rad error is 1.93.   |
|                                     | Technetium-99 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 13.8. Rad error is 13.7.   |
|                                     | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.24. Rad error is 2.24.   |
|                                     | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 140. Rad error is 140.     |
| 004-4803 MW396 MW396SG4-20          | PCB, Total    |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1016      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1221      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1232      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1242      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1248      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1254      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1260      |      | Analysis of constituent not required and not performed.                                        |
|                                     | PCB-1268      |      | Analysis of constituent not required and not performed.                                        |
|                                     | Gross alpha   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 7.16. Rad error is 7.12.   |
|                                     | Gross beta    | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 8.12. Rad error is 8.07.   |
|                                     | lodine-131    |      | Analysis of constituent not required and not performed.                                        |
|                                     | Radium-226    | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.674. Rad error is 0.674. |
|                                     | Strontium-90  | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.2. Rad error is 2.19.    |
|                                     | Technetium-99 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 13.3. Rad error is 13.3.   |
|                                     | Thorium-230   | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.893. Rad error is 0.889. |
|                                     | Tritium       | U    | Indicates analyte/nuclide was analyzed for, but not detected. TP is 134. Rad error is 134.     |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent         | Flag | Description                                                                                |
|---------------------|-----------------------|---------------------|------|--------------------------------------------------------------------------------------------|
| <br>004-4817 MW397  | 7 MW397SG4-20         | Chloride            | W    | Post-digestion spike recovery out of control limits.                                       |
|                     |                       | Tantalum            | N    | Sample spike (MS/MSD) recovery not within control limits                                   |
|                     |                       | 1,4-Dichlorobenzene | Y2   | MS/MSD RPD outside acceptance criteria                                                     |
|                     |                       | PCB, Total          |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1016            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1221            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1232            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1242            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1248            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1254            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1260            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | PCB-1268            |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Gross alpha         | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 3.47. Rad error is 3.47.  |
|                     |                       | Gross beta          |      | TPU is 8.54. Rad error is 8.02.                                                            |
|                     |                       | lodine-131          |      | Analysis of constituent not required and not performed.                                    |
|                     |                       | Radium-226          | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 0.781. Rad error is 0.78. |
|                     |                       | Strontium-90        | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 3.12. Rad error is 3.03.  |
|                     |                       | Technetium-99       | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 12.6. Rad error is 12.4.  |
|                     |                       | Thorium-230         | U    | Indicates analyte/nuclide was analyzed for, but not detected is 0.801. Rad error is 0.796. |
|                     |                       | Tritium             | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 153. Rad error is 153.    |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                                                                   |
|---------------------|-----------------------|------------------------------|------|-----------------------------------------------------------------------------------------------|
| 0000-0000 QC        | RI1SG4-20             | Bromide                      |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Chloride                     |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Fluoride                     |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Nitrate & Nitrite            |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Sulfate                      |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Barometric Pressure Reading  |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Specific Conductance         |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Static Water Level Elevation |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Dissolved Oxygen             |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Total Dissolved Solids       |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | рН                           |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Eh                           |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Temperature                  |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB, Total                   |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1016                     |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1221                     |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1232                     |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1242                     |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1248                     |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1254                     |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1260                     |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | PCB-1268                     |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Gross alpha                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. I is 5.19. Rad error is 5.16.   |
|                     |                       | Gross beta                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. 7 is 6.95. Rad error is 6.95.   |
|                     |                       | lodine-131                   |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Radium-226                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. I is 0.794. Rad error is 0.794. |
|                     |                       | Strontium-90                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 4.52. Rad error is 4.48.     |
|                     |                       | Technetium-99                | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 12.3. Rad error is 12.3.     |
|                     |                       | Thorium-230                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.857. |
|                     |                       | Tritium                      | U    | Indicates analyte/nuclide was analyzed for, but not detected. 7 is 144. Rad error is 139.     |
|                     |                       | Chemical Oxygen Demand       |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Cyanide                      |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Total Organic Carbon         |      | Analysis of constituent not required and not performed.                                       |
|                     |                       | Total Organic Halides        |      | Analysis of constituent not required and not performed.                                       |
|                     |                       |                              |      |                                                                                               |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                                                                 |
|---------------------|-----------------------|------------------------------|------|---------------------------------------------------------------------------------------------|
| 000-0000 QC         | FB1SG4-20             | Bromide                      |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Chloride                     |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Fluoride                     |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Nitrate & Nitrite            |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Sulfate                      |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Barometric Pressure Reading  |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Specific Conductance         |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Static Water Level Elevation |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Dissolved Oxygen             |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Total Dissolved Solids       |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | рН                           |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Eh                           |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Temperature                  |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB, Total                   |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1016                     |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1221                     |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1232                     |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1242                     |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1248                     |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1254                     |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1260                     |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | PCB-1268                     |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Gross alpha                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 2.87. Rad error is 2.87.   |
|                     |                       | Gross beta                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 4.26. Rad error is 4.26.   |
|                     |                       | lodine-131                   |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Radium-226                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 0.438. Rad error is 0.438. |
|                     |                       | Strontium-90                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 2.29. Rad error is 2.29.   |
|                     |                       | Technetium-99                | U    | Indicates analyte/nuclide was analyzed for, but not detected. is 12.5. Rad error is 12.5.   |
|                     |                       | Thorium-230                  | U    | Indicates analyte/nuclide was analyzed for, but not detected is 1.04. Rad error is 1.03.    |
|                     |                       | Tritium                      | U    | Indicates analyte/nuclide was analyzed for, but not detected is 150. Rad error is 150.      |
|                     |                       | Chemical Oxygen Demand       |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Cyanide                      |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Total Organic Carbon         |      | Analysis of constituent not required and not performed.                                     |
|                     |                       | Total Organic Halides        |      | Analysis of constituent not required and not performed.                                     |
|                     |                       |                              |      |                                                                                             |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                            |
|---------------------|-----------------------|------------------------------|------|--------------------------------------------------------|
| 000-0000 QC         | TB1SG4-20             | Bromide                      |      | Analysis of constituent not required and not performed |
|                     |                       | Chloride                     |      | Analysis of constituent not required and not performed |
|                     |                       | Fluoride                     |      | Analysis of constituent not required and not performed |
|                     |                       | Nitrate & Nitrite            |      | Analysis of constituent not required and not performed |
|                     |                       | Sulfate                      |      | Analysis of constituent not required and not performed |
|                     |                       | Barometric Pressure Reading  |      | Analysis of constituent not required and not performed |
|                     |                       | Specific Conductance         |      | Analysis of constituent not required and not performed |
|                     |                       | Static Water Level Elevation |      | Analysis of constituent not required and not performed |
|                     |                       | Dissolved Oxygen             |      | Analysis of constituent not required and not performed |
|                     |                       | Total Dissolved Solids       |      | Analysis of constituent not required and not performed |
|                     |                       | рН                           |      | Analysis of constituent not required and not performed |
|                     |                       | Eh                           |      | Analysis of constituent not required and not performed |
|                     |                       | Temperature                  |      | Analysis of constituent not required and not performed |
|                     |                       | Aluminum                     |      | Analysis of constituent not required and not performed |
|                     |                       | Antimony                     |      | Analysis of constituent not required and not performed |
|                     |                       | Arsenic                      |      | Analysis of constituent not required and not performed |
|                     |                       | Barium                       |      | Analysis of constituent not required and not performed |
|                     |                       | Beryllium                    |      | Analysis of constituent not required and not performed |
|                     |                       | Boron                        |      | Analysis of constituent not required and not performed |
|                     |                       | Cadmium                      |      | Analysis of constituent not required and not performed |
|                     |                       | Calcium                      |      | Analysis of constituent not required and not performed |
|                     |                       | Chromium                     |      | Analysis of constituent not required and not performed |
|                     |                       | Cobalt                       |      | Analysis of constituent not required and not performed |
|                     |                       | Copper                       |      | Analysis of constituent not required and not performed |
|                     |                       | Iron                         |      | Analysis of constituent not required and not performed |
|                     |                       | Lead                         |      | Analysis of constituent not required and not performed |
|                     |                       | Magnesium                    |      | Analysis of constituent not required and not performed |
|                     |                       | Manganese                    |      | Analysis of constituent not required and not performed |
|                     |                       | Mercury                      |      | Analysis of constituent not required and not performed |
|                     |                       | Molybdenum                   |      | Analysis of constituent not required and not performed |
|                     |                       | Nickel                       |      | Analysis of constituent not required and not performed |
|                     |                       | Potassium                    |      | Analysis of constituent not required and not performed |
|                     |                       | Rhodium                      |      | Analysis of constituent not required and not performed |
|                     |                       | Selenium                     |      | Analysis of constituent not required and not performed |
|                     |                       | Silver                       |      | Analysis of constituent not required and not performed |
|                     |                       | Sodium                       |      | Analysis of constituent not required and not performed |
|                     |                       | Tantalum                     |      | Analysis of constituent not required and not performed |
|                     |                       | Thallium                     |      | Analysis of constituent not required and not performed |
|                     |                       | Uranium                      |      | Analysis of constituent not required and not performed |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent            | Flag | Description                                             |
|---------------------|-----------------------|------------------------|------|---------------------------------------------------------|
| 000-0000 QC         | TB1SG4-20             | Vanadium               |      | Analysis of constituent not required and not performed. |
|                     |                       | Zinc                   |      | Analysis of constituent not required and not performed. |
|                     |                       | 1,4-Dichlorobenzene    | Y2   | MS/MSD RPD outside acceptance criteria                  |
|                     |                       | PCB, Total             |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1016               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1221               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1232               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1242               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1248               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1254               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1260               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1268               |      | Analysis of constituent not required and not performed. |
|                     |                       | Gross alpha            |      | Analysis of constituent not required and not performed. |
|                     |                       | Gross beta             |      | Analysis of constituent not required and not performed. |
|                     |                       | lodine-131             |      | Analysis of constituent not required and not performed. |
|                     |                       | Radium-226             |      | Analysis of constituent not required and not performed. |
|                     |                       | Strontium-90           |      | Analysis of constituent not required and not performed. |
|                     |                       | Technetium-99          |      | Analysis of constituent not required and not performed. |
|                     |                       | Thorium-230            |      | Analysis of constituent not required and not performed. |
|                     |                       | Tritium                |      | Analysis of constituent not required and not performed. |
|                     |                       | Chemical Oxygen Demand |      | Analysis of constituent not required and not performed. |
|                     |                       | Cyanide                |      | Analysis of constituent not required and not performed. |
|                     |                       | lodide                 |      | Analysis of constituent not required and not performed. |
|                     |                       | Total Organic Carbon   |      | Analysis of constituent not required and not performed. |
|                     |                       | Total Organic Halides  |      | Analysis of constituent not required and not performed. |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                            |
|---------------------|-----------------------|------------------------------|------|--------------------------------------------------------|
| 000-0000 QC         | TB2SG4-20             | Bromide                      |      | Analysis of constituent not required and not performed |
|                     |                       | Chloride                     |      | Analysis of constituent not required and not performed |
|                     |                       | Fluoride                     |      | Analysis of constituent not required and not performed |
|                     |                       | Nitrate & Nitrite            |      | Analysis of constituent not required and not performed |
|                     |                       | Sulfate                      |      | Analysis of constituent not required and not performed |
|                     |                       | Barometric Pressure Reading  |      | Analysis of constituent not required and not performed |
|                     |                       | Specific Conductance         |      | Analysis of constituent not required and not performed |
|                     |                       | Static Water Level Elevation |      | Analysis of constituent not required and not performed |
|                     |                       | Dissolved Oxygen             |      | Analysis of constituent not required and not performed |
|                     |                       | Total Dissolved Solids       |      | Analysis of constituent not required and not performed |
|                     |                       | рН                           |      | Analysis of constituent not required and not performed |
|                     |                       | Eh                           |      | Analysis of constituent not required and not performed |
|                     |                       | Temperature                  |      | Analysis of constituent not required and not performed |
|                     |                       | Aluminum                     |      | Analysis of constituent not required and not performed |
|                     |                       | Antimony                     |      | Analysis of constituent not required and not performed |
|                     |                       | Arsenic                      |      | Analysis of constituent not required and not performed |
|                     |                       | Barium                       |      | Analysis of constituent not required and not performed |
|                     |                       | Beryllium                    |      | Analysis of constituent not required and not performed |
|                     |                       | Boron                        |      | Analysis of constituent not required and not performed |
|                     |                       | Cadmium                      |      | Analysis of constituent not required and not performed |
|                     |                       | Calcium                      |      | Analysis of constituent not required and not performed |
|                     |                       | Chromium                     |      | Analysis of constituent not required and not performed |
|                     |                       | Cobalt                       |      | Analysis of constituent not required and not performed |
|                     |                       | Copper                       |      | Analysis of constituent not required and not performed |
|                     |                       | Iron                         |      | Analysis of constituent not required and not performed |
|                     |                       | Lead                         |      | Analysis of constituent not required and not performed |
|                     |                       | Magnesium                    |      | Analysis of constituent not required and not performed |
|                     |                       | Manganese                    |      | Analysis of constituent not required and not performed |
|                     |                       | Mercury                      |      | Analysis of constituent not required and not performed |
|                     |                       | Molybdenum                   |      | Analysis of constituent not required and not performed |
|                     |                       | Nickel                       |      | Analysis of constituent not required and not performed |
|                     |                       | Potassium                    |      | Analysis of constituent not required and not performed |
|                     |                       | Rhodium                      |      | Analysis of constituent not required and not performed |
|                     |                       | Selenium                     |      | Analysis of constituent not required and not performed |
|                     |                       | Silver                       |      | Analysis of constituent not required and not performed |
|                     |                       | Sodium                       |      | Analysis of constituent not required and not performed |
|                     |                       | Tantalum                     |      | Analysis of constituent not required and not performed |
|                     |                       | Thallium                     |      | Analysis of constituent not required and not performed |
|                     |                       | Uranium                      |      | Analysis of constituent not required and not performed |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent            | Flag | Description                                             |
|---------------------|-----------------------|------------------------|------|---------------------------------------------------------|
| 000-0000 QC         | TB2SG4-20             | Vanadium               |      | Analysis of constituent not required and not performed. |
|                     |                       | Zinc                   |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB, Total             |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1016               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1221               |      | Analysis of constituent not required and not performed  |
|                     |                       | PCB-1232               |      | Analysis of constituent not required and not performed. |
|                     |                       | PCB-1242               |      | Analysis of constituent not required and not performed  |
|                     |                       | PCB-1248               |      | Analysis of constituent not required and not performed  |
|                     |                       | PCB-1254               |      | Analysis of constituent not required and not performed  |
|                     |                       | PCB-1260               |      | Analysis of constituent not required and not performed  |
|                     |                       | PCB-1268               |      | Analysis of constituent not required and not performed  |
|                     |                       | Gross alpha            |      | Analysis of constituent not required and not performed  |
|                     |                       | Gross beta             |      | Analysis of constituent not required and not performed  |
|                     |                       | lodine-131             |      | Analysis of constituent not required and not performed  |
|                     |                       | Radium-226             |      | Analysis of constituent not required and not performed  |
|                     |                       | Strontium-90           |      | Analysis of constituent not required and not performed  |
|                     |                       | Technetium-99          |      | Analysis of constituent not required and not performed  |
|                     |                       | Thorium-230            |      | Analysis of constituent not required and not performed  |
|                     |                       | Tritium                |      | Analysis of constituent not required and not performed  |
|                     |                       | Chemical Oxygen Demand |      | Analysis of constituent not required and not performed  |
|                     |                       | Cyanide                |      | Analysis of constituent not required and not performed  |
|                     |                       | Iodide                 |      | Analysis of constituent not required and not performed  |
|                     |                       | Total Organic Carbon   |      | Analysis of constituent not required and not performed  |
|                     |                       | Total Organic Halides  |      | Analysis of constituent not required and not performed  |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent                  | Flag | Description                                            |
|---------------------|-----------------------|------------------------------|------|--------------------------------------------------------|
| 000-0000 QC         | TB3SG4-20             | Bromide                      |      | Analysis of constituent not required and not performed |
|                     |                       | Chloride                     |      | Analysis of constituent not required and not performed |
|                     |                       | Fluoride                     |      | Analysis of constituent not required and not performed |
|                     |                       | Nitrate & Nitrite            |      | Analysis of constituent not required and not performed |
|                     |                       | Sulfate                      |      | Analysis of constituent not required and not performed |
|                     |                       | Barometric Pressure Reading  |      | Analysis of constituent not required and not performed |
|                     |                       | Specific Conductance         |      | Analysis of constituent not required and not performed |
|                     |                       | Static Water Level Elevation |      | Analysis of constituent not required and not performed |
|                     |                       | Dissolved Oxygen             |      | Analysis of constituent not required and not performed |
|                     |                       | Total Dissolved Solids       |      | Analysis of constituent not required and not performed |
|                     |                       | рН                           |      | Analysis of constituent not required and not performed |
|                     |                       | Eh                           |      | Analysis of constituent not required and not performed |
|                     |                       | Temperature                  |      | Analysis of constituent not required and not performed |
|                     |                       | Aluminum                     |      | Analysis of constituent not required and not performed |
|                     |                       | Antimony                     |      | Analysis of constituent not required and not performed |
|                     |                       | Arsenic                      |      | Analysis of constituent not required and not performed |
|                     |                       | Barium                       |      | Analysis of constituent not required and not performed |
|                     |                       | Beryllium                    |      | Analysis of constituent not required and not performed |
|                     |                       | Boron                        |      | Analysis of constituent not required and not performed |
|                     |                       | Cadmium                      |      | Analysis of constituent not required and not performed |
|                     |                       | Calcium                      |      | Analysis of constituent not required and not performed |
|                     |                       | Chromium                     |      | Analysis of constituent not required and not performed |
|                     |                       | Cobalt                       |      | Analysis of constituent not required and not performed |
|                     |                       | Copper                       |      | Analysis of constituent not required and not performed |
|                     |                       | Iron                         |      | Analysis of constituent not required and not performed |
|                     |                       | Lead                         |      | Analysis of constituent not required and not performed |
|                     |                       | Magnesium                    |      | Analysis of constituent not required and not performed |
|                     |                       | Manganese                    |      | Analysis of constituent not required and not performed |
|                     |                       | Mercury                      |      | Analysis of constituent not required and not performed |
|                     |                       | Molybdenum                   |      | Analysis of constituent not required and not performed |
|                     |                       | Nickel                       |      | Analysis of constituent not required and not performed |
|                     |                       | Potassium                    |      | Analysis of constituent not required and not performed |
|                     |                       | Rhodium                      |      | Analysis of constituent not required and not performed |
|                     |                       | Selenium                     |      | Analysis of constituent not required and not performed |
|                     |                       | Silver                       |      | Analysis of constituent not required and not performed |
|                     |                       | Sodium                       |      | Analysis of constituent not required and not performed |
|                     |                       | Tantalum                     |      | Analysis of constituent not required and not performed |
|                     |                       | Thallium                     |      | Analysis of constituent not required and not performed |
|                     |                       | Uranium                      |      | Analysis of constituent not required and not performed |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point | Facility<br>Sample ID | Constituent            | Flag | Description                                            |
|---------------------|-----------------------|------------------------|------|--------------------------------------------------------|
| 000-0000 QC         | TB3SG4-20             | Vanadium               |      | Analysis of constituent not required and not performed |
|                     |                       | Zinc                   |      | Analysis of constituent not required and not performed |
|                     |                       | PCB, Total             |      | Analysis of constituent not required and not performed |
|                     |                       | PCB-1016               |      | Analysis of constituent not required and not performed |
|                     |                       | PCB-1221               |      | Analysis of constituent not required and not performed |
|                     |                       | PCB-1232               |      | Analysis of constituent not required and not performed |
|                     |                       | PCB-1242               |      | Analysis of constituent not required and not performed |
|                     |                       | PCB-1248               |      | Analysis of constituent not required and not performed |
|                     |                       | PCB-1254               |      | Analysis of constituent not required and not performed |
|                     |                       | PCB-1260               |      | Analysis of constituent not required and not performed |
|                     |                       | PCB-1268               |      | Analysis of constituent not required and not performed |
|                     |                       | Gross alpha            |      | Analysis of constituent not required and not performed |
|                     |                       | Gross beta             |      | Analysis of constituent not required and not performed |
|                     |                       | lodine-131             |      | Analysis of constituent not required and not performed |
|                     |                       | Radium-226             |      | Analysis of constituent not required and not performed |
|                     |                       | Strontium-90           |      | Analysis of constituent not required and not performed |
|                     |                       | Technetium-99          |      | Analysis of constituent not required and not performed |
|                     |                       | Thorium-230            |      | Analysis of constituent not required and not performed |
|                     |                       | Tritium                |      | Analysis of constituent not required and not performed |
|                     |                       | Chemical Oxygen Demand |      | Analysis of constituent not required and not performed |
|                     |                       | Cyanide                |      | Analysis of constituent not required and not performed |
|                     |                       | lodide                 |      | Analysis of constituent not required and not performed |
|                     |                       | Total Organic Carbon   |      | Analysis of constituent not required and not performed |
|                     |                       | Total Organic Halides  |      | Analysis of constituent not required and not performed |

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring<br>Point          | Facility<br>Sample ID | Constituent                  | Flag | Description                                                                                   |
|------------------------------|-----------------------|------------------------------|------|-----------------------------------------------------------------------------------------------|
| 0000-5244 MW224 MW224DSG4-20 |                       | Barometric Pressure Reading  |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | Specific Conductance         |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | Static Water Level Elevation |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | Dissolved Oxygen             |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | рН                           |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | Eh                           |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | Temperature                  |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | PCB, Total                   |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | PCB-1016                     |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | PCB-1221                     |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | PCB-1232                     |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | PCB-1242                     |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | PCB-1248                     |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | PCB-1254                     |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | PCB-1260                     |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | PCB-1268                     |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | Gross alpha                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. I is 3.22. Rad error is 3.22.   |
|                              |                       | Gross beta                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. I is 8.66. Rad error is 8.58.   |
|                              |                       | lodine-131                   |      | Analysis of constituent not required and not performed.                                       |
|                              |                       | Radium-226                   | U    | Indicates analyte/nuclide was analyzed for, but not detected. I is 0.528. Rad error is 0.528. |
|                              |                       | Strontium-90                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. I is 1.99. Rad error is 1.99.   |
|                              |                       | Technetium-99                | U    | Indicates analyte/nuclide was analyzed for, but not detected. I is 13.3. Rad error is 13.3.   |
|                              |                       | Thorium-230                  | U    | Indicates analyte/nuclide was analyzed for, but not detected. I is 0.902. Rad error is 0.9.   |
|                              |                       | Tritium                      | U    | Indicates analyte/nuclide was analyzed for, but not detected. To is 134. Rad error is 133.    |

### RESIDENTIAL/CONTAINED – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

| Monitoring Point | Facility<br>Sample ID | Constituent            | Flag | Description                                             |
|------------------|-----------------------|------------------------|------|---------------------------------------------------------|
| 004-4820 MW369   | MW369UG4-20R          | Bromide                |      | Analysis of constituent not required and not performed. |
|                  |                       | Chloride               |      | Analysis of constituent not required and not performed. |
|                  |                       | Fluoride               |      | Analysis of constituent not required and not performed. |
|                  |                       | Nitrate & Nitrite      |      | Analysis of constituent not required and not performed. |
|                  |                       | Sulfate                |      | Analysis of constituent not required and not performed. |
|                  |                       | Total Dissolved Solids |      | Analysis of constituent not required and not performed. |
|                  |                       | Aluminum               |      | Analysis of constituent not required and not performed. |
|                  |                       | Antimony               |      | Analysis of constituent not required and not performed. |
|                  |                       | Arsenic                |      | Analysis of constituent not required and not performed. |
|                  |                       | Barium                 |      | Analysis of constituent not required and not performed. |
|                  |                       | Beryllium              |      | Analysis of constituent not required and not performed. |
|                  |                       | Boron                  |      | Analysis of constituent not required and not performed. |
|                  |                       | Cadmium                |      | Analysis of constituent not required and not performed. |
|                  |                       | Calcium                |      | Analysis of constituent not required and not performed. |
|                  |                       | Chromium               |      | Analysis of constituent not required and not performed. |
|                  |                       | Cobalt                 |      | Analysis of constituent not required and not performed. |
|                  |                       | Copper                 |      | Analysis of constituent not required and not performed. |
|                  |                       | Iron                   |      | Analysis of constituent not required and not performed. |
|                  |                       | Lead                   |      | Analysis of constituent not required and not performed. |
|                  |                       | Magnesium              |      | Analysis of constituent not required and not performed. |
|                  |                       | Manganese              |      | Analysis of constituent not required and not performed. |
|                  |                       | Mercury                |      | Analysis of constituent not required and not performed. |
|                  |                       | Molybdenum             |      | Analysis of constituent not required and not performed. |
|                  |                       | Nickel                 |      | Analysis of constituent not required and not performed. |
|                  |                       | Potassium              |      | Analysis of constituent not required and not performed. |
|                  |                       | Rhodium                |      | Analysis of constituent not required and not performed. |
|                  |                       | Selenium               |      | Analysis of constituent not required and not performed. |
|                  |                       | Silver                 |      | Analysis of constituent not required and not performed. |
|                  |                       | Sodium                 |      | Analysis of constituent not required and not performed. |
|                  |                       | Tantalum               |      | Analysis of constituent not required and not performed. |
|                  |                       | Thallium               |      | Analysis of constituent not required and not performed. |
|                  |                       | Uranium                |      | Analysis of constituent not required and not performed. |
|                  |                       | Vanadium               |      | Analysis of constituent not required and not performed. |
|                  |                       | Zinc                   |      | Analysis of constituent not required and not performed. |
|                  |                       | PCB, Total             |      | Analysis of constituent not required and not performed. |
|                  |                       | PCB-1016               |      | Analysis of constituent not required and not performed. |
|                  |                       | PCB-1221               |      | Analysis of constituent not required and not performed. |
|                  |                       | PCB-1232               |      | Analysis of constituent not required and not performed. |
|                  |                       | PCB-1242               |      | Analysis of constituent not required and not performed. |
|                  |                       | PCB-1248               |      | Analysis of constituent not required and not performed. |

THIS PAGE INTENTIONALLY LEFT BLANK

# APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT



RESIDENTIAL/INERT—QUARTERLY, 3rd CY 2020

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

For Official Use Only Permit Number: SW07300014, SW07300015, SW07300045

#### Finds/Unit: KY8-980-008-982/1 Lab ID: None

## GROUNDWATER STATISTICAL COMMENTS

#### Introduction

The statistical analyses conducted on the third quarter 2020 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The third quarter 2020 data used to conduct the statistical analyses were collected in July 2020. The statistical analyses for this report first used data from the initial eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one compliance well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

#### **Statistical Analysis Process**

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

| Station            | Type | Groundwater<br>Unit |
|--------------------|------|---------------------|
| MW220              | BG   | URGA                |
| MW221              | SG   | URGA                |
| MW222              | SG   | URGA                |
| MW223              | SG   | URGA                |
| MW224              | SG   | URGA                |
| MW369              | TW   | URGA                |
| MW370              | TW   | LRGA                |
| MW372              | TW   | URGA                |
| MW373              | TW   | LRGA                |
| MW384              | SG   | URGA                |
| MW385              | SG   | LRGA                |
| MW386 <sup>1</sup> | SG   | UCRS                |
| MW387              | TW   | URGA                |
| MW388              | TW   | LRGA                |
| MW3891*            | TW   | UCRS                |
| MW390 <sup>1</sup> | TW   | UCRS                |
| MW391              | TW   | URGA                |
| MW392              | TW   | LRGA                |
| MW393 <sup>1</sup> | TW   | UCRS                |
| MW394              | BG   | URGA                |
| MW395              | BG   | LRGA                |
| MW396 <sup>1</sup> | BG   | UCRS                |
| MW397              | BG   | LRGA                |

<sup>&</sup>lt;sup>1</sup>**NOTE:** The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: compliance or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

<sup>\*</sup>Well was dry this quarter and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.<sup>1</sup>

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
  - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
  - The data set is checked for normality using coefficient of variation (CV). If  $CV \le 1.0$ , then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
  - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
  - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

#### **Type of Data Used**

Exhibit D.1 presents the background wells (identified as "BG"), the compliance or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, third quarter 2020. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

\_

<sup>&</sup>lt;sup>1</sup> For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations. upper  $TL = X + (K \times S)$ 

lower  $TL = X - (K \times S)$ 

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

#### **Parameters**

Aluminum

Beta Activity

Boron

Bromide

Calcium

Chemical Oxygen Demand (COD)

Chloride

cis-1,2-Dichloroethene

Cobalt

Conductivity

Copper

Dissolved Oxygen

Dissolved Solids

Iodide

Iron

Magnesium

Manganese

Molybdenum

Nickel

Oxidation-Reduction Potential

pH\*

Potassium

Sodium

Sulfate

Technetium-99

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Zinc

<sup>\*</sup>For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

| Parameters                   | Observations | Censored<br>Observation | Uncensored<br>Observation | Statistical Analysis? |
|------------------------------|--------------|-------------------------|---------------------------|-----------------------|
| 1,1,1,2-Tetrachloroethane    | 4            | 4                       | 0                         | No                    |
| 1,1,2,2-Tetrachloroethane    | 4            | 4                       | 0                         | No                    |
| 1,1,2-Trichloroethane        | 4            | 4                       | 0                         | No                    |
| 1,1-Dichloroethane           | 4            | 4                       | 0                         | No                    |
| 1,2,3-Trichloropropane       | 4            | 4                       | 0                         | No                    |
| 1,2-Dibromo-3-chloropropane  | 4            | 4                       | 0                         | No                    |
| 1,2-Dibromoethane            | 4            | 4                       | 0                         | No                    |
| 1,2-Dichlorobenzene          | 4            | 4                       | 0                         | No                    |
| 1,2-Dichloropropane          | 4            | 4                       | 0                         | No                    |
| 2-Butanone                   | 4            | 4                       | 0                         | No                    |
| 2-Hexanone                   | 4            | 4                       | 0                         | No                    |
| 4-Methyl-2-pentanone         | 4            | 4                       | 0                         | No                    |
| Acetone                      | 4            | 4                       | 0                         | No                    |
| Acrolein                     | 4            | 4                       | 0                         | No                    |
| Acrylonitrile                | 4            | 4                       | 0                         | No                    |
| Aluminum                     | 4            | 1                       | 3                         | Yes                   |
| Antimony                     | 4            | 4                       | 0                         | No                    |
| Beryllium                    | 4            | 4                       | 0                         | No                    |
| Boron                        | 4            | 1                       | 3                         | Yes                   |
| Bromide                      | 4            | 0                       | 4                         | Yes                   |
| Bromochloromethane           | 4            | 4                       | 0                         | No                    |
| Bromodichloromethane         | 4            | 4                       | 0                         | No                    |
| Bromoform                    | 4            | 4                       | 0                         | No                    |
| Bromomethane                 | 4            | 4                       | 0                         | No                    |
| Calcium                      | 4            | 0                       | 4                         | Yes                   |
| Carbon disulfide             | 4            | 4                       | 0                         | No                    |
| Chemical Oxygen Demand (COD) | 4            | 1                       | 3                         | Yes                   |
| Chloride                     | 4            | 0                       | 4                         | Yes                   |
| Chlorobenzene                | 4            | 4                       | 0                         | No                    |
| Chloroethane                 | 4            | 4                       | 0                         | No                    |
| Chloroform                   | 4            | 4                       | 0                         | No                    |
| Chloromethane                | 4            | 4                       | 0                         | No                    |
| cis-1,2-Dichloroethene       | 4            | 4                       | 0                         | No                    |
| cis-1,3-Dichloropropene      | 4            | 4                       | 0                         | No                    |
| Cobalt                       | 4            | 4                       | 0                         | No                    |
| Conductivity                 | 4            | 0                       | 4                         | Yes                   |
| Copper                       | 4            | 0                       | 4                         | Yes                   |
| Cyanide                      | 4            | 4                       | 0                         | No                    |
| Dibromochloromethane         | 4            | 4                       | 0                         | No                    |
| Dibromomethane               | 4            | 4                       | 0                         | No                    |
| Dimethylbenzene, Total       | 4            | 4                       | 0                         | No                    |
| Dissolved Oxygen             | 4            | 0                       | 4                         | Yes                   |
| Dissolved Solids             | 4            | 0                       | 4                         | Yes                   |
| Ethylbenzene                 | 4            | 4                       | 0                         | No                    |
| Iodide                       | 4            | 3                       | 1                         | Yes                   |

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

| Parameters                    | Observations | Censored<br>Observation | Uncensored<br>Observation | Statistical Analysis? |
|-------------------------------|--------------|-------------------------|---------------------------|-----------------------|
| Iodomethane                   | 4            | 4                       | 0                         | No                    |
| Iron                          | 4            | 0                       | 4                         | Yes                   |
| Magnesium                     | 4            | 0                       | 4                         | Yes                   |
| Manganese                     | 4            | 1                       | 3                         | Yes                   |
| Methylene chloride            | 4            | 4                       | 0                         | No                    |
| Molybdenum                    | 4            | 1                       | 3                         | Yes                   |
| Nickel                        | 4            | 0                       | 4                         | Yes                   |
| Oxidation-Reduction Potential | 4            | 0                       | 4                         | Yes                   |
| рН                            | 4            | 0                       | 4                         | Yes                   |
| Potassium                     | 4            | 0                       | 4                         | Yes                   |
| Radium-226                    | 4            | 4                       | 0                         | No                    |
| Rhodium                       | 4            | 4                       | 0                         | No                    |
| Sodium                        | 4            | 0                       | 4                         | Yes                   |
| Styrene                       | 4            | 4                       | 0                         | No                    |
| Sulfate                       | 4            | 0                       | 4                         | Yes                   |
| Tantalum                      | 4            | 4                       | 0                         | No                    |
| Technetium-99                 | 4            | 3                       | 1                         | Yes                   |
| Tetrachloroethene             | 4            | 4                       | 0                         | No                    |
| Thallium                      | 4            | 4                       | 0                         | No                    |
| Thorium-230                   | 4            | 4                       | 0                         | No                    |
| Toluene                       | 4            | 4                       | 0                         | No                    |
| Total Organic Carbon (TOC)    | 4            | 0                       | 4                         | Yes                   |
| Total Organic Halides (TOX)   | 4            | 0                       | 4                         | Yes                   |
| trans-1,2-Dichloroethene      | 4            | 4                       | 0                         | No                    |
| trans-1,3-Dichloropropene     | 4            | 4                       | 0                         | No                    |
| trans-1,4-Dichloro-2-Butene   | 4            | 4                       | 0                         | No                    |
| Trichlorofluoromethane        | 4            | 4                       | 0                         | No                    |
| Vanadium                      | 4            | 4                       | 0                         | No                    |
| Vinyl Acetate                 | 4            | 4                       | 0                         | No                    |
| Zinc                          | 4            | 2                       | 2                         | Yes                   |

**Bold** denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

| Parameters                   | Observations | Censored<br>Observation | Uncensored<br>Observation | Statistical Analysis? |
|------------------------------|--------------|-------------------------|---------------------------|-----------------------|
| 1,1,1,2-Tetrachloroethane    | 11           | 11                      | 0                         | No                    |
| 1,1,2,2-Tetrachloroethane    | 11           | 11                      | 0                         | No                    |
| 1,1,2-Trichloroethane        | 11           | 11                      | 0                         | No                    |
| 1,1-Dichloroethane           | 11           | 11                      | 0                         | No                    |
| 1,2,3-Trichloropropane       | 11           | 11                      | 0                         | No                    |
| 1,2-Dibromo-3-chloropropane  | 11           | 11                      | 0                         | No                    |
| 1,2-Dibromoethane            | 11           | 11                      | 0                         | No                    |
| 1,2-Dichlorobenzene          | 11           | 11                      | 0                         | No                    |
| 1,2-Dichloropropane          | 11           | 11                      | 0                         | No                    |
| 2-Butanone                   | 11           | 11                      | 0                         | No                    |
| 2-Hexanone                   | 11           | 11                      | 0                         | No                    |
| 4-Methyl-2-pentanone         | 11           | 11                      | 0                         | No                    |
| Acetone                      | 11           | 11                      | 0                         | No                    |
| Acrolein                     | 11           | 11                      | 0                         | No                    |
| Acrylonitrile                | 11           | 11                      | 0                         | No                    |
| Aluminum                     | 11           | 7                       | 4                         | Yes                   |
| Antimony                     | 11           | 11                      | 0                         | No                    |
| Beryllium                    | 11           | 11                      | 0                         | No                    |
| Beta activity                | 11           | 5                       | 6                         | Yes                   |
| Boron                        | 11           | 0                       | 11                        | Yes                   |
| Bromide                      | 11           | 0                       | 11                        | Yes                   |
| Bromochloromethane           | 11           | 11                      | 0                         | No                    |
| Bromodichloromethane         | 11           | 11                      | 0                         | No                    |
| Bromoform                    | 11           | 11                      | 0                         | No                    |
| Bromomethane                 | 11           | 11                      | 0                         | No                    |
| Calcium                      | 11           | 0                       | 11                        | Yes                   |
| Carbon disulfide             | 11           | 11                      | 0                         | No                    |
| Chemical Oxygen Demand (COD) | 11           | 2                       | 9                         | Yes                   |
| Chloride                     | 11           | 0                       | 11                        | Yes                   |
| Chlorobenzene                | 11           | 11                      | 0                         | No                    |
| Chloroethane                 | 11           | 11                      | 0                         | No                    |
| Chloroform                   | 11           | 11                      | 0                         | No                    |
| Chloromethane                | 11           | 11                      | 0                         | No                    |
| cis-1,2-Dichloroethene       | 11           | 9                       | 2                         | Yes                   |
| cis-1,3-Dichloropropene      | 11           | 11                      | 0                         | No                    |
| Cobalt                       | 11           | 10                      | 1                         | Yes                   |
| Conductivity                 | 11           | 0                       | 11                        | Yes                   |
| Copper                       | 11           | 1                       | 10                        | Yes                   |
| Cyanide                      | 11           | 11                      | 0                         | No                    |
| Dibromochloromethane         | 11           | 11                      | 0                         | No                    |
| Dibromomethane               | 11           | 11                      | 0                         | No                    |
| Dimethylbenzene, Total       | 11           | 11                      | 0                         | No                    |
| Dissolved Oxygen             | 11           | 0                       | 11                        | Yes                   |
| Dissolved Solids             | 11           | 0                       | 11                        | Yes                   |
| Ethylbenzene                 | 11           | 11                      | 0                         | No                    |

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

| Parameters                    | Observations | Censored<br>Observation | Uncensored<br>Observation | Statistical Analysis? |
|-------------------------------|--------------|-------------------------|---------------------------|-----------------------|
| Iodide                        | 11           | 11                      | 0                         | No                    |
| Iodomethane                   | 11           | 11                      | 0                         | No                    |
| Iron                          | 11           | 2                       | 9                         | Yes                   |
| Magnesium                     | 11           | 0                       | 11                        | Yes                   |
| Manganese                     | 11           | 8                       | 3                         | Yes                   |
| Methylene chloride            | 11           | 11                      | 0                         | No                    |
| Molybdenum                    | 11           | 6                       | 5                         | Yes                   |
| Nickel                        | 11           | 0                       | 11                        | Yes                   |
| Oxidation-Reduction Potential | 11           | 0                       | 11                        | Yes                   |
| pН                            | 11           | 0                       | 11                        | Yes                   |
| Potassium                     | 11           | 0                       | 11                        | Yes                   |
| Radium-226                    | 11           | 11                      | 0                         | No                    |
| Rhodium                       | 11           | 11                      | 0                         | No                    |
| Sodium                        | 11           | 0                       | 11                        | Yes                   |
| Styrene                       | 11           | 11                      | 0                         | No                    |
| Sulfate                       | 11           | 0                       | 11                        | Yes                   |
| Tantalum                      | 11           | 11                      | 0                         | No                    |
| Technetium-99                 | 11           | 7                       | 4                         | Yes                   |
| Tetrachloroethene             | 11           | 11                      | 0                         | No                    |
| Thallium                      | 11           | 11                      | 0                         | No                    |
| Thorium-230                   | 11           | 11                      | 0                         | No                    |
| Toluene                       | 11           | 11                      | 0                         | No                    |
| Total Organic Carbon (TOC)    | 11           | 0                       | 11                        | Yes                   |
| Total Organic Halides (TOX)   | 11           | 2                       | 9                         | Yes                   |
| trans-1,2-Dichloroethene      | 11           | 11                      | 0                         | No                    |
| trans-1,3-Dichloropropene     | 11           | 11                      | 0                         | No                    |
| trans-1,4-Dichloro-2-Butene   | 11           | 11                      | 0                         | No                    |
| Trichloroethene               | 11           | 5                       | 6                         | Yes                   |
| Trichlorofluoromethane        | 11           | 11                      | 0                         | No                    |
| Vanadium                      | 11           | 11                      | 0                         | No                    |
| Vinyl Acetate                 | 11           | 11                      | 0                         | No                    |
| Zinc                          | 11           | 8                       | 3                         | Yes                   |

**Bold** denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

| Parameters                        | Observations | Censored<br>Observation | Uncensored<br>Observation | Statistical<br>Analysis? |
|-----------------------------------|--------------|-------------------------|---------------------------|--------------------------|
| 1,1,1,2-Tetrachloroethane         | 7            | 7                       | 0                         | No                       |
| 1,1,2,2-Tetrachloroethane         | 7            | 7                       | 0                         | No                       |
| 1,1,2-Trichloroethane             | 7            | 7                       | 0                         | No                       |
| 1,1-Dichloroethane                | 7            | 7                       | 0                         | No                       |
| 1,2,3-Trichloropropane            | 7            | 7                       | 0                         | No                       |
| 1,2-Dibromo-3-chloropropane       | 7            | 7                       | 0                         | No                       |
| 1,2-Dibromoethane                 | 7            | 7                       | 0                         | No                       |
| 1,2-Dichlorobenzene               | 7            | 7                       | 0                         | No                       |
| 1,2-Dichloropropane               | 7            | 7                       | 0                         | No                       |
| 2-Butanone                        | 7            | 7                       | 0                         | No                       |
| 2-Hexanone                        | 7            | 7                       | 0                         | No                       |
| 4-Methyl-2-pentanone              | 7            | 7                       | 0                         | No                       |
| Acetone                           | 7            | 7                       | 0                         | No                       |
| Acrolein                          | 7            | 7                       | 0                         | No                       |
| Acrylonitrile                     | 7            | 7                       | 0                         | No                       |
| Aluminum                          | 7            | 4                       | 3                         | Yes                      |
| Antimony                          | 7            | 7                       | 0                         | No                       |
| Beryllium                         | 7            | 7                       | 0                         | No                       |
| Beta activity                     | 7            | 1                       | 6                         | Yes                      |
| Boron                             | 7            | 0                       | 7                         | Yes                      |
| Bromide                           | 7            | 0                       | 7                         | Yes                      |
| Bromochloromethane                | 7            | 7                       | 0                         | No                       |
| Bromodichloromethane              | 7            | 7                       | 0                         | No                       |
| Bromoform                         | 7            | 7                       | 0                         | No                       |
| Bromomethane                      | 7            | 7                       | 0                         | No                       |
| Calcium                           | 7            | 0                       | 7                         | Yes                      |
| Carbon disulfide                  | 7            | 7                       | 0                         | No                       |
| Chemical Oxygen Demand (COD)      | 7            | 1                       | 6                         | Yes                      |
| Chloride                          | 7            | 0                       | 7                         | Yes                      |
| Chlorobenzene                     | 7            | 7                       | 0                         | No                       |
| Chloroethane                      | 7            | 7                       | 0                         | No                       |
| Chloroform                        | 7            | 7                       | 0                         | No                       |
| Chloromethane                     | 7            | 7                       | 0                         | No                       |
| cis-1,2-Dichloroethene            | 7            | 6                       | 1                         | Yes                      |
| cis-1,3-Dichloropropene           | 7            | 7                       | 0                         | No                       |
| Cobalt                            | 7            | 7                       | 0                         | No                       |
| Conductivity                      | 7            | 0                       | 7                         | Yes                      |
| Copper                            | 7            | 0                       | 7                         | Yes                      |
| Cyanide                           | 7            | 7                       | 0                         | No                       |
| Dibromochloromethane              | 7            | 7                       | 0                         | No                       |
| Dibromomethane                    | 7            | 7                       | 0                         | No                       |
| Dimethylbenzene, Total            | 7            | 7                       | 0                         | No                       |
| Dissolved Oxygen                  | 7            | 0                       | 7                         | Yes                      |
| Dissolved Oxygen Dissolved Solids | 7            | 0                       | 7                         | Yes                      |
|                                   | 7            | 7                       | 0                         | No No                    |
| Ethylbenzene<br>Iodide            | 7            | 7                       |                           |                          |
|                                   | 7            | 7                       | 0                         | No                       |
| Iodomethane                       |              |                         | 0                         | No                       |
| Iron                              | 7            | 1                       | 6                         | Yes                      |

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

| Parameters                    | Observations | Censored<br>Observation | Uncensored<br>Observation | Statistical<br>Analysis? |
|-------------------------------|--------------|-------------------------|---------------------------|--------------------------|
| Magnesium                     | 7            | 0                       | 7                         | Yes                      |
| Manganese                     | 7            | 4                       | 3                         | Yes                      |
| Methylene chloride            | 7            | 7                       | 0                         | No                       |
| Molybdenum                    | 7            | 6                       | 1                         | Yes                      |
| Nickel                        | 7            | 0                       | 7                         | Yes                      |
| Oxidation-Reduction Potential | 7            | 0                       | 7                         | Yes                      |
| рН                            | 7            | 0                       | 7                         | Yes                      |
| Potassium                     | 7            | 0                       | 7                         | Yes                      |
| Radium-226                    | 7            | 7                       | 0                         | No                       |
| Rhodium                       | 7            | 7                       | 0                         | No                       |
| Sodium                        | 7            | 0                       | 7                         | Yes                      |
| Styrene                       | 7            | 7                       | 0                         | No                       |
| Sulfate                       | 7            | 0                       | 7                         | Yes                      |
| Tantalum                      | 7            | 7                       | 0                         | No                       |
| Technetium-99                 | 7            | 4                       | 3                         | Yes                      |
| Tetrachloroethene             | 7            | 7                       | 0                         | No                       |
| Thallium                      | 7            | 7                       | 0                         | No                       |
| Thorium-230                   | 7            | 7                       | 0                         | No                       |
| Toluene                       | 7            | 7                       | 0                         | No                       |
| Total Organic Carbon (TOC)    | 7            | 0                       | 7                         | Yes                      |
| Total Organic Halides (TOX)   | 7            | 2                       | 5                         | Yes                      |
| trans-1,2-Dichloroethene      | 7            | 7                       | 0                         | No                       |
| trans-1,3-Dichloropropene     | 7            | 7                       | 0                         | No                       |
| trans-1,4-Dichloro-2-Butene   | 7            | 7                       | 0                         | No                       |
| Trichloroethene               | 7            | 1                       | 6                         | Yes                      |
| Trichlorofluoromethane        | 7            | 7                       | 0                         | No                       |
| Vanadium                      | 7            | 7                       | 0                         | No                       |
| Vinyl Acetate                 | 7            | 7                       | 0                         | No                       |
| Zinc                          | 7            | 3                       | 4                         | Yes                      |

**Bold** denotes parameters with at least one uncensored observation.

#### **Discussion of Results from Historical Background Comparison**

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. For the UCRS, URGA, and LRGA, the test was applied to 25, 28, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which include those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical background by well number is shown in Exhibit D.6.

#### **UCRS**

This quarter's results identified exceedances of historical background upper tolerance limit (UTL) for oxidation-reduction potential, sulfate, and technetium-99.

#### **URGA**

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

#### LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

#### **Statistical Summary**

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

**Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations** 

| UCRS                                                                | URGA                                                                                                     | LRGA                                                                                                     |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| MW386: Oxidation-reduction potential                                | MW221: Oxidation-reduction potential                                                                     | <b>MW370:</b> Beta activity, oxidation-reduction potential, sulfate, technetium-99                       |
| <b>MW390:</b> Oxidation-reduction potential, sulfate, technetium-99 | MW369: Sodium                                                                                            | <b>MW373:</b> Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate |
| MW393: Oxidation-reduction potential                                | MW372: Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99 | <b>MW385:</b> Dissolved solids, oxidation-reduction potential, sulfate, technetium-99                    |
| <b>MW396:</b> Oxidation-reduction potential                         | <b>MW384:</b> Dissolved solids, sulfate, technetium-99                                                   | MW388: Oxidation-reduction potential, sulfate, technetium-99                                             |
|                                                                     | <b>MW387:</b> Beta activity, calcium, dissolved solids, magnesium, sulfate, technetium-99                | MW392: Oxidation-reduction potential, sulfate                                                            |
|                                                                     | technicitum-99                                                                                           | MW395: Oxidation-reduction potential                                                                     |
|                                                                     |                                                                                                          | MW397: Oxidation-reduction potential                                                                     |
|                                                                     |                                                                                                          |                                                                                                          |

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

| Parameter                       | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                             |
|---------------------------------|--------------------|--------------------------|-----------------------------------------------------------------------------|
| Aluminum                        | Tolerance Interval | 0.57                     | No exceedance of statistically derived historical background concentration. |
| Boron                           | Tolerance Interval | 1.28                     | No exceedance of statistically derived historical background concentration. |
| Bromide                         | Tolerance Interval | 0.24                     | No exceedance of statistically derived historical background concentration. |
| Calcium                         | Tolerance Interval | 0.20                     | No exceedance of statistically derived historical background concentration. |
| Chemical Oxygen<br>Demand (COD) | Tolerance Interval | 0.02                     | No exceedance of statistically derived historical background concentration. |
| Chloride                        | Tolerance Interval | 0.05                     | No exceedance of statistically derived historical background concentration. |
| Conductivity                    | Tolerance Interval | 0.12                     | No exceedance of statistically derived historical background concentration. |
| Copper                          | Tolerance Interval | 0.48                     | No exceedance of statistically derived historical background concentration. |
| Dissolved Oxygen                | Tolerance Interval | 1.20                     | No exceedance of statistically derived historical background concentration. |
| Dissolved Solids                | Tolerance Interval | 0.19                     | No exceedance of statistically derived historical background concentration. |
| Iodide                          | Tolerance Interval | 0.13                     | No exceedance of statistically derived historical background concentration. |
| Iron                            | Tolerance Interval | 0.48                     | No exceedance of statistically derived historical background concentration. |
| Magnesium                       | Tolerance Interval | 0.20                     | No exceedance of statistically derived historical background concentration. |

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

| Parameter                        | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                                                     |
|----------------------------------|--------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------|
| Manganese                        | Tolerance Interval | 0.46                     | No exceedance of statistically derived historical background concentration.                                         |
| Molybdenum                       | Tolerance Interval | 1.51                     | No exceedance of statistically derived historical background concentration.                                         |
| Nickel                           | Tolerance Interval | 1.27                     | No exceedance of statistically derived historical background concentration.                                         |
| Oxidation-Reduction<br>Potential | Tolerance Interval | 4.77                     | Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396. |
| рН                               | Tolerance Interval | 0.05                     | No exceedance of statistically derived historical background concentration.                                         |
| Potassium                        | Tolerance Interval | 0.28                     | No exceedance of statistically derived historical background concentration.                                         |
| Sodium                           | Tolerance Interval | 0.30                     | No exceedance of statistically derived historical background concentration.                                         |
| Sulfate                          | Tolerance Interval | 0.40                     | Current results exceed statistically derived historical background concentration in MW390.                          |
| Technetium-99                    | Tolerance Interval | 0.86                     | Current results exceed statistically derived historical background concentration in MW390.                          |
| Total Organic Carbon (TOC)       | Tolerance Interval | 0.47                     | No exceedance of statistically derived historical background concentration.                                         |
| Total Organic Halides (TOX)      | Tolerance Interval | 0.38                     | No exceedance of statistically derived historical background concentration.                                         |
| Zinc                             | Tolerance Interval | 0.79                     | No exceedance of statistically derived historical background concentration.                                         |

CV: coefficient of variation
\*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

| Parameter                    | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                                              |
|------------------------------|--------------------|--------------------------|--------------------------------------------------------------------------------------------------------------|
| Aluminum                     | Tolerance Interval | 0.28                     | No exceedance of statistically derived historical background concentration.                                  |
| Beta Activity <sup>1</sup>   | Tolerance Interval | 0.97                     | Current results exceed statistically derived historical background concentrations in MW372 and MW387.        |
| Boron                        | Tolerance Interval | 1.45                     | No exceedance of statistically derived historical background concentration.                                  |
| Bromide                      | Tolerance Interval | 0.00                     | No exceedance of statistically derived historical background concentration.                                  |
| Calcium                      | Tolerance Interval | 0.17                     | Current results exceed statistically derived historical background concentrations in MW372 and MW387.        |
| Chemical Oxygen Demand (COD) | Tolerance Interval | 0.00                     | No exceedance of statistically derived historical background concentration.                                  |
| Chloride                     | Tolerance Interval | 0.23                     | No exceedance of statistically derived historical background concentration.                                  |
| cis-1,2-Dichloroethene       | Tolerance Interval | 0.00                     | No exceedance of statistically derived historical background concentration.                                  |
| Cobalt                       | Tolerance Interval | 2.44                     | No exceedance of statistically derived historical background concentration.                                  |
| Conductivity                 | Tolerance Interval | 0.28                     | Current results exceed statistically derived historical background concentrations in MW372.                  |
| Copper                       | Tolerance Interval | 0.43                     | No exceedance of statistically derived historical background concentration.                                  |
| Dissolved Oxygen             | Tolerance Interval | 0.50                     | No exceedance of statistically derived historical background concentration.                                  |
| Dissolved Solids             | Tolerance Interval | 0.12                     | Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387. |
| Iron                         | Tolerance Interval | 1.17                     | No exceedance of statistically derived historical background concentration.                                  |
| Magnesium                    | Tolerance Interval | 0.16                     | Current results exceed statistically derived historical background concentration in MW372 and MW387.         |
| Manganese                    | Tolerance Interval | 2.16                     | No exceedance of statistically derived historical background concentration.                                  |

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

| Parameter                        | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                                              |
|----------------------------------|--------------------|--------------------------|--------------------------------------------------------------------------------------------------------------|
| Molybdenum                       | Tolerance Interval | 1.26                     | No exceedance of statistically derived historical background concentration.                                  |
| Nickel                           | Tolerance Interval | 1.79                     | No exceedance of statistically derived historical background concentration.                                  |
| Oxidation-Reduction<br>Potential | Tolerance Interval | 0.48                     | Current results exceed statistically derived historical background concentration in MW221,                   |
| рН                               | Tolerance Interval | 0.05                     | No exceedance of statistically derived historical background concentration.                                  |
| Potassium                        | Tolerance Interval | 1.40                     | No exceedance of statistically derived historical background concentration.                                  |
| Sodium                           | Tolerance Interval | 0.24                     | Current results exceed statistically derived historical background concentration in MW369 and MW372.         |
| Sulfate                          | Tolerance Interval | 0.25                     | Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387. |
| Technetium-99                    | Tolerance Interval | 0.99                     | Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387. |
| Total Organic Carbon (TOC)       | Tolerance Interval | 0.49                     | No exceedance of statistically derived historical background concentration.                                  |
| Total Organic Halides (TOX)      | Tolerance Interval | 2.57                     | No exceedance of statistically derived historical background concentration.                                  |
| Trichloroethene <sup>1</sup>     | Tolerance Interval | 0.95                     | No exceedance of statistically derived historical background concentration.                                  |
| Zinc                             | Tolerance Interval | 0.72                     | No exceedance of statistically derived historical background concentration.                                  |

CV: coefficient of variation
\*If CV > 1.0, used log-transformed data.

¹ Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

| Parameter                       | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                                      |
|---------------------------------|--------------------|--------------------------|------------------------------------------------------------------------------------------------------|
| Aluminum                        | Tolerance Interval | 0.86                     | No exceedance of statistically derived historical background concentration.                          |
| Beta Activity <sup>1</sup>      | Tolerance Interval | 0.36                     | Current results exceed statistically derived historical background concentration in MW370.           |
| Boron                           | Tolerance Interval | 1.24                     | No exceedance of statistically derived historical background concentration.                          |
| Bromide                         | Tolerance Interval | 0.00                     | No exceedance of statistically derived historical background concentration.                          |
| Calcium                         | Tolerance Interval | 0.50                     | Current results exceed statistically derived historical background concentration in MW373.           |
| Chemical Oxygen<br>Demand (COD) | Tolerance Interval | 0.04                     | No exceedance of statistically derived historical background concentration.                          |
| Chloride                        | Tolerance Interval | 0.22                     | No exceedance of statistically derived historical background concentration.                          |
| cis-1,2-Dichloroethene          | Tolerance Interval | 0.00                     | No exceedance of statistically derived historical background concentration.                          |
| Conductivity                    | Tolerance Interval | 0.14                     | Current results exceed statistically derived historical background concentration in MW373.           |
| Copper                          | Tolerance Interval | 0.47                     | No exceedance of statistically derived historical background concentration.                          |
| Dissolved Oxygen                | Tolerance Interval | 0.52                     | No exceedance of statistically derived historical background concentration.                          |
| Dissolved Solids                | Tolerance Interval | 0.16                     | Current results exceed statistically derived historical background concentration in MW373 and MW385. |
| Iron                            | Tolerance Interval | 1.29                     | No exceedance of statistically derived historical background concentration.                          |
| Magnesium                       | Tolerance Interval | 0.51                     | Current results exceed statistically derived historical background concentration in MW373.           |

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

| Parameter                        | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                                                                          |
|----------------------------------|--------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Manganese                        | Tolerance Interval | 1.49                     | No exceedance of statistically derived historical background concentration.                                                              |
| Molybdenum                       | Tolerance Interval | 1.45                     | No exceedance of statistically derived historical background concentration.                                                              |
| Nickel                           | Tolerance Interval | 1.09                     | No exceedance of statistically derived historical background concentration.                                                              |
| Oxidation-Reduction<br>Potential | Tolerance Interval | 0.33                     | Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397. |
| рН                               | Tolerance Interval | 0.04                     | No exceedance of statistically derived historical background concentration.                                                              |
| Potassium                        | Tolerance Interval | 0.40                     | No exceedance of statistically derived historical background concentration.                                                              |
| Sodium                           | Tolerance Interval | 0.47                     | No exceedance of statistically derived historical background concentration.                                                              |
| Sulfate                          | Tolerance Interval | 0.20                     | Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, and MW392.               |
| Technetium-99                    | Tolerance Interval | 0.80                     | Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.                             |
| Total Organic Carbon (TOC)       | Tolerance Interval | 0.55                     | No exceedance of statistically derived historical background concentration.                                                              |
| Total Organic Halides (TOX)      | Tolerance Interval | 0.59                     | No exceedance of statistically derived historical background concentration.                                                              |
| Trichloroethene <sup>1</sup>     | Tolerance Interval | 0.78                     | No exceedance of statistically derived historical background concentration.                                                              |
| Zinc                             | Tolerance Interval | 0.76                     | No exceedance of statistically derived historical background concentration.                                                              |

CV: coefficient of variation
\*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

# **Discussion of Results from Current Background Comparison**

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. For the UCRS, URGA, and LRGA, the test was applied to 3, 9, and 8 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

| URGA                                                                                                            | LRGA                                                                      |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| MW369: Sodium                                                                                                   | MW370: Beta activity, sulfate, technetium-99                              |
| <b>MW372:</b> Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99 | <b>MW373:</b> Calcium, conductivity, dissolved solids, magnesium, sulfate |
| MW387: Beta activity, calcium, dissolved solids, magnesium, sulfate, technetium-99                              | MW388: Sulfate, technetium-99                                             |
|                                                                                                                 | MW392: Sulfate                                                            |

# **UCRS**

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the sulfate and technetium-99 concentration in one UCRS well (i.e., MW390) exceeded the current TL this quarter.

### **URGA**

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

# **LRGA**

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

### **Statistical Summary**

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

| Parameter                        | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval Test Conducted                                                                                                                                                                                                              |
|----------------------------------|--------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oxidation-Reduction<br>Potential | Tolerance Interval | 0.38                     | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.                                                         |
| Sulfate                          | Tolerance Interval | 0.11                     | Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data. |
| Technetium-99                    | Tolerance Interval | 5.03                     | Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data. |

CV: coefficient of variation
\*If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

| Parameter                        | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                                                                                                                                   |
|----------------------------------|--------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Beta Activity                    | Tolerance Interval | 0.58                     | MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                                       |
| Calcium                          | Tolerance Interval | 0.13                     | MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                                       |
| Conductivity                     | Tolerance Interval | 0.08                     | MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                                                 |
| Dissolved Solids                 | Tolerance Interval | 0.14                     | MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                               |
| Magnesium                        | Tolerance Interval | 0.09                     | MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                                       |
| Oxidation-Reduction<br>Potential | Tolerance Interval | 0.11                     | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level. |
| Sodium                           | Tolerance Interval | 0.18                     | MW369 and MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                                       |
| Sulfate                          | Tolerance Interval | 0.33                     | MW372, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                                      |
| Technetium-99                    | Tolerance Interval | 0.62                     | MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                               |

CV: coefficient of variation
\*If CV > 1.0, used log-transformed data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

| Parameter                        | Performed Test     | CV<br>Normality<br>Test* | Results of Tolerance Interval<br>Test Conducted                                                                                                                                                   |
|----------------------------------|--------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Beta Activity                    | Tolerance Interval | 0.36                     | MW370 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                                                 |
| Calcium                          | Tolerance Interval | 0.17                     | MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                                                 |
| Conductivity                     | Tolerance Interval | 0.07                     | MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                                                 |
| Dissolved Solids                 | Tolerance Interval | 0.20                     | MW373 and MW385 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                                       |
| Magnesium                        | Tolerance Interval | 0.16                     | MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                                                 |
| Oxidation-Reduction<br>Potential | Tolerance Interval | 0.18                     | None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level. |
| Sulfate                          | Tolerance Interval | 0.07                     | MW370, MW373, MW385, MW388, and MW392 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                 |
| Technetium-99                    | Tolerance Interval | 0.65                     | MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.                                                               |

CV: coefficient of variation
\* If CV > 1.0, used log-transformed data.

# **ATTACHMENT D1**

# COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA



# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

CV(1) = 0.567

**K factor\*\*=** 3.188

TL(1) = 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259 S = 0.503

CV(2) = -0.400

**K factor\*\*=** 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 0.393  | -0.934     |
| 9/16/2002      | 0.2    | -1.609     |
| 10/16/2002     | 0.2    | -1.609     |
| 1/13/2003      | 0.501  | -0.691     |
| 4/8/2003       | 0.2    | -1.609     |
| 7/16/2003      | 0.2    | -1.609     |
| 10/14/2003     | 0.2    | -1.609     |
| 1/14/2004      | 0.668  | -0.403     |

Dry/Partially Dry Wells

Well No. Gradient

S = 0.182

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Current Quarter Data |           |        |                |            |                   |  |  |  |
|----------|----------------------|-----------|--------|----------------|------------|-------------------|--|--|--|
| Well No. | Gradient             | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |  |  |
| MW386    | Sidegradient         | No        | 0.05   | N/A            | -2.996     | N/A               |  |  |  |
| MW390    | Downgradien          | t Yes     | 0.0374 | NO             | -3.286     | N/A               |  |  |  |
| MW393    | Downgradien          | t Yes     | 0.0213 | NO             | -3.849     | N/A               |  |  |  |
| MW396    | Upgradient           | Yes       | 0.0556 | NO             | -2.890     | N/A               |  |  |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.833 C

CV(1)=1.282 K factor\*\*= 3.188

TL(1) = 3.306

LL(1)=N/A

Statistics-Transformed Background

X = -1.034 S = 1.066

CV(2) = -1.031

**K factor\*\*=** 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 2      | 0.693      |
| 9/16/2002      | 2      | 0.693      |
| 10/16/2002     | 0.2    | -1.609     |
| 1/13/2003      | 0.2    | -1.609     |
| 4/8/2003       | 0.2    | -1.609     |
| 7/16/2003      | 0.2    | -1.609     |
| 10/14/2003     | 0.2    | -1.609     |
| 1/14/2004      | 0.2    | -1.609     |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current Quarter Data |              |           |        |                |            |                   |  |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|--|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |
| MW386                | Sidegradient | No        | 0.015  | N/A            | -4.200     | N/A               |  |
| MW390                | Downgradien  | t Yes     | 0.0204 | N/A            | -3.892     | NO                |  |
| MW393                | Downgradien  | t Yes     | 0.0225 | N/A            | -3.794     | NO                |  |
| MW396                | Upgradient   | Yes       | 0.0185 | N/A            | -3.990     | NO                |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

S = 0.327 CV(1) = 0.236

**K factor\*\*=** 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.301

**S**= 0.252

CV(2) = 0.838

K factor\*\*= 3.188

TL(2) = 1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 1.5    | 0.405      |
| 9/16/2002      | 1.6    | 0.470      |
| 10/16/2002     | 1.6    | 0.470      |
| 1/13/2003      | 1      | 0.000      |
| 4/8/2003       | 1      | 0.000      |
| 7/16/2003      | 1      | 0.000      |
| 10/14/2003     | 1.7    | 0.531      |
| 1/14/2004      | 1.7    | 0.531      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Current Quarter Data |           |        |                |            |                   |  |  |
|----------|----------------------|-----------|--------|----------------|------------|-------------------|--|--|
| Well No. | Gradient             | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |  |
| MW386    | Sidegradient         | Yes       | 0.166  | NO             | -1.796     | N/A               |  |  |
| MW390    | Downgradien          | t Yes     | 0.367  | NO             | -1.002     | N/A               |  |  |
| MW393    | Downgradien          | t Yes     | 0.165  | NO             | -1.802     | N/A               |  |  |
| MW396    | Upgradient           | Yes       | 0.839  | NO             | -0.176     | N/A               |  |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

**K** factor\*\*= 3.188

TL(1) = 68.748

**LL(1)=**N/A

Statistics-Transformed Background

X = 3.711 S = 0.241

CV(2) = 0.065

**K factor\*\*=** 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 38.4   | 3.648      |
| 9/16/2002      | 42.9   | 3.759      |
| 10/16/2002     | 40.2   | 3.694      |
| 1/13/2003      | 46.7   | 3.844      |
| 4/8/2003       | 49.8   | 3.908      |
| 7/16/2003      | 43.3   | 3.768      |
| 10/14/2003     | 49.7   | 3.906      |
| 1/14/2004      | 23.6   | 3.161      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |  |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|--|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |
| MW386                | Sidegradient | Yes       | 21.7   | NO             | 3.077      | N/A               |  |
| MW390                | Downgradien  | t Yes     | 32.1   | NO             | 3.469      | N/A               |  |
| MW393                | Downgradien  | t Yes     | 13.6   | NO             | 2.610      | N/A               |  |
| MW396                | Upgradient   | Yes       | 33.8   | NO             | 3.520      | N/A               |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744

CV(1)=0.021

**K** factor\*\*= 3.188

**TL(1)=** 37.747

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.566

**S**= 0.021

CV(2) = 0.006

**K** factor\*\*= 3.188

TL(2) = 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 36     | 3.584      |
| 9/16/2002      | 35     | 3.555      |
| 10/16/2002     | 37     | 3.611      |
| 1/13/2003      | 35     | 3.555      |
| 4/8/2003       | 35     | 3.555      |
| 7/16/2003      | 35     | 3.555      |
| 10/14/2003     | 35     | 3.555      |
| 1/14/2004      | 35     | 3.555      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386                | Sidegradient | Yes       | 11.8   | NO             | 2.468      | N/A               |
| MW390                | Downgradien  | t No      | 20     | N/A            | 2.996      | N/A               |
| MW393                | Downgradien  | t Yes     | 19.4   | NO             | 2.965      | N/A               |
| MW396                | Upgradient   | Yes       | 26.3   | NO             | 3.270      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Chloride** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

CV(1) = 0.052

**K factor\*\*=** 3.188

**TL(1)=** 118.447

**UCRS** 

LL(1)=N/A

**Statistics-Transformed Background** 

X = 4.621 S = 0.053

CV(2) = 0.011

**K factor\*\*=** 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 91.6   | 4.517      |
| 9/16/2002      | 98.3   | 4.588      |
| 10/16/2002     | 101.4  | 4.619      |
| 1/13/2003      | 108.3  | 4.685      |
| 4/8/2003       | 100.5  | 4.610      |
| 7/16/2003      | 102.5  | 4.630      |
| 10/14/2003     | 106.8  | 4.671      |
| 1/14/2004      | 104.4  | 4.648      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Current Quarter Data |           |        |                |            |                   |  |
|----------|----------------------|-----------|--------|----------------|------------|-------------------|--|
| Well No. | Gradient             | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |
| MW386    | Sidegradient         | Yes       | 14.6   | NO             | 2.681      | N/A               |  |
| MW390    | Downgradien          | t Yes     | 38     | NO             | 3.638      | N/A               |  |
| MW393    | Downgradien          | t Yes     | 12.3   | NO             | 2.510      | N/A               |  |
| MW396    | Upgradient           | Yes       | 54.2   | NO             | 3.993      | N/A               |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-8

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Conductivity UNITS: umho/cm **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

**K** factor\*\*= 3.188

TL(1)= 1265.579 LL(1)=N/A

**Statistics-Transformed Background** 

X = 6.822 S = 0.111 CV(2) = 0.016

**K factor\*\*=** 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 784    | 6.664      |
| 9/30/2002      | 871    | 6.770      |
| 10/16/2002     | 868    | 6.766      |
| 1/13/2003      | 912    | 6.816      |
| 4/8/2003       | 942    | 6.848      |
| 7/16/2003      | 910    | 6.813      |
| 10/14/2003     | 935    | 6.841      |
| 1/14/2004      | 1158   | 7.054      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386                | Sidegradient | Yes       | 562    | NO             | 6.332      | N/A               |
| MW390                | Downgradien  | t Yes     | 707    | NO             | 6.561      | N/A               |
| MW393                | Downgradien  | t Yes     | 406    | NO             | 6.006      | N/A               |
| MW396                | Upgradient   | Yes       | 715    | NO             | 6.572      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-9

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **UCRS** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1) = 0.481S = 0.014

**K** factor\*\*= 3.188

TL(1) = 0.072

LL(1)=N/A

**Statistics-Transformed Background** Data

X = -3.650 S = 0.414 CV(2) = -0.113

**K factor\*\*=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 0.05   | -2.996     |
| 9/16/2002      | 0.05   | -2.996     |
| 10/16/2002     | 0.026  | -3.650     |
| 1/13/2003      | 0.02   | -3.912     |
| 4/8/2003       | 0.02   | -3.912     |
| 7/16/2003      | 0.02   | -3.912     |
| 10/14/2003     | 0.02   | -3.912     |
| 1/14/2004      | 0.02   | -3.912     |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |         |                |            |                   |
|----------------------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386                | Sidegradient | Yes       | 0.00062 | 7 NO           | -7.375     | N/A               |
| MW390                | Downgradien  | t Yes     | 0.00101 | NO             | -6.898     | N/A               |
| MW393                | Downgradien  | t Yes     | 0.00051 | 4 NO           | -7.573     | N/A               |
| MW396                | Upgradient   | Yes       | 0.0255  | NO             | -3.669     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-10

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

CV(1)=1.202

**K factor\*\*=** 3.188

TL(1) = 6.743

**LL(1)=**N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

S = 1.677S = 0.814

CV(2) = -18.867

**K factor\*\*=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 5.45   | 1.696      |
| 9/16/2002      | 0.4    | -0.916     |
| 10/16/2002     | 0.54   | -0.616     |
| 1/13/2003      | 0.72   | -0.329     |
| 4/8/2003       | 0.69   | -0.371     |
| 7/16/2003      | 1.1    | 0.095      |
| 10/14/2003     | 0.71   | -0.342     |
| 1/14/2004      | 1.55   | 0.438      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386                | Sidegradient | Yes       | 2.24   | N/A            | 0.806      | NO                |
| MW390                | Downgradien  | t Yes     | 4.22   | N/A            | 1.440      | NO                |
| MW393                | Downgradien  | t Yes     | 1.9    | N/A            | 0.642      | NO                |
| MW396                | Upgradient   | Yes       | 1.08   | N/A            | 0.077      | NO                |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

**K** factor\*\*= 3.188

TL(1) = 882.980 LL(1) = N/A

**Statistics-Transformed Background** 

X = 6.298 S = 0.162 CV(2) = 0.026

K factor\*\*= 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 502    | 6.219      |
| 9/16/2002      | 506    | 6.227      |
| 10/16/2002     | 543    | 6.297      |
| 1/13/2003      | 521    | 6.256      |
| 4/8/2003       | 504    | 6.223      |
| 7/16/2003      | 532    | 6.277      |
| 10/14/2003     | 490    | 6.194      |
| 1/14/2004      | 805    | 6.691      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Current Quarter Data |           |        |                |            |                   |  |
|----------|----------------------|-----------|--------|----------------|------------|-------------------|--|
| Well No. | Gradient             | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |
| MW386    | Sidegradient         | Yes       | 334    | NO             | 5.811      | N/A               |  |
| MW390    | Downgradien          | t Yes     | 446    | NO             | 6.100      | N/A               |  |
| MW393    | Downgradien          | t Yes     | 231    | NO             | 5.442      | N/A               |  |
| MW396    | Upgradient           | Yes       | 389    | NO             | 5.964      | N/A               |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

CV(1)=0.132

**K factor\*\*=** 3.188

**TL(1)=** 3.052

**LL(1)=**N/A

Statistics-Transformed Background

X = 0.759

S = 0.123

S = 0.283

CV(2) = 0.162

**K factor\*\*=** 3.188

**TL(2)=** 1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 2      | 0.693      |
| 9/16/2002      | 2      | 0.693      |
| 10/16/2002     | 2      | 0.693      |
| 1/13/2003      | 2      | 0.693      |
| 4/8/2003       | 2      | 0.693      |
| 7/16/2003      | 2.7    | 0.993      |
| 10/14/2003     | 2.5    | 0.916      |
| 1/14/2004      | 2      | 0.693      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386                | Sidegradient | No        | 0.5    | N/A            | -0.693     | N/A               |
| MW390                | Downgradien  | t No      | 0.5    | N/A            | -0.693     | N/A               |
| MW393                | Downgradien  | t No      | 0.5    | N/A            | -0.693     | N/A               |
| MW396                | Upgradient   | Yes       | 0.442  | NO             | -0.816     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

CV(1) = 0.478

**K factor\*\*=** 3.188

**TL(1)=** 19.666

**LL(1)=**N/A

Statistics-Transformed Background Data

**X**= 1.880

**S**= 3.723 **S**= 0.723

CV(2) = 0.384

**K factor\*\*=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 1.8    | 0.588      |
| 9/16/2002      | 9.53   | 2.254      |
| 10/16/2002     | 7.43   | 2.006      |
| 1/13/2003      | 9.93   | 2.296      |
| 4/8/2003       | 10.2   | 2.322      |
| 7/16/2003      | 9.16   | 2.215      |
| 10/14/2003     | 11.9   | 2.477      |
| 1/14/2004      | 2.42   | 0.884      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386                | Sidegradient | Yes       | 0.0868 | NO             | -2.444     | N/A               |
| MW390                | Downgradien  | t Yes     | 0.0727 | NO             | -2.621     | N/A               |
| MW393                | Downgradien  | t Yes     | 0.206  | NO             | -1.580     | N/A               |
| MW396                | Upgradient   | Yes       | 0.162  | NO             | -1.820     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 16.876 S = 3.313

K factor\*\*= 3.188

**TL(1)=** 27.438

LL(1)=N/A

Statistics-Transformed Background

**X**= 2.804 **S**= 0.240

CV(2) = 0.086

CV(1)=0.196

**K factor\*\*=** 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 15.5   | 2.741      |
| 9/16/2002      | 17.3   | 2.851      |
| 10/16/2002     | 17.8   | 2.879      |
| 1/13/2003      | 19.2   | 2.955      |
| 4/8/2003       | 17.8   | 2.879      |
| 7/16/2003      | 17.8   | 2.879      |
| 10/14/2003     | 20.2   | 3.006      |
| 1/14/2004      | 9.41   | 2.242      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386                | Sidegradient | Yes       | 9.1    | NO             | 2.208      | N/A               |
| MW390                | Downgradien  | t Yes     | 13.4   | NO             | 2.595      | N/A               |
| MW393                | Downgradien  | t Yes     | 3.58   | NO             | 1.275      | N/A               |
| MW396                | Upgradient   | Yes       | 15.3   | NO             | 2.728      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

CV(1)=0.456

**K factor\*\*=** 3.188

**TL(1)=** 1.900

LL(1)=N/A

**Statistics-Transformed Background** 

X = -0.566 S = 1.192 CV(2) = -2.105

**K factor\*\*=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 0.57   | -0.562     |
| 9/16/2002      | 0.647  | -0.435     |
| 10/16/2002     | 0.88   | -0.128     |
| 1/13/2003      | 1.132  | 0.124      |
| 4/8/2003       | 0.965  | -0.036     |
| 7/16/2003      | 0.983  | -0.017     |
| 10/14/2003     | 0.984  | -0.016     |
| 1/14/2004      | 0.0314 | -3.461     |

Dry/Partially Dry Wells

Well No. Gradient

S = 0.353

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386                | Sidegradient | Yes       | 0.0298 | NO             | -3.513     | N/A               |
| MW390                | Downgradien  | t No      | 0.005  | N/A            | -5.298     | N/A               |
| MW393                | Downgradien  | t Yes     | 0.0267 | NO             | -3.623     | N/A               |
| MW396                | Upgradient   | Yes       | 0.144  | NO             | -1.938     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-16

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

CV(1) = 1.507S = 0.011

**K factor\*\*=** 3.188

TL(1) = 0.042

LL(1)=N/A

**Statistics-Transformed Background** Data

X = -5.928 S = 1.420

CV(2) = -0.240

**K factor\*\*=** 3.188

TL(2) = -1.400

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:   | MW396   |            |
|----------------|---------|------------|
| Date Collected | Result  | LN(Result) |
| 8/13/2002      | 0.025   | -3.689     |
| 9/16/2002      | 0.025   | -3.689     |
| 10/16/2002     | 0.001   | -6.908     |
| 1/13/2003      | 0.00128 | -6.661     |
| 4/8/2003       | 0.00271 | -5.911     |
| 7/16/2003      | 0.00117 | -6.751     |
| 10/14/2003     | 0.001   | -6.908     |
| 1/14/2004      | 0.001   | -6.908     |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current Quarter Data |              |           |         |                |            |                   |
|----------------------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386                | Sidegradient | Yes       | 0.00056 | 1 N/A          | -7.486     | NO                |
| MW390                | Downgradien  | t Yes     | 0.00060 | 2 N/A          | -7.415     | NO                |
| MW393                | Downgradien  | t No      | 0.001   | N/A            | -6.908     | N/A               |
| MW396                | Upgradient   | Yes       | 0.00037 | 8 N/A          | -7.881     | NO                |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-17

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

CV(1)=1.272

**K** factor\*\*= 3.188

TL(1) = 0.083

LL(1)=N/A

**Statistics-Transformed Background** 

S = 0.021

X = -4.706 S = 1.057 CV(2) = -0.225

**K factor\*\*=** 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:   | MW396   |            |
|----------------|---------|------------|
| Date Collected | Result  | LN(Result) |
| 8/13/2002      | 0.05    | -2.996     |
| 9/16/2002      | 0.05    | -2.996     |
| 10/16/2002     | 0.005   | -5.298     |
| 1/13/2003      | 0.005   | -5.298     |
| 4/8/2003       | 0.00571 | -5.166     |
| 7/16/2003      | 0.005   | -5.298     |
| 10/14/2003     | 0.005   | -5.298     |
| 1/14/2004      | 0.005   | -5.298     |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current Quarter Data |              |           |         |                |            |                   |
|----------------------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386                | Sidegradient | Yes       | 0.00256 | N/A            | -5.968     | NO                |
| MW390                | Downgradien  | t Yes     | 0.0122  | N/A            | -4.406     | NO                |
| MW393                | Downgradien  | t Yes     | 0.00183 | N/A            | -6.303     | NO                |
| MW396                | Upgradient   | Yes       | 0.0116  | N/A            | -4.457     | NO                |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-18

# C-746-S/T Third Quarter 2020 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

# **Historical Background Comparison UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

**K factor\*\*=** 3.188

TL(1)=210.502 LL(1)=N/A

**Statistics-Transformed Background** 

X = 4.364

S = 0.333 CV(2) = 0.076

**K factor\*\*=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 60     | 4.094      |
| 4/8/2003       | 71     | 4.263      |
| 7/16/2003      | -56    | #Func!     |
| 10/14/2003     | -54    | #Func!     |
| 1/14/2004      | -22    | #Func!     |
| 4/12/2004      | -6     | #Func!     |
| 7/20/2004      | -3     | #Func!     |
| 10/12/2004     | 114    | 4.736      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

**#Because the natural log was not** possbile for all background values, the TL was considered equal to the maximum background value.

| Current  | Current Quarter Data |           |        |                |            |                   |
|----------|----------------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient             | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386    | Sidegradient         | Yes       | 322    | N/A            | 5.775      | YES               |
| MW390    | Downgradien          | t Yes     | 412    | N/A            | 6.021      | YES               |
| MW393    | Downgradien          | t Yes     | 373    | N/A            | 5.922      | YES               |
| MW396    | Upgradient           | Yes       | 346    | N/A            | 5.846      | YES               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-19

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

S = 0.350

CV(1)=0.054 K factor\*\*= 3.736

TL(1) = 7.766

**LL(1)=**5.1541

Statistics-Transformed Background Data

X = 1.864

S = 0.054

CV(2) = 0.029

**K** factor\*\*= 3.736

TL(2) = 2.067

**LL(2)=**1.6621

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 6.17   | 1.820      |
| 9/16/2002      | 6.4    | 1.856      |
| 10/16/2002     | 5.9    | 1.775      |
| 1/13/2003      | 6.4    | 1.856      |
| 4/8/2003       | 6.65   | 1.895      |
| 7/16/2003      | 6.4    | 1.856      |
| 10/14/2003     | 6.71   | 1.904      |
| 1/14/2004      | 7.05   | 1.953      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Ouarter | Data |
|---------|---------|------|
| Current | Quarter | Data |

| Well No. | Gradient     | Detected? | Result | Result $>$ TL(1)?                                                                      | LN(Result) | LN(Result) > TL(2)?                  |
|----------|--------------|-----------|--------|----------------------------------------------------------------------------------------|------------|--------------------------------------|
|          |              |           |        | Result <ll(1)?< th=""><th></th><th>LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<> |            | LN(Result) <ll(2)?< th=""></ll(2)?<> |
| MW386    | Sidegradient | Yes       | 6.74   | NO                                                                                     | 1.908      | N/A                                  |
| MW390    | Downgradien  | t Yes     | 6.31   | NO                                                                                     | 1.842      | N/A                                  |
| MW393    | Downgradien  | t Yes     | 6.19   | NO                                                                                     | 1.823      | N/A                                  |
| MW396    | Upgradient   | Yes       | 6.55   | NO                                                                                     | 1.879      | N/A                                  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

 $S= 0.399 \quad CV(1)=0.282$ 

**K factor\*\*=** 3.188

TL(1) = 2.682

**LL(1)=**N/A

Statistics-Transformed Background Data

X = 0.311

S = 0.271

CV(2) = 0.870

**K factor\*\*=** 3.188

TL(2) = 1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 2      | 0.693      |
| 9/16/2002      | 2      | 0.693      |
| 10/16/2002     | 0.978  | -0.022     |
| 1/13/2003      | 1.08   | 0.077      |
| 4/8/2003       | 1.12   | 0.113      |
| 7/16/2003      | 1.38   | 0.322      |
| 10/14/2003     | 1.24   | 0.215      |
| 1/14/2004      | 1.49   | 0.399      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Current Quarter Data |           |        |                |            |                   |
|----------|----------------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient             | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386    | Sidegradient         | Yes       | 0.278  | NO             | -1.280     | N/A               |
| MW390    | Downgradien          | t Yes     | 0.353  | NO             | -1.041     | N/A               |
| MW393    | Downgradien          | t Yes     | 0.399  | NO             | -0.919     | N/A               |
| MW396    | Upgradient           | Yes       | 0.874  | NO             | -0.135     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

**K** factor\*\*= 3.188

TL(1)=208.973 LL(1)=N/A

**Statistics-Transformed Background** 

X = 4.595

S = 0.492 CV(2) = 0.107

**K factor\*\*=** 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 115    | 4.745      |
| 9/16/2002      | 116    | 4.754      |
| 10/16/2002     | 117    | 4.762      |
| 1/13/2003      | 122    | 4.804      |
| 4/8/2003       | 106    | 4.663      |
| 7/16/2003      | 117    | 4.762      |
| 10/14/2003     | 132    | 4.883      |
| 1/14/2004      | 29.6   | 3.388      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Current Quarter Data |           |        |                |            |                   |
|----------|----------------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient             | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386    | Sidegradient         | Yes       | 90.9   | NO             | 4.510      | N/A               |
| MW390    | Downgradien          | t Yes     | 107    | NO             | 4.673      | N/A               |
| MW393    | Downgradien          | t Yes     | 76.9   | NO             | 4.343      | N/A               |
| MW396    | Upgradient           | Yes       | 111    | NO             | 4.710      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-22

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.463 S = 8.876 CV(1) = 0.395

K factor\*\*= 3.188

**TL(1)=** 50.759

LL(1)=N/A

Statistics-Transformed Background

X = 3.054

**S**= 0.351

CV(2) = 0.115

**K factor\*\*=** 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 41.9   | 3.735      |
| 9/16/2002      | 26.3   | 3.270      |
| 10/16/2002     | 20.6   | 3.025      |
| 1/13/2003      | 16.6   | 2.809      |
| 4/8/2003       | 23.9   | 3.174      |
| 7/16/2003      | 18.8   | 2.934      |
| 10/14/2003     | 12.9   | 2.557      |
| 1/14/2004      | 18.7   | 2.929      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW386    | Sidegradient | Yes       | 48.7   | NO             | 3.886      | N/A               |
| MW390    | Downgradien  | t Yes     | 56.8   | YES            | 4.040      | N/A               |
| MW393    | Downgradien  | t Yes     | 16.5   | NO             | 2.803      | N/A               |
| MW396    | Upgradient   | Yes       | 28.5   | NO             | 3.350      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1) = 0.860

**K factor\*\*=** 3.188

**TL(1)=** 28.531

**LL(1)=**N/A

Statistics-Transformed Background

X = 1.498

**S**= 6.558 **S**= 1.321

CV(2) = 0.882

**K** factor\*\*= 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 16.7   | 2.815      |
| 9/16/2002      | 6.39   | 1.855      |
| 10/16/2002     | 4.55   | 1.515      |
| 1/13/2003      | 16.5   | 2.803      |
| 4/8/2003       | 3.04   | 1.112      |
| 7/16/2003      | 0.354  | -1.038     |
| 10/14/2003     | 11.9   | 2.477      |
| 1/14/2004      | 1.56   | 0.445      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |  |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|--|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |
| MW386                | Sidegradient | No        | -4.03  | N/A            | #Error     | N/A               |  |
| MW390                | Downgradien  | t Yes     | 54.9   | YES            | 4.006      | N/A               |  |
| MW393                | Downgradien  | t No      | 1.27   | N/A            | 0.239      | N/A               |  |
| MW396                | Upgradient   | No        | -0.35  | N/A            | #Error     | N/A               |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances
MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

CV(1) = 0.470

**K factor\*\*=** 3.188

TL(1) = 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 0.454

S = 4.696

CV(2) = 0.205

**K factor\*\*=** 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 19     | 2.944      |
| 9/16/2002      | 14.6   | 2.681      |
| 10/16/2002     | 10.4   | 2.342      |
| 1/13/2003      | 4.4    | 1.482      |
| 4/8/2003       | 7      | 1.946      |
| 7/16/2003      | 7.3    | 1.988      |
| 10/14/2003     | 9.1    | 2.208      |
| 1/14/2004      | 8.1    | 2.092      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |  |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|--|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |
| MW386                | Sidegradient | Yes       | 3.66   | NO             | 1.297      | N/A               |  |
| MW390                | Downgradien  | t Yes     | 2.89   | NO             | 1.061      | N/A               |  |
| MW393                | Downgradien  | t Yes     | 2.61   | NO             | 0.959      | N/A               |  |
| MW396                | Upgradient   | Yes       | 4.61   | NO             | 1.528      | N/A               |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

**K** factor\*\*= 3.188

**TL(1)=** 313.314 **LL(1)=**N/A

Statistics-Transformed Background

**X**= 4.896 **S**= 0.39

 $S= 0.390 \quad CV(2)=0.080$ 

K factor\*\*= 3.188

TL(2) = 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 193    | 5.263      |
| 9/16/2002      | 190    | 5.247      |
| 10/16/2002     | 221    | 5.398      |
| 1/13/2003      | 106    | 4.663      |
| 4/8/2003       | 77.8   | 4.354      |
| 7/16/2003      | 122    | 4.804      |
| 10/14/2003     | 86.4   | 4.459      |
| 1/14/2004      | 145    | 4.977      |

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |  |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|--|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |
| MW386                | Sidegradient | Yes       | 81.7   | NO             | 4.403      | N/A               |  |
| MW390                | Downgradien  | t Yes     | 29.9   | NO             | 3.398      | N/A               |  |
| MW393                | Downgradien  | t Yes     | 9.4    | NO             | 2.241      | N/A               |  |
| MW396                | Upgradient   | Yes       | 46.2   | NO             | 3.833      | N/A               |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

CV(1)=0.786

**K factor\*\*=** 3.188

TL(1) = 0.156

LL(1)=N/A

**Statistics-Transformed Background** Data

X = -3.342 S = 0.682

S = 0.035

CV(2) = -0.204

**K factor\*\*=** 3.188

TL(2) = -1.168

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/13/2002      | 0.1    | -2.303     |
| 9/16/2002      | 0.1    | -2.303     |
| 10/16/2002     | 0.025  | -3.689     |
| 1/13/2003      | 0.035  | -3.352     |
| 4/8/2003       | 0.035  | -3.352     |
| 7/16/2003      | 0.02   | -3.912     |
| 10/14/2003     | 0.02   | -3.912     |
| 1/14/2004      | 0.02   | -3.912     |

Dry/Partially Dry Wells

Well No. Gradient MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |         |                |            |                   |  |
|----------------------|--------------|-----------|---------|----------------|------------|-------------------|--|
| Well No.             | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |
| MW386                | Sidegradient | Yes       | 0.00483 | NO             | -5.333     | N/A               |  |
| MW390                | Downgradien  | t Yes     | 0.00518 | NO             | -5.263     | N/A               |  |
| MW393                | Downgradien  | t No      | 0.00775 | N/A            | -4.860     | N/A               |  |
| MW396                | Upgradient   | No        | 0.0159  | N/A            | -4.141     | N/A               |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

# **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-27

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.221

CV(1) = 0.277S = 0.061

**K** factor\*\*= 2.523

TL(1) = 0.376

LL(1)=N/A

**Statistics-Transformed Background** 

X = -1.534 S = 0.212 CV(2) = -0.138

**K factor\*\*=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                     | MW220                          |                                      |
|----------------------------------------------------------------------------------|--------------------------------|--------------------------------------|
| Date Collected                                                                   | Result                         | LN(Result)                           |
| 10/14/2002                                                                       | 0.2                            | -1.609                               |
| 1/15/2003                                                                        | 0.2                            | -1.609                               |
| 4/10/2003                                                                        | 0.2                            | -1.609                               |
| 7/14/2003                                                                        | 0.2                            | -1.609                               |
| 10/13/2003                                                                       | 0.427                          | -0.851                               |
| 1/13/2004                                                                        | 0.309                          | -1.174                               |
| 4/13/2004                                                                        | 0.2                            | -1.609                               |
| 7/21/2004                                                                        | 0.202                          | -1.599                               |
|                                                                                  |                                |                                      |
| Well Number:                                                                     | MW394                          |                                      |
| Well Number: Date Collected                                                      | MW394<br>Result                | LN(Result)                           |
|                                                                                  |                                | LN(Result)<br>-1.609                 |
| Date Collected                                                                   | Result                         |                                      |
| Date Collected 8/13/2002                                                         | Result 0.2                     | -1.609                               |
| Date Collected<br>8/13/2002<br>9/16/2002                                         | Result 0.2 0.2                 | -1.609<br>-1.609                     |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002                           | Result 0.2 0.2 0.2             | -1.609<br>-1.609<br>-1.609           |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003              | Result 0.2 0.2 0.2 0.2         | -1.609<br>-1.609<br>-1.609<br>-1.609 |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003<br>4/10/2003 | Result 0.2 0.2 0.2 0.2 0.2 0.2 | -1.609<br>-1.609<br>-1.609<br>-1.609 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220                | Upgradient   | Yes       | 0.0226 | NO             | -3.790     | N/A               |
| MW221                | Sidegradient | No        | 0.05   | N/A            | -2.996     | N/A               |
| MW222                | Sidegradient | No        | 0.05   | N/A            | -2.996     | N/A               |
| MW223                | Sidegradient | No        | 0.05   | N/A            | -2.996     | N/A               |
| MW224                | Sidegradient | No        | 0.05   | N/A            | -2.996     | N/A               |
| MW369                | Downgradien  | t No      | 0.05   | N/A            | -2.996     | N/A               |
| MW372                | Downgradien  | t No      | 0.05   | N/A            | -2.996     | N/A               |
| MW384                | Sidegradient | No        | 0.05   | N/A            | -2.996     | N/A               |
| MW387                | Downgradien  | t Yes     | 0.0466 | NO             | -3.066     | N/A               |
| MW391                | Downgradien  | t Yes     | 0.0362 | NO             | -3.319     | N/A               |
| MW394                | Upgradient   | Yes       | 0.0457 | NO             | -3.086     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Beta activity UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.273 S = 13.883 CV(1) = 0.973

**K** factor\*\*= 2.523

TL(1) = 49.300

LL(1)=N/A

**Statistics-Transformed Background** 

X = 2.213 S = 1.033 CV(2) = 0.467

**K factor\*\*=** 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                     | MW220                          |                                           |
|----------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|
| Date Collected                                                                   | Result                         | LN(Result)                                |
| 10/14/2002                                                                       | 15.2                           | 2.721                                     |
| 1/15/2003                                                                        | 42.5                           | 3.750                                     |
| 4/10/2003                                                                        | 45.4                           | 3.816                                     |
| 7/14/2003                                                                        | 8.53                           | 2.144                                     |
| 10/13/2003                                                                       | 11.7                           | 2.460                                     |
| 1/13/2004                                                                        | 13.5                           | 2.603                                     |
| 4/13/2004                                                                        | 33.5                           | 3.512                                     |
| 7/21/2004                                                                        | 13.7                           | 2.617                                     |
|                                                                                  |                                |                                           |
| Well Number:                                                                     | MW394                          |                                           |
| Well Number: Date Collected                                                      | MW394<br>Result                | LN(Result)                                |
|                                                                                  |                                | LN(Result)<br>1.615                       |
| Date Collected                                                                   | Result                         |                                           |
| Date Collected 8/13/2002                                                         | Result<br>5.03                 | 1.615                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                         | Result 5.03 5.57               | 1.615<br>1.717                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002                           | Result 5.03 5.57 12.8          | 1.615<br>1.717<br>2.549                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003              | Result 5.03 5.57 12.8 4.3      | 1.615<br>1.717<br>2.549<br>1.459          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003<br>4/10/2003 | Result 5.03 5.57 12.8 4.3 9.52 | 1.615<br>1.717<br>2.549<br>1.459<br>2.253 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220                | Upgradient   | Yes       | 18.9   | N/A            | 2.939      | N/A               |
| MW221                | Sidegradient | No        | 8.54   | N/A            | 2.145      | N/A               |
| MW222                | Sidegradient | No        | 4.76   | N/A            | 1.560      | N/A               |
| MW223                | Sidegradient | No        | 6.09   | N/A            | 1.807      | N/A               |
| MW224                | Sidegradient | No        | 7.19   | N/A            | 1.973      | N/A               |
| MW369                | Downgradien  | t Yes     | 17.8   | N/A            | 2.879      | N/A               |
| MW372                | Downgradien  | t Yes     | 76.1   | YES            | 4.332      | N/A               |
| MW384                | Sidegradient | Yes       | 42.7   | N/A            | 3.754      | N/A               |
| MW387                | Downgradien  | t Yes     | 330    | YES            | 5.799      | N/A               |
| MW391                | Downgradien  | t No      | 3.7    | N/A            | 1.308      | N/A               |
| MW394                | Upgradient   | Yes       | 12     | N/A            | 2.485      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-29

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Boron URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.447**K** factor\*\*= 2.523 Statistics-Background Data X = 0.425S = 0.615**TL(1)=** 1.976 LL(1)=N/A **Statistics-Transformed Background** 

Data

X = -1.322 S = 0.786 CV(2) = -0.595

**K factor\*\*=** 2.523

TL(2) = 0.663

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

MW220 Well Number: Date Collected Result LN(Result) 10/14/2002 0.2 -1.609-1.6091/15/2003 0.2 4/10/2003 0.2 -1.6097/14/2003 0.2 -1.60910/13/2003 0.2 -1.6091/13/2004 0.2 -1.6090.2 4/13/2004 -1.6097/21/2004 0.2 -1.609MW394 Well Number: Date Collected Result LN(Result) 8/13/2002 2 0.6939/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current Quarter Data |                     |             |            |                     |                |                   |  |
|----------------------|---------------------|-------------|------------|---------------------|----------------|-------------------|--|
| Well No.             | Gradient            | Detected?   | Result     | Result >TL(1)?      | LN(Result)     | LN(Result) >TL(2) |  |
| MW220                | Upgradient          | Yes         | 0.0111     | N/A                 | -4.501         | NO                |  |
| MW221                | Sidegradient        | Yes         | 0.0196     | N/A                 | -3.932         | NO                |  |
| MW222                | Sidegradient        | Yes         | 0.0117     | N/A                 | -4.448         | NO                |  |
| MW223                | Sidegradient        | Yes         | 0.00879    | N/A                 | -4.734         | NO                |  |
| MW224                | Sidegradient        | Yes         | 0.0178     | N/A                 | -4.029         | NO                |  |
| MW369                | Downgradien         | t Yes       | 0.0152     | N/A                 | -4.186         | NO                |  |
| MW372                | Downgradien         | t Yes       | 1.21       | N/A                 | 0.191          | NO                |  |
| MW384                | Sidegradient        | Yes         | 0.0691     | N/A                 | -2.672         | NO                |  |
| MW387                | Downgradien         | t Yes       | 0.0305     | N/A                 | -3.490         | NO                |  |
| MW391                | Downgradien         | t Yes       | 0.0543     | N/A                 | -2.913         | NO                |  |
| MW394                | Upgradient          | Yes         | 0.0261     | N/A                 | -3.646         | NO                |  |
| N/A - Recu           | lts identified as N | Jon-Detects | during lab | oratory analysis or | data validatio | n and were not    |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Bromide URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.000S = 0.000CV(1)=0.000**K** factor\*\*= 2.523 Statistics-Background Data TL(1)=1.000LL(1)=N/A **Statistics-Transformed Background** X = 0.000S = 0.000

Data

**CV(2)=**#Num!

**K factor\*\*=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

MW220 Well Number: Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 4/10/2003 0.000 7/14/2003 0.00010/13/2003 0.0001/13/2004 0.000 0.000 4/13/2004 1 7/21/2004 1 0.000Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.0001 9/16/2002 0.000 1 10/16/2002 1 0.000 1/13/2003 1 0.000 4/10/2003 0.000 7/16/2003 0.00010/14/2003 0.000

1

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |                     |             |            |                     |                |                   |  |  |
|----------------------|---------------------|-------------|------------|---------------------|----------------|-------------------|--|--|
| Well No.             | Gradient            | Detected?   | Result     | Result >TL(1)?      | LN(Result)     | LN(Result) >TL(2) |  |  |
| MW220                | Upgradient          | Yes         | 0.232      | NO                  | -1.461         | N/A               |  |  |
| MW221                | Sidegradient        | Yes         | 0.476      | NO                  | -0.742         | N/A               |  |  |
| MW222                | Sidegradient        | Yes         | 0.435      | NO                  | -0.832         | N/A               |  |  |
| MW223                | Sidegradient        | Yes         | 0.412      | NO                  | -0.887         | N/A               |  |  |
| MW224                | Sidegradient        | Yes         | 0.403      | NO                  | -0.909         | N/A               |  |  |
| MW369                | Downgradien         | t Yes       | 0.345      | NO                  | -1.064         | N/A               |  |  |
| MW372                | Downgradien         | t Yes       | 0.572      | NO                  | -0.559         | N/A               |  |  |
| MW384                | Sidegradient        | Yes         | 0.307      | NO                  | -1.181         | N/A               |  |  |
| MW387                | Downgradien         | t Yes       | 0.536      | NO                  | -0.624         | N/A               |  |  |
| MW391                | Downgradien         | t Yes       | 0.579      | NO                  | -0.546         | N/A               |  |  |
| MW394                | Upgradient          | Yes         | 0.574      | NO                  | -0.555         | N/A               |  |  |
| N/A - Recu           | lts identified as N | Jon-Detects | during lab | oratory analysis or | data validatio | n and were not    |  |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-31

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 27.638 S = 4.743

CV(1)=0.172

**K** factor\*\*= 2.523

TL(1) = 39.604

LL(1)=N/A

**Statistics-Transformed Background** 

X = 3.304 S = 0.183 CV(2) = 0.055

**K factor\*\*=** 2.523

TL(2) = 3.765

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                     | MW220                           |                                           |  |  |
|----------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|--|--|
| Date Collected                                                                   | Result                          | LN(Result)                                |  |  |
| 10/14/2002                                                                       | 23.6                            | 3.161                                     |  |  |
| 1/15/2003                                                                        | 25.9                            | 3.254                                     |  |  |
| 4/10/2003                                                                        | 30.4                            | 3.414                                     |  |  |
| 7/14/2003                                                                        | 33.9                            | 3.523                                     |  |  |
| 10/13/2003                                                                       | 21.3                            | 3.059                                     |  |  |
| 1/13/2004                                                                        | 20.3                            | 3.011                                     |  |  |
| 4/13/2004                                                                        | 23.8                            | 3.170                                     |  |  |
| 7/21/2004                                                                        | 19                              | 2.944                                     |  |  |
|                                                                                  |                                 |                                           |  |  |
| Well Number:                                                                     | MW394                           |                                           |  |  |
| Well Number:  Date Collected                                                     | MW394<br>Result                 | LN(Result)                                |  |  |
|                                                                                  |                                 | LN(Result)<br>3.384                       |  |  |
| Date Collected                                                                   | Result                          |                                           |  |  |
| Date Collected 8/13/2002                                                         | Result<br>29.5                  | 3.384                                     |  |  |
| Date Collected<br>8/13/2002<br>9/16/2002                                         | Result 29.5 29.9                | 3.384<br>3.398                            |  |  |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002                           | Result 29.5 29.9 31.2           | 3.384<br>3.398<br>3.440                   |  |  |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003              | Result 29.5 29.9 31.2 30.7      | 3.384<br>3.398<br>3.440<br>3.424          |  |  |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003<br>4/10/2003 | Result 29.5 29.9 31.2 30.7 34.4 | 3.384<br>3.398<br>3.440<br>3.424<br>3.538 |  |  |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |                                                                                                                                                  |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Gradient             | Detected?                                                                                                                                        | Result                                                                                                                                                                                                                                         | Result >TL(1)?                                                                                                                                                                                                                 | LN(Result)                                                                                                                                                                                                                                                                                                                   | LN(Result) >TL(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Upgradient           | Yes                                                                                                                                              | 20.6                                                                                                                                                                                                                                           | NO                                                                                                                                                                                                                             | 3.025                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Sidegradient         | Yes                                                                                                                                              | 21.5                                                                                                                                                                                                                                           | NO                                                                                                                                                                                                                             | 3.068                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Sidegradient         | Yes                                                                                                                                              | 19.4                                                                                                                                                                                                                                           | NO                                                                                                                                                                                                                             | 2.965                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Sidegradient         | Yes                                                                                                                                              | 21.5                                                                                                                                                                                                                                           | NO                                                                                                                                                                                                                             | 3.068                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Sidegradient         | Yes                                                                                                                                              | 22.3                                                                                                                                                                                                                                           | NO                                                                                                                                                                                                                             | 3.105                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Downgradien          | t Yes                                                                                                                                            | 16.5                                                                                                                                                                                                                                           | NO                                                                                                                                                                                                                             | 2.803                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Downgradien          | t Yes                                                                                                                                            | 62.4                                                                                                                                                                                                                                           | YES                                                                                                                                                                                                                            | 4.134                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Sidegradient         | Yes                                                                                                                                              | 24.8                                                                                                                                                                                                                                           | NO                                                                                                                                                                                                                             | 3.211                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Downgradien          | t Yes                                                                                                                                            | 43.2                                                                                                                                                                                                                                           | YES                                                                                                                                                                                                                            | 3.766                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Downgradien          | t Yes                                                                                                                                            | 28.6                                                                                                                                                                                                                                           | NO                                                                                                                                                                                                                             | 3.353                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Upgradient           | Yes                                                                                                                                              | 26                                                                                                                                                                                                                                             | NO                                                                                                                                                                                                                             | 3.258                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                      | Gradient Upgradient Sidegradient Sidegradient Sidegradient Sidegradient Downgradien Downgradien Sidegradient Downgradien Downgradien Downgradien | Gradient Detected?  Upgradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Downgradient Yes Downgradient Yes Sidegradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes | Gradient Detected? Result  Upgradient Yes 20.6 Sidegradient Yes 21.5 Sidegradient Yes 19.4 Sidegradient Yes 21.5 Sidegradient Yes 22.3 Downgradient Yes 16.5 Downgradient Yes 62.4 Sidegradient Yes 43.2 Downgradient Yes 28.6 | Gradient Detected? Result Result >TL(1)?  Upgradient Yes 20.6 NO Sidegradient Yes 21.5 NO Sidegradient Yes 19.4 NO Sidegradient Yes 21.5 NO Sidegradient Yes 21.5 NO Downgradient Yes 22.3 NO Downgradient Yes 16.5 NO Downgradient Yes 62.4 YES Sidegradient Yes 24.8 NO Downgradient Yes 43.2 YES Downgradient Yes 28.6 NO | Gradient         Detected?         Result         Result >TL(1)?         LN(Result)           Upgradient         Yes         20.6         NO         3.025           Sidegradient         Yes         21.5         NO         3.068           Sidegradient         Yes         19.4         NO         2.965           Sidegradient         Yes         21.5         NO         3.068           Sidegradient         Yes         22.3         NO         3.105           Downgradient         Yes         16.5         NO         2.803           Downgradient         Yes         62.4         YES         4.134           Sidegradient         Yes         24.8         NO         3.211           Downgradient         Yes         43.2         YES         3.766           Downgradient         Yes         28.6         NO         3.353 |  |  |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-32

## C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 35.000
 S= 0.000
 CV(1)=0.000
 K factor\*\*= 2.523
 TL(1)= 35.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.555
 S= 0.000
 CV(2)=0.000
 K factor\*\*= 2.523
 TL(2)= 3.555
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 10/14/2002 35 3.555 1/15/2003 35 3.555 35 4/10/2003 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 35 4/13/2004 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current    | Quarter Data        |             |            |                     |                |                   |
|------------|---------------------|-------------|------------|---------------------|----------------|-------------------|
| Well No.   | Gradient            | Detected?   | Result     | Result >TL(1)?      | LN(Result)     | LN(Result) >TL(2) |
| MW220      | Upgradient          | No          | 20         | N/A                 | 2.996          | N/A               |
| MW221      | Sidegradient        | Yes         | 16         | NO                  | 2.773          | N/A               |
| MW222      | Sidegradient        | Yes         | 16         | NO                  | 2.773          | N/A               |
| MW223      | Sidegradient        | Yes         | 16         | NO                  | 2.773          | N/A               |
| MW224      | Sidegradient        | No          | 20         | N/A                 | 2.996          | N/A               |
| MW369      | Downgradien         | t Yes       | 10.1       | NO                  | 2.313          | N/A               |
| MW372      | Downgradien         | t Yes       | 26.8       | NO                  | 3.288          | N/A               |
| MW384      | Sidegradient        | Yes         | 14.8       | NO                  | 2.695          | N/A               |
| MW387      | Downgradien         | t Yes       | 17.8       | NO                  | 2.879          | N/A               |
| MW391      | Downgradien         | t Yes       | 9.07       | NO                  | 2.205          | N/A               |
| MW394      | Upgradient          | Yes         | 16         | NO                  | 2.773          | N/A               |
| N/A - Resu | lts identified as N | Non-Detects | during lab | oratory analysis or | data validatio | n and were not    |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Chloride **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

**K** factor\*\*= 2.523

TL(1) = 77.499

LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.866 S = 0.244 CV(2) = 0.063

**K factor\*\*=** 2.523

TL(2) = 4.482

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 44.6 3.798 1/15/2003 43.2 3.766 4/10/2003 31.5 3.450 7/14/2003 30.8 3.428 10/13/2003 40.9 3.711 1/13/2004 40.8 3.709 37.5 4/13/2004 3.624 7/21/2004 40.8 3.709 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 60.4 4.101 9/16/2002 4.099 60.3 58 10/16/2002 4.060 1/13/2003 60.7 4.106 4/10/2003 62.9 4.142 7/16/2003 58.1 4.062 10/14/2003 58.2 4.064

56

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220    | Upgradient   | Yes       | 19.8   | NO             | 2.986      | N/A               |
| MW221    | Sidegradient | Yes       | 36.6   | NO             | 3.600      | N/A               |
| MW222    | Sidegradient | Yes       | 31.6   | NO             | 3.453      | N/A               |
| MW223    | Sidegradient | Yes       | 31.5   | NO             | 3.450      | N/A               |
| MW224    | Sidegradient | Yes       | 29.4   | NO             | 3.381      | N/A               |
| MW369    | Downgradien  | t Yes     | 29.9   | NO             | 3.398      | N/A               |
| MW372    | Downgradien  | t Yes     | 44.2   | NO             | 3.789      | N/A               |
| MW384    | Sidegradient | Yes       | 27.5   | NO             | 3.314      | N/A               |
| MW387    | Downgradien  | t Yes     | 41.3   | NO             | 3.721      | N/A               |
| MW391    | Downgradien  | t Yes     | 43.4   | NO             | 3.770      | N/A               |
| MW394    | Upgradient   | Yes       | 43.9   | NO             | 3.782      | N/A               |
| 37/4 D   |              | T D       | 1 . 11 | 1 .            | 1.1.1.1.1  | 1 .               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

4.025

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-34

## C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor\*\*= 2.523
 TL(1) = 5.000 LL(1) = N/A 

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor\*\*= 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 10/14/2002 5 1.609 1/15/2003 5 1.609 5 4/10/2003 1.609 7/14/2003 5 1.609 10/13/2003 5 1.609 5 1/13/2004 1.609 5 4/13/2004 1.609 7/21/2004 5 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 4/10/2003 5 1.609 7/16/2003 5 1.609 5 10/14/2003 1.609 1/13/2004 5 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current    | Quarter Data        |             |            |                     |                |                   |
|------------|---------------------|-------------|------------|---------------------|----------------|-------------------|
| Well No.   | Gradient            | Detected?   | Result     | Result >TL(1)?      | LN(Result)     | LN(Result) >TL(2) |
| MW220      | Upgradient          | No          | 1          | N/A                 | 0.000          | N/A               |
| MW221      | Sidegradient        | No          | 1          | N/A                 | 0.000          | N/A               |
| MW222      | Sidegradient        | No          | 1          | N/A                 | 0.000          | N/A               |
| MW223      | Sidegradient        | No          | 1          | N/A                 | 0.000          | N/A               |
| MW224      | Sidegradient        | No          | 1          | N/A                 | 0.000          | N/A               |
| MW369      | Downgradien         | t No        | 1          | N/A                 | 0.000          | N/A               |
| MW372      | Downgradien         | t No        | 1          | N/A                 | 0.000          | N/A               |
| MW384      | Sidegradient        | Yes         | 0.38       | NO                  | -0.968         | N/A               |
| MW387      | Downgradien         | t No        | 1          | N/A                 | 0.000          | N/A               |
| MW391      | Downgradien         | t Yes       | 0.44       | NO                  | -0.821         | N/A               |
| MW394      | Upgradient          | No          | 1          | N/A                 | 0.000          | N/A               |
| N/A - Resu | lts identified as N | Non-Detects | durino lab | oratory analysis or | data validatio | n and were not    |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Cobalt **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=2.440**K** factor\*\*= 2.523 Statistics-Background Data X = 0.016S = 0.040**TL(1)=** 0.116 LL(1)=N/A **Statistics-Transformed Background** X = -5.582 S = 1.573 CV(2) = -0.282LL(2)=N/A

Data

**K factor\*\*=** 2.523

TL(2) = -1.613

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.497-5.306 1/15/2003 0.00496 0.00289 4/10/2003 -5.8467/14/2003 0.161-1.82610/13/2003 0.0226 -3.7901/13/2004 0.00464 -5.373 0.001 -6.9084/13/2004 7/21/2004 0.00264 -5.937 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.025-3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.908 1/13/2003 0.001 -6.9084/10/2003 0.001 -6.9087/16/2003 0.001 -6.908 10/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |          |                |            |                   |
|----------|--------------|-----------|----------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result   | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220    | Upgradient   | No        | 0.001    | N/A            | -6.908     | N/A               |
| MW221    | Sidegradient | No        | 0.001    | N/A            | -6.908     | N/A               |
| MW222    | Sidegradient | No        | 0.00040  | 1 N/A          | -7.822     | N/A               |
| MW223    | Sidegradient | No        | 0.000468 | 8 N/A          | -7.667     | N/A               |
| MW224    | Sidegradient | No        | 0.000898 | 8 N/A          | -7.015     | N/A               |
| MW369    | Downgradien  | t Yes     | 0.00419  | N/A            | -5.475     | NO                |
| MW372    | Downgradien  | t No      | 0.001    | N/A            | -6.908     | N/A               |
| MW384    | Sidegradient | No        | 0.001    | N/A            | -6.908     | N/A               |
| MW387    | Downgradien  | t No      | 0.001    | N/A            | -6.908     | N/A               |
| MW391    | Downgradien  | t No      | 0.001    | N/A            | -6.908     | N/A               |
| MW394    | Upgradient   | No        | 0.001    | N/A            | -6.908     | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-36

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison URGA** Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

**K** factor\*\*= 2.523

TL(1) = 652.432 LL(1) = N/A

**Statistics-Transformed Background** 

X = 5.716 S = 1.164 CV(2) = 0.204

**K factor\*\*=** 2.523

TL(2) = 8.652

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                     | MW220                      |                                           |
|----------------------------------------------------------------------------------|----------------------------|-------------------------------------------|
| Date Collected                                                                   | Result                     | LN(Result)                                |
| 10/14/2002                                                                       | 368                        | 5.908                                     |
| 1/15/2003                                                                        | 433.2                      | 6.071                                     |
| 4/10/2003                                                                        | 489                        | 6.192                                     |
| 7/14/2003                                                                        | 430                        | 6.064                                     |
| 10/13/2003                                                                       | 346                        | 5.846                                     |
| 1/13/2004                                                                        | 365                        | 5.900                                     |
| 4/13/2004                                                                        | 416                        | 6.031                                     |
| 7/21/2004                                                                        | 353                        | 5.866                                     |
|                                                                                  |                            |                                           |
| Well Number:                                                                     | MW394                      |                                           |
| Well Number: Date Collected                                                      | MW394<br>Result            | LN(Result)                                |
|                                                                                  |                            | LN(Result)<br>6.006                       |
| Date Collected                                                                   | Result                     |                                           |
| Date Collected 8/13/2002                                                         | Result 406                 | 6.006                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                         | Result 406 418             | 6.006<br>6.035                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002                           | Result 406 418 411         | 6.006<br>6.035<br>6.019                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003              | Result 406 418 411 422     | 6.006<br>6.035<br>6.019<br>6.045          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003<br>4/10/2003 | Result 406 418 411 422 420 | 6.006<br>6.035<br>6.019<br>6.045<br>6.040 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220    | Upgradient   | Yes       | 354    | NO             | 5.869      | N/A               |
| MW221    | Sidegradient | Yes       | 396    | NO             | 5.981      | N/A               |
| MW222    | Sidegradient | Yes       | 369    | NO             | 5.911      | N/A               |
| MW223    | Sidegradient | Yes       | 376    | NO             | 5.930      | N/A               |
| MW224    | Sidegradient | Yes       | 432    | NO             | 6.068      | N/A               |
| MW369    | Downgradien  | t Yes     | 372    | NO             | 5.919      | N/A               |
| MW372    | Downgradien  | t Yes     | 770    | YES            | 6.646      | N/A               |
| MW384    | Sidegradient | Yes       | 446    | NO             | 6.100      | N/A               |
| MW387    | Downgradien  | t Yes     | 604    | NO             | 6.404      | N/A               |
| MW391    | Downgradien  | t Yes     | 407    | NO             | 6.009      | N/A               |
| MW394    | Upgradient   | Yes       | 379    | NO             | 5.938      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-37

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.010 CV(1) = 0.429 K factor\*\*= 2.523
 TL(1) = 0.050 LL(1) = N/A 

 Statistics-Transformed Background
 X = -3.794 S = 0.312 CV(2) = -0.082 K factor\*\*= 2.523
 TL(2) = -3.007 LL(2) = N/A 

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.858-3.9121/15/2003 0.02 -3.912 4/10/2003 0.02 7/14/2003 0.02 -3.912 10/13/2003 0.02 -3.9121/13/2004 0.02 -3.9120.02 -3.9124/13/2004 7/21/2004 0.02 -3.912 Well Number: MW394 Date Collected Result LN(Result) -2.996 8/13/2002 0.05 9/16/2002 -2.9960.05 10/16/2002 0.02 -3.9121/13/2003 0.02 -3.9124/10/2003 0.02 -3.9127/16/2003 0.02 -3.912 10/14/2003 0.02 -3.9121/13/2004 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current    | Quarter Data        |             |            |                     |                |                   |
|------------|---------------------|-------------|------------|---------------------|----------------|-------------------|
| Well No.   | Gradient            | Detected?   | Result     | Result >TL(1)?      | LN(Result)     | LN(Result) >TL(2) |
| MW220      | Upgradient          | Yes         | 0.00062    | 8 NO                | -7.373         | N/A               |
| MW221      | Sidegradient        | Yes         | 0.00093    | 4 NO                | -6.976         | N/A               |
| MW222      | Sidegradient        | Yes         | 0.00050    | 1 NO                | -7.599         | N/A               |
| MW223      | Sidegradient        | Yes         | 0.00072    | 1 NO                | -7.235         | N/A               |
| MW224      | Sidegradient        | Yes         | 0.00087    | 6 NO                | -7.040         | N/A               |
| MW369      | Downgradien         | t Yes       | 0.00228    | NO                  | -6.084         | N/A               |
| MW372      | Downgradien         | t No        | 0.002      | N/A                 | -6.215         | N/A               |
| MW384      | Sidegradient        | Yes         | 0.00050    | 8 NO                | -7.585         | N/A               |
| MW387      | Downgradien         | t Yes       | 0.00052    | 8 NO                | -7.546         | N/A               |
| MW391      | Downgradien         | t Yes       | 0.00079    | 8 NO                | -7.133         | N/A               |
| MW394      | Upgradient          | Yes         | 0.00037    | 3 NO                | -7.894         | N/A               |
| N/A - Resu | lts identified as N | Jon-Detects | during lab | oratory analysis or | data validatio | n and were not    |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Dissolved Oxygen URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.499**K** factor\*\*= 2.523 Statistics-Background Data X = 3.784**S**= 1.887 TL(1) = 8.545LL(1)=N/A **Statistics-Transformed Background** X = 1.182S = 0.612

Data

CV(2) = 0.518

**K factor\*\*=** 2.523

TL(2) = 2.727

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 6.79 1.915 1.981 1/15/2003 7.25 4/10/2003 3.6 1.281 7/14/2003 0.94 -0.06210/13/2003 1.65 0.501 1/13/2004 3.48 1.247 0.049 4/13/2004 1.05 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 3.83 1.343 4/10/2003 4.15 1.423 7/16/2003 1.83 0.604 10/14/2003 3.33 1.203 1/13/2004 3.14 1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data   |           |        |                |            |                   |
|----------|----------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient       | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220    | Upgradient     | Yes       | 4.41   | NO             | 1.484      | N/A               |
| MW221    | Sidegradient   | Yes       | 4.81   | NO             | 1.571      | N/A               |
| MW222    | Sidegradient   | Yes       | 2.9    | NO             | 1.065      | N/A               |
| MW223    | Sidegradient   | Yes       | 3.4    | NO             | 1.224      | N/A               |
| MW224    | Sidegradient   | Yes       | 1.72   | NO             | 0.542      | N/A               |
| MW369    | Downgradien    | t Yes     | 2.66   | NO             | 0.978      | N/A               |
| MW372    | Downgradien    | t Yes     | 1.78   | NO             | 0.577      | N/A               |
| MW384    | Sidegradient   | Yes       | 3.68   | NO             | 1.303      | N/A               |
| MW387    | Downgradien    | t Yes     | 3.29   | NO             | 1.191      | N/A               |
| MW391    | Downgradien    | t Yes     | 3.5    | NO             | 1.253      | N/A               |
| MW394    | Upgradient     | Yes       | 2.6    | NO             | 0.956      | N/A               |
| NI/A D   | 1, 11, 100 1 3 | T D ( )   | 1 . 11 | 1 1            | 1 4 11 41  | 1 4               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-39

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

**K** factor\*\*= 2.523

TL(1)=302.045 LL(1)=N/A

**Statistics-Transformed Background** 

X = 5.443 S = 0.118 CV(2) = 0.022

**K factor\*\*=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                     | MW220                      |                                           |
|----------------------------------------------------------------------------------|----------------------------|-------------------------------------------|
| Date Collected                                                                   | Result                     | LN(Result)                                |
| 10/14/2002                                                                       | 208                        | 5.338                                     |
| 1/15/2003                                                                        | 257                        | 5.549                                     |
| 4/10/2003                                                                        | 288                        | 5.663                                     |
| 7/14/2003                                                                        | 262                        | 5.568                                     |
| 10/13/2003                                                                       | 197                        | 5.283                                     |
| 1/13/2004                                                                        | 198                        | 5.288                                     |
| 4/13/2004                                                                        | 245                        | 5.501                                     |
| 7/21/2004                                                                        | 204                        | 5.318                                     |
|                                                                                  |                            |                                           |
| Well Number:                                                                     | MW394                      |                                           |
| Well Number: Date Collected                                                      | MW394<br>Result            | LN(Result)                                |
|                                                                                  |                            | LN(Result)<br>5.509                       |
| Date Collected                                                                   | Result                     |                                           |
| Date Collected 8/13/2002                                                         | Result<br>247              | 5.509                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                         | Result 247 259             | 5.509<br>5.557                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002                           | Result 247 259 201         | 5.509<br>5.557<br>5.303                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003              | Result 247 259 201 228     | 5.509<br>5.557<br>5.303<br>5.429          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003<br>4/10/2003 | Result 247 259 201 228 249 | 5.509<br>5.557<br>5.303<br>5.429<br>5.517 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                  |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW220    | Upgradient   | Yes       | 191    | NO             | 5.252      | N/A              |
| MW221    | Sidegradient | Yes       | 151    | NO             | 5.017      | N/A              |
| MW222    | Sidegradient | Yes       | 194    | NO             | 5.268      | N/A              |
| MW223    | Sidegradient | Yes       | 191    | NO             | 5.252      | N/A              |
| MW224    | Sidegradient | Yes       | 239    | NO             | 5.476      | N/A              |
| MW369    | Downgradien  | t Yes     | 186    | NO             | 5.226      | N/A              |
| MW372    | Downgradien  | t Yes     | 436    | YES            | 6.078      | N/A              |
| MW384    | Sidegradient | Yes       | 304    | YES            | 5.717      | N/A              |
| MW387    | Downgradien  | t Yes     | 347    | YES            | 5.849      | N/A              |
| MW391    | Downgradien  | t Yes     | 210    | NO             | 5.347      | N/A              |
| MW394    | Upgradient   | Yes       | 213    | NO             | 5.361      | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-40

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.170**K** factor\*\*= 2.523 Statistics-Background Data X = 0.897S = 1.050TL(1) = 3.545LL(1)=N/A **Statistics-Transformed Background** X = -0.565 S = 0.951LL(2)=N/A

Data

**CV(2)=**-1.683

**K factor\*\*=** 2.523

TL(2) = 1.834

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.609-1.6091/15/2003 0.2 4/10/2003 0.429 -0.8467/14/2003 4.33 1.466 10/13/2003 1.81 0.593 1/13/2004 0.793 -0.232-2.0404/13/2004 0.13 7/21/2004 0.382 -0.962MW394 Well Number: Date Collected Result LN(Result) 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.11510/16/2002 1.38 0.322 1/13/2003 1.3 0.262 4/10/2003 0.494 -0.7057/16/2003 0.62 -0.47810/14/2003 0.37 -0.9941/13/2004 0.251 -1.382

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220    | Upgradient   | Yes       | 0.0838 | N/A            | -2.479     | NO                |
| MW221    | Sidegradient | No        | 0.1    | N/A            | -2.303     | N/A               |
| MW222    | Sidegradient | No        | 0.1    | N/A            | -2.303     | N/A               |
| MW223    | Sidegradient | Yes       | 0.0512 | N/A            | -2.972     | NO                |
| MW224    | Sidegradient | Yes       | 0.227  | N/A            | -1.483     | NO                |
| MW369    | Downgradien  | t Yes     | 0.135  | N/A            | -2.002     | NO                |
| MW372    | Downgradien  | t Yes     | 0.0355 | N/A            | -3.338     | NO                |
| MW384    | Sidegradient | Yes       | 0.14   | N/A            | -1.966     | NO                |
| MW387    | Downgradien  | t Yes     | 0.251  | N/A            | -1.382     | NO                |
| MW391    | Downgradien  | t Yes     | 0.0784 | N/A            | -2.546     | NO                |
| MW394    | Upgradient   | Yes       | 0.108  | N/A            | -2.226     | NO                |
|          |              |           |        |                |            | _                 |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

## C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**X**= 10.796 **S**= 1.703

**K factor\*\*=** 2.523

**TL(1)=** 15.092

LL(1)=N/A

Statistics-Transformed Background

X = 2.368

**S**= 0.158

CV(2) = 0.067

CV(1)=0.158

**K factor\*\*=** 2.523

 $3 ext{TL(2)} = 2.766$ 

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                     | MW220                           |                                           |
|----------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|
| Date Collected                                                                   | Result                          | LN(Result)                                |
| 10/14/2002                                                                       | 9.16                            | 2.215                                     |
| 1/15/2003                                                                        | 10                              | 2.303                                     |
| 4/10/2003                                                                        | 10.8                            | 2.380                                     |
| 7/14/2003                                                                        | 14.7                            | 2.688                                     |
| 10/13/2003                                                                       | 9.03                            | 2.201                                     |
| 1/13/2004                                                                        | 8.49                            | 2.139                                     |
| 4/13/2004                                                                        | 9.7                             | 2.272                                     |
| 7/21/2004                                                                        | 8.06                            | 2.087                                     |
|                                                                                  |                                 |                                           |
| Well Number:                                                                     | MW394                           |                                           |
| Well Number: Date Collected                                                      |                                 | LN(Result)                                |
|                                                                                  |                                 | LN(Result)<br>2.468                       |
| Date Collected                                                                   | Result                          | · · · · · · · · · · · · · · · · · · ·     |
| Date Collected 8/13/2002                                                         | Result<br>11.8                  | 2.468                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                         | Result 11.8 12.1                | 2.468<br>2.493                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002                           | Result 11.8 12.1 11.3           | 2.468<br>2.493<br>2.425                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003              | Result 11.8 12.1 11.3 10.3      | 2.468<br>2.493<br>2.425<br>2.332          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003<br>4/10/2003 | Result 11.8 12.1 11.3 10.3 11.7 | 2.468<br>2.493<br>2.425<br>2.332<br>2.460 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220    | Upgradient   | Yes       | 8.24   | NO             | 2.109      | N/A               |
| MW221    | Sidegradient | Yes       | 9.03   | NO             | 2.201      | N/A               |
| MW222    | Sidegradient | Yes       | 8.23   | NO             | 2.108      | N/A               |
| MW223    | Sidegradient | Yes       | 8.3    | NO             | 2.116      | N/A               |
| MW224    | Sidegradient | Yes       | 9.33   | NO             | 2.233      | N/A               |
| MW369    | Downgradien  | t Yes     | 6.51   | NO             | 1.873      | N/A               |
| MW372    | Downgradien  | t Yes     | 21.4   | YES            | 3.063      | N/A               |
| MW384    | Sidegradient | Yes       | 10.5   | NO             | 2.351      | N/A               |
| MW387    | Downgradien  | t Yes     | 17.9   | YES            | 2.885      | N/A               |
| MW391    | Downgradien  | t Yes     | 12.4   | NO             | 2.518      | N/A               |
| MW394    | Upgradient   | Yes       | 11.2   | NO             | 2.416      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.287 S = 0.619 CV(1) = 2.156 K factor\*\*= 2.523
 TL(1) = 1.848 LL(1) = N/A 

 Statistics-Transformed Background
 X = -2.455 S = 1.619 CV(2) = -0.659 K factor\*\*= 2.523
 TL(2) = 1.630 LL(2) = N/A 

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4870.0291 1/15/2003 -3.5370.0137 -4.290 4/10/2003 7/14/2003 2.54 0.93210/13/2003 0.378 -0.9731/13/2004 0.159-1.8390.00707 -4.9524/13/2004 7/21/2004 0.0841 -2.476Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.542-0.6129/16/2002 0.155 -1.86410/16/2002 0.103 -2.2731/13/2003 0.128 -2.0564/10/2003 0.005 -5.298 7/16/2003 0.272 -1.30210/14/2003 0.0795 -2.532 1/13/2004 0.0658 -2.721

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current   | Quarter Data      |           |         |                |            |                   |
|-----------|-------------------|-----------|---------|----------------|------------|-------------------|
| Well No.  | Gradient          | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220     | Upgradient        | No        | 0.00144 | N/A            | -6.543     | N/A               |
| MW221     | Sidegradient      | No        | 0.005   | N/A            | -5.298     | N/A               |
| MW222     | Sidegradient      | No        | 0.0024  | N/A            | -6.032     | N/A               |
| MW223     | Sidegradient      | Yes       | 0.00611 | N/A            | -5.098     | NO                |
| MW224     | Sidegradient      | No        | 0.00444 | N/A            | -5.417     | N/A               |
| MW369     | Downgradien       | t Yes     | 0.00886 | N/A            | -4.726     | NO                |
| MW372     | Downgradien       | t No      | 0.005   | N/A            | -5.298     | N/A               |
| MW384     | Sidegradient      | No        | 0.00352 | N/A            | -5.649     | N/A               |
| MW387     | Downgradien       | t Yes     | 0.023   | N/A            | -3.772     | NO                |
| MW391     | Downgradien       | t No      | 0.00239 | N/A            | -6.036     | N/A               |
| MW394     | Upgradient        | No        | 0.00395 | N/A            | -5.534     | N/A               |
| NI/A Dane | 14. : 14:6: - 1 N | T D-44-   | 1       | 4 1            | 4-4114-41- | 4                 |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.261**K** factor\*\*= 2.523 Statistics-Background Data X = 0.006S = 0.008TL(1) = 0.026LL(1)=N/A **Statistics-Transformed Background** 

Data

X = -5.747 S = 1.205 CV(2) = -0.210

**K factor\*\*=** 2.523

TL(2) = -2.708

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.00558-5.189-4.6221/15/2003 0.00983 0.0109 -4.519 4/10/2003 7/14/2003 0.00245 -6.01210/13/2003 0.00566-5.1741/13/2004 0.00572-5.1640.001 -6.9084/13/2004 7/21/2004 0.00392 -5.542 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.025-3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.908 1/13/2003 0.001 -6.9084/10/2003 0.001 -6.9087/16/2003 0.001 -6.908 10/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data        |             |             |                     |                 |                   |
|----------|---------------------|-------------|-------------|---------------------|-----------------|-------------------|
| Well No. | Gradient            | Detected?   | Result      | Result >TL(1)?      | LN(Result)      | LN(Result) >TL(2) |
| MW220    | Upgradient          | Yes         | 0.00042     | 7 N/A               | -7.759          | NO                |
| MW221    | Sidegradient        | Yes         | 0.00157     | N/A                 | -6.457          | NO                |
| MW222    | Sidegradient        | Yes         | 0.00123     | N/A                 | -6.701          | NO                |
| MW223    | Sidegradient        | Yes         | 0.00443     | N/A                 | -5.419          | NO                |
| MW224    | Sidegradient        | Yes         | 0.00155     | N/A                 | -6.470          | NO                |
| MW369    | Downgradien         | t No        | 0.001       | N/A                 | -6.908          | N/A               |
| MW372    | Downgradien         | t No        | 0.001       | N/A                 | -6.908          | N/A               |
| MW384    | Sidegradient        | No          | 0.001       | N/A                 | -6.908          | N/A               |
| MW387    | Downgradien         | t No        | 0.001       | N/A                 | -6.908          | N/A               |
| MW391    | Downgradien         | t No        | 0.001       | N/A                 | -6.908          | N/A               |
| MW394    | Upgradient          | No          | 0.001       | N/A                 | -6.908          | N/A               |
| N/A Pagu | lte identified as N | Jon Detects | during labo | aratary analysis ar | data validation | n and were not    |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

## C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.127 S = 0.228 CV(1) = 1.790 K factor\*\* = 2.523
 TL(1) = 0.701 LL(1) = N/A 

 Statistics-Transformed Background
 X = -3.617 X = -3

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.872-0.3041/15/2003 0.738 -0.609 4/10/2003 0.544 7/14/2003 0.106-2.24410/13/2003 0.0529 -2.9391/13/2004 0.0209 -3.8680.005 -5.2984/13/2004 7/21/2004 0.0192 -3.953 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.99610/16/2002 0.005 -5.298 1/13/2003 0.005 -5.2984/10/2003 0.005 -5.298 7/16/2003 0.005 -5.298 10/14/2003 0.005 -5.298 1/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data        |             |            |                      |                |                   |
|----------|---------------------|-------------|------------|----------------------|----------------|-------------------|
| Well No. | Gradient            | Detected?   | Result     | Result >TL(1)?       | LN(Result)     | LN(Result) >TL(2) |
| MW220    | Upgradient          | Yes         | 0.0121     | N/A                  | -4.415         | NO                |
| MW221    | Sidegradient        | Yes         | 0.0139     | N/A                  | -4.276         | NO                |
| MW222    | Sidegradient        | Yes         | 0.0574     | N/A                  | -2.858         | NO                |
| MW223    | Sidegradient        | Yes         | 0.0841     | N/A                  | -2.476         | NO                |
| MW224    | Sidegradient        | Yes         | 0.0797     | N/A                  | -2.529         | NO                |
| MW369    | Downgradien         | t Yes       | 0.0191     | N/A                  | -3.958         | NO                |
| MW372    | Downgradien         | t Yes       | 0.00253    | N/A                  | -5.980         | NO                |
| MW384    | Sidegradient        | Yes         | 0.00656    | N/A                  | -5.027         | NO                |
| MW387    | Downgradien         | t Yes       | 0.0193     | N/A                  | -3.948         | NO                |
| MW391    | Downgradien         | t Yes       | 0.00417    | N/A                  | -5.480         | NO                |
| MW394    | Upgradient          | Yes         | 0.00827    | N/A                  | -4.795         | NO                |
| N/A Dogg | lta identified on N | Jon Dotoota | during lab | aratary analyzaia ar | data validatio | n and ware not    |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

## C-746-S/T Third Quarter 2020 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

## **Historical Background Comparison URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

**K** factor\*\*= 2.523

TL(1)=397.652 LL(1)=N/A

**Statistics-Transformed Background** 

X = 4.861 S = 1.252 CV(2) = 0.258

**K factor\*\*=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                     | MW220                     |                                           |
|----------------------------------------------------------------------------------|---------------------------|-------------------------------------------|
| Date Collected                                                                   | Result                    | LN(Result)                                |
| 10/14/2002                                                                       | 205                       | 5.323                                     |
| 1/15/2003                                                                        | 1.95                      | 0.668                                     |
| 4/10/2003                                                                        | 203                       | 5.313                                     |
| 7/14/2003                                                                        | 30                        | 3.401                                     |
| 10/13/2003                                                                       | 107                       | 4.673                                     |
| 1/13/2004                                                                        | 295                       | 5.687                                     |
| 4/13/2004                                                                        | 190                       | 5.247                                     |
| 7/21/2004                                                                        | 319                       | 5.765                                     |
|                                                                                  |                           |                                           |
| Well Number:                                                                     | MW394                     |                                           |
| Well Number: Date Collected                                                      | MW394<br>Result           | LN(Result)                                |
|                                                                                  |                           | LN(Result)<br>4.500                       |
| Date Collected                                                                   | Result                    |                                           |
| Date Collected 8/13/2002                                                         | Result<br>90              | 4.500                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                         | Result<br>90<br>240       | 4.500<br>5.481                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002                           | Result 90 240 185         | 4.500<br>5.481<br>5.220                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003              | Result 90 240 185 220     | 4.500<br>5.481<br>5.220<br>5.394          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003<br>4/10/2003 | Result 90 240 185 220 196 | 4.500<br>5.481<br>5.220<br>5.394<br>5.278 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220                | Upgradient   | Yes       | 375    | NO             | 5.927      | N/A               |
| MW221                | Sidegradient | Yes       | 407    | YES            | 6.009      | N/A               |
| MW222                | Sidegradient | Yes       | 378    | NO             | 5.935      | N/A               |
| MW223                | Sidegradient | Yes       | 379    | NO             | 5.938      | N/A               |
| MW224                | Sidegradient | Yes       | 376    | NO             | 5.930      | N/A               |
| MW369                | Downgradien  | t Yes     | 353    | NO             | 5.866      | N/A               |
| MW372                | Downgradien  | t Yes     | 365    | NO             | 5.900      | N/A               |
| MW384                | Sidegradient | Yes       | 373    | NO             | 5.922      | N/A               |
| MW387                | Downgradien  | t Yes     | 364    | NO             | 5.897      | N/A               |
| MW391                | Downgradien  | t Yes     | 386    | NO             | 5.956      | N/A               |
| MW394                | Upgradient   | Yes       | 356    | NO             | 5.875      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

MW221

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-46

## C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.138 S = 0.282 CV(1) = 0.046 K factor\*\*= 2.904 TL(1) = 6.957 LL(1) = 5.3179

Statistics-Transformed Background Data

**X**= 1.813 **S**= 0.047 **CV(2)**= 0.026

K factor\*\*= 2.904

**TL(2)=** 1.950

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 6.04 1.798 1/15/2003 6.31 1.842 4/10/2003 6.5 1.872 7/14/2003 6.3 1.841 10/13/2003 6.34 1.847 1/13/2004 6.33 1.845 6.3 4/13/2004 1.841 7/21/2004 5.9 1.775 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/30/2002 5.93 1.780 5.42 10/16/2002 1.690 1/13/2003 6 1.792 4/10/2003 6.04 1.798 7/16/2003 6.2 1.825 10/14/2003 6.4 1.856 1/13/2004 6.39 1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Ouarter | Data |
|---------|---------|------|
| Current | Qualter | Data |

| Well No. | Gradient     | Detected? | Result | Result >TL(1)?<br>Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) &gt;TL(2)?<br/>LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<> | LN(Result) | LN(Result) >TL(2)?<br>LN(Result) <ll(2)?< th=""></ll(2)?<> |
|----------|--------------|-----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------|
| MW220    | Upgradient   | Yes       | 6.14   | NO                                                                                                                                           | 1.815      | N/A                                                        |
| MW221    | Sidegradient | Yes       | 6.02   | NO                                                                                                                                           | 1.795      | N/A                                                        |
| MW222    | Sidegradient | Yes       | 6.15   | NO                                                                                                                                           | 1.816      | N/A                                                        |
| MW223    | Sidegradient | Yes       | 6.12   | NO                                                                                                                                           | 1.812      | N/A                                                        |
| MW224    | Sidegradient | Yes       | 6.17   | NO                                                                                                                                           | 1.820      | N/A                                                        |
| MW369    | Downgradien  | t Yes     | 6.2    | NO                                                                                                                                           | 1.825      | N/A                                                        |
| MW372    | Downgradien  | t Yes     | 6.16   | NO                                                                                                                                           | 1.818      | N/A                                                        |
| MW384    | Sidegradient | Yes       | 6.07   | NO                                                                                                                                           | 1.803      | N/A                                                        |
| MW387    | Downgradien  | t Yes     | 6.23   | NO                                                                                                                                           | 1.829      | N/A                                                        |
| MW391    | Downgradien  | t Yes     | 6.03   | NO                                                                                                                                           | 1.797      | N/A                                                        |
| MW394    | Upgradient   | Yes       | 6.07   | NO                                                                                                                                           | 1.803      | N/A                                                        |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.399**K** factor\*\*= 2.523 Statistics-Background Data X = 6.654S = 9.310TL(1)=30.144LL(1)=N/A **Statistics-Transformed Background** X = 1.130TL(2) = 4.178LL(2)=N/A

S = 1.208

CV(2) = 1.069

**K factor\*\*=** 2.523

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                     | MW220                    |                                           |
|----------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Date Collected                                                                   | Result                   | LN(Result)                                |
| 10/14/2002                                                                       | 6.7                      | 1.902                                     |
| 1/15/2003                                                                        | 29.7                     | 3.391                                     |
| 4/10/2003                                                                        | 24.9                     | 3.215                                     |
| 7/14/2003                                                                        | 1.13                     | 0.122                                     |
| 10/13/2003                                                                       | 3.43                     | 1.233                                     |
| 1/13/2004                                                                        | 6.71                     | 1.904                                     |
| 4/13/2004                                                                        | 19.3                     | 2.960                                     |
| 7/21/2004                                                                        | 3.97                     | 1.379                                     |
|                                                                                  |                          |                                           |
| Well Number:                                                                     | MW394                    |                                           |
| Well Number:  Date Collected                                                     | MW394<br>Result          | LN(Result)                                |
|                                                                                  |                          | LN(Result)<br>0.693                       |
| Date Collected                                                                   | Result                   |                                           |
| Date Collected 8/13/2002                                                         | Result 2                 | 0.693                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                         | Result 2                 | 0.693<br>0.693                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002                           | Result 2 2 1.03          | 0.693<br>0.693<br>0.030                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003              | Result 2 2 1.03 1.1      | 0.693<br>0.693<br>0.030<br>0.095          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003<br>4/10/2003 | Result 2 2 1.03 1.1 1.24 | 0.693<br>0.693<br>0.030<br>0.095<br>0.215 |

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220    | Upgradient   | Yes       | 2.15   | N/A            | 0.765      | NO                |
| MW221    | Sidegradient | Yes       | 1.28   | N/A            | 0.247      | NO                |
| MW222    | Sidegradient | Yes       | 0.695  | N/A            | -0.364     | NO                |
| MW223    | Sidegradient | Yes       | 1.55   | N/A            | 0.438      | NO                |
| MW224    | Sidegradient | Yes       | 0.829  | N/A            | -0.188     | NO                |
| MW369    | Downgradien  | t Yes     | 0.485  | N/A            | -0.724     | NO                |
| MW372    | Downgradien  | t Yes     | 2.22   | N/A            | 0.798      | NO                |
| MW384    | Sidegradient | Yes       | 1.52   | N/A            | 0.419      | NO                |
| MW387    | Downgradien  | t Yes     | 1.9    | N/A            | 0.642      | NO                |
| MW391    | Downgradien  | t Yes     | 1.62   | N/A            | 0.482      | NO                |
| MW394    | Upgradient   | Yes       | 1.18   | N/A            | 0.166      | NO                |
| 37/4 D   |              | T D       |        |                | 1 . 11     | 1 .               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Sodium** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 36.363 S = 8.666

CV(1)=0.238

**K** factor\*\*= 2.523

TL(1) = 58.227

LL(1)=N/A

**Statistics-Transformed Background** 

X = 3.570 S = 0.222 CV(2) = 0.062

**K factor\*\*=** 2.523

TL(2) = 4.129

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                     | MW220                         |                                           |
|----------------------------------------------------------------------------------|-------------------------------|-------------------------------------------|
| Date Collected                                                                   | Result                        | LN(Result)                                |
| 10/14/2002                                                                       | 35.4                          | 3.567                                     |
| 1/15/2003                                                                        | 40.6                          | 3.704                                     |
| 4/10/2003                                                                        | 51                            | 3.932                                     |
| 7/14/2003                                                                        | 58.2                          | 4.064                                     |
| 10/13/2003                                                                       | 38.1                          | 3.640                                     |
| 1/13/2004                                                                        | 37                            | 3.611                                     |
| 4/13/2004                                                                        | 43.2                          | 3.766                                     |
| 7/21/2004                                                                        | 33.8                          | 3.520                                     |
|                                                                                  |                               |                                           |
| Well Number:                                                                     | MW394                         |                                           |
| Well Number:  Date Collected                                                     | MW394<br>Result               | LN(Result)                                |
|                                                                                  |                               | LN(Result)<br>3.493                       |
| Date Collected                                                                   | Result                        |                                           |
| Date Collected 8/13/2002                                                         | Result<br>32.9                | 3.493                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                         | Result 32.9 29.9              | 3.493<br>3.398                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002                           | Result 32.9 29.9 29           | 3.493<br>3.398<br>3.367                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003              | Result 32.9 29.9 29           | 3.493<br>3.398<br>3.367<br>3.300          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003<br>4/10/2003 | Result 32.9 29.9 29 27.1 24.8 | 3.493<br>3.398<br>3.367<br>3.300<br>3.211 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| G 1' /       |                                                                                                                                                | Current Quarter Data                                                                                                                                                                                                     |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Gradient     | Detected?                                                                                                                                      | Result                                                                                                                                                                                                                   | Result >TL(1)?                                                                                                                                                                                                                              | LN(Result)                                                                                                                                                                                                                                                                     | LN(Result) >TL(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Upgradient   | Yes                                                                                                                                            | 38.3                                                                                                                                                                                                                     | NO                                                                                                                                                                                                                                          | 3.645                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Sidegradient | Yes                                                                                                                                            | 46                                                                                                                                                                                                                       | NO                                                                                                                                                                                                                                          | 3.829                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Sidegradient | Yes                                                                                                                                            | 45.4                                                                                                                                                                                                                     | NO                                                                                                                                                                                                                                          | 3.816                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Sidegradient | Yes                                                                                                                                            | 44.2                                                                                                                                                                                                                     | NO                                                                                                                                                                                                                                          | 3.789                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Sidegradient | Yes                                                                                                                                            | 56.2                                                                                                                                                                                                                     | NO                                                                                                                                                                                                                                          | 4.029                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Downgradien  | t Yes                                                                                                                                          | 59.6                                                                                                                                                                                                                     | YES                                                                                                                                                                                                                                         | 4.088                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Downgradien  | t Yes                                                                                                                                          | 63.8                                                                                                                                                                                                                     | YES                                                                                                                                                                                                                                         | 4.156                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Sidegradient | Yes                                                                                                                                            | 48.3                                                                                                                                                                                                                     | NO                                                                                                                                                                                                                                          | 3.877                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Downgradien  | t Yes                                                                                                                                          | 56.5                                                                                                                                                                                                                     | NO                                                                                                                                                                                                                                          | 4.034                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Downgradien  | t Yes                                                                                                                                          | 37.4                                                                                                                                                                                                                     | NO                                                                                                                                                                                                                                          | 3.622                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Upgradient   | Yes                                                                                                                                            | 33.7                                                                                                                                                                                                                     | NO                                                                                                                                                                                                                                          | 3.517                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|              | Sidegradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Sidegradient Downgradient Downgradient Downgradient Downgradient | Upgradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Downgradient Yes Upgradient Yes | Upgradient Yes 38.3 Sidegradient Yes 46 Sidegradient Yes 45.4 Sidegradient Yes 44.2 Sidegradient Yes 56.2 Downgradient Yes 59.6 Downgradient Yes 63.8 Sidegradient Yes 48.3 Downgradient Yes 56.5 Downgradient Yes 37.4 Upgradient Yes 33.7 | Upgradient Yes 38.3 NO Sidegradient Yes 46 NO Sidegradient Yes 45.4 NO Sidegradient Yes 44.2 NO Sidegradient Yes 56.2 NO Downgradient Yes 59.6 YES Downgradient Yes 63.8 YES Sidegradient Yes 48.3 NO Downgradient Yes 56.5 NO Downgradient Yes 37.4 NO Upgradient Yes 33.7 NO | Upgradient         Yes         38.3         NO         3.645           Sidegradient         Yes         46         NO         3.829           Sidegradient         Yes         45.4         NO         3.816           Sidegradient         Yes         44.2         NO         3.789           Sidegradient         Yes         56.2         NO         4.029           Downgradient         Yes         59.6         YES         4.088           Downgradient         Yes         63.8         YES         4.156           Sidegradient         Yes         48.3         NO         3.877           Downgradient         Yes         56.5         NO         4.034           Downgradient         Yes         37.4         NO         3.622 |  |  |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Sulfate** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.481 S = 2.648

CV(1)=0.253

**K** factor\*\*= 2.523

**TL(1)=** 17.161

LL(1)=N/A

**Statistics-Transformed Background** 

X = 2.322

S = 0.239 CV(2) = 0.103

**K factor\*\*=** 2.523

TL(2) = 2.925

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                     | MW220                     |                                           |
|----------------------------------------------------------------------------------|---------------------------|-------------------------------------------|
| Date Collected                                                                   | Result                    | LN(Result)                                |
| 10/14/2002                                                                       | 10.4                      | 2.342                                     |
| 1/15/2003                                                                        | 9.8                       | 2.282                                     |
| 4/10/2003                                                                        | 15.4                      | 2.734                                     |
| 7/14/2003                                                                        | 14.9                      | 2.701                                     |
| 10/13/2003                                                                       | 13.5                      | 2.603                                     |
| 1/13/2004                                                                        | 10.3                      | 2.332                                     |
| 4/13/2004                                                                        | 14.3                      | 2.660                                     |
| 7/21/2004                                                                        | 10.5                      | 2.351                                     |
|                                                                                  |                           |                                           |
| Well Number:                                                                     | MW394                     |                                           |
| Well Number:  Date Collected                                                     | MW394<br>Result           | LN(Result)                                |
|                                                                                  |                           | LN(Result)<br>2.416                       |
| Date Collected                                                                   | Result                    |                                           |
| Date Collected 8/13/2002                                                         | Result 11.2               | 2.416                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                         | Result 11.2 8.3           | 2.416<br>2.116                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002                           | Result 11.2 8.3 8         | 2.416<br>2.116<br>2.079                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003              | Result 11.2 8.3 8 8.5     | 2.416<br>2.116<br>2.079<br>2.140          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003<br>4/10/2003 | Result 11.2 8.3 8 8.5 7.9 | 2.416<br>2.116<br>2.079<br>2.140<br>2.067 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220    | Upgradient   | Yes       | 15.3   | NO             | 2.728      | N/A               |
| MW221    | Sidegradient | Yes       | 14.2   | NO             | 2.653      | N/A               |
| MW222    | Sidegradient | Yes       | 13.2   | NO             | 2.580      | N/A               |
| MW223    | Sidegradient | Yes       | 14.3   | NO             | 2.660      | N/A               |
| MW224    | Sidegradient | Yes       | 13.1   | NO             | 2.573      | N/A               |
| MW369    | Downgradien  | t Yes     | 5.48   | NO             | 1.701      | N/A               |
| MW372    | Downgradien  | t Yes     | 124    | YES            | 4.820      | N/A               |
| MW384    | Sidegradient | Yes       | 23.7   | YES            | 3.165      | N/A               |
| MW387    | Downgradien  | t Yes     | 37.6   | YES            | 3.627      | N/A               |
| MW391    | Downgradien  | t Yes     | 16.3   | NO             | 2.791      | N/A               |
| MW394    | Upgradient   | Yes       | 11.7   | NO             | 2.460      | N/A               |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),
- X Mean, X = (sum of background results)/(count of background results)
- \*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-50

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.354

CV(1)=0.992

**K** factor\*\*= 2.523

TL(1) = 32.768

LL(1)=N/A

**Statistics-Transformed Background** 

X = 2.270

S = 9.280

S = 0.849 CV(2) = 0.374

**K factor\*\*=** 2.523

TL(2) = 3.262

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                     | MW220                                         |                                            |
|----------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|
| Date Collected                                                                   | Result                                        | LN(Result)                                 |
| 10/14/2002                                                                       | 19.7                                          | 2.981                                      |
| 1/15/2003                                                                        | 26.1                                          | 3.262                                      |
| 4/10/2003                                                                        | 3.56                                          | 1.270                                      |
| 7/14/2003                                                                        | 0                                             | #Func!                                     |
| 10/13/2003                                                                       | 21                                            | 3.045                                      |
| 1/13/2004                                                                        | 6.32                                          | 1.844                                      |
| 4/13/2004                                                                        | 3                                             | 1.099                                      |
| 7/21/2004                                                                        | 14.6                                          | 2.681                                      |
|                                                                                  |                                               |                                            |
| Well Number:                                                                     | MW394                                         |                                            |
| Well Number:  Date Collected                                                     | MW394<br>Result                               | LN(Result)                                 |
|                                                                                  |                                               | LN(Result)<br>2.639                        |
| Date Collected                                                                   | Result                                        |                                            |
| Date Collected 8/13/2002                                                         | Result                                        | 2.639                                      |
| Date Collected<br>8/13/2002<br>9/16/2002                                         | Result 14 5.45                                | 2.639<br>1.696                             |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002                           | Result 14 5.45 2.49                           | 2.639<br>1.696<br>0.912                    |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003              | Result<br>14<br>5.45<br>2.49<br>18.3          | 2.639<br>1.696<br>0.912<br>2.907           |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/16/2002<br>1/13/2003<br>4/10/2003 | Result<br>14<br>5.45<br>2.49<br>18.3<br>-1.45 | 2.639<br>1.696<br>0.912<br>2.907<br>#Func! |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

**#Because the natural log was not** possbile for all background values, the TL was considered equal to the maximum background value.

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220    | Upgradient   | No        | 19     | N/A            | 2.944      | N/A               |
| MW221    | Sidegradient | No        | 12.7   | N/A            | 2.542      | N/A               |
| MW222    | Sidegradient | No        | -5.08  | N/A            | #Error     | N/A               |
| MW223    | Sidegradient | No        | 0.866  | N/A            | -0.144     | N/A               |
| MW224    | Sidegradient | No        | 1.12   | N/A            | 0.113      | N/A               |
| MW369    | Downgradien  | t Yes     | 20     | NO             | 2.996      | N/A               |
| MW372    | Downgradien  | t Yes     | 106    | YES            | 4.663      | N/A               |
| MW384    | Sidegradient | Yes       | 48.7   | YES            | 3.886      | N/A               |
| MW387    | Downgradien  | t Yes     | 420    | YES            | 6.040      | N/A               |
| MW391    | Downgradien  | t No      | 8.04   | N/A            | 2.084      | N/A               |
| MW394    | Upgradient   | No        | 9.21   | N/A            | 2.220      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

\*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-51

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.494CV(1)=0.493**K** factor\*\*= 2.523 Statistics-Background Data S = 0.737TL(1) = 3.353LL(1)=N/A **Statistics-Transformed Background** CV(2) = 1.279

Data

X = 0.315 S = 0.402

**K factor\*\*=** 2.523

TL(2) = 1.330

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

MW220 Well Number: Date Collected Result LN(Result) 10/14/2002 0.000 0.095 1/15/2003 1.1 4/10/2003 1 0.000 7/14/2003 3.3 1.194 10/13/2003 1.8 0.588 1/13/2004 1 0.0002 0.693 4/13/2004 7/21/2004 3.1 1.131 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.3 0.2629/16/2002 0.000 1 10/16/2002 1 0.000 1/13/2003 1.6 0.470 4/10/2003 0.000 7/16/2003 1.4 0.336 10/14/2003 1.3 0.262

1

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current   | Quarter Data        |             |            |                     |                |                   |
|-----------|---------------------|-------------|------------|---------------------|----------------|-------------------|
| Well No.  | Gradient            | Detected?   | Result     | Result >TL(1)?      | LN(Result)     | LN(Result) >TL(2) |
| MW220     | Upgradient          | Yes         | 1.16       | NO                  | 0.148          | N/A               |
| MW221     | Sidegradient        | Yes         | 1.12       | NO                  | 0.113          | N/A               |
| MW222     | Sidegradient        | Yes         | 1.13       | NO                  | 0.122          | N/A               |
| MW223     | Sidegradient        | Yes         | 1.02       | NO                  | 0.020          | N/A               |
| MW224     | Sidegradient        | Yes         | 1.09       | NO                  | 0.086          | N/A               |
| MW369     | Downgradien         | t Yes       | 1.37       | NO                  | 0.315          | N/A               |
| MW372     | Downgradien         | t Yes       | 1.09       | NO                  | 0.086          | N/A               |
| MW384     | Sidegradient        | Yes         | 1.27       | NO                  | 0.239          | N/A               |
| MW387     | Downgradien         | t Yes       | 1.48       | NO                  | 0.392          | N/A               |
| MW391     | Downgradien         | t Yes       | 1.08       | NO                  | 0.077          | N/A               |
| MW394     | Upgradient          | Yes         | 0.89       | NO                  | -0.117         | N/A               |
| NI/A Dogg | lta identified on N | Ion Dotoota | during lab | orotory onolygic or | data validatio | n and ware not    |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

**K** factor\*\*= 2.523

TL(1) = 475.063 LL(1) = N/A

**Statistics-Transformed Background** 

X = 3.103 S = 1.145 CV(2) = 0.369

**K factor\*\*=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:            | MW220      |                |
|-------------------------|------------|----------------|
| Date Collected          | Result     | LN(Result)     |
| 10/14/2002              | 50         | 3.912          |
| 1/15/2003               | 10         | 2.303          |
| 4/10/2003               | 10         | 2.303          |
| 7/14/2003               | 10         | 2.303          |
| 10/13/2003              | 10         | 2.303          |
| 1/13/2004               | 10         | 2.303          |
| 4/13/2004               | 10         | 2.303          |
| 7/21/2004               | 10         | 2.303          |
| Well Number:            | MW394      |                |
| Date Collected          | Result     | LN(Result)     |
| 8/13/2002               | 50         | 3.912          |
| 9/16/2002               | 672        | 6.510          |
| 10/16/2002              | 50         | 3.912          |
| 1/13/2003               | 36.1       | 3.586          |
| 4/10/2003               | 10         | 2.303          |
|                         |            |                |
| 7/16/2003               | 42.7       | 3.754          |
| 7/16/2003<br>10/14/2003 | 42.7<br>22 | 3.754<br>3.091 |

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data   |           |         |                |            |                   |
|----------|----------------|-----------|---------|----------------|------------|-------------------|
| Well No. | Gradient       | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW220    | Upgradient     | No        | 10      | N/A            | 2.303      | N/A               |
| MW221    | Sidegradient   | Yes       | 3.34    | N/A            | 1.206      | NO                |
| MW222    | Sidegradient   | Yes       | 4.7     | N/A            | 1.548      | NO                |
| MW223    | Sidegradient   | No        | 10      | N/A            | 2.303      | N/A               |
| MW224    | Sidegradient   | Yes       | 7.74    | N/A            | 2.046      | NO                |
| MW369    | Downgradien    | t Yes     | 12.2    | N/A            | 2.501      | NO                |
| MW372    | Downgradien    | t Yes     | 20.6    | N/A            | 3.025      | NO                |
| MW384    | Sidegradient   | Yes       | 5.72    | N/A            | 1.744      | NO                |
| MW387    | Downgradien    | t Yes     | 8.38    | N/A            | 2.126      | NO                |
| MW391    | Downgradien    | t Yes     | 6.1     | N/A            | 1.808      | NO                |
| MW394    | Upgradient     | Yes       | 4.96    | N/A            | 1.601      | NO                |
| NT/A D   | 1, 11, 10, 1 3 | T D ( )   | 1 1 1 1 | 1 1            | 1.7 11.1.7 | 1 4               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-53

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Trichloroethene URGA** UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.951**K** factor\*\*= 2.523 TL(1)= 29.946 Statistics-Background Data X = 8.813S = 8.376LL(1)=N/A **Statistics-Transformed Background** X = 1.395CV(2) = 1.039S = 1.449**K factor\*\*=** 2.523 TL(2) = 5.052LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result** 

MW220 Well Number: Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 4/10/2003 1 0.000 7/14/2003 0.00010/13/2003 0.0001/13/2004 0.0000.000 4/13/2004 1 7/21/2004 1 0.000Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 7/16/2003 19 2.944 10/14/2003 20 2.996 1/13/2004 16 2.773

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current    | Quarter Data        |             |            |                     |                |                   |
|------------|---------------------|-------------|------------|---------------------|----------------|-------------------|
| Well No.   | Gradient            | Detected?   | Result     | Result >TL(1)?      | LN(Result)     | LN(Result) >TL(2) |
| MW220      | Upgradient          | No          | 1          | N/A                 | 0.000          | N/A               |
| MW221      | Sidegradient        | No          | 1          | N/A                 | 0.000          | N/A               |
| MW222      | Sidegradient        | No          | 1          | N/A                 | 0.000          | N/A               |
| MW223      | Sidegradient        | No          | 1          | N/A                 | 0.000          | N/A               |
| MW224      | Sidegradient        | No          | 1          | N/A                 | 0.000          | N/A               |
| MW369      | Downgradien         | t Yes       | 0.65       | N/A                 | -0.431         | N/A               |
| MW372      | Downgradien         | t Yes       | 2.93       | N/A                 | 1.075          | N/A               |
| MW384      | Sidegradient        | Yes         | 0.76       | N/A                 | -0.274         | N/A               |
| MW387      | Downgradien         | t Yes       | 1.02       | N/A                 | 0.020          | N/A               |
| MW391      | Downgradien         | t Yes       | 10.3       | NO                  | 2.332          | N/A               |
| MW394      | Upgradient          | Yes         | 3.49       | N/A                 | 1.250          | N/A               |
| N/A - Resu | lts identified as N | Non-Detects | during lab | oratory analysis or | data validatio | n and were not    |

 Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-54

## C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.036 S = 0.026 CV(1) = 0.722 K factor\*\*= 2.523
 TL(1) = 0.101 LL(1) = N/A 

 Statistics-Transformed Background
 X = -3.485 S = 0.525 CV(2) = -0.151 K factor\*\*= 2.523
 TL(2) = -2.162 LL(2) = N/A 

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.025-3.6891/15/2003 0.035 -3.3524/10/2003 0.035 -3.3527/14/2003 0.0389 -3.24710/13/2003 0.026 -3.6501/13/2004 0.02 -3.9120.02 -3.9124/13/2004 7/21/2004 0.02 -3.912 MW394 Well Number: Date Collected Result LN(Result) 8/13/2002 0.1 -2.3039/16/2002 -2.303 0.1 10/16/2002 0.025 -3.6891/13/2003 0.035 -3.3524/10/2003 0.035 -3.3527/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current    | Quarter Data        |             |            |                     |                |                   |
|------------|---------------------|-------------|------------|---------------------|----------------|-------------------|
| Well No.   | Gradient            | Detected?   | Result     | Result >TL(1)?      | LN(Result)     | LN(Result) >TL(2) |
| MW220      | Upgradient          | No          | 0.00492    | N/A                 | -5.314         | N/A               |
| MW221      | Sidegradient        | No          | 0.00861    | N/A                 | -4.755         | N/A               |
| MW222      | Sidegradient        | No          | 0.00564    | N/A                 | -5.178         | N/A               |
| MW223      | Sidegradient        | No          | 0.00612    | N/A                 | -5.096         | N/A               |
| MW224      | Sidegradient        | No          | 0.00794    | N/A                 | -4.836         | N/A               |
| MW369      | Downgradien         | t Yes       | 0.00913    | NO                  | -4.696         | N/A               |
| MW372      | Downgradien         | t No        | 0.00373    | N/A                 | -5.591         | N/A               |
| MW384      | Sidegradient        | Yes         | 0.00485    | NO                  | -5.329         | N/A               |
| MW387      | Downgradien         | t Yes       | 0.00452    | NO                  | -5.399         | N/A               |
| MW391      | Downgradien         | t No        | 0.00672    | N/A                 | -5.003         | N/A               |
| MW394      | Upgradient          | No          | 0.00512    | N/A                 | -5.275         | N/A               |
| N/A - Recu | Its identified as N | Jon-Detects | during lab | oratory analysis or | data validatio | n and were not    |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

CV(1)=0.856S = 0.221

**K** factor\*\*= 2.523

TL(1) = 0.815

LL(1)=N/A

**Statistics-Transformed Background** 

X = -2.266 S = 2.485 CV(2) = -1.097

**K factor\*\*=** 2.523

TL(2) = 4.003

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                             |                                                              |
|---------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------|
| Date Collected                                                                  | Result                            | LN(Result)                                                   |
| 8/13/2002                                                                       | 0.2                               | -1.609                                                       |
| 9/16/2002                                                                       | 0.2                               | -1.609                                                       |
| 10/16/2002                                                                      | 0.0002                            | -8.517                                                       |
| 1/13/2003                                                                       | 0.737                             | -0.305                                                       |
| 4/10/2003                                                                       | 0.2                               | -1.609                                                       |
| 7/16/2003                                                                       | 0.2                               | -1.609                                                       |
| 10/14/2003                                                                      | 0.2                               | -1.609                                                       |
| 1/13/2004                                                                       | 0.2                               | -1.609                                                       |
|                                                                                 |                                   |                                                              |
| Well Number:                                                                    | MW397                             |                                                              |
| Well Number:  Date Collected                                                    | MW397<br>Result                   | LN(Result)                                                   |
|                                                                                 |                                   |                                                              |
| Date Collected                                                                  | Result                            | LN(Result)                                                   |
| Date Collected 8/13/2002                                                        | Result<br>0.824                   | LN(Result)<br>-0.194                                         |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 0.824 0.2                  | LN(Result)<br>-0.194<br>-1.609                               |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 0.824 0.2 0.0002           | LN(Result)<br>-0.194<br>-1.609<br>-8.517                     |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 0.824 0.2 0.0002 0.363     | LN(Result)<br>-0.194<br>-1.609<br>-8.517<br>-1.013           |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 0.824 0.2 0.0002 0.363 0.2 | LN(Result)<br>-0.194<br>-1.609<br>-8.517<br>-1.013<br>-1.609 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                  |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient | No        | 0.05   | N/A            | -2.996     | N/A              |
| MW373    | Downgradient | No        | 0.05   | N/A            | -2.996     | N/A              |
| MW385    | Sidegradient | Yes       | 0.0221 | NO             | -3.812     | N/A              |
| MW388    | Downgradient | No        | 0.05   | N/A            | -2.996     | N/A              |
| MW392    | Downgradient | No        | 0.05   | N/A            | -2.996     | N/A              |
| MW395    | Upgradient   | Yes       | 0.0259 | NO             | -3.654     | N/A              |
| MW397    | Upgradient   | Yes       | 0.274  | NO             | -1.295     | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-56

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.183

CV(1)=0.364S = 2.612

**K** factor\*\*= 2.523

TL(1) = 13.773

LL(1)=N/A

**Statistics-Transformed Background** 

X=1.870 S=0.552 CV(2)=0.295

**K factor\*\*=** 2.523

TL(2) = 3.261

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                      |                                           |
|---------------------------------------------------------------------------------|----------------------------|-------------------------------------------|
| Date Collected                                                                  | Result                     | LN(Result)                                |
| 8/13/2002                                                                       | 1.09                       | 0.086                                     |
| 9/16/2002                                                                       | 5.79                       | 1.756                                     |
| 10/16/2002                                                                      | 6.82                       | 1.920                                     |
| 1/13/2003                                                                       | 5.01                       | 1.611                                     |
| 4/10/2003                                                                       | 6.1                        | 1.808                                     |
| 7/16/2003                                                                       | 8.51                       | 2.141                                     |
| 10/14/2003                                                                      | 4.99                       | 1.607                                     |
| 1/13/2004                                                                       | 6.58                       | 1.884                                     |
|                                                                                 |                            |                                           |
| Well Number:                                                                    | MW397                      |                                           |
| Well Number:  Date Collected                                                    | MW397<br>Result            | LN(Result)                                |
| -                                                                               |                            | LN(Result)<br>2.259                       |
| Date Collected                                                                  | Result                     |                                           |
| Date Collected 8/13/2002                                                        | Result<br>9.57             | 2.259                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 9.57                | 2.259<br>2.398                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 9.57 11 9.3         | 2.259<br>2.398<br>2.230                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 9.57 11 9.3 8.63    | 2.259<br>2.398<br>2.230<br>2.155          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 9.57 11 9.3 8.63 10 | 2.259<br>2.398<br>2.230<br>2.155<br>2.303 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW370    | Downgradient | Yes       | 65.5   | YES            | 4.182      | N/A               |
| MW373    | Downgradient | Yes       | 19.4   | N/A            | 2.965      | N/A               |
| MW385    | Sidegradient | Yes       | 39.1   | N/A            | 3.666      | N/A               |
| MW388    | Downgradient | Yes       | 14.9   | N/A            | 2.701      | N/A               |
| MW392    | Downgradient | No        | 2.18   | N/A            | 0.779      | N/A               |
| MW395    | Upgradient   | Yes       | 13     | N/A            | 2.565      | N/A               |
| MW397    | Upgradient   | Yes       | 17.7   | N/A            | 2.874      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),
- X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-57

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L LRGA Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1)=1.238

**K** factor\*\*= 2.523

TL(1) = 2.681

LL(1)=N/A

**Statistics-Transformed Background** 

X = -1.034 S = 1.030 CV(2) = -0.996

**K factor\*\*=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                  |                                    |
|---------------------------------------------------------------------------------|------------------------|------------------------------------|
| Date Collected                                                                  | Result                 | LN(Result)                         |
| 8/13/2002                                                                       | 2                      | 0.693                              |
| 9/16/2002                                                                       | 2                      | 0.693                              |
| 10/16/2002                                                                      | 0.2                    | -1.609                             |
| 1/13/2003                                                                       | 0.2                    | -1.609                             |
| 4/10/2003                                                                       | 0.2                    | -1.609                             |
| 7/16/2003                                                                       | 0.2                    | -1.609                             |
| 10/14/2003                                                                      | 0.2                    | -1.609                             |
| 1/13/2004                                                                       | 0.2                    | -1.609                             |
|                                                                                 |                        |                                    |
| Well Number:                                                                    | MW397                  |                                    |
| Well Number: Date Collected                                                     | MW397<br>Result        | LN(Result)                         |
|                                                                                 |                        | LN(Result)<br>0.693                |
| Date Collected                                                                  | Result                 |                                    |
| Date Collected 8/13/2002                                                        | Result 2               | 0.693                              |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 2               | 0.693<br>0.693                     |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 2 2 0.2         | 0.693<br>0.693<br>-1.609           |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 2 2 0.2 0.2     | 0.693<br>0.693<br>-1.609<br>-1.609 |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 2 2 0.2 0.2 0.2 | 0.693<br>0.693<br>-1.609<br>-1.609 |

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |        |                |            |                  |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient | Yes       | 0.15   | N/A            | -1.897     | NO               |
| MW373    | Downgradient | Yes       | 1.97   | N/A            | 0.678      | NO               |
| MW385    | Sidegradient | Yes       | 0.0661 | N/A            | -2.717     | NO               |
| MW388    | Downgradient | Yes       | 0.0222 | N/A            | -3.808     | NO               |
| MW392    | Downgradient | Yes       | 0.0322 | N/A            | -3.436     | NO               |
| MW395    | Upgradient   | Yes       | 0.0254 | N/A            | -3.673     | NO               |
| MW397    | Upgradient   | Yes       | 0.0462 | N/A            | -3.075     | NO               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Bromide** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.000K factor\*\*= 2.523 Statistics-Background Data X = 1.000S = 0.000TL(1)=1.000LL(1)=N/A **Statistics-Transformed Background** X = 0.000S = 0.000**CV(2)=**#Num! **K factor\*\*=** 2.523 TL(2) = 0.000LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395              |                                           |
|---------------------------------------------------------------------------------|--------------------|-------------------------------------------|
| Date Collected                                                                  | Result             | LN(Result)                                |
| 8/13/2002                                                                       | 1                  | 0.000                                     |
| 9/16/2002                                                                       | 1                  | 0.000                                     |
| 10/16/2002                                                                      | 1                  | 0.000                                     |
| 1/13/2003                                                                       | 1                  | 0.000                                     |
| 4/10/2003                                                                       | 1                  | 0.000                                     |
| 7/16/2003                                                                       | 1                  | 0.000                                     |
| 10/14/2003                                                                      | 1                  | 0.000                                     |
| 1/13/2004                                                                       | 1                  | 0.000                                     |
|                                                                                 |                    |                                           |
| Well Number:                                                                    | MW397              |                                           |
| Well Number: Date Collected                                                     | MW397<br>Result    | LN(Result)                                |
|                                                                                 |                    | LN(Result)<br>0.000                       |
| Date Collected                                                                  | Result             |                                           |
| Date Collected 8/13/2002                                                        | Result 1           | 0.000                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 1           | 0.000<br>0.000                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 1 1 1       | 0.000<br>0.000<br>0.000                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 1 1 1 1     | 0.000<br>0.000<br>0.000<br>0.000          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result  1  1  1  1 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW370    | Downgradient | Yes       | 0.457  | NO             | -0.783     | N/A               |
| MW373    | Downgradient | Yes       | 0.552  | NO             | -0.594     | N/A               |
| MW385    | Sidegradient | Yes       | 0.306  | NO             | -1.184     | N/A               |
| MW388    | Downgradient | Yes       | 0.443  | NO             | -0.814     | N/A               |
| MW392    | Downgradient | Yes       | 0.619  | NO             | -0.480     | N/A               |
| MW395    | Upgradient   | Yes       | 0.486  | NO             | -0.722     | N/A               |
| MW397    | Upgradient   | Yes       | 0.407  | NO             | -0.899     | N/A               |
|          |              |           |        |                |            |                   |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-59

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.103 S = 11.538 CV(1) = 0.499

**K** factor\*\*= 2.523

TL(1) = 52.213

LL(1)=N/A

**Statistics-Transformed Background** 

X = 2.357 S = 2.411 CV(2) = 1.023

**K factor\*\*=** 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                                          |                                            |
|---------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|
| Date Collected                                                                  | Result                                         | LN(Result)                                 |
| 8/13/2002                                                                       | 32.2                                           | 3.472                                      |
| 9/16/2002                                                                       | 33                                             | 3.497                                      |
| 10/16/2002                                                                      | 0.0295                                         | -3.523                                     |
| 1/13/2003                                                                       | 32.1                                           | 3.469                                      |
| 4/10/2003                                                                       | 40.2                                           | 3.694                                      |
| 7/16/2003                                                                       | 32.4                                           | 3.478                                      |
| 10/14/2003                                                                      | 33.9                                           | 3.523                                      |
| 1/13/2004                                                                       | 31.2                                           | 3.440                                      |
|                                                                                 |                                                |                                            |
| Well Number:                                                                    | MW397                                          |                                            |
| Well Number: Date Collected                                                     | MW397<br>Result                                | LN(Result)                                 |
|                                                                                 |                                                | LN(Result)<br>2.965                        |
| Date Collected                                                                  | Result                                         |                                            |
| Date Collected 8/13/2002                                                        | Result<br>19.4                                 | 2.965                                      |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result<br>19.4<br>19                           | 2.965<br>2.944                             |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result<br>19.4<br>19<br>0.0179                 | 2.965<br>2.944<br>-4.023                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result<br>19.4<br>19<br>0.0179<br>17.8         | 2.965<br>2.944<br>-4.023<br>2.879          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result<br>19.4<br>19<br>0.0179<br>17.8<br>20.3 | 2.965<br>2.944<br>-4.023<br>2.879<br>3.011 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                  |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient | Yes       | 30.6   | NO             | 3.421      | N/A              |
| MW373    | Downgradient | Yes       | 72.2   | YES            | 4.279      | N/A              |
| MW385    | Sidegradient | Yes       | 35.5   | NO             | 3.570      | N/A              |
| MW388    | Downgradient | Yes       | 25.9   | NO             | 3.254      | N/A              |
| MW392    | Downgradient | Yes       | 32.4   | NO             | 3.478      | N/A              |
| MW395    | Upgradient   | Yes       | 24.7   | NO             | 3.207      | N/A              |
| MW397    | Upgradient   | Yes       | 18.9   | NO             | 2.939      | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

## C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.313 S = 1.250

CV(1)=0.035 K factor\*\*= 2.523

TL(1)= 38.466

LL(1)=N/A

Statistics-Transformed Background

X = 3.564 S = 0.033

CV(2) = 0.009

**K** factor\*\*= 2.523

TL(2) = 3.648

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                    | MW395                    |                                           |
|---------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Date Collected                                                                  | Result                   | LN(Result)                                |
| 8/13/2002                                                                       | 35                       | 3.555                                     |
| 9/16/2002                                                                       | 35                       | 3.555                                     |
| 10/16/2002                                                                      | 35                       | 3.555                                     |
| 1/13/2003                                                                       | 35                       | 3.555                                     |
| 4/10/2003                                                                       | 35                       | 3.555                                     |
| 7/16/2003                                                                       | 35                       | 3.555                                     |
| 10/14/2003                                                                      | 35                       | 3.555                                     |
| 1/13/2004                                                                       | 35                       | 3.555                                     |
|                                                                                 |                          |                                           |
| Well Number:                                                                    | MW397                    |                                           |
| Well Number:  Date Collected                                                    | MW397<br>Result          | LN(Result)                                |
|                                                                                 |                          | LN(Result)<br>3.689                       |
| Date Collected                                                                  | Result                   |                                           |
| Date Collected 8/13/2002                                                        | Result<br>40             | 3.689                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result<br>40<br>35       | 3.689<br>3.555                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 40 35 35          | 3.689<br>3.555<br>3.555                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 40 35 35 35       | 3.689<br>3.555<br>3.555<br>3.555          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 40 35 35 35 35 35 | 3.689<br>3.555<br>3.555<br>3.555<br>3.555 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                  |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient | Yes       | 22     | NO             | 3.091      | N/A              |
| MW373    | Downgradient | t No      | 20     | N/A            | 2.996      | N/A              |
| MW385    | Sidegradient | Yes       | 14.8   | NO             | 2.695      | N/A              |
| MW388    | Downgradient | Yes       | 20.9   | NO             | 3.040      | N/A              |
| MW392    | Downgradient | Yes       | 12.5   | NO             | 2.526      | N/A              |
| MW395    | Upgradient   | Yes       | 19.4   | NO             | 2.965      | N/A              |
| MW397    | Upgradient   | Yes       | 14.8   | NO             | 2.695      | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

## C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**X**= 51.844 **S**= 11.652 **CV(1)**= 0.225

K factor\*\*= 2.523

**TL(1)=** 81.242

LL(1)=N/A

Statistics-Transformed Background Data

**X**= 3.924 **S**= 0.229

CV(2)=0.058

**K factor\*\*=** 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 62.2 4.130 9/16/2002 64.7 4.170 10/16/2002 62.2 4.130 1/13/2003 63.5 4.151 4/10/2003 64.1 4.160 7/16/2003 64 4.159 63.2 10/14/2003 4.146 1/13/2004 60.6 4.104 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 38.9 3.661 9/16/2002 39.8 3.684 10/17/2002 39.3 3.671 1/13/2003 40.5 3.701 4/8/2003 42.1 3.740 7/16/2003 42 3.738 10/14/2003 40.8 3.709 1/13/2004 41.6 3.728

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                  |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient | Yes       | 35.6   | NO             | 3.572      | N/A              |
| MW373    | Downgradient | Yes       | 39.3   | NO             | 3.671      | N/A              |
| MW385    | Sidegradient | Yes       | 27.1   | NO             | 3.300      | N/A              |
| MW388    | Downgradient | Yes       | 36.9   | NO             | 3.608      | N/A              |
| MW392    | Downgradient | Yes       | 47.4   | NO             | 3.859      | N/A              |
| MW395    | Upgradient   | Yes       | 38.9   | NO             | 3.661      | N/A              |
| MW397    | Upgradient   | Yes       | 36.3   | NO             | 3.592      | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

## C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor\*\*= 2.523
 TL(1) = 5.000 LL(1) = N/A 

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor\*\*= 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 5 10/16/2002 1.609 1/13/2003 5 1.609 4/10/2003 5 1.609 5 7/16/2003 1.609 5 10/14/2003 1.609 1/13/2004 5 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 5 1.609 4/8/2003 5 1.609 7/16/2003 5 1.609 5 10/14/2003 1.609 1/13/2004 5 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

|   | Current  | Quarter Data |           |        |                |            |                  |
|---|----------|--------------|-----------|--------|----------------|------------|------------------|
|   | Well No. | Gradient 1   | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| , | MW370    | Downgradient | No        | 1      | N/A            | 0.000      | N/A              |
|   | MW373    | Downgradient | No        | 1      | N/A            | 0.000      | N/A              |
|   | MW385    | Sidegradient | No        | 1      | N/A            | 0.000      | N/A              |
|   | MW388    | Downgradient | No        | 1      | N/A            | 0.000      | N/A              |
|   | MW392    | Downgradient | Yes       | 0.96   | NO             | -0.041     | N/A              |
|   | MW395    | Upgradient   | No        | 1      | N/A            | 0.000      | N/A              |
|   | MW397    | Upgradient   | No        | 1      | N/A            | 0.000      | N/A              |
|   |          |              |           |        |                |            |                  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Conductivity** UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

**K** factor\*\*= 2.523

**TL(1)=** 509.326 **LL(1)=**N/A

**Statistics-Transformed Background** 

X = 5.926 S = 0.136 CV(2) = 0.023

**K factor\*\*=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                      |                                           |
|---------------------------------------------------------------------------------|----------------------------|-------------------------------------------|
| Date Collected                                                                  | Result                     | LN(Result)                                |
| 8/13/2002                                                                       | 405                        | 6.004                                     |
| 9/16/2002                                                                       | 401                        | 5.994                                     |
| 10/16/2002                                                                      | 392                        | 5.971                                     |
| 1/13/2003                                                                       | 404                        | 6.001                                     |
| 4/10/2003                                                                       | 488                        | 6.190                                     |
| 7/16/2003                                                                       | 450                        | 6.109                                     |
| 10/14/2003                                                                      | 410                        | 6.016                                     |
| 1/13/2004                                                                       | 413                        | 6.023                                     |
|                                                                                 |                            |                                           |
| Well Number:                                                                    | MW397                      |                                           |
| Well Number: Date Collected                                                     | MW397<br>Result            | LN(Result)                                |
|                                                                                 |                            | LN(Result)<br>5.775                       |
| Date Collected                                                                  | Result                     | ,                                         |
| Date Collected 8/13/2002                                                        | Result<br>322              | 5.775                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 322 315             | 5.775<br>5.753                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 322 315 317         | 5.775<br>5.753<br>5.759                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 322 315 317 320     | 5.775<br>5.753<br>5.759<br>5.768          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 322 315 317 320 390 | 5.775<br>5.753<br>5.759<br>5.768<br>5.966 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                 |  |
|----------------------|--------------|-----------|--------|----------------|------------|-----------------|--|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL( |  |
| MW370                | Downgradient | Yes       | 452    | NO             | 6.114      | N/A             |  |
| MW373                | Downgradient | Yes       | 859    | YES            | 6.756      | N/A             |  |
| MW385                | Sidegradient | Yes       | 507    | NO             | 6.229      | N/A             |  |
| MW388                | Downgradient | Yes       | 421    | NO             | 6.043      | N/A             |  |
| MW392                | Downgradient | Yes       | 439    | NO             | 6.084      | N/A             |  |
| MW395                | Upgradient   | Yes       | 354    | NO             | 5.869      | N/A             |  |
| MW397                | Upgradient   | Yes       | 322    | NO             | 5.775      | N/A             |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1)=0.474

**K factor\*\*=** 2.523

**TL(1)=** 0.061

**LL(1)=**N/A

Statistics-Transformed Background

**X=** -3.662 **S=** 0.406

S = 0.013

CV(2) = -0.111

**K factor\*\*=** 2.523

TL(2) = -2.638

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                    | MW395                                          |                                      |
|---------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|
| Date Collected                                                                  | Result                                         | LN(Result)                           |
| 8/13/2002                                                                       | 0.05                                           | -2.996                               |
| 9/16/2002                                                                       | 0.05                                           | -2.996                               |
| 10/16/2002                                                                      | 0.0281                                         | -3.572                               |
| 1/13/2003                                                                       | 0.02                                           | -3.912                               |
| 4/10/2003                                                                       | 0.02                                           | -3.912                               |
| 7/16/2003                                                                       | 0.02                                           | -3.912                               |
| 10/14/2003                                                                      | 0.02                                           | -3.912                               |
| 1/13/2004                                                                       | 0.02                                           | -3.912                               |
|                                                                                 |                                                |                                      |
| Well Number:                                                                    | MW397                                          |                                      |
| Well Number: Date Collected                                                     | MW397<br>Result                                | LN(Result)                           |
|                                                                                 |                                                | LN(Result)<br>-2.996                 |
| Date Collected                                                                  | Result                                         |                                      |
| Date Collected 8/13/2002                                                        | Result 0.05                                    | -2.996                               |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 0.05 0.05                               | -2.996<br>-2.996                     |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 0.05 0.05 0.02                          | -2.996<br>-2.996<br>-3.912           |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 0.05 0.05 0.02 0.02                     | -2.996<br>-2.996<br>-3.912<br>-3.912 |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result<br>0.05<br>0.05<br>0.02<br>0.02<br>0.02 | -2.996<br>-2.996<br>-3.912<br>-3.912 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |        |              |           |         |                |            |                  |
|----------------------|--------|--------------|-----------|---------|----------------|------------|------------------|
| We                   | ll No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| M                    | W370   | Downgradien  | t Yes     | 0.00038 | 3 NO           | -7.867     | N/A              |
| M                    | W373   | Downgradien  | t Yes     | 0.00032 | 2 NO           | -8.041     | N/A              |
| M                    | W385   | Sidegradient | Yes       | 0.00057 | 7 NO           | -7.458     | N/A              |
| M                    | W388   | Downgradien  | t Yes     | 0.00043 | 1 NO           | -7.749     | N/A              |
| M                    | W392   | Downgradien  | t Yes     | 0.00048 | 7 NO           | -7.627     | N/A              |
| M                    | W395   | Upgradient   | Yes       | 0.00033 | 3 NO           | -8.007     | N/A              |
| M                    | W397   | Upgradient   | Yes       | 0.00040 | 3 NO           | -7.817     | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 4.678

S = 2.431

CV(1)=0.520**K** factor\*\*= 2.523 TL(1)=10.812

LL(1)=N/A

**Statistics-Transformed Background** 

X = 1.414

 $S = 0.550 \quad CV(2) = 0.389$ 

**K factor\*\*=** 2.523

TL(2) = 2.802

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                                           |                                           |
|---------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------|
| Date Collected                                                                  | Result                                          | LN(Result)                                |
| 8/13/2002                                                                       | 7.29                                            | 1.987                                     |
| 9/30/2002                                                                       | 4.03                                            | 1.394                                     |
| 10/16/2002                                                                      | 3.85                                            | 1.348                                     |
| 1/13/2003                                                                       | 2.36                                            | 0.859                                     |
| 4/10/2003                                                                       | 1.14                                            | 0.131                                     |
| 7/16/2003                                                                       | 1.76                                            | 0.565                                     |
| 10/14/2003                                                                      | 4.05                                            | 1.399                                     |
| 1/13/2004                                                                       | 4.26                                            | 1.449                                     |
|                                                                                 |                                                 |                                           |
| Well Number:                                                                    | MW397                                           |                                           |
| Well Number:  Date Collected                                                    | MW397<br>Result                                 | LN(Result)                                |
|                                                                                 |                                                 | LN(Result)<br>2.448                       |
| Date Collected                                                                  | Result                                          |                                           |
| Date Collected 8/13/2002                                                        | Result<br>11.56                                 | 2.448                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 11.56 5.86                               | 2.448<br>1.768                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result<br>11.56<br>5.86<br>5.94                 | 2.448<br>1.768<br>1.782                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result<br>11.56<br>5.86<br>5.94<br>4.66         | 2.448<br>1.768<br>1.782<br>1.539          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result<br>11.56<br>5.86<br>5.94<br>4.66<br>3.77 | 2.448<br>1.768<br>1.782<br>1.539<br>1.327 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                   |  |
|----------------------|--------------|-----------|--------|----------------|------------|-------------------|--|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |  |
| MW370                | Downgradient | Yes       | 2.86   | NO             | 1.051      | N/A               |  |
| MW373                | Downgradient | Yes       | 1.41   | NO             | 0.344      | N/A               |  |
| MW385                | Sidegradient | Yes       | 1.18   | NO             | 0.166      | N/A               |  |
| MW388                | Downgradient | Yes       | 3.49   | NO             | 1.250      | N/A               |  |
| MW392                | Downgradient | Yes       | 1.93   | NO             | 0.658      | N/A               |  |
| MW395                | Upgradient   | Yes       | 3.82   | NO             | 1.340      | N/A               |  |
| MW397                | Upgradient   | Yes       | 4.65   | NO             | 1.537      | N/A               |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

**K** factor\*\*= 2.523

TL(1) = 305.301

LL(1)=N/A

**Statistics-Transformed Background** 

X = 5.379 S = 0.152 CV(2) = 0.028

**K factor\*\*=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                                     |                                           |
|---------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| Date Collected                                                                  | Result                                    | LN(Result)                                |
| 8/13/2002                                                                       | 249                                       | 5.517                                     |
| 9/16/2002                                                                       | 272                                       | 5.606                                     |
| 10/16/2002                                                                      | 255                                       | 5.541                                     |
| 1/13/2003                                                                       | 211                                       | 5.352                                     |
| 4/10/2003                                                                       | 289                                       | 5.666                                     |
| 7/16/2003                                                                       | 236                                       | 5.464                                     |
| 10/14/2003                                                                      | 224                                       | 5.412                                     |
| 1/13/2004                                                                       | 235                                       | 5.460                                     |
|                                                                                 |                                           |                                           |
| Well Number:                                                                    | MW397                                     |                                           |
| Well Number:  Date Collected                                                    | MW397<br>Result                           | LN(Result)                                |
|                                                                                 |                                           | LN(Result)<br>5.231                       |
| Date Collected                                                                  | Result                                    |                                           |
| Date Collected 8/13/2002                                                        | Result<br>187                             | 5.231                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result<br>187<br>197                      | 5.231<br>5.283                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result<br>187<br>197<br>183               | 5.231<br>5.283<br>5.209                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result<br>187<br>197<br>183<br>182        | 5.231<br>5.283<br>5.209<br>5.204          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result<br>187<br>197<br>183<br>182<br>217 | 5.231<br>5.283<br>5.209<br>5.204<br>5.380 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |              |           |        |                |            |                  |  |
|----------------------|--------------|-----------|--------|----------------|------------|------------------|--|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |  |
| MW370                | Downgradient | Yes       | 241    | NO             | 5.485      | N/A              |  |
| MW373                | Downgradient | Yes       | 476    | YES            | 6.165      | N/A              |  |
| MW385                | Sidegradient | Yes       | 314    | YES            | 5.749      | N/A              |  |
| MW388                | Downgradient | Yes       | 244    | NO             | 5.497      | N/A              |  |
| MW392                | Downgradient | Yes       | 231    | NO             | 5.442      | N/A              |  |
| MW395                | Upgradient   | Yes       | 173    | NO             | 5.153      | N/A              |  |
| MW397                | Upgradient   | Yes       | 179    | NO             | 5.187      | N/A              |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW373 MW385

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L LRGA Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.400

S = 0.514

CV(1) = 1.286

**K** factor\*\*= 2.523

**TL(1)=** 1.698

LL(1)=N/A

**Statistics-Transformed Background** Data

X = -2.197 S = 2.634 CV(2) = -1.199

**K factor\*\*=** 2.523

TL(2) = 4.449

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.294 -1.2249/16/2002 0.2 -1.60910/16/2002 0.0002 -8.517 1/13/2003 1.33 0.2854/10/2003 1.31 0.270 7/16/2003 0.2 -1.6090.1 -2.30310/14/2003 1/13/2004 0.1 -2.303Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1.58 0.4579/16/2002 0.232 -1.46110/17/2002 0.0002 -8.517 1/13/2003 0.453 -0.7924/8/2003 0.2 -1.6097/16/2003 0.2 -1.609 10/14/2003 0.1 -2.3031/13/2004 0.1 -2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current Quarter Data |              |           |        |                |            |                  |  |
|----------------------|--------------|-----------|--------|----------------|------------|------------------|--|
| Well No.             | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |  |
| MW370                | Downgradient | No        | 0.1    | N/A            | -2.303     | N/A              |  |
| MW373                | Downgradient | Yes       | 0.037  | N/A            | -3.297     | NO               |  |
| MW385                | Sidegradient | Yes       | 0.0506 | N/A            | -2.984     | NO               |  |
| MW388                | Downgradient | Yes       | 0.0898 | N/A            | -2.410     | NO               |  |
| MW392                | Downgradient | Yes       | 0.0807 | N/A            | -2.517     | NO               |  |
| MW395                | Upgradient   | Yes       | 0.0505 | N/A            | -2.986     | NO               |  |
| MW397                | Upgradient   | Yes       | 0.2    | N/A            | -1.609     | NO               |  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-68

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**X**= 9.102

**S**= 4.685 **CV(1)**=0.515

**K** factor\*\*= 2.523

**TL(1)=** 20.922

**LL(1)=**N/A

Statistics-Transformed Background

X = 1.423

**S**= 2.408

**CV(2)=**1.692

**K** factor\*\*= 2.523

TL(2) = 7.500

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                    | MW395                              |                                            |
|---------------------------------------------------------------------------------|------------------------------------|--------------------------------------------|
| Date Collected                                                                  | Result                             | LN(Result)                                 |
| 8/13/2002                                                                       | 12.5                               | 2.526                                      |
| 9/16/2002                                                                       | 13                                 | 2.565                                      |
| 10/16/2002                                                                      | 0.0127                             | -4.366                                     |
| 1/13/2003                                                                       | 11.2                               | 2.416                                      |
| 4/10/2003                                                                       | 17.5                               | 2.862                                      |
| 7/16/2003                                                                       | 12.9                               | 2.557                                      |
| 10/14/2003                                                                      | 13.4                               | 2.595                                      |
| 1/13/2004                                                                       | 12.4                               | 2.518                                      |
|                                                                                 |                                    |                                            |
| Well Number:                                                                    | MW397                              |                                            |
| Well Number:  Date Collected                                                    | MW397<br>Result                    | LN(Result)                                 |
|                                                                                 |                                    | LN(Result) 2.058                           |
| Date Collected                                                                  | Result                             | •                                          |
| Date Collected 8/13/2002                                                        | Result<br>7.83                     | 2.058                                      |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 7.83 7.64                   | 2.058<br>2.033                             |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 7.83 7.64 0.00658           | 2.058<br>2.033<br>-5.024                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 7.83 7.64 0.00658 6.69      | 2.058<br>2.033<br>-5.024<br>1.901          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 7.83 7.64 0.00658 6.69 7.28 | 2.058<br>2.033<br>-5.024<br>1.901<br>1.985 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW370    | Downgradient | Yes       | 13     | NO             | 2.565      | N/A               |
| MW373    | Downgradient | Yes       | 26.6   | YES            | 3.281      | N/A               |
| MW385    | Sidegradient | Yes       | 14     | NO             | 2.639      | N/A               |
| MW388    | Downgradient | Yes       | 11.3   | NO             | 2.425      | N/A               |
| MW392    | Downgradient | Yes       | 12.6   | NO             | 2.534      | N/A               |
| MW395    | Upgradient   | Yes       | 10.4   | NO             | 2.342      | N/A               |
| MW397    | Upgradient   | Yes       | 7.7    | NO             | 2.041      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.131

CV(1) = 1.487S = 0.195

**K** factor\*\*= 2.523

TL(1) = 0.624

LL(1)=N/A

**Statistics-Transformed Background** 

X = -3.104 S = 1.529 CV(2) = -0.493

**K factor\*\*=** 2.523

TL(2) = 0.755

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                                                 |                                                |
|---------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|
| Date Collected                                                                  | Result                                                | LN(Result)                                     |
| 8/13/2002                                                                       | 0.361                                                 | -1.019                                         |
| 9/16/2002                                                                       | 0.028                                                 | -3.576                                         |
| 10/16/2002                                                                      | 0.026                                                 | -3.650                                         |
| 1/13/2003                                                                       | 0.0713                                                | -2.641                                         |
| 4/10/2003                                                                       | 0.629                                                 | -0.464                                         |
| 7/16/2003                                                                       | 0.297                                                 | -1.214                                         |
| 10/14/2003                                                                      | 0.0198                                                | -3.922                                         |
| 1/13/2004                                                                       | 0.0126                                                | -4.374                                         |
|                                                                                 |                                                       |                                                |
| Well Number:                                                                    | MW397                                                 |                                                |
| Well Number:  Date Collected                                                    | MW397<br>Result                                       | LN(Result)                                     |
|                                                                                 |                                                       | LN(Result)<br>-0.764                           |
| Date Collected                                                                  | Result                                                |                                                |
| Date Collected 8/13/2002                                                        | Result<br>0.466                                       | -0.764                                         |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 0.466 0.077                                    | -0.764<br>-2.564                               |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 0.466 0.077 0.028                              | -0.764<br>-2.564<br>-3.576                     |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 0.466 0.077 0.028 0.0164                       | -0.764<br>-2.564<br>-3.576<br>-4.110           |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result<br>0.466<br>0.077<br>0.028<br>0.0164<br>0.0407 | -0.764<br>-2.564<br>-3.576<br>-4.110<br>-3.202 |

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |         |                |            |                  |
|----------|--------------|-----------|---------|----------------|------------|------------------|
| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient | No        | 0.0022  | N/A            | -6.119     | N/A              |
| MW373    | Downgradient | Yes       | 0.0374  | N/A            | -3.286     | NO               |
| MW385    | Sidegradient | Yes       | 0.00994 | N/A            | -4.611     | NO               |
| MW388    | Downgradient | No        | 0.00251 | N/A            | -5.987     | N/A              |
| MW392    | Downgradient | Yes       | 0.00789 | N/A            | -4.842     | NO               |
| MW395    | Upgradient   | No        | 0.00117 | N/A            | -6.751     | N/A              |
| MW397    | Upgradient   | No        | 0.00487 | N/A            | -5.325     | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

CV(1)=1.451S = 0.011

**K** factor\*\*= 2.523

TL(1) = 0.034

LL(1)=N/A

**Statistics-Transformed Background** 

X = -5.990 S = 1.443 CV(2) = -0.241

**K factor\*\*=** 2.523

TL(2) = -2.349

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:   | MW395   |            |
|----------------|---------|------------|
| Date Collected | Result  | LN(Result) |
| 8/13/2002      | 0.025   | -3.689     |
| 9/16/2002      | 0.025   | -3.689     |
| 10/16/2002     | 0.001   | -6.908     |
| 1/13/2003      | 0.00609 | -5.101     |
| 4/10/2003      | 0.001   | -6.908     |
| 7/16/2003      | 0.001   | -6.908     |
| 10/14/2003     | 0.001   | -6.908     |
| 1/13/2004      | 0.001   | -6.908     |
| Well Number:   | MW397   |            |
| Date Collected | Result  | LN(Result) |
| 8/13/2002      | 0.025   | -3.689     |
| 9/16/2002      | 0.025   | -3.689     |
| 10/17/2002     | 0.001   | -6.908     |
| 1/13/2003      | 0.001   | -6.908     |
| 4/8/2003       | 0.001   | -6.908     |
| 7/16/2003      | 0.001   | -6.908     |
| 10/14/2003     | 0.001   | -6.908     |
| 1/13/2004      | 0.001   | -6.908     |

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |          |                |            |                  |
|----------|--------------|-----------|----------|----------------|------------|------------------|
| Well No. | Gradient I   | Detected? | Result   | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient | No        | 0.000262 | 2 N/A          | -8.247     | N/A              |
| MW373    | Downgradient | No        | 0.001    | N/A            | -6.908     | N/A              |
| MW385    | Sidegradient | Yes       | 0.000407 | 7 N/A          | -7.807     | NO               |
| MW388    | Downgradient | No        | 0.001    | N/A            | -6.908     | N/A              |
| MW392    | Downgradient | No        | 0.001    | N/A            | -6.908     | N/A              |
| MW395    | Upgradient   | No        | 0.001    | N/A            | -6.908     | N/A              |
| MW397    | Upgradient   | No        | 0.001    | N/A            | -6.908     | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-71

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

S = 0.020

CV(1)=1.089

**K** factor\*\*= 2.523

TL(1) = 0.068

LL(1)=N/A

**Statistics-Transformed Background** 

X = -4.540 S = 1.020 CV(2) = -0.225

**K factor\*\*=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                                                        |                                                |
|---------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|
| Date Collected                                                                  | Result                                                       | LN(Result)                                     |
| 8/13/2002                                                                       | 0.05                                                         | -2.996                                         |
| 9/16/2002                                                                       | 0.05                                                         | -2.996                                         |
| 10/16/2002                                                                      | 0.00702                                                      | -4.959                                         |
| 1/13/2003                                                                       | 0.029                                                        | -3.540                                         |
| 4/10/2003                                                                       | 0.0091                                                       | -4.699                                         |
| 7/16/2003                                                                       | 0.00627                                                      | -5.072                                         |
| 10/14/2003                                                                      | 0.005                                                        | -5.298                                         |
| 1/13/2004                                                                       | 0.005                                                        | -5.298                                         |
|                                                                                 |                                                              |                                                |
| Well Number:                                                                    | MW397                                                        |                                                |
| Well Number: Date Collected                                                     | MW397<br>Result                                              | LN(Result)                                     |
|                                                                                 |                                                              | LN(Result)<br>-2.996                           |
| Date Collected                                                                  | Result                                                       |                                                |
| Date Collected 8/13/2002                                                        | Result 0.05                                                  | -2.996                                         |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 0.05 0.05                                             | -2.996<br>-2.996                               |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 0.05 0.05 0.005                                       | -2.996<br>-2.996<br>-5.298                     |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result<br>0.05<br>0.05<br>0.005<br>0.005                     | -2.996<br>-2.996<br>-5.298<br>-5.294           |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result<br>0.05<br>0.05<br>0.005<br>0.005<br>0.00502<br>0.005 | -2.996<br>-2.996<br>-5.298<br>-5.294<br>-5.298 |

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

| Current  | Quarter Data |           |         |                |            |                   |
|----------|--------------|-----------|---------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW370    | Downgradient | Yes       | 0.00383 | N/A            | -5.565     | NO                |
| MW373    | Downgradient | Yes       | 0.00399 | N/A            | -5.524     | NO                |
| MW385    | Sidegradient | Yes       | 0.00549 | N/A            | -5.205     | NO                |
| MW388    | Downgradient | Yes       | 0.00785 | N/A            | -4.847     | NO                |
| MW392    | Downgradient | Yes       | 0.00225 | N/A            | -6.097     | NO                |
| MW395    | Upgradient   | Yes       | 0.00316 | N/A            | -5.757     | NO                |
| MW397    | Upgradient   | Yes       | 0.00448 | N/A            | -5.408     | NO                |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-72

### C-746-S/T Third Quarter 2020 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

### **Historical Background Comparison** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

**K** factor\*\*= 2.523

TL(1) = 289.395

LL(1)=N/A

**Statistics-Transformed Background** 

X = 5.003 S = 0.348 CV(2) = 0.069

**K** factor\*\*= 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                             |                                           |
|---------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| Date Collected                                                                  | Result                            | LN(Result)                                |
| 8/13/2002                                                                       | 80                                | 4.382                                     |
| 9/16/2002                                                                       | 145                               | 4.977                                     |
| 10/16/2002                                                                      | 125                               | 4.828                                     |
| 1/13/2003                                                                       | 85                                | 4.443                                     |
| 4/10/2003                                                                       | 159                               | 5.069                                     |
| 7/16/2003                                                                       | 98                                | 4.585                                     |
| 10/14/2003                                                                      | 138                               | 4.927                                     |
| 1/13/2004                                                                       | 233                               | 5.451                                     |
|                                                                                 |                                   |                                           |
| Well Number:                                                                    | MW397                             |                                           |
| Well Number:  Date Collected                                                    | MW397                             | LN(Result)                                |
|                                                                                 | MW397                             | LN(Result)<br>4.745                       |
| Date Collected                                                                  | MW397<br>Result                   |                                           |
| Date Collected 8/13/2002                                                        | MW397 Result 115                  | 4.745                                     |
| Date Collected<br>8/13/2002<br>9/30/2002                                        | MW397 Result 115 140              | 4.745<br>4.942                            |
| Date Collected<br>8/13/2002<br>9/30/2002<br>10/17/2002                          | MW397 Result 115 140 185          | 4.745<br>4.942<br>5.220                   |
| Date Collected<br>8/13/2002<br>9/30/2002<br>10/17/2002<br>1/13/2003             | MW397 Result 115 140 185 230      | 4.745<br>4.942<br>5.220<br>5.438          |
| Date Collected<br>8/13/2002<br>9/30/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | MW397  Result 115 140 185 230 155 | 4.745<br>4.942<br>5.220<br>5.438<br>5.043 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| C 4      | O 4 D 4      |           |        |                |            |                  |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| Current  | Quarter Data |           |        |                |            |                  |
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient | Yes       | 366    | YES            | 5.903      | N/A              |
| MW373    | Downgradient | Yes       | 377    | YES            | 5.932      | N/A              |
| MW385    | Sidegradient | Yes       | 364    | YES            | 5.897      | N/A              |
| MW388    | Downgradient | Yes       | 353    | YES            | 5.866      | N/A              |
| MW392    | Downgradient | Yes       | 384    | YES            | 5.951      | N/A              |
| MW395    | Upgradient   | Yes       | 366    | YES            | 5.903      | N/A              |
| MW397    | Upgradient   | Yes       | 360    | YES            | 5.886      | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

| Wells | with | Exceedances |
|-------|------|-------------|
|       |      |             |

MW370 MW373 MW385 MW388 MW392

MW395

MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),
- X Mean, X = (sum of background results)/(count of background results)
- \*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-73

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.048

S = 0.248

CV(1) = 0.041

**K factor\*\*=** 2.904

TL(1) = 6.767

**LL(1)=**5.3289

Statistics-Transformed Background

**X=** 1.799

S = 0.042

CV(2) = 0.023

K factor\*\*= 2.904

TL(2)= 1.920

LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                    | MW395                    |                                           |
|---------------------------------------------------------------------------------|--------------------------|-------------------------------------------|
| Date Collected                                                                  | Result                   | LN(Result)                                |
| 8/13/2002                                                                       | 5.8                      | 1.758                                     |
| 9/16/2002                                                                       | 6                        | 1.792                                     |
| 10/16/2002                                                                      | 5.47                     | 1.699                                     |
| 1/13/2003                                                                       | 6                        | 1.792                                     |
| 4/10/2003                                                                       | 6.18                     | 1.821                                     |
| 7/16/2003                                                                       | 6                        | 1.792                                     |
| 10/14/2003                                                                      | 6.31                     | 1.842                                     |
| 1/13/2004                                                                       | 6.24                     | 1.831                                     |
|                                                                                 |                          |                                           |
| Well Number:                                                                    | MW397                    |                                           |
| Well Number: Date Collected                                                     | MW397<br>Result          | LN(Result)                                |
|                                                                                 |                          | LN(Result)                                |
| Date Collected                                                                  | Result                   | ` ,                                       |
| Date Collected 8/13/2002                                                        | Result 5.84              | 1.765                                     |
| Date Collected<br>8/13/2002<br>9/30/2002                                        | Result 5.84              | 1.765<br>1.792                            |
| Date Collected<br>8/13/2002<br>9/30/2002<br>10/17/2002                          | Result 5.84 6 5.75       | 1.765<br>1.792<br>1.749                   |
| Date Collected<br>8/13/2002<br>9/30/2002<br>10/17/2002<br>1/13/2003             | Result 5.84 6 5.75 6     | 1.765<br>1.792<br>1.749<br>1.792          |
| Date Collected<br>8/13/2002<br>9/30/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 5.84 6 5.75 6 6.3 | 1.765<br>1.792<br>1.749<br>1.792<br>1.841 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient     | Detected? | Result | Result >TL(1)?<br>Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) &gt;TL(2)?<br/>LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<> | LN(Result) | LN(Result) >TL(2)?<br>LN(Result) <ll(2)?< th=""></ll(2)?<> |
|----------|--------------|-----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------|
| MW270    | D 1:         | . V       | ( 07   |                                                                                                                                              | 1 002      | , , ,                                                      |
| MW370    | Downgradient | res       | 6.07   | NO                                                                                                                                           | 1.803      | N/A                                                        |
| MW373    | Downgradient | Yes       | 6.11   | NO                                                                                                                                           | 1.810      | N/A                                                        |
| MW385    | Sidegradient | Yes       | 6.33   | NO                                                                                                                                           | 1.845      | N/A                                                        |
| MW388    | Downgradient | Yes       | 6.1    | NO                                                                                                                                           | 1.808      | N/A                                                        |
| MW392    | Downgradient | Yes       | 6.11   | NO                                                                                                                                           | 1.810      | N/A                                                        |
| MW395    | Upgradient   | Yes       | 6.03   | NO                                                                                                                                           | 1.797      | N/A                                                        |
| MW397    | Upgradient   | Yes       | 6.14   | NO                                                                                                                                           | 1.815      | N/A                                                        |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.590

S = 0.642

CV(1)=0.404

**K** factor\*\*= 2.523

TL(1) = 3.208

LL(1)=N/A

**Statistics-Transformed Background** 

X = -0.306 S = 2.457 CV(2) = -8.028

**K factor\*\*=** 2.523

TL(2) = 5.892

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                           |                                            |
|---------------------------------------------------------------------------------|---------------------------------|--------------------------------------------|
| Date Collected                                                                  | Result                          | LN(Result)                                 |
| 8/13/2002                                                                       | 2                               | 0.693                                      |
| 9/16/2002                                                                       | 2                               | 0.693                                      |
| 10/16/2002                                                                      | 0.00129                         | -6.653                                     |
| 1/13/2003                                                                       | 1.51                            | 0.412                                      |
| 4/10/2003                                                                       | 1.67                            | 0.513                                      |
| 7/16/2003                                                                       | 1.73                            | 0.548                                      |
| 10/14/2003                                                                      | 1.7                             | 0.531                                      |
| 1/13/2004                                                                       | 1.58                            | 0.457                                      |
|                                                                                 |                                 |                                            |
| Well Number:                                                                    | MW397                           |                                            |
| Well Number: Date Collected                                                     | MW397<br>Result                 | LN(Result)                                 |
|                                                                                 |                                 | LN(Result)<br>0.708                        |
| Date Collected                                                                  | Result                          |                                            |
| Date Collected 8/13/2002                                                        | Result<br>2.03                  | 0.708                                      |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result<br>2.03<br>2             | 0.708<br>0.693                             |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 2.03 2 0.00145           | 0.708<br>0.693<br>-6.536                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 2.03 2 0.00145 1.69      | 0.708<br>0.693<br>-6.536<br>0.525          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 2.03 2 0.00145 1.69 1.73 | 0.708<br>0.693<br>-6.536<br>0.525<br>0.548 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                   |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW370    | Downgradient | Yes       | 2.8    | NO             | 1.030      | N/A               |
| MW373    | Downgradient | Yes       | 2.77   | NO             | 1.019      | N/A               |
| MW385    | Sidegradient | Yes       | 1.88   | NO             | 0.631      | N/A               |
| MW388    | Downgradient | Yes       | 1.97   | NO             | 0.678      | N/A               |
| MW392    | Downgradient | Yes       | 1.88   | NO             | 0.631      | N/A               |
| MW395    | Upgradient   | Yes       | 1.52   | NO             | 0.419      | N/A               |
| MW397    | Upgradient   | Yes       | 1.78   | NO             | 0.577      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-75

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

**K** factor\*\*= 2.523

TL(1) = 64.616

LL(1)=N/A

**Statistics-Transformed Background** 

X = 2.615 S = 2.411 CV(2) = 0.922

**K factor\*\*=** 2.523

TL(2) = 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                             |                                            |
|---------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------|
| Date Collected                                                                  | Result                            | LN(Result)                                 |
| 8/13/2002                                                                       | 27                                | 3.296                                      |
| 9/16/2002                                                                       | 27.2                              | 3.303                                      |
| 10/16/2002                                                                      | 0.0253                            | -3.677                                     |
| 1/13/2003                                                                       | 22.6                              | 3.118                                      |
| 4/10/2003                                                                       | 53.9                              | 3.987                                      |
| 7/16/2003                                                                       | 30                                | 3.401                                      |
| 10/14/2003                                                                      | 29.1                              | 3.371                                      |
| 1/13/2004                                                                       | 26.4                              | 3.273                                      |
|                                                                                 |                                   |                                            |
| Well Number:                                                                    | MW397                             |                                            |
| Well Number: Date Collected                                                     |                                   | LN(Result)                                 |
|                                                                                 |                                   | LN(Result)<br>3.561                        |
| Date Collected                                                                  | Result                            |                                            |
| Date Collected 8/13/2002                                                        | Result<br>35.2                    | 3.561                                      |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 35.2 34.3                  | 3.561<br>3.535                             |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 35.2 34.3 0.0336           | 3.561<br>3.535<br>-3.393                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 35.2 34.3 0.0336 31.3      | 3.561<br>3.535<br>-3.393<br>3.444          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 35.2 34.3 0.0336 31.3 46.1 | 3.561<br>3.535<br>-3.393<br>3.444<br>3.831 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                  |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient | Yes       | 46.2   | NO             | 3.833      | N/A              |
| MW373    | Downgradient | Yes       | 64.1   | NO             | 4.160      | N/A              |
| MW385    | Sidegradient | Yes       | 44.5   | NO             | 3.795      | N/A              |
| MW388    | Downgradient | Yes       | 43.1   | NO             | 3.764      | N/A              |
| MW392    | Downgradient | Yes       | 36.5   | NO             | 3.597      | N/A              |
| MW395    | Upgradient   | Yes       | 31.6   | NO             | 3.453      | N/A              |
| MW397    | Upgradient   | Yes       | 32.6   | NO             | 3.484      | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Sulfate** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1)=0.200

**K** factor\*\*= 2.523

**TL(1)=** 16.173

LL(1)=N/A

**Statistics-Transformed Background** 

X = 2.356 S = 0.203 CV(2) = 0.086

**K factor\*\*=** 2.523

TL(2) = 2.869

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                                |                                           |
|---------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|
| Date Collected                                                                  | Result                               | LN(Result)                                |
| 8/13/2002                                                                       | 10.3                                 | 2.332                                     |
| 9/16/2002                                                                       | 9.1                                  | 2.208                                     |
| 10/16/2002                                                                      | 8.8                                  | 2.175                                     |
| 1/13/2003                                                                       | 9                                    | 2.197                                     |
| 4/10/2003                                                                       | 8.3                                  | 2.116                                     |
| 7/16/2003                                                                       | 8.2                                  | 2.104                                     |
| 10/14/2003                                                                      | 8.3                                  | 2.116                                     |
| 1/13/2004                                                                       | 8.2                                  | 2.104                                     |
|                                                                                 |                                      |                                           |
| Well Number:                                                                    | MW397                                |                                           |
| Well Number:  Date Collected                                                    |                                      | LN(Result)                                |
|                                                                                 |                                      | LN(Result)<br>2.639                       |
| Date Collected                                                                  | Result                               |                                           |
| Date Collected 8/13/2002                                                        | Result<br>14                         | 2.639                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 14 12.8                       | 2.639<br>2.549                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result<br>14<br>12.8<br>12.3         | 2.639<br>2.549<br>2.510                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result<br>14<br>12.8<br>12.3<br>12.7 | 2.639<br>2.549<br>2.510<br>2.542          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 14 12.8 12.3 12.7 12.8        | 2.639<br>2.549<br>2.510<br>2.542<br>2.549 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                  |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient | Yes       | 20.7   | YES            | 3.030      | N/A              |
| MW373    | Downgradient | Yes       | 169    | YES            | 5.130      | N/A              |
| MW385    | Sidegradient | Yes       | 24.3   | YES            | 3.190      | N/A              |
| MW388    | Downgradient | Yes       | 18.7   | YES            | 2.929      | N/A              |
| MW392    | Downgradient | Yes       | 25.3   | YES            | 3.231      | N/A              |
| MW395    | Upgradient   | Yes       | 12     | NO             | 2.485      | N/A              |
| MW397    | Upgradient   | Yes       | 11.7   | NO             | 2.460      | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385 MW388

MW392

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),
- X Mean, X = (sum of background results)/(count of background results)

# C-746-S/T Third Quarter 2020 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**X**= 11.359 **S**= 9.138

**CV(1)=**0.805

K factor\*\*= 2.523

**TL(1)=** 34.414

LL(1)=N/A

Statistics-Transformed Background

X = 2.398

**S**= 0.859

CV(2) = 0.358

**K factor\*\*=** 2.523

TL(2) = 3.246

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                    | MW395                           |                                           |
|---------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|
| Date Collected                                                                  | Result                          | LN(Result)                                |
| 8/13/2002                                                                       | 20.8                            | 3.035                                     |
| 9/16/2002                                                                       | 16.2                            | 2.785                                     |
| 10/16/2002                                                                      | 8.28                            | 2.114                                     |
| 1/13/2003                                                                       | 13                              | 2.565                                     |
| 4/10/2003                                                                       | -9.37                           | #Func!                                    |
| 7/16/2003                                                                       | 0.826                           | -0.191                                    |
| 10/14/2003                                                                      | 14.1                            | 2.646                                     |
| 1/13/2004                                                                       | 0                               | #Func!                                    |
|                                                                                 |                                 |                                           |
| Well Number:                                                                    | MW397                           |                                           |
| Well Number:  Date Collected                                                    | MW397<br>Result                 | LN(Result)                                |
|                                                                                 |                                 | LN(Result)<br>1.802                       |
| Date Collected                                                                  | Result                          |                                           |
| Date Collected 8/13/2002                                                        | Result<br>6.06                  | 1.802                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 6.06 17.3                | 1.802<br>2.851                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 6.06 17.3 25.7           | 1.802<br>2.851<br>3.246                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 6.06 17.3 25.7 20.9      | 1.802<br>2.851<br>3.246<br>3.040          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 6.06 17.3 25.7 20.9 20.1 | 1.802<br>2.851<br>3.246<br>3.040<br>3.001 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

| Current  | Quarter Data |           |        |                |            |                  |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient | Yes       | 67.3   | YES            | 4.209      | N/A              |
| MW373    | Downgradient | No        | 18.4   | N/A            | 2.912      | N/A              |
| MW385    | Sidegradient | Yes       | 64.6   | YES            | 4.168      | N/A              |
| MW388    | Downgradient | Yes       | 38.4   | YES            | 3.648      | N/A              |
| MW392    | Downgradient | No        | 10.1   | N/A            | 2.313      | N/A              |
| MW395    | Upgradient   | No        | 12.2   | N/A            | 2.501      | N/A              |
| MW397    | Upgradient   | No        | 20.1   | N/A            | 3.001      | N/A              |
|          |              |           |        |                |            |                  |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
- X Mean, X = (sum of background results)/(count of background results)

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.544CV(1)=0.554**K** factor\*\*= 2.523 Statistics-Background Data S = 0.856TL(1) = 3.702LL(1)=N/A **Statistics-Transformed Background** 

Data

X = 0.325

S = 0.452

CV(2) = 1.393

**K factor\*\*=** 2.523

TL(2) = 1.465

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.6 0.470 9/16/2002 0.095 1.1 0.000 10/16/2002 1 1/13/2003 2 0.6934/10/2003 3.4 1.224 7/16/2003 2 0.69310/14/2003 0.000 1 1/13/2004 1 0.000Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 0.0001 9/16/2002 0.000 1 10/17/2002 1 0.0001/13/2003 3.6 1.281 4/8/2003 1.9 0.642 7/16/2003 1.1 0.095 10/14/2003 1 0.000 1/13/2004 1 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter Data |           |        |                |            |                  |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient | Yes       | 1.02   | NO             | 0.020      | N/A              |
| MW373    | Downgradient | Yes       | 1.1    | NO             | 0.095      | N/A              |
| MW385    | Sidegradient | Yes       | 1.38   | NO             | 0.322      | N/A              |
| MW388    | Downgradient | Yes       | 1.18   | NO             | 0.166      | N/A              |
| MW392    | Downgradient | Yes       | 1.17   | NO             | 0.157      | N/A              |
| MW395    | Upgradient   | Yes       | 0.856  | NO             | -0.155     | N/A              |
| MW397    | Upgradient   | Yes       | 0.769  | NO             | -0.263     | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)TL

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-79

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 31.513 S = 18.609 CV(1) = 0.591

**K** factor\*\*= 2.523

TL(1) = 78.462

LL(1)=N/A

**Statistics-Transformed Background** 

X = 3.240

S = 0.707 CV(2) = 0.218

**K factor\*\*=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395                |                                           |
|---------------------------------------------------------------------------------|----------------------|-------------------------------------------|
| Date Collected                                                                  | Result               | LN(Result)                                |
| 8/13/2002                                                                       | 50                   | 3.912                                     |
| 9/16/2002                                                                       | 50                   | 3.912                                     |
| 10/16/2002                                                                      | 50                   | 3.912                                     |
| 1/13/2003                                                                       | 18.3                 | 2.907                                     |
| 4/10/2003                                                                       | 51.2                 | 3.936                                     |
| 7/16/2003                                                                       | 42.6                 | 3.752                                     |
| 10/14/2003                                                                      | 12.3                 | 2.510                                     |
| 1/13/2004                                                                       | 10                   | 2.303                                     |
|                                                                                 |                      |                                           |
| Well Number:                                                                    | MW397                |                                           |
| Well Number: Date Collected                                                     | MW397<br>Result      | LN(Result)                                |
|                                                                                 |                      | LN(Result) 3.912                          |
| Date Collected                                                                  | Result               |                                           |
| Date Collected 8/13/2002                                                        | Result 50            | 3.912                                     |
| Date Collected<br>8/13/2002<br>9/16/2002                                        | Result 50 50         | 3.912<br>3.912                            |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002                          | Result 50 50 50      | 3.912<br>3.912<br>3.912                   |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003             | Result 50 50 12      | 3.912<br>3.912<br>3.912<br>2.485          |
| Date Collected<br>8/13/2002<br>9/16/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 50 50 12 19.9 | 3.912<br>3.912<br>3.912<br>2.485<br>2.991 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Current Quarter Data |           |        |                |            |                   |
|----------|----------------------|-----------|--------|----------------|------------|-------------------|
| Well No. | Gradient             | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
| MW370    | Downgradient         | Yes       | 9.2    | NO             | 2.219      | N/A               |
| MW373    | Downgradient         | Yes       | 16.3   | NO             | 2.791      | N/A               |
| MW385    | Sidegradient         | No        | 10     | N/A            | 2.303      | N/A               |
| MW388    | Downgradient         | Yes       | 5.96   | NO             | 1.785      | N/A               |
| MW392    | Downgradient         | Yes       | 17.3   | NO             | 2.851      | N/A               |
| MW395    | Upgradient           | No        | 10     | N/A            | 2.303      | N/A               |
| MW397    | Upgradient           | Yes       | 6.9    | NO             | 1.932      | N/A               |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-80

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison Trichloroethene** UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313

CV(1)=0.780

**K** factor\*\*= 2.523

TL(1) = 21.695

LL(1)=N/A

**Statistics-Transformed Background** 

S = 5.701

X = 1.467 S = 1.213 CV(2) = 0.827

**K factor\*\*=** 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

| Well Number:                                                                    | MW395              |                                           |
|---------------------------------------------------------------------------------|--------------------|-------------------------------------------|
| Date Collected                                                                  | Result             | LN(Result)                                |
| 8/13/2002                                                                       | 11                 | 2.398                                     |
| 9/30/2002                                                                       | 14                 | 2.639                                     |
| 10/16/2002                                                                      | 12                 | 2.485                                     |
| 1/13/2003                                                                       | 14                 | 2.639                                     |
| 4/10/2003                                                                       | 14                 | 2.639                                     |
| 7/16/2003                                                                       | 13                 | 2.565                                     |
| 10/14/2003                                                                      | 12                 | 2.485                                     |
| 1/13/2004                                                                       | 11                 | 2.398                                     |
|                                                                                 |                    |                                           |
| Well Number:                                                                    | MW397              |                                           |
| Well Number:  Date Collected                                                    | MW397<br>Result    | LN(Result)                                |
|                                                                                 |                    | LN(Result)                                |
| Date Collected                                                                  | Result             |                                           |
| Date Collected 8/13/2002                                                        | Result 5           | 1.609                                     |
| Date Collected<br>8/13/2002<br>9/30/2002                                        | Result 5           | 1.609<br>1.609                            |
| Date Collected<br>8/13/2002<br>9/30/2002<br>10/17/2002                          | Result 5 5 1       | 1.609<br>1.609<br>0.000                   |
| Date Collected<br>8/13/2002<br>9/30/2002<br>10/17/2002<br>1/13/2003             | Result 5 5 1 1     | 1.609<br>1.609<br>0.000<br>0.000          |
| Date Collected<br>8/13/2002<br>9/30/2002<br>10/17/2002<br>1/13/2003<br>4/8/2003 | Result 5 5 1 1 1 1 | 1.609<br>1.609<br>0.000<br>0.000<br>0.000 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Current Quarter Data |           |        |                |            |                  |
|----------|----------------------|-----------|--------|----------------|------------|------------------|
| Well No. | Gradient             | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient         | Yes       | 0.58   | N/A            | -0.545     | N/A              |
| MW373    | Downgradient         | Yes       | 3.82   | N/A            | 1.340      | N/A              |
| MW385    | Sidegradient         | Yes       | 0.41   | N/A            | -0.892     | N/A              |
| MW388    | Downgradient         | Yes       | 0.48   | N/A            | -0.734     | N/A              |
| MW392    | Downgradient         | Yes       | 15.3   | NO             | 2.728      | N/A              |
| MW395    | Upgradient           | Yes       | 1.85   | N/A            | 0.615      | N/A              |
| MW397    | Upgradient           | No        | 1      | N/A            | 0.000      | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-81

#### C-746-S/T Third Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Zinc LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.760**K** factor\*\*= 2.523 Statistics-Background Data X = 0.044S = 0.034TL(1) = 0.129LL(1)=N/A **Statistics-Transformed Background** 

Data

X = -3.342 S = 0.659CV(2) = -0.197 **K factor\*\*=** 2.523

TL(2) = -1.679

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result** 

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303-2.3039/16/2002 0.110/16/2002 0.025 -3.6891/13/2003 0.035-3.3524/10/2003 0.035 -3.3527/16/2003 0.02 -3.912 0.02 -3.91210/14/2003 1/13/2004 0.02 -3.912 MW397 Well Number: Date Collected Result LN(Result) 8/13/2002 0.1 -2.3039/16/2002 -2.303 0.1 10/17/2002 0.025 -3.689 1/13/2003 0.035 -3.3524/8/2003 0.035 -3.3527/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Current Quarter Data |           |         |                |            |                  |
|----------|----------------------|-----------|---------|----------------|------------|------------------|
| Well No. | Gradient             | Detected? | Result  | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
| MW370    | Downgradient         | Yes       | 0.00334 | NO             | -5.702     | N/A              |
| MW373    | Downgradient         | No        | 0.00448 | N/A            | -5.408     | N/A              |
| MW385    | Sidegradient         | Yes       | 0.0052  | NO             | -5.259     | N/A              |
| MW388    | Downgradient         | Yes       | 0.00534 | NO             | -5.233     | N/A              |
| MW392    | Downgradient         | No        | 0.00846 | N/A            | -4.772     | N/A              |
| MW395    | Upgradient           | No        | 0.00648 | N/A            | -5.039     | N/A              |
| MW397    | Upgradient           | Yes       | 0.00536 | NO             | -5.229     | N/A              |

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-82

### **ATTACHMENT D2**

# COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA



## C-746-S/T Third Quarter 2020 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

### Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 299.375 S = 114.338 CV(1) = 0.382

K factor\*\*= 3.188

TL(1)=663.884 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.627 S = 0.433 CV(2) = 0.077

K factor\*\*= 3.188

TL(2) = 7.007

LL(2)=N/A

>TL(2)

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected LN(Result) Result 7/19/2018 353 5.866 10/22/2018 210 5.347 1/23/2019 5.442 4/22/2019 431 6.066 7/17/2019 415 6.028 10/10/2019 227 5.425 3/18/2020 127 4.844 5.994 401 4/22/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) |
|----------|--------------|-----------|--------|----------------|------------|------------|
| MW386    | Sidegradient | Yes       | 322    | NO             | 5.775      | N/A        |
| MW390    | Downgradient | Yes       | 412    | NO             | 6.021      | N/A        |
| MW393    | Downgradient | Yes       | 373    | NO             | 5.922      | N/A        |
| MW396    | Upgradient   | Yes       | 346    | NO             | 5.846      | N/A        |

### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Sulfate UNITS: mg/L

### Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 27.275 S = 2.938

8 **CV(1)=**0.108

K factor\*\*= 3.188

TL(1) = 36.642

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.301

S = 0.104 C

**CV(2)=**0.031

K factor\*\*= 3.188

TL(2) = 3.632

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

| Well Number:   | MW396  |            |  |
|----------------|--------|------------|--|
| Date Collected | Result | LN(Result) |  |
| 7/19/2018      | 27.6   | 3.318      |  |
| 10/22/2018     | 24.5   | 3.199      |  |
| 1/23/2019      | 25.4   | 3.235      |  |
| 4/22/2019      | 25.5   | 3.239      |  |
| 7/17/2019      | 27.7   | 3.321      |  |
| 10/10/2019     | 33     | 3.497      |  |
| 1/27/2020      | 24.7   | 3.207      |  |
| 4/22/2020      | 29.8   | 3.395      |  |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#### **Current Quarter Data**

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW390    | Downgradient | Yes       | 56.8   | YES            | 4.040      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

Wells with Exceedances

MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Technetium-99 UNITS: pCi/L

# Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**X**= 1.106 **S**= 5.566

CV(1)=5.034

**K factor\*\*=** 3.188

TL(1)= 18.851

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.426

S = 0.526 CV(2) = 0.369

K factor\*\*= 3.188

TL(2)= 1.828

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW396  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 7/19/2018      | 1.84   | 0.610      |
| 10/22/2018     | -3.72  | #Func!     |
| 1/23/2019      | 6.22   | 1.828      |
| 4/22/2019      | 5.89   | 1.773      |
| 7/17/2019      | -0.714 | #Func!     |
| 10/10/2019     | -9.62  | #Func!     |
| 1/27/2020      | 3.26   | 1.182      |
| 4/22/2020      | 5.69   | 1.739      |

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW390    | Downgradient | Yes       | 54.9   | N/A            | 4.006      | YES               |

### **Conclusion of Statistical Analysis on Current Data**

Wells with Exceedances

MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Beta activity UNITS: pCi/L

### Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.876

**S**= 5.772 **CV(1)**=0.584

K factor\*\*= 2.523

TL(1) = 24.437

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.120

S = 0.625 CV(2) = 0.295

K factor\*\*= 2.523

TL(2) = 3.697

LL(2)=N/A

(2)

**Current Background Data from Upgradient Wells with Transformed Result** 

| Well Number:   | MW220  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 7/19/2018      | 8.64   | 2.156      |
| 10/15/2018     | 12.2   | 2.501      |
| 1/22/2019      | 23     | 3.135      |
| 4/16/2019      | 8.19   | 2.103      |
| 7/16/2019      | 12.7   | 2.542      |
| 10/8/2019      | 18.9   | 2.939      |
| 1/22/2020      | 8.34   | 2.121      |
| 4/21/2020      | 16.5   | 2.803      |
|                |        |            |

| 10.5   | 2.003                                            |
|--------|--------------------------------------------------|
| MW394  |                                                  |
| Result | LN(Result)                                       |
| 2.94   | 1.078                                            |
| 11.1   | 2.407                                            |
| 4.28   | 1.454                                            |
| 2.82   | 1.037                                            |
| 10.3   | 2.332                                            |
| 8.14   | 2.097                                            |
| 4.69   | 1.545                                            |
| 5.27   | 1.662                                            |
|        | MW394  Result 2.94 11.1 4.28 2.82 10.3 8.14 4.69 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| MW372    | Downgradient | Yes       | 76.1   | YES            | 4.332      | N/A              |
| MW387    | Downgradient | Yes       | 330    | YES            | 5.799      | N/A              |

### **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-S/T Third Quarter 2020 Statistical Analysis

### **Current Background Comparison** URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the

Statistics-Background Data

Calcium

LL, that is statistically significant evidence of elevated or lowered concentration in that well. X = 26.000 S = 3.383

CV(1)=0.130

K factor\*\*= 2.523

TL(1) = 34.537

LL(1)=N/A

**Statistics-Transformed Background** Data

X = 3.251

S = 0.124CV(2) = 0.038 K factor\*\*= 2.523

TL(2) = 3.564

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 7/19/2018 25.5 3.239 10/15/2018 3.025 20.6 1/22/2019 3.258 26 4/16/2019 3.578 35.8 7/16/2019 25.4 3.235 10/8/2019 20.9 3.040 3.270 1/22/2020 26.3 4/21/2020 28.8 3.360

| 7/21/2020      | 20.0   | 3.300      |
|----------------|--------|------------|
| Well Number:   | MW394  |            |
| Date Collected | Result | LN(Result) |
| 7/19/2018      | 27.9   | 3.329      |
| 10/22/2018     | 25.4   | 3.235      |
| 1/23/2019      | 27.9   | 3.329      |
| 4/22/2019      | 24.7   | 3.207      |
| 7/17/2019      | 25.4   | 3.235      |
| 10/10/2019     | 25.2   | 3.227      |
| 1/27/2020      | 25.3   | 3.231      |
| 4/22/2020      | 24.9   | 3.215      |
|                |        |            |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Ouarter | Doto |
|---------|---------|------|
| Current | Quarter | Data |

| Well No. | Gradient    | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|-------------|-----------|--------|----------------|------------|-------------------|
| MW372    | Downgradien | t Yes     | 62.4   | YES            | 4.134      | N/A               |
| MW387    | Downgradien | t Yes     | 43.2   | YES            | 3.766      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

Mean, X = (sum of background results)/(count of background results)

### C-746-S/T Third Quarter 2020 Statistical Analysis **Conductivity** UNITS: umho/cm

### **Current Background Comparison** URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 390.500 S = 29.748 CV(1) = 0.076

K factor\*\*= 2.523

TL(1) = 465.554

LL(1)=N/A

**Statistics-Transformed Background** 

X = 5.965S = 0.076 CV(2) = 0.013

K factor\*\*= 2.523

TL(2) = 6.157

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected LN(Result) Result 7/19/2018 412 6.021 10/15/2018 342 5.835 1/22/2019 6.031 416 5/30/2019 424 6.050 7/16/2019 377 5.932 10/8/2019 346 5.846 6.089 3/18/2020 441 4/21/2020 435 6.075

MW394

Result

392

410

381

383

382

370

367

Well Number:

Date Collected

7/19/2018

10/22/2018

1/23/2019

5/29/2019

7/17/2019

10/10/2019

1/27/2020

4/22/2020

| Current  | Quart |
|----------|-------|
| Well No. | Gradi |
| MW372    | Down  |
|          |       |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW372    | Downgradient | Ves       | 770    | YES            | 6 646      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

LN(Result)

5.971

6.016 5.943

5.948

5.914

5.945

5.914

5.905

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

Mean, X = (sum of background results)/(count of background results)

### C-746-S/T Third Quarter 2020 Statistical Analysis Dissolved Solids UNITS: n

# Analysis Current Background Comparison UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 211.125 S = 29.035 CV(1) = 0.138

K factor\*\*= 2.523

TL(1)= 284.381 LL(

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.344 S = 0.135 CV(2) = 0.025

K factor\*\*= 2.523

TL(2) = 5.683

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

Well Number: MW220 Date Collected LN(Result) Result 7/19/2018 207 5.333 10/15/2018 5.421 226 1/22/2019 209 5.342 4/16/2019 273 5.609 7/16/2019 176 5.170 10/8/2019 176 5.170 1/22/2020 256 5.545 4/21/2020 214 5.366 Well Number: MW394 Date Collected Result

LN(Result) 7/19/2018 204 5.318 10/22/2018 206 5.328 1/23/2019 197 5.283 4/22/2019 216 5.375 7/17/2019 5.118 167 10/10/2019 251 5.525 1/27/2020 200 5.298 4/22/2020 200 5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW372    | Downgradient | t Yes     | 436    | YES            | 6.078      | N/A               |
| MW384    | Sidegradient | Yes       | 304    | YES            | 5.717      | N/A               |
| MW387    | Downgradient | Yes       | 347    | YES            | 5.849      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-S/T Third Quarter 2020 Statistical Analysis

### **Current Background Comparison URGA**

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.688 S = 0.914

CV(1)=0.085

**K** factor\*\*= 2.523

TL(1)= 12.993

**LL(1)=**N/A

Statistics-Transformed Background

X = 2.365

 $S= 0.090 \quad CV(2)=0.038$ 

K factor\*\*= 2.523

TL(2) = 2.592

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

Well Number: MW220 Date Collected LN(Result) Result 7/19/2018 11.1 2.407 10/15/2018 8.8 2.175 1/22/2019 10.8 2.380 4/16/2019 10.3 2.332 7/16/2019 10 2.303

 10/8/2019
 8.71
 2.164

 1/22/2020
 10.9
 2.389

 4/21/2020
 11.9
 2.477

Well Number: MW394

Date Collected Result LN(Result) 7/19/2018 12 2.485 10/22/2018 11.3 2.425 1/23/2019 11.4 2.434 2.398 4/22/2019 11 7/17/2019 2.380 10.8 10/10/2019 10.7 2.370 1/27/2020 10.6 2.361 4/22/2020 10.7 2.370

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient    | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|-------------|-----------|--------|----------------|------------|-------------------|
| MW372    | Downgradien | t Yes     | 21.4   | YES            | 3.063      | N/A               |
| MW387    | Downgradien | t Yes     | 17.9   | YES            | 2.885      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
- X Mean, X = (sum of background results)/(count of background results)

### C-746-S/T Third Quarter 2020 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

### **Current Background Comparison** URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 412.750 S = 47.435 CV(1) = 0.115

K factor\*\*= 2.523

TL(1)= 532.428 LL(1)=N/A

**Statistics-Transformed Background** Data

X = 6.017CV(2)=0.019 S = 0.116

K factor\*\*= 2.523

utilizing TL(1).

TL(2) = 6.309

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected LN(Result) Result 7/19/2018 390 5.966 10/15/2018 6.023 413 1/22/2019 5.889 361 5/30/2019 523 6.260 7/16/2019 407 6.009 10/8/2019 414 6.026 378 5.935 3/18/2020 4/21/2020 435 6.075

**Current Quarter Data** 

Well No. Gradient Result >TL(1)? LN(Result) LN(Result) >TL(2) MW221 Sidegradient Yes 407 NO 6.009 N/A

| Well Number:   | MW394  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 7/19/2018      | 375    | 5.927      |
| 10/22/2018     | 386    | 5.956      |
| 1/23/2019      | 314    | 5.749      |
| 5/29/2019      | 463    | 6.138      |
| 7/17/2019      | 435    | 6.075      |
| 10/10/2019     | 438    | 6.082      |
| 1/27/2020      | 440    | 6.087      |
| 4/22/2020      | 432    | 6.068      |

### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),
- Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-11

### C-746-S/T Third Quarter 2020 Statistical Analysis

# Analysis Current Background Comparison UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Sodium

**X**= 38.438 **S**= 6.788

CV(1)=0.177

**K factor\*\*=** 2.523

TL(1)= 55.562

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.635

 $S = 0.174 \quad CV(2) = 0.048$ 

K factor\*\*= 2.523

TL(2) = 4.075

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW220  |            |  |
|----------------|--------|------------|--|
| Date Collected | Result | LN(Result) |  |
| 7/19/2018      | 49.6   | 3.904      |  |
| 10/15/2018     | 39     | 3.664      |  |
| 1/22/2019      | 45.1   | 3.809      |  |
| 4/16/2019      | 47.4   | 3.859      |  |
| 7/16/2019      | 43.4   | 3.770      |  |
| 10/8/2019      | 39.4   | 3.674      |  |
| 1/22/2020      | 47.6   | 3.863      |  |
| 4/21/2020      | 44     | 3.784      |  |

| Well Number:   | MW394  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 7/19/2018      | 30.2   | 3.408      |
| 10/22/2018     | 33.4   | 3.509      |
| 1/23/2019      | 32.7   | 3.487      |
| 4/22/2019      | 30.8   | 3.428      |
| 7/17/2019      | 31.9   | 3.463      |
| 10/10/2019     | 33     | 3.497      |
| 1/27/2020      | 34.1   | 3.529      |
| 4/22/2020      | 33.4   | 3.509      |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW369    | Downgradient | Yes       | 59.6   | YES            | 4.088      | N/A               |
| MW372    | Downgradient | Yes       | 63.8   | YES            | 4.156      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-S/T Third Quarter 2020 Statistical Analysis

# Analysis Current Background Comparison UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**Sulfate** 

X = 15.888 S = 5.237

CV(1)=0.330

K factor\*\*= 2.523

TL(1)= 29.100

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.716 S = 0.324

CV(2)=0.119

K factor\*\*= 2.523

TL(2)=3.532

LL(2)=N/A

(2)

**Current Background Data from Upgradient Wells with Transformed Result** 

MW220 Well Number: Date Collected Result LN(Result) 7/19/2018 24.7 3.207 10/15/2018 16.9 2.827 1/22/2019 3.063 21.4 4/16/2019 24.1 3.182 7/16/2019 18.5 2.918 2.747 10/8/2019 15.6 3.001 1/22/2020 20.1

| 4/21/2020      | 22.2   | 3.100      |  |
|----------------|--------|------------|--|
| Well Number:   | MW394  |            |  |
| Date Collected | Result | LN(Result) |  |
| 7/19/2018      | 10.5   | 2.351      |  |
| 10/22/2018     | 10.6   | 2.361      |  |
| 1/23/2019      | 11     | 2.398      |  |
| 4/22/2019      | 10.7   | 2.370      |  |
| 7/17/2019      | 11.1   | 2.407      |  |
| 10/10/2019     | 12     | 2.485      |  |
| 1/27/2020      | 12.1   | 2.493      |  |
| 4/22/2020      | 12.7   | 2.542      |  |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2 |
|----------|--------------|-----------|--------|----------------|------------|------------------|
| MW372    | Downgradient | Yes       | 124    | YES            | 4.820      | N/A              |
| MW384    | Sidegradient | Yes       | 23.7   | NO             | 3.165      | N/A              |
| MW387    | Downgradient | Yes       | 37.6   | YES            | 3.627      | N/A              |

### **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

# C-746-S/T Third Quarter 2020 Statistical Analysis Technetium-99 UNITS: pCi/L

### Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

**X**= 13.366 **S**= 8.311

**CV(1)=**0.622

K factor\*\*= 2.523

TL(1) = 34.335

LL(1)=N/A

Statistics-Transformed Background

X = 2.504

S = 0.653 CV

CV(2) = 0.261

K factor\*\*= 2.523

TL(2) = 3.325

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW220  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 7/19/2018      | 14     | 2.639      |
| 10/15/2018     | 20.8   | 3.035      |
| 1/22/2019      | 19.4   | 2.965      |
| 4/16/2019      | 17.1   | 2.839      |
| 7/16/2019      | 27.8   | 3.325      |
| 10/8/2019      | 27     | 3.296      |
| 1/22/2020      | 12     | 2.485      |
| 4/21/2020      | 18.7   | 2.929      |
| Well Number:   | MW394  |            |
| Date Collected | Result | LN(Result) |
| 7/19/2018      | 10.6   | 2.361      |
|                |        |            |

10/22/2018 2.595 13.4 1/23/2019 11.5 2.442 0.936 4/22/2019 2.55 4.74 1.556 7/17/2019 10/10/2019 -2.22#Func! 1/27/2020 10.2 2.322 4/22/2020 6.29 1.839

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

| Current Q | uarter | Data |
|-----------|--------|------|
|-----------|--------|------|

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW372    | Downgradient | Yes       | 106    | YES            | 4.663      | N/A               |
| MW384    | Sidegradient | Yes       | 48.7   | YES            | 3.886      | N/A               |
| MW387    | Downgradient | Yes       | 420    | YES            | 6.040      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW384 MW387

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
- X Mean, X = (sum of background results)/(count of background results)
- \*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Beta activity UNITS: pCi/L

### Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.916

CV(1)=0.361

**K factor\*\*=** 2.523

TL(1)= 15.134

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.004

S = 0.381

S = 2.861

CV(2)=0.190

K factor\*\*= 2.523

TL(2) = 2.965

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

| Well Number:   | MW395  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 7/19/2018      | 7.89   | 2.066      |
| 10/22/2018     | 9.41   | 2.242      |
| 1/23/2019      | 5.24   | 1.656      |
| 4/22/2019      | 3.8    | 1.335      |
| 7/17/2019      | 6.42   | 1.859      |
| 10/10/2019     | 3.67   | 1.300      |
| 1/27/2020      | 10.1   | 2.313      |
| 4/22/2020      | 7.55   | 2.022      |

| 4/22/2020      | 7.55   | 2.022      |
|----------------|--------|------------|
| Well Number:   | MW397  |            |
| Date Collected | Result | LN(Result) |
| 7/19/2018      | 13.8   | 2.625      |
| 10/15/2018     | 5.14   | 1.637      |
| 1/23/2019      | 8.19   | 2.103      |
| 4/16/2019      | 7.45   | 2.008      |
| 7/16/2019      | 6.74   | 1.908      |
| 10/9/2019      | 12.7   | 2.542      |
| 1/27/2020      | 9.86   | 2.288      |
| 4/22/2020      | 8.69   | 2.162      |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current  | Quarter  | Data |
|----------|----------|------|
| Culltuit | Vual ttl | Data |

| Well No. | Gradient    | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|-------------|-----------|--------|----------------|------------|-------------------|
| MW370    | Downgradien | t Ves     | 65.5   | YES            | 4 182      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

### C-746-S/T Third Quarter 2020 Statistical Analysis

# Analysis Current Background Comparison UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Calcium

X = 21.719 S = 3.627

CV(1)=0.167

**K factor\*\*=** 2.523

TL(1) = 30.870

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.065

 $S = 0.168 \quad CV(2) = 0.055$ 

K factor\*\*= 2.523

TL(2) = 3.489

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

| Well Number:   | MW395  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 7/19/2018      | 27.1   | 3.300      |
| 10/22/2018     | 24.4   | 3.195      |
| 1/23/2019      | 27.3   | 3.307      |
| 4/22/2019      | 25.4   | 3.235      |
| 7/17/2019      | 24.2   | 3.186      |
| 10/10/2019     | 23.4   | 3.153      |
| 1/27/2020      | 24.4   | 3.195      |
| 4/22/2020      | 24     | 3.178      |

| Well Number:   | MW397  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 7/19/2018      | 16.9   | 2.827      |
| 10/15/2018     | 19.3   | 2.960      |
| 1/23/2019      | 19     | 2.944      |
| 4/16/2019      | 16.9   | 2.827      |
| 7/16/2019      | 19.7   | 2.981      |
| 10/9/2019      | 18.8   | 2.934      |
| 1/27/2020      | 18.6   | 2.923      |

18.1

4/22/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Cummont | Quarter | Data |
|---------|---------|------|
| Current | Quarter | Data |

| Well No. | Gradient    | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|-------------|-----------|--------|----------------|------------|-------------------|
| MW373    | Downgradien | t Yes     | 72.2   | YES            | 4 279      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

2.896

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-S/T Third Quarter 2020 Statistical Analysis **Conductivity** UNITS: umho/cm

### **Current Background Comparison LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 340.750 S = 24.963 CV(1) = 0.073

K factor\*\*= 2.523

**TL(1)=** 403.731 **LL(1)=**N/A

**Statistics-Transformed Background** Data

X = 5.829

S = 0.072

CV(2)=0.012

K factor\*\*= 2.523

TL(2) = 6.010

LL(2)=N/A

Current Background Data from Upgradient **Wells with Transformed Result** 

| Well Number:   | MW395  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 7/19/2018      | 396    | 5.981      |
| 10/22/2018     | 375    | 5.927      |
| 1/23/2019      | 359    | 5.883      |
| 5/29/2019      | 367    | 5.905      |
| 7/17/2019      | 344    | 5.841      |
| 10/10/2019     | 357    | 5.878      |
| 1/27/2020      | 348    | 5.852      |
| 4/22/2020      | 350    | 5.858      |

| Well Number:   | MW397  |            |
|----------------|--------|------------|
| Date Collected | Result | LN(Result) |
| 8/21/2018      | 326    | 5.787      |
| 10/15/2018     | 321    | 5.771      |
| 1/23/2019      | 316    | 5.756      |
| 5/29/2019      | 318    | 5.762      |
| 7/16/2019      | 316    | 5.756      |
| 10/9/2019      | 319    | 5.765      |
| 3/18/2020      | 321    | 5.771      |
| 4/22/2020      | 319    | 5.765      |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Quarter | Data |
|---------|---------|------|
|---------|---------|------|

| Well No. | Gradient    | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|-------------|-----------|--------|----------------|------------|-------------------|
| MW373    | Downgradien | t Ves     | 859    | YES            | 6.756      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

Mean, X = (sum of background results)/(count of background results)

### C-746-S/T Third Quarter 2020 Statistical Analysis **Dissolved Solids**

### **Current Background Comparison LRGA** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 190.063 S = 37.366 CV(1) = 0.197

K factor\*\*= 2.523

**TL(1)=** 284.336 **LL(1)=**N/A

**Statistics-Transformed Background** Data

X = 5.231

S = 0.180CV(2)=0.034 K factor\*\*= 2.523

TL(2) = 5.685

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected LN(Result) Result 7/19/2018 203 5.313 10/22/2018 5.170 176 1/23/2019 284 5.649 4/22/2019 173 5.153 7/17/2019 184 5.215 4.984 10/10/2019 146 1/27/2020 257 5.549 4/22/2020 5.293 199

| 1/22/2020      | 177    | 3.273      |  |  |
|----------------|--------|------------|--|--|
| Well Number:   | MW397  |            |  |  |
| Date Collected | Result | LN(Result) |  |  |
| 7/19/2018      | 160    | 5.075      |  |  |
| 10/15/2018     | 184    | 5.215      |  |  |
| 1/23/2019      | 160    | 5.075      |  |  |
| 4/16/2019      | 229    | 5.434      |  |  |
| 7/16/2019      | 176    | 5.170      |  |  |
| 10/9/2019      | 173    | 5.153      |  |  |
| 1/27/2020      | 177    | 5.176      |  |  |
| 4/22/2020      | 160    | 5.075      |  |  |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

**Current Quarter Data** 

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW373    | Downgradien  | t Yes     | 476    | YES            | 6.165      | N/A               |
| MW385    | Sidegradient | Yes       | 314    | YES            | 5.749      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373 MW385

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

Mean, X = (sum of background results)/(count of background results)

### C-746-S/T Third Quarter 2020 Statistical Analysis

### **Current Background Comparison LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

UNITS: mg/L

LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Magnesium

X = 9.330

S = 1.510CV(1)=0.162

For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the

K factor\*\*= 2.523

TL(1)= 13.139

LL(1)=N/A

**Statistics-Transformed Background** 

X = 2.221

S = 0.162

CV(2) = 0.073

K factor\*\*= 2.523

TL(2) = 2.630

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected LN(Result) Result 7/19/2018 11.7 2.460 10/22/2018 10.7 2.370 1/23/2019 11.2 2.416 4/22/2019 11.1 2.407 7/17/2019 10.6 2.361 10/10/2019 2.291 9.88 1/27/2020 10.3 2.332

4/22/2020 10.2 2.322 MW397

Well Number: Date Collected

4/22/2020

Result LN(Result) 7/19/2018 7.38 1.999 10/15/2018 8.48 2.138 1/23/2019 7.84 2.059 4/16/2019 7.65 2.035 7/16/2019 8.63 2.155 10/9/2019 2.079 1/27/2020 7.81 2.055 2.055

7.81

1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Because CV(1) is less than or equal to

**Current Quarter Data** 

Well No. Gradient Detected? Result >TL(1)? LN(Result) LN(Result) >TL(2) MW373 Downgradient Yes 26.6 YES 3.281 N/A

### **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),

Mean, X = (sum of background results)/(count of background results)

### C-746-S/T Third Quarter 2020 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

### **Current Background Comparison LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**Statistics-Background Data** 

X = 402.750 S = 72.539 CV(1) = 0.180

K factor\*\*= 2.523

**TL(1)=** 585.766 **LL(1)=**N/A

**Statistics-Transformed Background** 

X = 5.980

S = 0.211CV(2) = 0.035 K factor\*\*= 2.523

TL(2) = 6.513

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected LN(Result) Result 7/19/2018 336 5.817 10/22/2018 237 5.468 1/23/2019 433 6.071 5/29/2019 477 6.168 7/17/2019 449 6.107 10/10/2019 443 6.094 1/27/2020 457 6.125 4/22/2020 419 6.038 Well Number: MW397 Date Collected LN(Result) Result 8/21/2018 404 6.001 10/15/2018 407 6.009 1/23/2019 394 5.976 5/29/2019 488 6.190

395

439

246

420

7/16/2019

10/9/2019

3/18/2020

4/22/2020

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current Quarter Data |
|----------------------|
|----------------------|

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW370    | Downgradient | Yes       | 366    | NO             | 5.903      | N/A               |
| MW373    | Downgradient | Yes       | 377    | NO             | 5.932      | N/A               |
| MW385    | Sidegradient | Yes       | 364    | NO             | 5.897      | N/A               |
| MW388    | Downgradient | Yes       | 353    | NO             | 5.866      | N/A               |
| MW392    | Downgradient | Yes       | 384    | NO             | 5.951      | N/A               |
| MW395    | Upgradient   | Yes       | 366    | NO             | 5.903      | N/A               |
| MW397    | Upgradient   | Yes       | 360    | NO             | 5.886      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

5.979

6.084

5.505

6.040

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S
- LL Lower Tolerance Limit, LL = X (K \* S)TL Upper Tolerance Limit, TL = X + (K \* S),
- Mean, X = (sum of background results)/(count of background results)

<sup>\*\*</sup> Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-20

# C-746-S/T Third Quarter 2020 Statistical Analysis Sulfate UNITS: mg/L

### Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.828 S = 0.737

CV(1)=0.068

K factor\*\*= 2.523

TL(1)= 12.688

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.380

S = 0.067

**CV(2)=**0.028

K factor\*\*= 2.523

TL(2) = 2.548

**LL(2)=**N/A

Current Background Data from Upgradient Wells with Transformed Result

| Well Number:                                                                     | MW395                                |                                           |
|----------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|
| Date Collected                                                                   | Result                               | LN(Result)                                |
| 7/19/2018                                                                        | 10.4                                 | 2.342                                     |
| 10/22/2018                                                                       | 10.2                                 | 2.322                                     |
| 1/23/2019                                                                        | 10.6                                 | 2.361                                     |
| 4/22/2019                                                                        | 10.5                                 | 2.351                                     |
| 7/17/2019                                                                        | 10.9                                 | 2.389                                     |
| 10/10/2019                                                                       | 12.1                                 | 2.493                                     |
| 1/27/2020                                                                        | 11.7                                 | 2.460                                     |
| 4/22/2020                                                                        | 12.4                                 | 2.518                                     |
|                                                                                  |                                      |                                           |
| Well Number:                                                                     | MW397                                |                                           |
| Well Number: Date Collected                                                      |                                      | LN(Result)                                |
|                                                                                  |                                      | LN(Result)<br>2.297                       |
| Date Collected                                                                   | Result                               |                                           |
| Date Collected 7/19/2018                                                         | Result<br>9.94                       | 2.297                                     |
| Date Collected 7/19/2018 10/15/2018                                              | Result 9.94 10.4                     | 2.297<br>2.342                            |
| Date Collected<br>7/19/2018<br>10/15/2018<br>1/23/2019                           | Result 9.94 10.4 10.1                | 2.297<br>2.342<br>2.313                   |
| Date Collected<br>7/19/2018<br>10/15/2018<br>1/23/2019<br>4/16/2019              | Result<br>9.94<br>10.4<br>10.1       | 2.297<br>2.342<br>2.313<br>2.303          |
| Date Collected<br>7/19/2018<br>10/15/2018<br>1/23/2019<br>4/16/2019<br>7/16/2019 | Result<br>9.94<br>10.4<br>10.1<br>10 | 2.297<br>2.342<br>2.313<br>2.303<br>2.370 |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

| Current | Ouarter | Data |
|---------|---------|------|
| Current | Quarter | Data |

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW370    | Downgradient | t Yes     | 20.7   | YES            | 3.030      | N/A               |
| MW373    | Downgradient | t Yes     | 169    | YES            | 5.130      | N/A               |
| MW385    | Sidegradient | Yes       | 24.3   | YES            | 3.190      | N/A               |
| MW388    | Downgradient | t Yes     | 18.7   | YES            | 2.929      | N/A               |
| MW392    | Downgradient | Yes       | 25.3   | YES            | 3.231      | N/A               |

#### **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

MW392

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X (K \* S)
- X Mean, X = (sum of background results)/(count of background results)
- \*\* Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-S/T Third Quarter 2020 Statistical Analysis Technetium-99 UNITS: pCi/L

### Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 11.697 S = 7.620

CV(1)=0.651

**K factor\*\*=** 2.523

**TL(1)=** 30.921

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.266

**S**= 0.658 **CV(2)**=0.290

K factor\*\*= 2.523

TL(2) = 3.926

LL(2)=N/A

**Current Background Data from Upgradient Wells with Transformed Result** 

 Well Number:
 MW395

 Date Collected
 Result
 LN(Result)

 7/19/2018
 9.05
 2.203

 10/22/2018
 13.2
 2.580

 1/23/2019
 10.3
 2.332

 4/32/2010
 11.2
 2.416

 4/22/2019
 11.2
 2.416

 7/17/2019
 4.92
 1.593

 10/10/2019
 8.31
 2.117

 1/27/2020
 3.14
 1.144

8.44

Well Number: MW397

4/22/2020

| Date Collected | Result | LN(Result) |
|----------------|--------|------------|
| 7/19/2018      | 21.9   | 3.086      |
| 10/15/2018     | 18.3   | 2.907      |
| 1/23/2019      | 7.12   | 1.963      |
| 4/16/2019      | 32.1   | 3.469      |
| 7/16/2019      | 5.83   | 1.763      |
| 10/9/2019      | 15.3   | 2.728      |
| 1/27/2020      | 3.04   | 1.112      |
| 4/22/2020      | 15     | 2.708      |

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

**Current Quarter Data** 

| Well No. | Gradient     | Detected? | Result | Result >TL(1)? | LN(Result) | LN(Result) >TL(2) |
|----------|--------------|-----------|--------|----------------|------------|-------------------|
| MW370    | Downgradient | Yes       | 67.3   | YES            | 4.209      | N/A               |
| MW385    | Sidegradient | Yes       | 64.6   | YES            | 4.168      | N/A               |
| MW388    | Downgradient | Yes       | 38.4   | YES            | 3.648      | N/A               |

### **Conclusion of Statistical Analysis on Current Data**

2.133

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ 

TL Upper Tolerance Limit, TL = X + (K \* S), LL Lower Tolerance Limit, LL = X - (K \* S)

X Mean, X = (sum of background results)/(count of background results)

# ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT



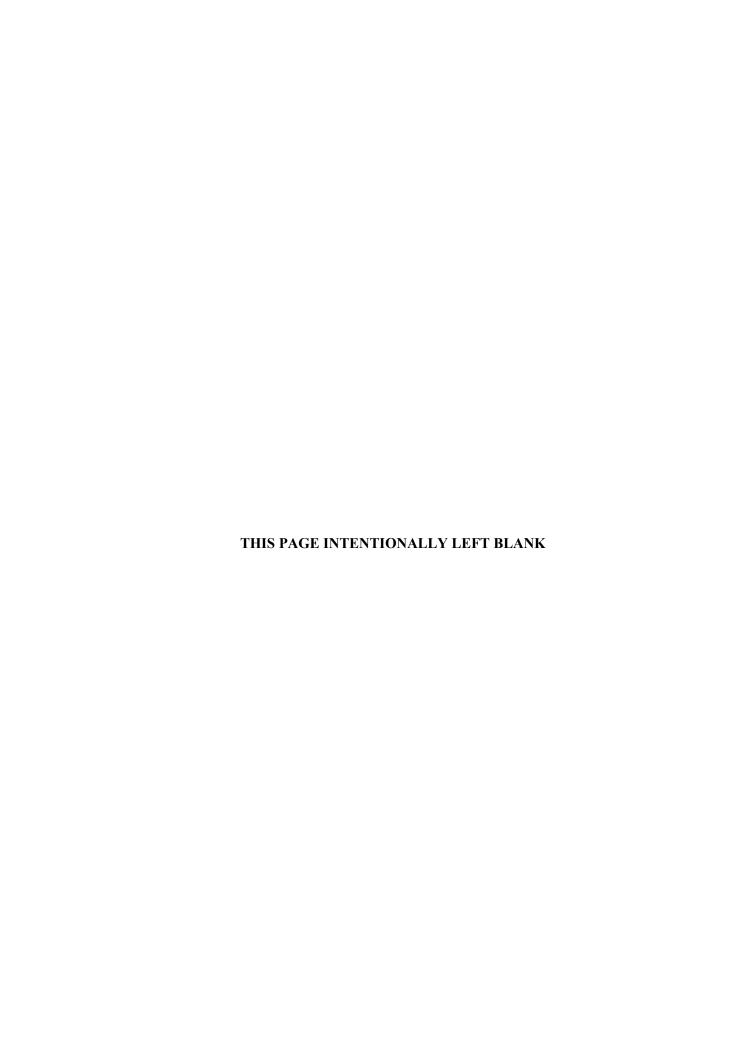


Four Rivers Nuclear Partnership, LLC

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

October 20, 2020

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053


Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the third quarter 2020 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

D3-3



## APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION



RESIDENTIAL/INERT—QUARTERLY, 3<sup>rd</sup> CY 2020 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

### GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2020 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on July 27, 2020. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. During July, RGA groundwater flow was directed inward and then northeast towards the Ohio River. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is  $6.28 \times 10^{-4}$  ft/ft. Additional water level measurements in July (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be  $6.07 \times 10^{-4}$  ft/ft, northward. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n<sub>e</sub>). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for July 2020, RGA groundwater flow from the landfill area was directed to the northeast.

<sup>&</sup>lt;sup>1</sup> Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

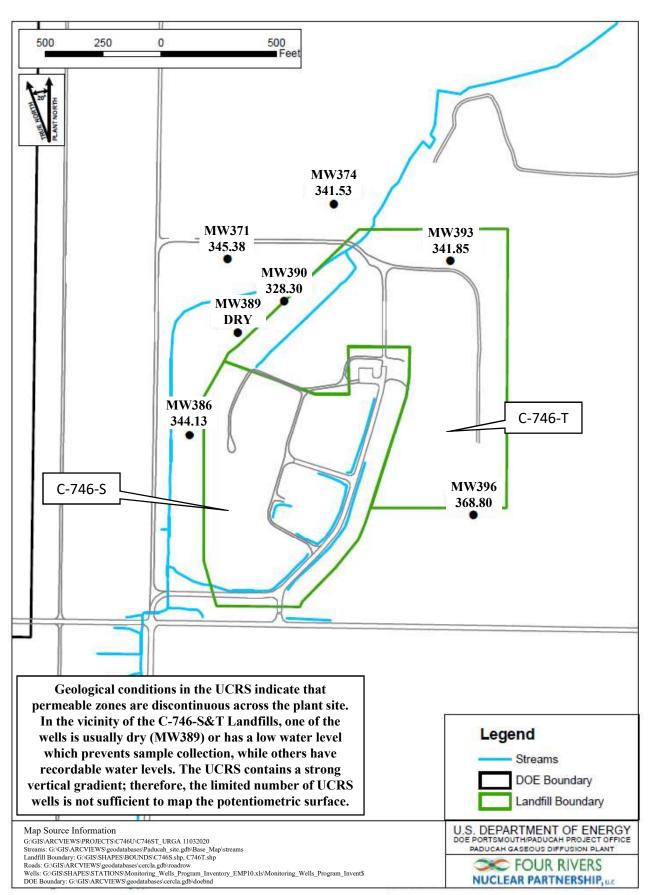



Figure E.1. Potentiometric Measurements of the Upper Continental Recharge System at the C-746-S&T Landfills

July 27, 2020

Table E.1. C-746-S&T Landfills Third Quarter 2020 (July) Water Levels

|             |          |            | C-746-S   | S&T Landfills (   | (July 2020) | ) Water Lev | els   |           |        |            |
|-------------|----------|------------|-----------|-------------------|-------------|-------------|-------|-----------|--------|------------|
|             |          |            |           |                   |             |             | Rav   | w Data    | *Corre | ected Data |
| Date        | Time     | Well       | Formation | <b>Datum Elev</b> | BP          | Delta BP    | DTW   | Elev      | DTW    | Elev       |
|             |          |            |           | (ft amsl)         | (in Hg)     | (ft H20)    | (ft)  | (ft amsl) | (ft)   | (ft amsl)  |
| 7/27/2020   | 8:18     | MW220      | URGA      | 382.06            | 30.05       | 0.01        | 53.34 | 328.72    | 53.35  | 328.71     |
| 7/27/2020   | 8:29     | MW221      | URGA      | 391.43            | 30.05       | 0.01        | 63.07 | 328.36    | 63.08  | 328.35     |
| 7/27/2020   | 8:24     | MW222      | URGA      | 395.32            | 30.05       | 0.01        | 66.89 | 328.43    | 66.90  | 328.42     |
| 7/27/2020   | 8:27     | MW223      | URGA      | 394.43            | 30.05       | 0.01        | 66.00 | 328.43    | 66.01  | 328.42     |
| 7/27/2020   | 8:22     | MW224      | URGA      | 395.74            | 30.05       | 0.01        | 67.20 | 328.54    | 67.21  | 328.53     |
| 7/27/2020   | 8:20     | MW225      | URGA      | 385.78            | 30.05       | 0.01        | 57.19 | 328.59    | 57.20  | 328.58     |
| 7/27/2020   | 8:45     | MW353      | LRGA      | 375.09            | 30.05       | 0.01        | 45.95 | 329.14    | 45.96  | 329.13     |
| 7/27/2020   | 8:14     | MW384      | URGA      | 365.34            | 30.05       | 0.01        | 36.93 | 328.41    | 36.94  | 328.40     |
| 7/27/2020   | 8:15     | MW385      | LRGA      | 365.79            | 30.05       | 0.01        | 37.32 | 328.47    | 37.33  | 328.46     |
| 7/27/2020   | 8:16     | MW386      | UCRS      | 365.37            | 30.05       | 0.01        | 21.23 | 344.14    | 21.24  | 344.13     |
| 7/27/2020   | 6:52     | MW387      | URGA      | 363.53            | 30.04       | 0.02        | 35.22 | 328.31    | 35.24  | 328.29     |
| 7/27/2020   | 7:28     | MW388      | LRGA      | 363.50            | 30.06       | 0.00        | 35.18 | 328.32    | 35.18  | 328.32     |
| 7/27/2020   | 8:06     | MW389      | UCRS      | 364.16            |             |             | NA    |           |        |            |
| 7/27/2020   | 8:07     | MW390      | UCRS      | 360.44            | 30.05       | 0.01        | 32.13 | 328.31    | 32.14  | 328.30     |
| 7/27/2020   | 7:46     | MW391      | URGA      | 366.72            | 30.06       | 0.00        | 38.32 | 328.40    | 38.32  | 328.40     |
| 7/27/2020   | 7:48     | MW392      | LRGA      | 365.90            | 30.06       | 0.00        | 37.53 | 328.37    | 37.53  | 328.37     |
| 7/27/2020   | 7:47     | MW393      | UCRS      | 366.67            | 30.06       | 0.00        | 24.82 | 341.85    | 24.82  | 341.85     |
| 7/27/2020   | 7:59     | MW394      | URGA      | 378.64            | 30.05       | 0.01        | 49.65 | 328.99    | 49.66  | 328.98     |
| 7/27/2020   | 8:00     | MW395      | LRGA      | 379.34            | 30.05       | 0.01        | 50.33 | 329.01    | 50.34  | 329.00     |
| 7/27/2020   | 8:01     | MW396      | UCRS      | 378.84            | 30.05       | 0.01        | 10.03 | 368.81    | 10.04  | 368.80     |
| 7/27/2020   | 8:03     | MW397      | LRGA      | 387.05            | 30.05       | 0.01        | 58.21 | 328.84    | 58.22  | 328.83     |
| 7/27/2020   | 7:50     | MW418      | URGA      | 367.26            | 30.06       | 0.00        | 38.70 | 328.56    | 38.70  | 328.56     |
| 7/27/2020   | 7:51     | MW419      | LRGA      | 367.10            | 30.06       | 0.00        | 38.55 | 328.55    | 38.55  | 328.55     |
| Reference B | arometri | c Pressure |           | 30.06             |             |             |       |           |        |            |

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

\*Assumes a barometric efficiency of 1.0

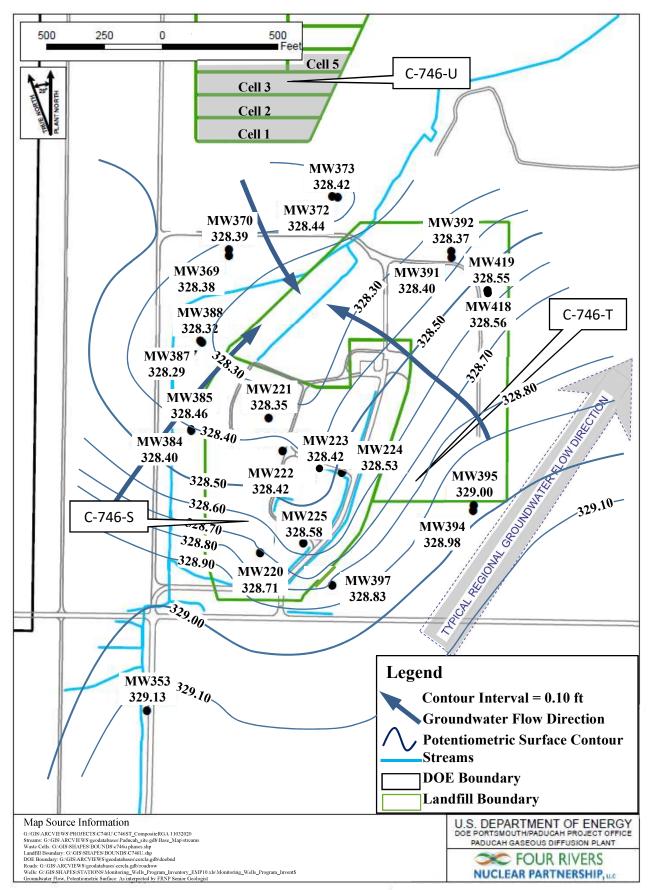



Figure E.2. Composite Potentiometric Surface of the Regional Gravel Aquifer at the C-746-S&T Landfills July 27, 2020

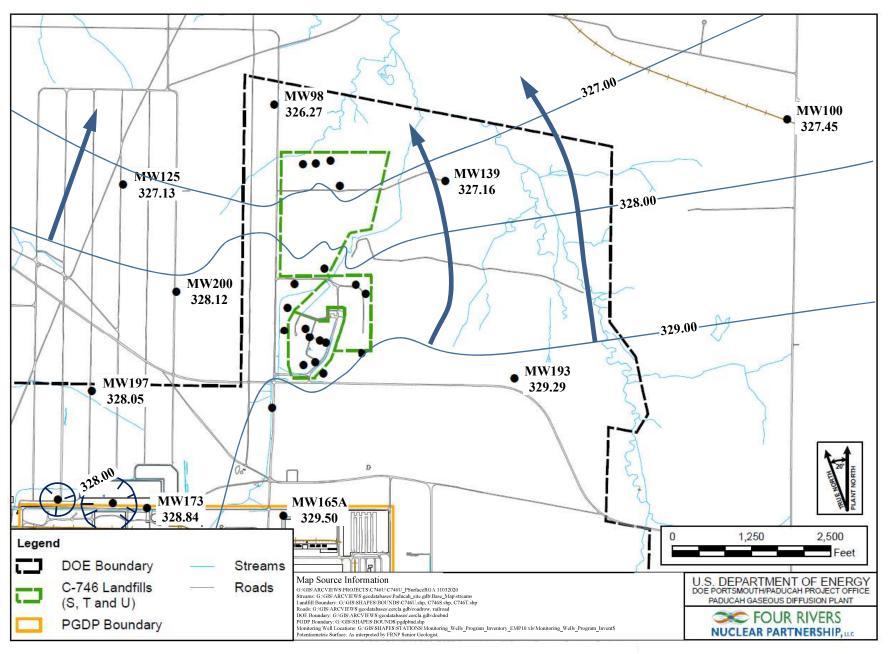



Figure E.3. Vicinity Potentiometric Surface of the Regional Gravel Aquifer July 27, 2020

Table E.2. C-746-S&T Landfills Hydraulic Gradients

|                        | ft/ft                 |
|------------------------|-----------------------|
| Beneath Landfill Mound | $6.28 \times 10^{-4}$ |
| Vicinity               | $6.07 \times 10^{-4}$ |

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

| Hydraulic Co     | onductivity (K) | Specific l | Discharge (q)           | Average | e Linear Velocity (v) |
|------------------|-----------------|------------|-------------------------|---------|-----------------------|
| ft/day           | cm/s            | ft/day     | cm/s                    | ft/day  | cm/s                  |
| Beneath Landfill | Mound           |            |                         |         |                       |
| 725              | 0.256           | 0.455      | $1.61 \times 10^{-4}$   | 1.82    | $6.43 \times 10^{-4}$ |
| 425              | 0.150           | 0.267      | 9.42 × 10 <sup>-5</sup> | 1.07    | $3.77 \times 10^{-4}$ |
| Vicinity         |                 |            |                         |         |                       |
| 725              | 0.256           | 0.440      | $1.55 \times 10^{-4}$   | 1.76    | $6.22 \times 10^{-4}$ |
| 425              | 0.150           | 0.258      | 9.11 × 10 <sup>-5</sup> | 1.03    | $3.64 \times 10^{-4}$ |

## APPENDIX F NOTIFICATIONS



#### **NOTIFICATIONS**

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

#### STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the third quarter 2020 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

|                                   | <u>Parameter</u>        | Monitoring Well                     |
|-----------------------------------|-------------------------|-------------------------------------|
| Upper Continental Recharge System | Technetium-99           | MW390                               |
| Upper Regional Gravel Aquifer     | Sodium<br>Technetium-99 | MW369, MW372<br>MW372, MW384, MW387 |
| Lower Regional Gravel Aquifer     | Technetium-99           | MW370, MW385, MW388                 |

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

8/18/2020

### Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS

### SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

| AKGWA     | Station | Analysis        | Method | Results | Units | MCL |
|-----------|---------|-----------------|--------|---------|-------|-----|
| 8004-4818 | MW370   | Beta activity   | 9310   | 65.5    | pCi/L | 50  |
| 8004-4808 | MW372   | Beta activity   | 9310   | 76.1    | pCi/L | 50  |
| 8004-4815 | MW387   | Beta activity   | 9310   | 330     | pCi/L | 50  |
| 8004-4805 | MW391   | Trichloroethene | 8260B  | 10.3    | ug/L  | 5   |
| 8004-4806 | MW392   | Trichloroethene | 8260B  | 15.3    | ug/L  | 5   |

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

## APPENDIX G CHART OF MCL AND UTL EXCEEDANCES



#### Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

| Groundwater Flow System |     |        | UCRS | S   |     |     |          |                                                  |     | 1   | URG | 4                                                |                                                  |     |                                                  |        |          |        | -      | LRGA   | A   |     | _                                                |
|-------------------------|-----|--------|------|-----|-----|-----|----------|--------------------------------------------------|-----|-----|-----|--------------------------------------------------|--------------------------------------------------|-----|--------------------------------------------------|--------|----------|--------|--------|--------|-----|-----|--------------------------------------------------|
| Gradient                | S   | D      | D    | D   | U   | S   | S        | S                                                | S   | S   | D   | D                                                | D                                                | D   | U                                                | U      | S        | D      | D      | D      | D   | U   | U                                                |
| Monitoring Well         | 386 | 389    | 390  | 393 | 396 | 221 | 222      | 223                                              | 224 | 384 | 369 | 372                                              |                                                  | 391 | 220                                              | 394    |          | 370    |        | 388    | 392 | 395 | 397                                              |
| ACETONE                 |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 3, 2003         |     |        |      |     |     |     | *        |                                                  |     |     |     | *                                                |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2003         |     |        |      |     |     |     |          |                                                  |     |     | *   |                                                  |                                                  |     |                                                  |        |          |        | *      |        |     |     |                                                  |
| Quarter 1, 2005         |     |        |      |     |     |     |          |                                                  | *   |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2019         |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  | *      |          |        |        |        |     |     |                                                  |
| ALPHA ACTIVITY          |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2002         |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2008         |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2010         |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| ALUMINUM                |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 1, 2003         |     |        | *    |     |     |     | *        |                                                  |     |     |     | *                                                | *                                                | *   |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 2, 2003         |     |        | *    |     |     |     | *        |                                                  |     |     |     |                                                  | *                                                | *   |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 3, 2003         |     |        | *    |     |     |     | *        | *                                                |     |     |     |                                                  | *                                                | *   |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2003         |     |        |      |     |     |     | *        | *                                                |     |     | *   |                                                  |                                                  | *   |                                                  |        |          |        |        |        |     |     | -                                                |
| Quarter 1, 2004         |     |        | *    |     |     |     | *        | *                                                |     |     | *   |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     | _                                                |
| Quarter 2, 2004         |     |        | -4-  |     |     |     | *        | -4-                                              |     |     |     |                                                  |                                                  | *   |                                                  |        |          |        |        |        |     |     | _                                                |
| Quarter 3, 2004         | 1   |        | 1    |     |     |     | *        | 1                                                |     |     |     | 1                                                | 1                                                | *   | 1                                                |        |          |        |        |        |     |     | <del>                                     </del> |
| Quarter 4, 2004         | -   |        | *    |     |     |     | ·*       | <u> </u>                                         |     | _   | _   | <u> </u>                                         | <u> </u>                                         | -   | <u> </u>                                         |        | <b>-</b> |        |        |        |     |     | $\vdash$                                         |
|                         | 1   |        | *    |     |     |     |          | <del>                                     </del> |     |     |     | <del>                                     </del> | <del>                                     </del> |     | <del>                                     </del> |        |          |        |        |        |     |     |                                                  |
| Quarter 1, 2005         |     |        |      |     |     |     | <u>.</u> |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     | -                                                |
| Quarter 2, 2005         | -   |        | *    |     |     |     | *        |                                                  |     | ىد  |     |                                                  |                                                  |     |                                                  |        |          |        |        |        | ىد  |     | <u> </u>                                         |
| Quarter 3, 2005         |     |        | *    |     |     |     | *        |                                                  |     | *   | 11. |                                                  |                                                  |     |                                                  |        |          |        |        |        | *   |     |                                                  |
| Quarter 4, 2005         |     |        | *    |     |     |     | *        |                                                  |     |     | *   |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 1, 2006         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  | *                                                |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 2, 2006         |     |        | *    |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 3, 2006         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2006         |     |        | *    |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 1, 2007         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        | *        |        |        |        |     |     |                                                  |
| Quarter 2, 2007         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        | *        |        |        |        |     |     |                                                  |
| Quarter 3, 2007         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2007         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 1, 2008         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  | *   |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 2, 2008         |     |        |      |     |     |     |          |                                                  |     |     | *   |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2008         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 1, 2009         |     |        | *    |     |     |     | *        |                                                  |     |     | *   |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     | <del>                                     </del> |
| •                       |     |        | *    |     |     |     | *        |                                                  |     |     | *   |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     | Н.                                               |
| Quarter 1, 2010         |     |        | *    |     |     |     | т.       |                                                  |     |     | *   |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     | Н.                                               |
| Quarter 2, 2010         |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  | 4   |                                                  |        | <b>J</b> |        |        | 4      |     |     |                                                  |
| Quarter 3, 2010         |     |        | *    |     |     |     | 4        |                                                  |     |     | *   |                                                  |                                                  | *   |                                                  |        | *        |        |        | *      |     |     | igspace                                          |
| Quarter 1, 2011         |     |        |      |     |     |     | *        |                                                  |     |     | *   |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 2, 2011         |     |        | *    |     |     |     |          |                                                  |     |     | *   |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 2, 2012         |     |        | *    |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 3, 2012         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 1, 2013         |     | $\Box$ |      |     |     |     | *        |                                                  |     |     | *   |                                                  |                                                  |     |                                                  | $\Box$ | L        | $\Box$ | $\Box$ | $\Box$ |     |     | <u> </u>                                         |
| Quarter 3, 2013         |     |        | *    |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 1, 2014         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 2, 2014         |     |        |      |     |     |     |          |                                                  |     |     | *   |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2014         |     |        | *    |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 1, 2016         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 2, 2016         |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  | *   |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 1, 2017         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2017         |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     | *                                                |
| Quarter 1, 2018         |     |        |      |     |     |     | *        |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 1, 2020         |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  | *                                                |     |                                                  |        |          |        |        |        |     |     |                                                  |
| BARIUM                  |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 3, 2003         |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2003         |     |        | 1    |     |     |     |          |                                                  |     |     |     | 1                                                | 1                                                |     | 1                                                |        |          |        |        |        |     |     |                                                  |
| BETA ACTIVITY           |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 4, 2002         |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
| Quarter 1, 2003         | 1   |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |
|                         |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  | _                                                |     |                                                  |        | İ        |        |        |        |     |     |                                                  |
|                         |     |        |      |     |     |     |          |                                                  |     |     |     |                                                  |                                                  |     |                                                  |        |          |        |        |        |     |     |                                                  |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Groundwater Flow System |          |                                                  | UCRS | S   |     |     |                                                  |     |     | 1   | URGA | A   |     |                                                  |                                                  |     |          |                                                  |                                                  | LRG | 4                                                |     |                                                  |
|-------------------------|----------|--------------------------------------------------|------|-----|-----|-----|--------------------------------------------------|-----|-----|-----|------|-----|-----|--------------------------------------------------|--------------------------------------------------|-----|----------|--------------------------------------------------|--------------------------------------------------|-----|--------------------------------------------------|-----|--------------------------------------------------|
| Gradient                | S        | D                                                | D    | D   | U   | S   | S                                                | S   | S   | S   | D    | D   | D   | D                                                | U                                                | U   | S        | D                                                | D                                                | D   | D                                                | U   | U                                                |
| Monitoring Well         | 386      | 389                                              | 390  | 393 | 396 | 221 | 222                                              | 223 | 224 | 384 | 369  | 372 | 387 | 391                                              | 220                                              | 394 | 385      | 370                                              | 373                                              | 388 | 392                                              | 395 | 397                                              |
| BETA ACTIVITY           |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 2, 2003         |          |                                                  | -    |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     | -        |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 3, 2003         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 4, 2003         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 1, 2004         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 2, 2004         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 3, 2004         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 4, 2004         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 1, 2005         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 2, 2005         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 3, 2005         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 4, 2005         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 1, 2006         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 2, 2006         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 3, 2006         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 4, 2006         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 1, 2007         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          | t                                                |                                                  |     |                                                  |     |                                                  |
| Quarter 2, 2007         |          |                                                  |      |     |     |     |                                                  |     |     | -   |      |     | Ī   |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     | <del>                                     </del> |
| Quarter 3, 2007         |          |                                                  |      |     |     |     |                                                  |     |     | Ŧ   |      |     | Ī   |                                                  |                                                  |     | Ŧ        |                                                  |                                                  | Ē   |                                                  |     |                                                  |
| Quarter 4, 2007         |          |                                                  |      |     |     |     |                                                  |     |     | _   |      |     | Ī   |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 1, 2008         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     | 1                                                |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 2, 2008         |          |                                                  |      |     |     |     |                                                  |     |     | Ŧ   |      |     | Ī   |                                                  |                                                  |     | Ŧ        |                                                  |                                                  | Ē   |                                                  |     |                                                  |
| Quarter 3, 2008         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 4, 2008         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 1, 2009         |          |                                                  |      |     |     |     |                                                  |     |     | Ŧ   |      | -   | Ŧ   |                                                  |                                                  |     | Ħ        |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 2, 2009         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     | Ī   |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 3, 2009         |          |                                                  |      |     |     |     |                                                  |     |     | Ŧ   |      |     | Ŧ   |                                                  |                                                  |     | Ħ        |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 4, 2009         |          |                                                  |      |     |     |     |                                                  |     |     | ī   |      | -   | Ŧ   |                                                  |                                                  |     | Ħ        |                                                  |                                                  | F   |                                                  |     |                                                  |
| Quarter 1, 2010         |          |                                                  |      |     |     |     |                                                  |     |     | _   |      |     |     |                                                  |                                                  |     | Η=       |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 2, 2010         |          |                                                  |      |     |     |     |                                                  |     |     | _   |      | _   |     |                                                  |                                                  |     | -        |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 3, 2010         |          |                                                  | _    |     |     |     |                                                  |     |     | =   |      |     | i   |                                                  |                                                  |     | H        |                                                  |                                                  | -   |                                                  |     |                                                  |
| Quarter 4, 2010         |          |                                                  |      |     |     |     |                                                  |     |     | Ŧ   |      |     |     |                                                  |                                                  |     | Ħ        |                                                  |                                                  | -   |                                                  |     |                                                  |
| Quarter 1, 2011         |          |                                                  |      |     |     |     |                                                  |     |     | ┪   |      | _   | i   |                                                  |                                                  |     | H        |                                                  |                                                  | -   |                                                  |     |                                                  |
| Quarter 2, 2011         |          |                                                  |      |     |     |     |                                                  |     |     | i   |      |     | i   |                                                  |                                                  |     | H        |                                                  |                                                  | -   |                                                  |     |                                                  |
| Quarter 3, 2011         |          |                                                  | _    |     |     |     |                                                  |     |     | Ŧ   |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 4, 2011         |          |                                                  |      |     |     |     |                                                  |     |     | Ŧ   |      |     | Ŧ   |                                                  |                                                  |     | Ħ        |                                                  |                                                  | ┢═  |                                                  |     |                                                  |
| Quarter 1, 2012         |          |                                                  |      |     |     |     |                                                  |     |     | Ē   |      |     | ī   |                                                  |                                                  |     | ī        |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 2, 2012         |          |                                                  |      |     |     |     |                                                  |     |     | Ŧ   |      |     |     |                                                  |                                                  |     | Ħ        |                                                  |                                                  | Ħ   |                                                  |     |                                                  |
| Quarter 3, 2012         |          |                                                  | _    |     |     |     |                                                  |     |     | Ŧ   |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  | ┢═  |                                                  |     |                                                  |
| Quarter 4, 2012         | <b>-</b> |                                                  |      |     |     |     |                                                  |     |     | i   |      | -   | i   | <del>                                     </del> |                                                  |     | H        | <del>                                     </del> |                                                  |     |                                                  |     |                                                  |
| Quarter 1, 2013         |          |                                                  |      |     |     |     |                                                  |     |     | Ŧ   |      |     | i   | <del>                                     </del> |                                                  |     | <u> </u> |                                                  | i                                                | Ħ   |                                                  |     |                                                  |
| Quarter 2, 2013         |          |                                                  |      |     |     |     |                                                  |     |     | Ŧ   |      | _   | i   | <del>                                     </del> |                                                  |     |          |                                                  | -                                                | Ħ   |                                                  |     |                                                  |
| Quarter 3, 2013         |          | <del>                                     </del> |      |     |     |     | <del>                                     </del> |     |     | Ŧ   |      |     |     |                                                  | 1                                                |     | Ħ        |                                                  |                                                  | Ħ   | 1                                                |     | $\vdash$                                         |
| Quarter 4, 2013         |          | 1                                                |      |     |     |     | 1                                                |     |     | Ŧ   |      | =   | Ī   |                                                  | 1                                                |     | H        |                                                  | -                                                | H   | 1                                                |     | $\vdash$                                         |
| Quarter 1, 2014         |          | 1                                                |      |     |     |     | <del>                                     </del> |     |     | Ŧ   |      |     | Ŧ   |                                                  | <del>                                     </del> |     | Ħ        |                                                  | $\vdash$                                         | H   | <del>                                     </del> |     | $\vdash$                                         |
| Quarter 2, 2014         |          |                                                  | _    |     |     |     |                                                  |     |     | Ŧ   |      | _   | i   | <del>                                     </del> |                                                  |     | H        |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 3, 2014         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     | Ī   | 1                                                |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 4, 2014         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     | 1                                                |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 1, 2015         |          | <del>                                     </del> |      |     |     |     | 1                                                |     |     | Ŧ   |      |     | Ŧ   |                                                  | 1                                                |     | Ħ        |                                                  | $\vdash$                                         | Ħ   | 1                                                |     | $\vdash$                                         |
| Quarter 2, 2015         |          |                                                  |      |     |     |     |                                                  |     |     | Ŧ   |      |     | Ŧ   |                                                  |                                                  |     | Ħ        |                                                  | <del>                                     </del> |     |                                                  |     | <del>                                     </del> |
| Quarter 3, 2015         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     | 1                                                |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 4, 2015         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     | 1                                                |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |
| Quarter 1, 2016         |          |                                                  |      |     |     |     |                                                  |     |     | Ŧ   |      |     | Ŧ   |                                                  |                                                  |     | Ħ        |                                                  | <del>                                     </del> |     |                                                  |     | <del>                                     </del> |
| Quarter 2, 2016         |          |                                                  |      |     |     |     |                                                  |     |     | -   |      |     | Ī   |                                                  |                                                  |     |          |                                                  | <del>                                     </del> |     |                                                  |     | <del>                                     </del> |
| Quarter 3, 2016         |          | 1                                                |      |     |     |     | 1                                                |     |     |     |      |     |     |                                                  | 1                                                |     |          |                                                  | $\vdash$                                         | Ħ   | 1                                                |     | $\vdash$                                         |
| Quarter 4, 2016         | <b>-</b> |                                                  |      |     |     |     |                                                  |     |     | =   |      |     | i   | $\vdash$                                         |                                                  |     | H        | ⊢                                                | <del>                                     </del> | Ħ   |                                                  |     | <u> </u>                                         |
| Quarter 1, 2017         |          | <del>                                     </del> |      |     |     |     | <del>                                     </del> |     |     |     |      |     |     |                                                  | <del>                                     </del> |     |          |                                                  | $\vdash$                                         |     | 1                                                |     | $\vdash$                                         |
| Quarter 2, 2017         | <b>-</b> |                                                  |      |     |     |     |                                                  |     |     |     |      |     | i   | $\vdash$                                         |                                                  |     | H        |                                                  | <del>                                     </del> |     |                                                  |     | <u> </u>                                         |
| Quarter 3, 2017         | <b>-</b> |                                                  |      |     |     |     |                                                  |     |     | =   |      |     | i   | $\vdash$                                         |                                                  |     | H        |                                                  | <del>                                     </del> | Ħ   |                                                  |     | <u> </u>                                         |
| Vanie 3, 2011           | _        |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          | _                                                |                                                  | _   |                                                  |     |                                                  |
|                         |          |                                                  |      |     |     |     |                                                  |     |     |     |      |     |     |                                                  |                                                  |     |          |                                                  |                                                  |     |                                                  |     |                                                  |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Gradient S Monitoring Well 38 BETA ACTIVITY Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 | _        | D<br>389 | D 390 | D<br>393 | U<br>396 | S<br>221 | S 222    | S<br>223 | S<br>224 | S<br>384 | D<br>369 | D<br>372 | D<br>387 | D<br>391 | U<br>220 | U<br>394 | S<br>385        | D<br>370 | D<br>373 | D<br>388               | D<br>392 | U<br>395        | U<br>397                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------|----------|----------|------------------------|----------|-----------------|--------------------------------------------------|
| BETA ACTIVITY Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 BROMIDE Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                       | 386      | 389      |       | 393      | 396      | 221      | 222      | 223      | 224      | •        |          |          |          | 391      | 220      | 394      | •               |          | 373      | •                      | 392      | 395             | 397                                              |
| Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 BROMIDE Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                     |          |          | •     |          |          |          |          |          |          | -        |          |          |          |          |          |          |                 |          |          |                        |          |                 |                                                  |
| Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                     |          |          | •     |          |          |          |          |          |          | -        | -        | -        |          |          |          |          |                 |          |          |                        |          |                 |                                                  |
| Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                                                     |          |          | •     |          |          |          |          |          |          |          | •        |          |          |          |          |          |                 |          | ۱ ۱      |                        |          | 1 1             | Ь                                                |
| Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                                                                                     |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          | _               | _        |          |                        |          | lacksquare      |                                                  |
| Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2024 Quarter 3, 2024 Quarter 3, 2024 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                                                                                                     |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          | L'       |                        |          |                 |                                                  |
| Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                                                                                                                                                                     |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          |                        |          |                 |                                                  |
| Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                                                                                                                                                                                                                     |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          |                        |          |                 |                                                  |
| Quarter 3, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                                                                                                                                                                                                                                     |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          | L        |                        |          |                 |                                                  |
| Quarter 4, 2019 Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                     |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          | L        |                        |          |                 |                                                  |
| Quarter 1, 2020 Quarter 2, 2020 Quarter 3, 2020 BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                                     |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          | •               |          |          |                        |          |                 |                                                  |
| Quarter 2, 2020 Quarter 3, 2020  BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                                    |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          | L        |                        |          |                 |                                                  |
| Quarter 3, 2020  BROMIDE  Quarter 1, 2003  Quarter 4, 2003  Quarter 1, 2004  Quarter 2, 2004  Quarter 2, 2004  Quarter 3, 2004  Quarter 4, 2004  Quarter 4, 2004                                                                                                                                                                                                                                                                                                                                                                                            |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          | L        |                        |          |                 |                                                  |
| BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          |                        |          |                 | <u> </u>                                         |
| Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          |                        |          |                 |                                                  |
| Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          |                        |          |                 |                                                  |
| Quarter 1, 2004<br>Quarter 2, 2004<br>Quarter 3, 2004<br>Quarter 4, 2004<br>Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          | *     |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          | L        |                        |          |                 |                                                  |
| Quarter 2, 2004<br>Quarter 3, 2004<br>Quarter 4, 2004<br>Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          | *     |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          | L        |                        |          |                 |                                                  |
| Quarter 3, 2004<br>Quarter 4, 2004<br>Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |          | *     |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          | Ш                      |          |                 | <u> </u>                                         |
| Quarter 4, 2004<br>Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |          | *     |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          | <u> </u> | ш                      |          | ш               | Щ                                                |
| Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        |          | *     |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          | Ш                      |          |                 | <u> </u>                                         |
| ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          | *     |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          | Ш                      |          | ш               | <u> </u>                                         |
| Quarter 3, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        |          | *     |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          | ш                      |          |                 |                                                  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          | *     |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          |                        |          | لي              |                                                  |
| CALCIUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          |       |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          |                        |          |                 |                                                  |
| Quarter 1, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          | *     |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          |                        |          |                 |                                                  |
| Quarter 2, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          | *     |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | L        |                        |          |                 |                                                  |
| Quarter 3, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          | *     |          |          |          |          |          |          |          |          |          |          |          |          |          |                 |          |          |                        |          |                 |                                                  |
| Quarter 4, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          | *     |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 | <u> </u>                                         |
| Quarter 1, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          | *     |          |          |          |          |          |          |          |          | *        |          | *        |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 2, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          | *     |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 3, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          | *     |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 | <u> </u>                                         |
| Quarter 4, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          | *     |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 2, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 3, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 4, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 1, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 2, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 3, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ī        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 4, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 1, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 2, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 3, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        | $\Box$                 |          |                 |                                                  |
| Quarter 4, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ħ        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        | М                      |          |                 | t                                                |
| Quarter 1, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |
| Quarter 2, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        | П                      |          |                 |                                                  |
| Quarter 3, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        | $\vdash$               |          |                 | $\vdash$                                         |
| Quarter 4, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ┪        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        | $\vdash \vdash$        |          | $\vdash$        | $\vdash$                                         |
| Quarter 1, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ┪        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        | $\vdash \vdash$        |          | $\vdash$        | $\vdash$                                         |
| Quarter 2, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ┥        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        | $\vdash$               |          | $\vdash$        | <del>                                     </del> |
| Quarter 3, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ┥        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        | Н                      |          | М               | $\vdash$                                         |
| Quarter 4, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ┥        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        | Н                      |          | М               | $\vdash$                                         |
| Quarter 1, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ┥        |          |       |          |          | -        | -        |          |          |          |          | *        |          |          |          |          |                 |          | *        | $\vdash\vdash$         |          | Н               | <del>                                     </del> |
| Quarter 1, 2010<br>Quarter 2, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          | $\vdash$        |          | *        | $\vdash \vdash$        |          |                 | ├                                                |
| . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4        | -        |       |          |          | -        | -        |          |          |          |          | *        |          |          |          | _        |                 |          | *        | $\vdash\vdash$         |          | $\vdash\vdash$  | ₩                                                |
| Quarter 3, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4        |          |       |          |          | -        | <b> </b> |          |          |          |          | *        |          |          | $\vdash$ | _        |                 |          | *        | $\vdash \dashv$        |          | $\vdash \vdash$ | <del>                                     </del> |
| Quarter 4, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\dashv$ |          |       |          |          | <u> </u> | <u> </u> |          |          |          |          | *        |          |          |          |          | $\vdash \vdash$ |          | *        | $\vdash \vdash \vdash$ |          | $\vdash \vdash$ | ₩                                                |
| Quarter 1, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4        |          |       |          |          | -        | -        |          |          |          |          |          | Ψ.       |          |          |          |                 |          |          | Щ                      |          | ш               | $\vdash$                                         |
| Quarter 2, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        |          |       |          |          | <u> </u> | <u> </u> |          |          |          |          | *        | *        |          | Щ        |          | Ш               |          | *        | Щ                      |          | لصر             | <u> </u>                                         |
| Quarter 3, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        | ш                      |          | oxdot           | <u> </u>                                         |
| Quarter 4, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ļ        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        | ш                      |          | ш               | Щ                                                |
| Quarter 1, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _[       |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        | Ш                      |          |                 | Щ                                                |
| Quarter 2, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          | لـــــا         |                                                  |
| Quarter 3, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ſ        | 1        | 1     | 1        | 1 7      |          |          |          |          |          |          |          |          |          |          |          |                 |          |          |                        |          |                 |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _        |          |       |          |          |          |          |          |          |          |          | *        |          |          |          |          |                 |          | *        |                        |          |                 |                                                  |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Groundwater Flow System            |     |          | UCRS | S   |     |                                                  |     |     |     | 1            | URG/ | Α.  |          |                                                  |          |     |                                                  |     |     | LRGA     | A        |     |          |
|------------------------------------|-----|----------|------|-----|-----|--------------------------------------------------|-----|-----|-----|--------------|------|-----|----------|--------------------------------------------------|----------|-----|--------------------------------------------------|-----|-----|----------|----------|-----|----------|
| Gradient                           | S   | D        | D    | D   | U   | S                                                | S   | S   | S   | S            | D    | D   | D        | D                                                | U        | U   | S                                                | D   | D   | D        | D        | U   | U        |
| Monitoring Well                    | 386 | 389      | 390  | 393 | 396 | 221                                              | 222 | 223 | 224 | 384          | 369  | 372 | 387      | 391                                              | 220      | 394 | 385                                              | 370 | 373 | 388      | 392      | 395 | 397      |
| CALCIUM                            |     |          |      |     |     |                                                  |     |     |     |              |      |     |          |                                                  |          |     |                                                  |     |     |          |          |     |          |
| Quarter 4, 2012                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 1, 2013                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 2, 2013                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 3, 2013                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 4, 2013                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 1, 2014                    |     |          |      |     |     |                                                  |     |     |     |              |      |     |          |                                                  |          |     |                                                  | *   | *   |          |          |     |          |
| Quarter 2, 2014                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 3, 2014                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  | *   | *   |          |          |     |          |
| Quarter 4, 2014                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 1, 2015                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   | *        |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 2, 2015                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 3, 2015                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 4, 2015                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 1, 2016                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 2, 2016                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          | *                                                |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 3, 2016                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 4, 2016                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 1, 2017                    | Н   | _        |      |     |     | $\vdash$                                         |     |     |     |              |      | *   | _        |                                                  | _        |     | $\vdash$                                         |     | *   | _        | _        |     | _        |
| Quarter 2, 2017                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 3, 2017                    |     | -        |      |     |     | <del></del>                                      |     |     |     |              |      | *   | -        | -                                                | -        |     | _                                                |     | *   | -        | -        |     | -        |
| Quarter 4, 2017                    |     | <u> </u> |      |     |     |                                                  |     |     |     |              |      | *   | <u> </u> |                                                  | <u> </u> |     |                                                  |     | *   | <u> </u> | <u> </u> |     | -        |
| Quarter 1, 2018                    |     | <u> </u> |      |     |     |                                                  |     |     |     |              |      | *   | <u> </u> |                                                  | <u> </u> |     |                                                  |     | *   | <u> </u> | <u> </u> |     | -        |
| Quarter 2, 2018                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 4, 2018                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 1, 2019                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 2, 2019                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 3, 2019                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   |          |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| ,                                  |     |          |      |     |     |                                                  |     |     |     |              |      | *   | *        |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 1, 2020                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   | *        |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 1, 2020                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   | *        |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 2, 2020                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   | *        |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| Quarter 3, 2020                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   | 不        |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| CARBON DISULFIDE                   |     |          |      |     |     |                                                  |     |     |     |              | *    |     |          |                                                  |          |     |                                                  |     |     |          |          |     |          |
| Quarter 4, 2010                    |     |          |      |     |     |                                                  |     |     |     |              | *    | *   |          |                                                  |          |     |                                                  |     |     |          | *        |     |          |
| Quarter 1, 2011                    |     |          |      |     |     |                                                  |     |     |     |              |      | *   | *        |                                                  |          |     |                                                  |     | *   |          | 不        |     |          |
| Quarter 2, 2017                    |     |          |      |     |     |                                                  |     |     |     |              |      | 不   | *        |                                                  |          |     |                                                  |     | *   |          |          |     |          |
| CHEMICAL OXYGEN DEMANI             | ,   |          |      | *   |     |                                                  |     |     |     |              |      |     |          |                                                  |          |     |                                                  |     |     |          |          |     |          |
| Quarter 1, 2003<br>Quarter 2, 2003 |     |          |      | *   |     |                                                  |     |     |     |              |      |     |          |                                                  |          |     |                                                  |     |     |          |          |     |          |
| Quarter 3, 2003                    |     |          |      | *   |     |                                                  | *   |     |     | *            |      |     |          |                                                  |          |     |                                                  |     |     |          |          |     |          |
| Quarter 4, 2003                    |     |          |      | *   |     |                                                  |     |     |     |              |      |     |          |                                                  |          |     |                                                  |     |     |          |          |     |          |
| Quarter 1, 2004                    | *   | -        |      | *   |     | -                                                |     |     |     |              |      |     | -        | -                                                | -        |     |                                                  |     |     | -        | -        |     | -        |
| Quarter 4, 2004  Quarter 4, 2004   | *   | _        |      | -   |     | $\vdash$                                         |     |     |     |              |      |     | _        |                                                  | _        |     | $\vdash$                                         |     |     | _        | _        |     | _        |
| Quarter 1, 2005                    | *   | _        |      |     |     | $\vdash$                                         |     |     |     |              |      |     | _        |                                                  | _        |     | $\vdash$                                         |     |     | _        | _        |     | _        |
| Quarter 2, 2005                    | *   | -        |      |     |     | <del></del>                                      |     |     |     |              |      |     | -        | -                                                | -        |     | -                                                |     |     | -        | -        |     | -        |
| Quarter 3, 2005                    | *   |          |      |     |     |                                                  |     |     |     | *            |      | *   |          | <del>                                     </del> |          |     |                                                  |     |     |          | *        |     |          |
| Quarter 4, 2005                    | *   | <u> </u> |      |     |     |                                                  |     |     |     | *            |      |     | <u> </u> |                                                  | <u> </u> |     |                                                  |     |     | <u> </u> | -        |     | -        |
| Quarter 1, 2006                    | *   | -        |      |     |     | <del>                                     </del> |     |     |     | <del>-</del> |      |     | _        |                                                  | _        |     | <del>                                     </del> |     |     | -        | _        |     | -        |
| Quarter 2, 2006                    | *   | -        |      |     |     | -                                                |     |     |     |              |      |     | -        | -                                                | -        |     |                                                  |     |     | -        | -        |     | -        |
| Quarter 3, 2006<br>Quarter 3, 2006 | *   |          |      |     |     | -                                                |     |     |     |              |      |     |          |                                                  |          |     | -                                                |     |     |          |          |     |          |
| Quarter 4, 2006                    | F   | -        |      |     |     | <del>                                     </del> |     |     |     |              |      |     |          |                                                  |          |     | *                                                |     |     | -        |          |     | -        |
| Quarter 1, 2007                    | *   |          |      |     |     |                                                  |     |     |     | *            |      |     |          | -                                                |          |     | <u> </u>                                         |     |     |          |          |     | _        |
|                                    | *   |          |      |     |     | -                                                |     |     |     | *            |      |     |          | <u> </u>                                         |          |     | -                                                |     |     |          |          |     | <u> </u> |
| Quarter 2, 2007                    | *   |          |      |     |     |                                                  |     |     |     |              |      |     |          |                                                  |          |     |                                                  |     |     |          |          |     |          |
| Quarter 4, 2007                    | *   | <u> </u> |      |     |     | -                                                |     |     |     |              |      |     | <b> </b> | <u> </u>                                         | <b> </b> |     | -                                                |     |     | <u> </u> | <b> </b> |     | <u> </u> |
| Quarter 1, 2007                    |     |          |      |     |     | _                                                |     |     |     |              |      |     |          | <b> </b>                                         |          |     | _                                                |     | _   |          |          |     | <u> </u> |
| Quarter 1, 2008                    | *   |          |      |     |     | _                                                |     |     |     |              |      |     |          |                                                  |          |     | _                                                |     |     |          |          |     |          |
| Quarter 2, 2008                    | *   |          |      |     |     | _                                                |     |     |     |              |      |     |          | <u> </u>                                         |          |     |                                                  |     |     |          |          |     | <u> </u> |
| Quarter 3, 2008                    | *   |          |      |     |     |                                                  |     |     |     |              |      |     |          |                                                  |          |     |                                                  |     |     |          |          |     |          |
| Quarter 4, 2008                    | *   |          |      |     |     |                                                  |     |     |     |              |      |     | <u> </u> |                                                  | <u> </u> |     |                                                  |     |     |          | <u> </u> |     |          |
| Quarter 1, 2009                    | *   | <u> </u> |      |     |     |                                                  |     |     |     |              |      |     | <u> </u> |                                                  | <u> </u> |     |                                                  |     |     | <u> </u> | <u> </u> |     | <u> </u> |
| Quarter 2, 2009                    | *   | <u> </u> |      |     |     |                                                  |     |     |     |              |      |     | <u> </u> |                                                  | <u> </u> |     |                                                  |     |     | *        | <u> </u> |     | <u> </u> |
| Quarter 3, 2009                    | *   |          |      |     |     |                                                  |     |     |     |              |      |     |          | <u> </u>                                         |          |     |                                                  |     |     |          |          |     |          |
|                                    |     |          |      |     |     |                                                  |     |     |     |              |      |     |          |                                                  |          |     |                                                  |     |     |          |          |     |          |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Groundwater Flow System |                                                  |                                                  | UCRS | S   |     |          |                                                  |     |     | Į   | URGA | A   |     |     |          |     |          |     | ] | LRGA | 1   |     |                                                  |
|-------------------------|--------------------------------------------------|--------------------------------------------------|------|-----|-----|----------|--------------------------------------------------|-----|-----|-----|------|-----|-----|-----|----------|-----|----------|-----|---|------|-----|-----|--------------------------------------------------|
| Gradient                | S                                                | D                                                | D    | D   | U   | S        | S                                                | S   | S   | S   | D    | D   | D   | D   | U        | U   | S        | D   | D | D    | D   | U   | U                                                |
| Monitoring Well         |                                                  | 389                                              | 390  | 393 | 396 | 221      | 222                                              | 223 | 224 | 384 | 369  | 372 | 387 | 391 | 220      | 394 |          | 370 |   | 388  | 392 | 395 |                                                  |
| CHEMICAL OXYGEN DEMANI  | D                                                |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 4, 2009         | *                                                |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 1, 2010         | *                                                |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 2, 2010         | *                                                |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 3, 2010         | *                                                |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 4, 2010         | *                                                |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 3, 2011         | *                                                |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 4, 2011         | *                                                |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 1, 2012         | *                                                |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 1, 2013         | *                                                |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     | -                                                |
| Quarter 3, 2013         | *                                                |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     | -                                                |
| Quarter 3, 2014         | *                                                |                                                  |      |     |     |          |                                                  |     | *   |     |      |     | *   |     |          |     |          | *   |   |      |     |     | -                                                |
| Quarter 4, 2014         | -                                                |                                                  |      |     |     |          | *                                                |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     | -                                                |
| Quarter 2, 2015         |                                                  |                                                  |      |     |     |          | -                                                |     |     |     |      |     |     |     |          | *   |          |     |   |      |     |     | -                                                |
|                         |                                                  |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     | *        | т.  |          |     |   |      |     |     |                                                  |
| Quarter 3, 2015         | -                                                |                                                  | *    |     |     |          |                                                  |     |     |     | *    |     |     |     | •        |     |          |     |   |      |     |     | -                                                |
| Quarter 3, 2016         |                                                  |                                                  | Ψ.   |     |     |          |                                                  |     |     |     | Ť    |     |     |     |          |     | *        |     |   |      |     |     |                                                  |
| Quarter 4, 2016         | -                                                |                                                  |      |     |     | <u> </u> | *                                                |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     | ├                                                |
| Quarter 2, 2017         | <u> </u>                                         | <u> </u>                                         |      |     |     |          | 本                                                |     |     |     |      |     |     |     | T.       |     |          |     |   |      |     |     | <u> </u>                                         |
| Quarter 3, 2017         | *                                                |                                                  |      |     |     | طو       | -                                                |     |     |     |      |     |     |     | *        |     |          |     |   |      |     |     | <del>                                     </del> |
| Quarter 4, 2017         |                                                  | <u> </u>                                         |      |     |     | *        |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     | 4   | <u> </u>                                         |
| Quarter 2, 2018         |                                                  |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     | *   |          |     |          |     |   |      |     | *   | <u> </u>                                         |
| Quarter 3, 2018         |                                                  | <u> </u>                                         |      |     |     |          |                                                  |     |     |     |      | *   |     |     |          |     |          |     |   |      |     |     | -11                                              |
| Quarter 4, 2018         |                                                  |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     | *                                                |
| Quarter 2, 2019         |                                                  |                                                  |      |     | *   |          |                                                  |     |     |     |      | *   |     | *   |          |     |          |     | * |      |     |     | <u> </u>                                         |
| Quarter 3, 2019         |                                                  |                                                  |      |     |     |          |                                                  |     |     |     |      | *   | *   |     |          |     |          |     | * |      |     | *   | *                                                |
| Quarter 4, 2019         | *                                                |                                                  |      | *   |     |          |                                                  | *   |     |     | *    | *   |     |     |          | *   |          |     |   |      |     |     |                                                  |
| Quarter 1, 2020         |                                                  |                                                  |      |     | *   |          |                                                  |     | *   |     |      |     |     |     |          |     |          |     |   |      | *   |     |                                                  |
| Quarter 2, 2020         |                                                  |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     | *        |     |          |     |   |      |     |     |                                                  |
| CHLORIDE                |                                                  |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 1, 2003         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 2, 2003         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 3, 2003         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 4, 2003         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 1, 2004         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 2, 2004         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 3, 2004         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 4, 2004         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 1, 2005         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 2, 2005         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 3, 2005         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 4, 2005         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 1, 2006         |                                                  |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          | *   |   |      |     |     |                                                  |
| Quarter 2, 2006         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 3, 2006         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 4, 2006         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 1, 2007         | 1                                                |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 2, 2007         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 3, 2007         | 1                                                |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 4, 2007         | 1                                                |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 1, 2008         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 2, 2008         |                                                  |                                                  | *    |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     | $\vdash$                                         |
| Quarter 3, 2008         | 1                                                |                                                  | *    |     |     |          | 1                                                |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 4, 2008         | 1                                                |                                                  | *    |     |     |          | 1                                                |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |
| Quarter 1, 2009         | 1                                                | <del>                                     </del> | *    |     |     |          | 1                                                |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     | $\vdash$                                         |
| Quarter 2, 2009         | 1                                                |                                                  | *    |     |     |          | 1                                                |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     | <del>                                     </del> |
| Quarter 3, 2009         | -                                                | -                                                | *    |     |     |          | -                                                |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     | _                                                |
|                         | <del>                                     </del> |                                                  | *    |     |     | _        | <del>                                     </del> |     |     |     |      |     |     |     |          |     | _        |     |   |      |     |     | ₩                                                |
| Quarter 4, 2009         | <del>                                     </del> | -                                                | *    |     |     | -        | -                                                |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     | <del></del>                                      |
| Quarter 1, 2010         |                                                  |                                                  |      |     |     |          | -                                                |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     | <u> </u>                                         |
| Quarter 2, 2010         | <b>!</b>                                         | <u> </u>                                         | *    |     |     |          | -                                                |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     | <u> </u>                                         |
| Quarter 3, 2010         |                                                  | <u> </u>                                         | *    |     |     | <u> </u> |                                                  |     |     |     |      |     |     |     |          |     | <u> </u> |     |   |      |     |     | <u> </u>                                         |
| Quarter 4, 2010         | Ц_                                               | Ц_                                               | *    |     |     | ட        |                                                  |     |     |     |      |     |     |     | <u> </u> |     | ட        |     |   |      |     |     |                                                  |
|                         |                                                  |                                                  |      |     |     |          |                                                  |     |     |     |      |     |     |     |          |     |          |     |   |      |     |     |                                                  |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Groundwater Flow System            |                                                  |     | UCR: | S                                                |     |     |                                                  |     |     | 1   | URGA     | 4   |   |     |          |     |          |     |     | LRGA     | Λ   |     |                                                  |
|------------------------------------|--------------------------------------------------|-----|------|--------------------------------------------------|-----|-----|--------------------------------------------------|-----|-----|-----|----------|-----|---|-----|----------|-----|----------|-----|-----|----------|-----|-----|--------------------------------------------------|
| Gradient                           | S                                                | D   | D    | D                                                | U   | S   | S                                                | S   | S   | S   | D        | D   | D | D   | U        | U   | S        | D   | D   | D        | D   | U   | U                                                |
| Monitoring Well                    | 386                                              | 389 | 390  | 393                                              | 396 | 221 | 222                                              | 223 | 224 | 384 | 369      | 372 |   | 391 | 220      | 394 | 385      | 370 | _   | 388      | 392 | 395 | 397                                              |
| CHLORIDE                           |                                                  |     |      |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     |                                                  |
| Quarter 2, 2011                    |                                                  |     | *    |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     |                                                  |
| Quarter 3, 2011                    |                                                  |     | *    |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     |                                                  |
| Quarter 4, 2011                    |                                                  |     | *    |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     |                                                  |
| Quarter 3, 2012                    |                                                  |     | *    |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     |                                                  |
| Quarter 3, 2013                    |                                                  |     | *    |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     | 1                                                |
| Quarter 4, 2013                    | _                                                |     | *    |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     | -                                                |
| Quarter 4, 2014                    | -                                                |     | *    |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     | -                                                |
| Quarter 2, 2019                    | -                                                |     | **   |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          | *   |     |                                                  |
|                                    |                                                  |     |      |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          | т   |     |                                                  |
| CHROMIUM<br>Quarter 4, 2002        |                                                  |     |      |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     |                                                  |
| Quarter 1, 2003                    |                                                  |     |      |                                                  |     |     |                                                  | i   |     |     |          |     |   |     |          |     |          |     |     |          |     |     | -                                                |
| Quarter 2, 2003                    | -                                                |     |      |                                                  |     |     |                                                  | i   |     |     |          |     |   |     |          |     |          |     |     |          |     | -   | -                                                |
| Quarter 3, 2009                    | -                                                |     |      |                                                  |     | -   | -                                                | _   |     |     |          |     |   |     |          |     |          |     |     |          |     |     | -                                                |
| Quarter 1, 2019                    | -                                                |     |      |                                                  |     | H   |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     |                                                  |
| COBALT                             |                                                  |     |      |                                                  |     | Ē   |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     |                                                  |
| Quarter 3, 2003                    |                                                  |     |      |                                                  |     |     | *                                                |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     |                                                  |
|                                    |                                                  |     |      |                                                  | _   |     | _ ~                                              |     |     | _   | _        | _   | _ |     | _        |     |          |     |     | _        |     |     | _                                                |
| CONDUCTIVITY Operator 4, 2002      |                                                  |     |      |                                                  |     |     |                                                  |     |     | *   |          |     |   |     |          |     |          |     | *   |          |     |     |                                                  |
| Quarter 4, 2002<br>Quarter 1, 2003 | <del>                                     </del> | -   | *    | -                                                | -   |     | -                                                |     |     | *   | -        | -   | - |     | -        |     |          |     | *   | -        |     |     | ₩                                                |
|                                    | <del> </del>                                     | -   | *    | <del>                                     </del> |     | _   | <del>                                     </del> |     |     | *   |          |     |   |     |          |     |          |     | *   |          |     |     | <del>                                     </del> |
| Quarter 2, 2003<br>Quarter 3, 2003 | <del> </del>                                     | -   | *    | <del>                                     </del> |     | _   | <del>                                     </del> | *   |     | *   |          |     |   |     |          |     |          |     | *   |          |     |     | <del>                                     </del> |
|                                    |                                                  |     | *    |                                                  |     |     |                                                  | Ť   |     | *   |          |     |   |     |          |     |          |     | *   |          |     |     |                                                  |
| Quarter 4, 2003<br>Quarter 1, 2004 | -                                                |     | ~    |                                                  |     |     |                                                  |     |     | ~   |          |     |   |     |          |     |          |     | *   |          |     |     | -                                                |
| Quarter 2, 2004  Quarter 2, 2004   | -                                                |     |      |                                                  |     |     |                                                  |     |     | *   |          |     |   |     |          |     |          |     | *   |          |     |     | -                                                |
|                                    | -                                                |     |      |                                                  |     |     |                                                  |     |     | *   |          |     |   |     |          |     |          |     | *   |          |     |     | -                                                |
| Quarter 3, 2004                    | -                                                |     | *    |                                                  |     |     |                                                  |     |     | *   |          |     |   |     |          |     |          |     | *   |          |     |     | -                                                |
| Quarter 4, 2004                    | _                                                |     | T    |                                                  |     |     |                                                  |     |     | *   |          | *   |   |     |          |     |          |     | *   |          |     |     | -                                                |
| Quarter 1, 2005<br>Quarter 2, 2005 |                                                  |     |      |                                                  |     |     |                                                  |     |     | Ψ.  |          | *   |   |     |          |     |          |     | *   |          |     |     |                                                  |
| Quarter 3, 2005                    |                                                  |     |      |                                                  |     |     |                                                  |     |     |     |          | Ψ.  |   |     |          |     |          |     | *   |          |     |     |                                                  |
|                                    | -                                                |     |      |                                                  |     |     |                                                  |     |     | *   |          | *   |   |     |          |     |          |     | *   |          |     |     | -                                                |
| Quarter 4, 2005<br>Quarter 1, 2006 |                                                  |     |      |                                                  |     |     |                                                  |     |     | Ψ.  |          | *   |   |     |          |     |          |     | *   |          |     |     |                                                  |
|                                    |                                                  |     |      |                                                  |     |     |                                                  |     |     |     |          | *   |   |     |          |     |          |     | *   |          |     |     |                                                  |
| Quarter 2, 2006                    | -                                                |     |      |                                                  |     |     |                                                  |     |     |     |          | *   |   |     |          |     |          |     | *   |          |     |     | -                                                |
| Quarter 3, 2006<br>Quarter 4, 2006 |                                                  |     |      |                                                  |     |     |                                                  |     |     |     |          | Ψ.  |   |     |          |     | *        |     | *   |          |     |     |                                                  |
| Quarter 1, 2007                    |                                                  |     |      |                                                  |     |     |                                                  |     |     |     |          | *   |   |     |          |     | •        |     | *   |          |     |     |                                                  |
|                                    | -                                                |     |      |                                                  |     |     |                                                  |     |     |     |          | т.  |   |     |          |     | *        |     | *   |          |     |     | -                                                |
| Quarter 2, 2007                    |                                                  |     |      |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     | *        |     | *   |          |     |     |                                                  |
| Quarter 3, 2007<br>Quarter 4, 2007 | <del> </del>                                     | -   | -    | <del>                                     </del> |     | _   | <del>                                     </del> |     |     |     |          | *   |   |     |          |     | *        |     | *   |          |     |     | <del>                                     </del> |
| Quarter 1, 2008                    | 1                                                | -   | -    |                                                  | -   |     |                                                  |     |     | -   | -        | *   | - |     | -        |     | <u> </u> |     | *   | -        |     |     | $\vdash$                                         |
| Quarter 1, 2008<br>Quarter 2, 2008 | <del>                                     </del> | -   | -    | -                                                |     | -   | -                                                | _   | _   |     | <u> </u> | *   |   | _   | <u> </u> |     |          |     | *   | <u> </u> |     |     | _                                                |
| Quarter 3, 2008                    | 1                                                | -   | -    |                                                  | -   |     |                                                  |     |     | -   | -        | *   | - |     | -        |     | *        |     | *   | -        |     |     | $\vdash$                                         |
| Quarter 4, 2008                    | <del>                                     </del> |     |      |                                                  |     |     |                                                  |     |     |     |          | *   |   |     |          |     | -        |     | *   |          |     |     | <del>                                     </del> |
| Quarter 1, 2009                    | 1                                                | -   | -    |                                                  | -   |     |                                                  |     |     | -   | -        | *   | - |     | -        |     |          |     | *   | -        |     |     | $\vdash$                                         |
| Quarter 1, 2009<br>Quarter 2, 2009 | 1                                                | -   | -    |                                                  | -   |     |                                                  |     |     | -   | -        | *   | - |     | -        |     |          |     | *   | -        |     |     | $\vdash$                                         |
| Quarter 3, 2009                    | <del>                                     </del> |     |      | 1                                                |     |     | 1                                                |     |     |     | 1        | *   |   |     | 1        |     |          |     | *   | 1        |     |     | <del>                                     </del> |
| Quarter 4, 2009                    | 1                                                | -   | -    |                                                  | -   |     |                                                  |     |     | -   | -        | *   | - |     | -        |     | *        |     | *   | -        |     |     | <del>                                     </del> |
| Quarter 1, 2010                    | 1                                                | -   | -    |                                                  | -   |     |                                                  |     |     | -   | -        | *   | - |     | -        |     | <u> </u> |     | *   | -        |     |     | $\vdash$                                         |
| Quarter 2, 2010                    | <del>                                     </del> |     |      | 1                                                |     |     | 1                                                |     |     |     | 1        | *   |   |     | 1        |     |          |     | *   | 1        |     |     | <del>                                     </del> |
| Quarter 3, 2010                    | 1                                                | -   | -    |                                                  | -   |     |                                                  |     |     | -   | -        | *   | - |     | -        |     |          |     | *   | -        |     |     | $\vdash$                                         |
| Quarter 4, 2010                    | 1                                                | -   | -    |                                                  | -   |     |                                                  |     |     | -   | -        | *   | - |     | -        |     |          |     | *   | -        |     |     | $\vdash$                                         |
| Quarter 1, 2011                    | 1                                                | -   | -    |                                                  | -   |     |                                                  |     |     | *   | -        | *   | - |     | -        |     |          |     | *   | -        |     |     | $\vdash$                                         |
|                                    | <del>                                     </del> | -   | -    | -                                                |     | -   | -                                                | _   | _   | ~   | <u> </u> | *   |   | _   | <u> </u> |     |          |     | *   | <u> </u> |     |     | _                                                |
| Quarter 2, 2011<br>Quarter 3, 2011 | <del> </del>                                     | -   | -    | <del>                                     </del> |     | _   | <del>                                     </del> |     |     |     |          | *   |   |     |          |     |          |     | *   |          |     |     | <del>                                     </del> |
| Quarter 4, 2011                    | <del> </del>                                     | -   | -    | <del>                                     </del> |     | _   | <del>                                     </del> |     |     |     |          | *   |   |     |          |     |          |     | *   |          |     |     | <del>                                     </del> |
| Quarter 1, 2012                    | <del>                                     </del> | -   | -    | -                                                |     | -   | -                                                | _   | _   |     | *        | *   |   | _   | <u> </u> |     |          |     | *   | <u> </u> |     |     | _                                                |
| Quarter 1, 2012<br>Quarter 2, 2012 | <del> </del>                                     | -   | -    | <del>                                     </del> |     | _   | <del>                                     </del> |     |     |     | _        | *   |   |     |          |     |          |     | *   |          |     |     | <del>                                     </del> |
| Quarter 3, 2012<br>Quarter 3, 2012 | <del> </del>                                     | -   | -    | <del>                                     </del> |     | _   | <del>                                     </del> |     |     |     |          | *   |   |     |          |     |          |     | *   |          |     |     | ₩                                                |
| Quarter 3, 2012                    | _                                                |     |      | _                                                | _   | _   | _                                                | _   | _   | _   | _        | _~  | _ | _   | _        | _   | _        |     | · T | _        |     |     | _                                                |
|                                    |                                                  |     |      |                                                  |     |     |                                                  |     |     |     |          |     |   |     |          |     |          |     |     |          |     |     |                                                  |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Groundwater Flow System            | T                                                |     | UCRS | S        |     |     |     |          |          | Ţ        | JRGA | A.  |     |     |          |          |     |     |     | LRGA | A   |          |     |
|------------------------------------|--------------------------------------------------|-----|------|----------|-----|-----|-----|----------|----------|----------|------|-----|-----|-----|----------|----------|-----|-----|-----|------|-----|----------|-----|
| Gradient                           | S                                                | D   | D    | D        | U   | S   | S   | S        | S        | S        | D    | D   | D   | D   | U        | U        | S   | D   | D   | D    | D   | U        | U   |
| Monitoring Well                    | 386                                              | 389 | 390  | 393      | 396 | 221 | 222 | 223      | 224      | 384      | 369  | 372 | 387 | 391 | 220      | 394      | 385 | 370 | 373 | 388  | 392 | 395      | 397 |
| CONDUCTIVITY                       |                                                  |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     |     |      |     |          |     |
| Quarter 4, 2012                    |                                                  |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 1, 2013                    | <u> </u>                                         |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2013                    | <u> </u>                                         |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 3, 2013                    |                                                  |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 4, 2013                    | ₩.                                               |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 1, 2014                    | ₩.                                               |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2014                    | _                                                |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 3, 2014                    | ₩                                                |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 4, 2014<br>Quarter 1, 2015 | -                                                |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2015                    | ₩                                                |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 3, 2015                    | -                                                |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 4, 2015                    | <del>                                     </del> |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 1, 2016                    | ╂                                                |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2016                    | $t^-$                                            |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 3, 2016                    | $t^-$                                            |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 4, 2016                    | t                                                |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 1, 2017                    | I                                                |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2017                    | t                                                |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 3, 2017                    | 1                                                |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 4, 2017                    |                                                  |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 1, 2018                    |                                                  |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2018                    |                                                  |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 3, 2018                    |                                                  |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 4, 2018                    |                                                  |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 1, 2019                    |                                                  |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2019                    |                                                  |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 3, 2019                    |                                                  |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 4, 2019                    | <u> </u>                                         |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 1, 2020                    | ₩.                                               |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2020                    | ₩                                                |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   | *    |     |          |     |
| Quarter 3, 2020                    |                                                  |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| DISSOLVED OXYGEN                   |                                                  |     | *    |          |     |     |     | *        |          |          |      |     |     |     |          |          |     |     |     |      |     |          |     |
| Quarter 3, 2006                    | 1                                                |     | •    |          |     |     |     | _        |          |          |      |     |     |     |          |          |     |     |     |      |     |          |     |
| Quarter 4, 2002                    |                                                  |     |      |          |     |     |     |          |          | *        |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 1, 2003                    | <del>                                     </del> |     | *    |          |     |     |     |          |          | *        |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2003                    | <del>                                     </del> |     | *    |          |     |     |     |          |          | *        |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 3, 2003                    | ╂                                                |     | *    |          |     |     | *   | *        |          | *        |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 4, 2003                    | t                                                |     | *    |          |     |     | *   |          | *        | *        |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 1, 2004                    | t                                                |     | *    |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2004                    | t                                                |     |      |          |     |     |     |          |          | *        |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 3, 2004                    |                                                  |     |      |          |     |     |     |          |          | *        |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 4, 2004                    | t                                                |     |      |          |     |     |     |          |          | *        |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 1, 2005                    | t                                                |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2005                    | i –                                              |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 3, 2005                    |                                                  |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          | *   | *   | *   | *    | *   |          |     |
| Quarter 4, 2005                    | I                                                |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          | *   | *   | *   | *    | *   |          |     |
| Quarter 1, 2006                    | t                                                |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          | *   | *   | *   | *    | *   |          |     |
| Quarter 2, 2006                    | t                                                |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          | *   | *   | *   | *    | *   |          |     |
| Quarter 3, 2006                    | t                                                |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          | *   | *   | *   | *    | *   |          |     |
| Quarter 4, 2006                    | 1                                                |     |      |          |     |     |     |          |          | *        |      | *   |     |     |          |          | *   |     | *   |      |     |          |     |
| Quarter 1, 2007                    | t                                                |     |      |          |     |     |     |          |          |          |      |     |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2007                    | 1                                                |     |      |          |     |     |     |          |          | *        |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 3, 2007                    | 1                                                |     |      |          |     |     |     |          |          | *        |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 4, 2007                    | i –                                              |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 1, 2008                    | t                                                |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 2, 2008                    | t                                                |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 3, 2008                    | t                                                |     |      |          |     |     |     |          |          |          |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
| Quarter 4, 2008                    | t                                                |     |      |          |     |     |     |          |          | *        |      | *   |     |     |          |          |     |     | *   |      |     |          |     |
|                                    |                                                  |     | -    | $\vdash$ |     | 1   | 1   | <b>—</b> | $\vdash$ | $\vdash$ |      | *   |     | 1   | $\vdash$ | $\vdash$ | 1   |     | *   | -    | _   | $\vdash$ |     |
| Quarter 1, 2009                    |                                                  |     |      |          |     |     |     |          |          |          |      | ~   |     |     |          |          |     |     | 不   |      |     |          |     |
|                                    |                                                  |     |      |          |     |     |     |          |          |          |      | *   | *   |     |          |          |     |     | *   |      |     |          |     |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Groundwater Flow System |          |                                                  | UCRS | S   |     |          |     |     |     | 1   | URGA     | 4   |     |                                                  |     |     |          |     |     | LRGA | A   |     |                                                  |
|-------------------------|----------|--------------------------------------------------|------|-----|-----|----------|-----|-----|-----|-----|----------|-----|-----|--------------------------------------------------|-----|-----|----------|-----|-----|------|-----|-----|--------------------------------------------------|
| Gradient                | S        | D                                                | D    | D   | U   | S        | S   | S   | S   | S   | D        | D   | D   | D                                                | U   | U   | S        | D   | D   | D    | D   | U   | U                                                |
| Monitoring Well         | 386      | 389                                              | 390  | 393 | 396 | 221      | 222 | 223 | 224 | 384 | 369      | 372 | 387 | 391                                              | 220 | 394 | 385      | 370 | 373 | 388  | 392 | 395 | 397                                              |
| DISSOLVED SOLIDS        |          |                                                  |      |     |     |          |     |     |     |     |          |     |     |                                                  |     |     |          |     |     |      |     |     |                                                  |
| Quarter 3, 2009         |          |                                                  |      |     |     |          |     |     |     |     |          | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 4, 2009         |          |                                                  |      |     |     |          |     |     |     |     |          | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 1, 2010         |          |                                                  |      |     |     |          |     |     |     |     |          | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 2, 2010         |          |                                                  |      |     |     |          |     |     |     | *   |          | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 3, 2010         |          |                                                  |      |     |     |          |     |     |     | *   |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 4, 2010         |          |                                                  |      |     |     |          |     |     |     | *   |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 1, 2011         |          |                                                  |      |     |     |          |     |     |     | *   |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 2, 2011         |          |                                                  |      |     |     |          |     |     |     |     |          | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 3, 2011         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 4, 2011         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 1, 2012         |          |                                                  |      |     |     |          |     |     |     |     | *        | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 2, 2012         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 3, 2012         |          |                                                  |      |     |     |          |     |     |     | *   |          | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 4, 2012         |          |                                                  |      |     |     |          |     |     |     |     |          | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 1, 2013         |          |                                                  |      |     |     |          |     |     |     | *   |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 2, 2013         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 3, 2013         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 4, 2013         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 1, 2014         |          |                                                  |      |     |     |          |     |     |     |     | 1        | *   | *   |                                                  | 1   |     |          |     | *   | 1    |     |     |                                                  |
| Quarter 2, 2014         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 3, 2014         |          |                                                  |      |     |     |          |     |     | *   |     |          | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 4, 2014         |          |                                                  |      |     |     |          |     |     |     |     |          | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 1, 2015         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 2, 2015         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 3, 2015         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 4, 2015         |          |                                                  |      |     |     |          |     |     | *   |     |          | *   |     |                                                  |     |     |          | *   | *   |      |     |     |                                                  |
| Quarter 1, 2016         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 2, 2016         |          |                                                  |      |     |     |          |     |     |     |     |          | *   | *   | *                                                |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 3, 2016         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 4, 2016         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 1, 2017         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 2, 2017         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 3, 2017         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     | *                                                | *   |     |          |     | *   |      |     |     |                                                  |
| Quarter 4, 2017         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 1, 2018         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 2, 2018         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 3, 2018         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     | *                                                |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 4, 2018         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 1, 2019         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 2, 2019         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 3, 2019         |          |                                                  |      |     |     |          |     |     |     |     |          | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 4, 2019         |          |                                                  |      |     |     |          |     |     |     |     |          | *   |     |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 1, 2020         |          |                                                  |      |     |     |          |     |     |     |     |          | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 2, 2020         |          |                                                  |      |     |     |          |     |     |     |     |          | *   | *   |                                                  |     |     |          |     | *   |      |     |     |                                                  |
| Quarter 3, 2020         |          |                                                  |      |     |     |          |     |     |     | *   |          | *   | *   |                                                  |     |     | *        |     | *   |      |     |     |                                                  |
| IODIDE                  |          |                                                  |      |     |     |          |     |     |     |     |          | -   | -   |                                                  |     |     |          |     |     |      |     |     |                                                  |
| Quarter 4, 2002         |          |                                                  |      |     |     |          |     |     |     |     |          |     |     |                                                  |     |     |          |     |     |      | *   |     |                                                  |
| Quarter 2, 2003         |          |                                                  |      |     |     | *        |     |     |     |     |          |     |     |                                                  |     |     |          |     |     |      |     |     |                                                  |
| Quarter 3, 2003         |          |                                                  |      |     |     | Ė        |     |     |     |     |          |     | *   |                                                  |     |     |          |     |     |      |     |     |                                                  |
| Quarter 1, 2004         | -        | <del>                                     </del> |      | *   |     | -        |     |     |     |     | -        | -   | -   | -                                                | -   |     | -        |     |     | -    |     |     | <del>                                     </del> |
| Quarter 3, 2010         |          |                                                  |      |     |     |          |     |     |     |     |          |     |     | 1                                                |     |     |          |     |     |      | *   |     |                                                  |
| Quarter 2, 2013         |          |                                                  |      |     |     |          |     |     |     | *   |          |     |     | l -                                              |     |     |          |     |     |      |     |     |                                                  |
| IRON                    |          |                                                  |      |     |     |          |     |     |     |     |          |     |     |                                                  |     |     |          |     |     |      |     |     |                                                  |
| Quarter 1, 2003         |          |                                                  |      |     |     |          | *   |     |     | *   | *        |     |     | *                                                |     |     |          |     |     |      |     |     |                                                  |
| Quarter 2, 2003         |          | -                                                |      |     |     |          |     |     |     | *   | *        | *   | *   | Ė                                                | 1   |     |          |     |     | 1    |     |     | -                                                |
| Quarter 3, 2003         |          |                                                  |      |     |     |          | *   | *   | *   | *   | *        | *   |     | 1                                                |     |     |          |     |     |      |     |     |                                                  |
| Quarter 4, 2003         |          |                                                  |      |     |     |          |     |     |     |     | *        |     |     | 1                                                |     |     |          |     |     |      |     |     |                                                  |
| Quarter 1, 2004         |          | -                                                |      |     |     |          |     |     |     |     | *        | 1   |     | <del>                                     </del> | 1   |     |          |     |     | 1    |     |     |                                                  |
| Quarter 2, 2004         |          |                                                  |      |     |     |          |     |     |     | *   | *        |     |     | 1                                                |     |     |          |     |     |      |     |     |                                                  |
| Quarter 3, 2004         | <b>-</b> |                                                  |      |     |     | <b>-</b> |     |     |     | *   | <u> </u> |     |     |                                                  |     |     | <b>-</b> |     |     |      |     |     |                                                  |
| Quarter 4, 2004         |          |                                                  |      |     |     |          |     |     |     | *   |          |     |     | <del>                                     </del> |     |     |          |     |     |      |     |     |                                                  |
| Vanie 1, 2007           |          |                                                  |      |     |     |          |     |     |     | -   |          |     |     | _                                                |     |     |          |     |     |      |     |     |                                                  |
|                         |          |                                                  |      |     |     |          |     |     |     |     |          |     |     |                                                  |     |     |          |     |     |      |     |     |                                                  |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Groundwater Flow System            |          |     | UCRS     | S   |     |          |                                                  |     |     | 1   | URGA | A   |          |     |     |     |          |     |     | LRG                                              | Λ   |     |     |
|------------------------------------|----------|-----|----------|-----|-----|----------|--------------------------------------------------|-----|-----|-----|------|-----|----------|-----|-----|-----|----------|-----|-----|--------------------------------------------------|-----|-----|-----|
| Gradient                           | S        | D   | D        | D   | U   | S        | S                                                | S   | S   | S   | D    | D   | D        | D   | U   | U   | S        | D   | D   | D                                                | D   | U   | U   |
| Monitoring Well                    | 386      | 389 | 390      | 393 | 396 | 221      | 222                                              | 223 | 224 | 384 | 369  | 372 | 387      | 391 | 220 | 394 | 385      | 370 | 373 | 388                                              | 392 | 395 | 397 |
| IRON                               |          |     |          |     |     |          |                                                  |     |     |     |      |     |          |     |     |     |          |     |     |                                                  |     |     |     |
| Quarter 1, 2005                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     |     |                                                  |     |     |     |
| Quarter 2, 2005                    |          |     |          |     |     |          |                                                  |     |     |     | *    | *   |          |     |     |     |          |     |     |                                                  |     |     |     |
| Quarter 1, 2006                    |          |     |          |     |     |          | *                                                |     |     |     |      |     |          |     |     |     |          |     |     |                                                  |     |     |     |
| Quarter 2, 2006                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     |     |                                                  |     |     |     |
| Quarter 3, 2006                    |          |     |          |     |     |          |                                                  |     |     |     | *    |     |          |     |     |     |          |     |     |                                                  |     |     |     |
| Quarter 1, 2007                    |          |     |          |     |     |          |                                                  |     |     |     | *    | *   |          |     |     |     |          |     |     |                                                  |     |     |     |
| Quarter 2, 2007                    |          |     |          |     |     |          |                                                  |     |     |     | *    |     |          |     |     |     |          |     |     |                                                  |     |     |     |
| Quarter 2, 2008                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     |     |                                                  |     |     |     |
| Quarter 3, 2008                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     |     |                                                  |     |     |     |
| MAGNESIUM                          |          |     |          |     |     |          |                                                  |     |     |     |      | -   |          |     |     |     |          |     |     |                                                  |     |     |     |
| Quarter 1, 2003                    |          |     | *        |     |     |          |                                                  |     |     |     |      |     |          |     |     |     |          |     |     |                                                  |     |     |     |
| Quarter 2, 2003                    |          |     | *        |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 3, 2003                    |          |     | *        |     |     |          | *                                                |     |     |     |      | *   |          |     |     |     |          |     | -   |                                                  |     |     |     |
| Quarter 4, 2003                    |          |     | *        |     |     |          | -                                                |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 1, 2004                    |          |     | *        |     |     |          |                                                  |     |     |     |      | *   |          | *   |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 2, 2004                    | <b>-</b> |     | *        |     |     |          | 1                                                |     |     |     |      | *   |          |     |     |     |          |     | *   | 1                                                |     |     |     |
| Quarter 3, 2004                    |          |     | *        |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 4, 2004                    |          |     | *        |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 1, 2005                    |          |     | <u> </u> |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 2, 2005                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 3, 2005                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
|                                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 4, 2005                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 1, 2006                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 2, 2006                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 3, 2006                    |          |     |          |     |     |          |                                                  |     |     |     |      |     |          |     |     |     |          |     |     |                                                  |     |     |     |
| Quarter 4, 2006                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 1, 2007                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 2, 2007                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 3, 2007                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 4, 2007                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 1, 2008                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 2, 2008                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 3, 2008                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 4, 2008                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 1, 2009                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 2, 2009                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 3, 2009                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   | *        |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 4, 2009                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 1, 2010                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 2, 2010                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   | *        |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 3, 2010                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 4, 2010                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 1, 2011                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 2, 2011                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   | *        |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 3, 2011                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 4, 2011                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 1, 2012                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 2, 2012                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 3, 2012                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   | *        |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 4, 2012                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   | *        |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 1, 2013                    | <b>—</b> |     |          |     |     | <b>-</b> | <del>                                     </del> |     |     |     |      | *   | <u> </u> |     |     |     | <b>-</b> |     | *   | <del>                                     </del> |     |     |     |
| Quarter 2, 2013                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
| Quarter 3, 2013                    |          |     |          |     |     |          |                                                  |     |     |     |      | *   |          |     |     |     |          |     | *   |                                                  |     |     |     |
|                                    | _        |     |          |     |     | _        | -                                                |     |     |     |      | *   |          |     |     |     | _        |     | *   | -                                                |     |     | _   |
| Quarter 4, 2013<br>Quarter 1, 2014 | -        | -   | -        |     |     |          | -                                                | -   | -   | -   |      | _   | -        | -   | -   |     |          | *   | *   | -                                                |     |     |     |
| Quarter 1, 2014                    | _        | _   |          |     | _   | _        |                                                  | _   |     | _   | _    | _   | _        |     | _   | _   | _        | *   | -   |                                                  |     | _   | _   |
|                                    |          |     |          |     |     |          |                                                  |     |     |     |      |     |          |     |     |     |          |     |     |                                                  |     |     |     |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Gradient Monitoring Well MAGNESIUM Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 | S<br>386 | D<br>389                                         | D<br>390 | D     | U   | S        | S        | S   | S   | C   | D   | -        | ъ                                                | ъ   | YY       | ~ ~      | -        |     |     |                                                  | _   |     | _                                                |
|----------------------------------------------------------------------------------------------------|----------|--------------------------------------------------|----------|-------|-----|----------|----------|-----|-----|-----|-----|----------|--------------------------------------------------|-----|----------|----------|----------|-----|-----|--------------------------------------------------|-----|-----|--------------------------------------------------|
| MAGNESIUM Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014                                          | 386      | 389                                              | 200      | _     |     |          | _        | _   |     | S   | D   | D        | D                                                | D   | U        | U        | S        | D   | D   | D                                                | D   | U   | U                                                |
| Quarter 2, 2014<br>Quarter 3, 2014<br>Quarter 4, 2014                                              |          |                                                  | 390      | 393   | 396 | 221      | 222      | 223 | 224 | 384 | 369 | 372      | 387                                              | 391 | 220      | 394      | 385      | 370 | 373 | 388                                              | 392 | 395 | 397                                              |
| Quarter 3, 2014<br>Quarter 4, 2014                                                                 |          |                                                  |          |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 4, 2014                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        | *                                                |     |          |          |          |     | *   |                                                  |     |     |                                                  |
|                                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  |     |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 1, 2015                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        | *                                                |     |          |          |          |     | *   |                                                  |     |     |                                                  |
|                                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        | *                                                |     |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 2, 2015                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  |     |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 3, 2015                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  |     |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 4, 2015                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  |     |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 1, 2016                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  |     |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 2, 2016                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  | *   |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 3, 2016                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  |     |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 4, 2016                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  | *   |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 1, 2017                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  | *   |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 2, 2017                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 3, 2017                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  | *   |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 4, 2017                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  |     |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 1, 2018                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        | *                                                |     |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 2, 2018                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 3, 2018                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 4, 2018                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        | *                                                | *   |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 1, 2019                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        |                                                  | *   |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 2, 2019                                                                                    |          | -                                                |          |       |     | -        | -        |     |     |     |     | *        | -                                                |     | $\vdash$ |          |          |     | *   | -                                                |     |     | $\vdash$                                         |
| Quarter 3, 2019                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        | *                                                |     |          |          |          |     | *   |                                                  |     |     | $\vdash$                                         |
| Quarter 4, 2019                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        | *                                                |     | $\vdash$ |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 1, 2020                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        | *                                                |     |          |          |          |     | *   |                                                  |     |     |                                                  |
|                                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        | *                                                |     |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 2, 2020                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | *        | *                                                |     |          |          |          |     | *   |                                                  |     |     |                                                  |
| Quarter 3, 2020                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     | <b>*</b> | 不                                                |     |          |          |          |     | 不   |                                                  |     |     |                                                  |
| MANGANESE                                                                                          |          |                                                  |          |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  | T.  |     |                                                  |
| Quarter 4, 2002                                                                                    |          |                                                  |          |       |     |          | 4        | 46  |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  | *   |     |                                                  |
| Quarter 3, 2003                                                                                    |          |                                                  |          |       |     |          | *        | *   |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 4, 2003                                                                                    |          |                                                  |          |       |     |          | *        | *   |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 1, 2004                                                                                    |          |                                                  |          |       |     |          | *        |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     | <u> </u>                                         |
| Quarter 2, 2004                                                                                    |          |                                                  |          |       |     |          | *        |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     | <u> </u>                                         |
| Quarter 4, 2004                                                                                    |          |                                                  |          |       |     |          | *        | *   |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 1, 2005                                                                                    |          |                                                  |          |       |     |          | *        |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 3, 2005                                                                                    |          |                                                  |          |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  | *   |     |                                                  |
| Quarter 3, 2009                                                                                    | *        |                                                  |          |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| OXIDATION-REDUCTION POT                                                                            | ENT      | IAL                                              |          |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 4, 2003                                                                                    |          |                                                  | *        |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 2, 2004                                                                                    |          |                                                  | *        |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 3, 2004                                                                                    |          |                                                  | *        |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          | *   |     |                                                  |     |     |                                                  |
| Quarter 4, 2004                                                                                    |          |                                                  | *        |       |     | *        |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 1, 2005                                                                                    |          |                                                  | *        |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          | *   |     |                                                  |     |     |                                                  |
| Quarter 2, 2005                                                                                    | *        |                                                  | *        |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 3, 2005                                                                                    | *        |                                                  | *        |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 4, 2005                                                                                    |          |                                                  | *        |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 2, 2006                                                                                    |          |                                                  | *        |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     | $\vdash$                                         |
| Quarter 3, 2006                                                                                    |          |                                                  | *        |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          | *   |     |                                                  |     |     |                                                  |
| Quarter 4, 2006                                                                                    |          |                                                  | *        |       |     |          |          |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     |                                                  |
| Quarter 1, 2007                                                                                    |          |                                                  | *        |       |     |          |          |     |     |     |     |          |                                                  |     |          | H        |          |     |     |                                                  |     |     |                                                  |
| Quarter 2, 2007                                                                                    |          | <del>                                     </del> | *        |       |     |          | *        |     |     |     |     |          | <del>                                     </del> |     |          | $\vdash$ |          |     |     | <del>                                     </del> |     |     |                                                  |
| Quarter 3, 2007                                                                                    |          |                                                  | *        |       |     |          | *        |     |     |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     | $\vdash$                                         |
| Quarter 4, 2007                                                                                    |          | <del>                                     </del> | *        |       |     |          | Ė        |     |     |     |     |          | <del>                                     </del> |     |          | $\vdash$ |          |     |     | <del>                                     </del> |     |     |                                                  |
| Quarter 1, 2008                                                                                    |          |                                                  | *        |       |     | *        |          |     | *   |     |     |          |                                                  |     |          |          |          |     |     |                                                  |     |     | $\vdash$                                         |
| Quarter 2, 2008                                                                                    | *        |                                                  | *        | *     |     | *        |          |     |     |     |     |          | *                                                |     | $\vdash$ |          | *        |     | *   | *                                                |     |     | $\vdash$                                         |
| Quarter 3, 2008                                                                                    |          |                                                  | *        | *     |     | *        |          |     |     |     |     |          | *                                                | -   | H        |          | *        |     | *   | *                                                |     |     | $\vdash$                                         |
| Quarter 4, 2008                                                                                    |          | 1                                                | *        | *     |     | *        | *        | *   | *   |     |     |          | *                                                |     |          |          | *        | *   | _   | *                                                |     |     |                                                  |
|                                                                                                    |          | <u> </u>                                         | *        | -     |     | <u> </u> | *        | *   | *   | _   |     |          | *                                                | *   |          |          | <u> </u> | *   | _   | *                                                |     |     | <del>                                     </del> |
| Quarter 1, 2009                                                                                    |          | -                                                | *        | *     |     | *        | *        | *   | *   |     |     |          | *                                                | *   |          |          | *        | *   | *   | *                                                |     |     |                                                  |
| Quarter 3, 2009                                                                                    |          | -                                                |          | *     |     | *        | -        |     | JE. |     |     |          | -                                                |     |          |          | *        |     | *   |                                                  |     |     | <u> </u>                                         |
| Quarter 4, 2009                                                                                    | <b>.</b> |                                                  | *        |       |     |          |          |     | *   |     |     |          |                                                  |     | Ш        |          |          | *   |     | *                                                |     |     | <u> </u>                                         |
| Quarter 1, 2010                                                                                    | *        |                                                  | *        | JU VI |     |          |          |     | ىر  |     |     |          | سر                                               |     |          |          | بر       | ىلا |     | *                                                |     |     | <u> </u>                                         |
| Quarter 2, 2010                                                                                    | *        | <u> </u>                                         | *        | *     |     | , L      | <u> </u> |     | *   |     |     |          | *                                                |     |          |          | *        | *   | 410 | *                                                |     |     | <u> </u>                                         |
| Quarter 3, 2010                                                                                    | *        |                                                  | *        | *     |     | *        |          |     |     |     |     |          |                                                  |     | ш        |          | *        | *   | *   | *                                                |     |     | _                                                |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Groundwater Flow System            |                                                  | 1   | UCRS | S   |     |     |                                                  |     |          | 1   | URG | 4   |     |     |     |     |          |     |     | LRGA | 4                                                |     |                                                  |
|------------------------------------|--------------------------------------------------|-----|------|-----|-----|-----|--------------------------------------------------|-----|----------|-----|-----|-----|-----|-----|-----|-----|----------|-----|-----|------|--------------------------------------------------|-----|--------------------------------------------------|
| Gradient                           | S                                                | D   | D    | D   | U   | S   | S                                                | S   | S        | S   | D   | D   | D   | D   | U   | U   | S        | D   | D   | D    | D                                                | U   | U                                                |
| Monitoring Well                    | 386                                              | 389 | 390  | 393 | 396 | 221 | 222                                              | 223 | 224      | 384 | 369 | 372 | 387 | 391 | 220 | 394 | 385      | 370 | 373 | 388  | 392                                              | 395 | 397                                              |
| OXIDATION-REDUCTION POT            | ENT                                              | IAL |      |     |     |     |                                                  |     |          |     |     |     |     |     |     |     |          |     |     |      |                                                  |     |                                                  |
| Quarter 4, 2010                    |                                                  |     | *    |     |     |     |                                                  | *   |          |     | *   |     |     | *   |     |     | *        | *   | *   | *    |                                                  |     |                                                  |
| Quarter 1, 2011                    | *                                                |     |      | *   |     | *   | *                                                | *   | *        |     | *   |     | *   | *   |     |     | *        | *   |     | *    | *                                                |     |                                                  |
| Quarter 2, 2011                    | *                                                |     | *    | *   |     |     | *                                                | *   | *        | *   | *   |     | *   | *   |     |     | *        | *   | *   | *    | *                                                |     |                                                  |
| Quarter 3, 2011                    | *                                                |     | *    | *   |     |     | *                                                | *   |          | *   |     |     | *   |     | *   |     | *        | *   | *   | *    |                                                  |     |                                                  |
| Quarter 4, 2011                    | *                                                |     | *    | *   |     |     | *                                                |     |          |     | *   |     |     |     |     |     | *        | *   |     | *    |                                                  |     |                                                  |
| Quarter 1, 2012                    | *                                                |     | *    | *   |     | *   | *                                                | *   | *        | *   |     |     | *   | *   |     |     | *        | *   | *   | *    | *                                                |     |                                                  |
| Quarter 2, 2012                    | *                                                |     | *    |     |     |     | *                                                |     | *        |     | *   |     | *   | *   |     |     | *        | *   | *   | *    | *                                                |     |                                                  |
| Quarter 3, 2012                    | *                                                |     | *    |     |     | *   | *                                                | *   | *        | *   |     |     | *   | *   |     |     | *        | *   | *   | *    | *                                                |     |                                                  |
| Quarter 4, 2012                    |                                                  |     |      | *   |     | *   |                                                  | *   | *        | *   | *   |     | *   | *   |     |     | *        | *   | *   | *    | *                                                |     |                                                  |
| Quarter 1, 2013                    |                                                  |     |      | *   |     | *   |                                                  | *   | *        |     | *   |     | *   | *   |     |     |          | *   |     | *    | *                                                |     |                                                  |
| Quarter 2, 2013                    | *                                                |     |      | *   |     |     | *                                                |     | *        |     | *   |     | *   |     |     |     | *        | *   | *   | *    | *                                                |     |                                                  |
| Quarter 3, 2013                    | *                                                |     | *    | *   |     | *   | *                                                | *   | *        | *   |     |     | *   |     |     |     | *        | *   | *   | *    |                                                  |     |                                                  |
| Quarter 4, 2013                    |                                                  |     | *    | *   |     | *   | *                                                | *   | *        | *   | *   | *   | *   | *   |     |     | *        | *   | *   | *    | *                                                |     |                                                  |
| Quarter 1, 2014                    | *                                                |     | *    | *   |     | *   | *                                                |     | *        |     | *   | *   | *   | *   |     |     | *        | *   | *   | *    | *                                                |     |                                                  |
| Quarter 2, 2014                    | *                                                |     | *    | *   |     | *   | *                                                |     | *        |     | *   | -   | *   |     |     |     | *        | *   | *   | *    | *                                                |     |                                                  |
| Quarter 3, 2014                    | *                                                |     | *    | *   |     | *   | -                                                |     | -        |     |     |     |     |     |     |     | *        | *   | *   | *    |                                                  |     |                                                  |
| Quarter 4, 2014                    | *                                                |     | *    | *   |     | _   | 1                                                |     |          |     | *   |     | *   |     |     |     | *        | *   | *   | *    | *                                                |     | <del>                                     </del> |
| Quarter 1, 2015                    | *                                                |     | *    | *   | *   | *   | *                                                | *   | *        |     | *   | *   | *   | *   | *   | *   | *        | *   | *   | *    | *                                                | *   | *                                                |
|                                    | *                                                |     | *    | *   | *   | *   | *                                                | *   | *        |     | *   | *   | *   | *   | *   | *   | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 2, 2015                    | *                                                |     | *    | *   | *   | *   | *                                                | *   | <u> </u> | *   | *   |     | *   | *   | *   | *   | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 3, 2015                    | *                                                |     | *    | *   |     | *   | *                                                |     | *        | *   | 不   |     | *   | *   | *   | *   | *        |     | *   |      | *                                                | *   | *                                                |
| Quarter 4, 2015                    |                                                  |     |      |     | *   |     |                                                  | *   | *        |     | طو  |     |     |     |     | *   |          | *   | 不   | *    |                                                  |     |                                                  |
| Quarter 1, 2016                    | *                                                |     | *    | *   | *   | *   | *                                                | *   | *        | *   | *   |     | *   | 45  | *   | 45  | *        | *   |     | *    | *                                                | *   | *                                                |
| Quarter 2, 2016                    | *                                                |     | *    | *   | *   | *   |                                                  | *   | *        | *   |     |     | *   | *   | *   | *   | *        | *   |     | *    | *                                                | *   | *                                                |
| Quarter 3, 2016                    | *                                                |     | *    | *   | *   | *   | *                                                | *   | *        | *   |     |     | *   | *   | *   |     | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 4, 2016                    | *                                                |     | *    | *   | *   |     | *                                                | *   |          | *   |     |     | *   |     | *   |     | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 1, 2017                    | *                                                |     | *    | *   | *   |     |                                                  | *   | *        |     |     |     |     |     | *   |     |          | *   |     | *    |                                                  | *   | *                                                |
| Quarter 2, 2017                    | *                                                |     | *    | *   | *   |     |                                                  |     |          |     |     |     |     |     |     |     | *        |     |     | *    | *                                                |     |                                                  |
| Quarter 3, 2017                    | *                                                |     | *    | *   | *   |     |                                                  |     |          |     |     |     |     |     |     |     | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 4, 2017                    | *                                                |     | *    | *   | *   | *   | *                                                | *   | *        | *   | *   |     | *   | *   | *   |     | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 1, 2018                    | *                                                |     | *    | *   | *   | *   |                                                  |     |          |     |     |     |     |     |     |     |          | *   | *   | *    | *                                                |     | *                                                |
| Quarter 2, 2018                    | *                                                |     | *    | *   | *   |     |                                                  |     |          |     |     |     |     |     |     |     | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 3, 2018                    | *                                                |     | *    | *   | *   | *   | *                                                | *   | *        |     |     |     |     |     |     |     | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 4, 2018                    | *                                                |     | *    | *   | *   | *   |                                                  |     |          | *   |     |     | *   |     | *   |     | *        | *   | *   | *    | *                                                |     | *                                                |
| Quarter 1, 2019                    | *                                                |     | *    | *   | *   | *   | *                                                | *   |          |     | *   |     |     |     |     |     | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 2, 2019                    | *                                                |     | *    | *   | *   | *   | *                                                | *   | *        | *   |     | *   | *   | *   | *   | *   | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 3, 2019                    | *                                                |     | *    | *   | *   | *   | *                                                | *   | *        | *   | *   |     | *   | *   | *   | *   | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 4, 2019                    | *                                                |     | *    | *   | *   |     |                                                  |     | *        | *   |     |     | *   |     | *   | *   | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 1, 2020                    | *                                                |     | *    | *   | *   | *   | *                                                | *   | *        |     |     |     | *   |     |     | *   | *        | *   | *   | *    | *                                                | *   |                                                  |
| Quarter 2, 2020                    | *                                                |     | *    | *   | *   | *   | *                                                | *   | *        | *   |     |     | *   | *   | *   | *   | *        | *   | *   | *    | *                                                | *   | *                                                |
| Quarter 3, 2020                    | *                                                |     | *    | *   | *   | *   |                                                  |     |          |     |     |     |     |     |     |     | *        | *   | *   | *    | *                                                | *   | *                                                |
| PCB-1016                           |                                                  |     |      |     |     | -   |                                                  |     |          |     |     |     |     |     |     |     |          |     | -   | -    |                                                  | -   |                                                  |
| Quarter 4, 2003                    |                                                  |     |      |     |     |     | *                                                | *   | *        |     | *   |     |     |     |     |     |          | *   |     |      |                                                  |     |                                                  |
|                                    |                                                  |     |      |     |     |     |                                                  | *** | ***      |     | *   |     |     |     |     |     |          | *** |     |      |                                                  |     |                                                  |
| Quarter 3, 2004<br>Quarter 3, 2005 | 1                                                | _   |      |     |     |     | *                                                | _   | _        | _   | *   |     | _   | _   |     |     | -        | _   | _   |      | -                                                | _   | _                                                |
|                                    | <del>                                     </del> |     |      |     |     |     | _                                                |     |          |     | *   |     |     |     |     |     | _        |     |     |      | <del>                                     </del> |     | ₩                                                |
| Quarter 1, 2006                    |                                                  |     |      |     |     |     | -                                                |     |          |     | *   |     |     |     |     |     | -        |     |     |      | -                                                |     |                                                  |
| Quarter 2, 2006                    |                                                  |     |      |     |     |     | -                                                |     |          |     | *   |     |     |     |     |     | -        |     |     |      | -                                                |     |                                                  |
| Quarter 4, 2006                    | <del>                                     </del> |     |      |     |     |     | <u> </u>                                         |     |          |     |     | طو  |     |     |     |     | <u> </u> |     |     |      |                                                  |     | <u> </u>                                         |
| Quarter 1, 2007                    | <u> </u>                                         |     |      |     |     |     |                                                  |     |          |     | *   | *   |     |     |     |     | <u> </u> |     |     |      | <u> </u>                                         |     |                                                  |
| Quarter 2, 2007                    |                                                  |     |      |     |     |     | <u> </u>                                         |     |          |     | ,1. | *   |     |     |     |     |          |     |     |      |                                                  |     | <u> </u>                                         |
| Quarter 3, 2007                    |                                                  |     |      |     |     |     |                                                  |     |          |     | *   |     |     |     |     |     |          |     |     |      |                                                  |     | Щ                                                |
| Quarter 2, 2008                    |                                                  |     |      |     |     |     | ļ                                                |     |          |     | *   | *   |     |     |     |     |          |     |     |      |                                                  |     |                                                  |
| Quarter 3, 2008                    |                                                  |     |      |     |     |     |                                                  |     |          |     | *   |     |     |     |     |     |          |     |     |      |                                                  |     |                                                  |
| Quarter 4, 2008                    | L                                                |     |      |     |     |     | L                                                |     |          |     | *   |     |     |     |     |     |          |     | L   |      | $\Box$                                           | L   | L                                                |
| Quarter 1, 2009                    |                                                  |     |      |     |     |     |                                                  |     |          |     | *   |     |     |     |     |     |          |     |     |      |                                                  |     |                                                  |
| Quarter 2, 2009                    |                                                  |     |      |     |     |     |                                                  |     |          |     | *   |     |     |     |     |     |          |     |     |      |                                                  |     |                                                  |
| Quarter 3, 2009                    |                                                  |     |      |     |     |     |                                                  |     |          |     | *   |     |     |     |     |     |          |     |     |      |                                                  |     |                                                  |
| Quarter 4, 2009                    |                                                  |     |      |     |     |     |                                                  |     |          |     | *   |     |     |     |     |     |          |     |     |      |                                                  |     | $\vdash$                                         |
| Quarter 1, 2010                    | 1                                                |     |      |     |     |     |                                                  |     |          |     | *   |     |     |     |     |     |          |     |     |      |                                                  |     | $\vdash$                                         |
| Quarter 2, 2010                    | 1                                                |     |      |     |     |     | <del>                                     </del> |     |          |     | *   |     |     |     |     |     |          |     |     |      | 1                                                |     | <del>                                     </del> |
| Quarter 3, 2010                    |                                                  |     |      |     |     |     | <del>                                     </del> |     |          |     | *   |     |     |     |     |     | _        |     |     |      | -                                                |     |                                                  |
|                                    | <del>                                     </del> |     |      |     |     |     | <u> </u>                                         |     |          |     |     |     |     |     |     |     | <u> </u> |     |     |      |                                                  |     |                                                  |
| Quarter 4, 2010                    | Щ                                                | _   | Щ    |     |     | _   | Ц_                                               | _   | _        | _   | *   | Щ   | _   | _   |     |     | Щ        | _   |     |      |                                                  |     |                                                  |
|                                    |                                                  |     |      |     |     |     |                                                  |     |          |     |     |     |     |     |     |     |          |     |     |      |                                                  |     |                                                  |

### Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Groundwater Flow System |     |     | UCRS | S   |     |     |     |     |     |     | URGA | ١   |   |     |     |     |     |     |   | LRGA | A.  |     |     |
|-------------------------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|------|-----|---|-----|-----|-----|-----|-----|---|------|-----|-----|-----|
| Gradient                | S   | D   | D    | D   | U   | S   | S   | S   | S   | S   | D    | D   | D | D   | U   | U   | S   | D   | D | D    | D   | U   | U   |
| Monitoring Well         | 386 | 389 | 390  | 393 | 396 | 221 | 222 | 223 | 224 | 384 | 369  | 372 |   | 391 | 220 | 394 | 385 | 370 | _ | 388  | 392 | 395 | 397 |
| PCB-1232                |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     |   |      |     |     |     |
| Quarter 1, 2011         |     |     |      |     |     |     |     |     |     |     | *    |     |   |     |     |     |     |     |   |      |     |     |     |
| PCB-1248                |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     |   |      |     |     |     |
| Quarter 2, 2008         |     |     |      |     |     |     |     |     |     |     |      | *   |   |     |     |     |     |     |   |      |     |     |     |
| PCB-1260                |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     |   |      |     |     |     |
| Quarter 2, 2006         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     | *   |   |      |     |     |     |
| рН                      |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     |   |      |     |     |     |
| Quarter 4, 2002         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 2, 2003         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 3, 2003         | 1   |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 4, 2003         |     |     |      |     |     |     | *   |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 1, 2004         |     |     |      |     |     |     | *   |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 2, 2004         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 3, 2004         | 1   |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 4, 2004         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 3, 2005         | 1   |     |      |     |     |     |     |     |     | *   |      |     |   |     |     |     | *   |     |   |      | *   |     |     |
| Quarter 4, 2005         |     |     |      |     |     |     |     |     |     | *   |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 1, 2006         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 2, 2006         | 1   |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 3, 2006         | 1   |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 3, 2007         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 4, 2007         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 4, 2008         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 1, 2009         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 1, 2011         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     | *   |     |   |      |     |     |     |
| Quarter 2, 2011         |     |     |      |     |     |     |     |     |     |     | *    |     |   |     |     |     |     |     |   |      |     |     |     |
| Quarter 3, 2011         |     |     |      |     |     |     |     |     |     |     | *    |     |   |     |     |     |     |     |   |      |     |     |     |
| Quarter 1, 2012         |     |     |      |     |     |     |     |     |     |     |      |     |   | *   |     |     |     |     |   |      |     |     |     |
| Quarter 1, 2013         |     |     |      |     |     |     |     |     |     | *   |      |     | * |     |     |     | *   |     |   |      |     |     |     |
| Quarter 4, 2014         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     |   |      | *   |     |     |
| Quarter 2, 2016         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     | *   | * |      |     |     |     |
| POTASSIUM               |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     |   |      |     |     |     |
| Quarter 4, 2002         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     | *   | * |      |     |     |     |
| Quarter 3, 2004         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| Quarter 2, 2005         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| Quarter 3, 2005         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| Quarter 4, 2005         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| Quarter 2, 2006         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| Quarter 3, 2006         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| Quarter 4, 2006         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| Quarter 4, 2008         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| Quarter 3, 2012         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| Quarter 1, 2013         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| Quarter 2, 2013         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| Quarter 3, 2013         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| RADIUM-226              |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     |   |      |     |     |     |
| Quarter 4, 2002         |     |     | *    |     |     |     |     |     |     |     |      |     | * | *   |     |     |     |     |   |      | *   |     |     |
| Quarter 2, 2004         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     | * |      |     |     |     |
| Quarter 2, 2005         |     |     |      |     |     |     |     |     | *   |     |      |     |   |     |     |     |     |     |   |      |     |     |     |
| Quarter 1, 2009         |     |     |      |     |     |     |     |     |     |     | *    |     |   |     |     |     |     |     |   |      |     |     |     |
| Quarter 3, 2014         |     |     |      |     |     |     |     |     | *   |     |      | *   |   |     |     |     |     |     |   |      |     |     |     |
| Quarter 4, 2014         |     |     | *    |     |     |     |     |     |     |     | *    |     |   |     |     |     |     | *   |   |      |     |     |     |
| Quarter 1, 2015         |     |     | *    |     |     |     | *   |     |     | *   |      | *   |   |     |     |     |     | *   |   |      |     |     |     |
| Quarter 2, 2015         |     |     | *    |     |     |     | *   |     |     | *   |      | *   |   |     |     |     |     | *   |   |      |     |     |     |
| Quarter 3, 2015         |     |     | *    |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     |   |      |     |     |     |
|                         |     |     |      |     |     |     |     |     |     |     |      |     |   |     |     |     |     |     |   |      |     |     |     |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Groundwater Flow System |     |          | UCRS                                             | S   |     |     |     |     |     | 1   | URG | 4   |     |     |     |     |     |     |     | LRGA | 1        |     |          |
|-------------------------|-----|----------|--------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|----------|-----|----------|
| Gradient                | S   | D        | D                                                | D   | U   | S   | S   | S   | S   | S   | D   | D   | D   | D   | U   | U   | S   | D   | D   | D    | D        | U   | U        |
| Monitoring Well         | 386 | 389      | 390                                              | 393 | 396 | 221 | 222 | 223 | 224 | 384 | 369 | 372 | 387 | 391 | 220 | 394 | 385 | 370 | 373 | 388  | 392      | 395 | 397      |
| RADIUM-226              |     |          |                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 4, 2015         | 1   |          |                                                  |     | *   | *   |     |     |     |     |     |     |     |     | *   |     | *   |     |     |      | *        | *   |          |
| Quarter 2, 2016         |     |          | *                                                |     |     |     |     |     | *   |     | *   | *   | *   | *   | *   | *   |     | *   |     |      |          |     |          |
| Quarter 3, 2016         |     |          |                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     | *   |     |      |          |     |          |
| Quarter 4, 2016         | *   |          | *                                                |     |     | *   |     |     | *   |     |     |     | *   |     | *   |     |     |     |     | *    |          | *   |          |
| Quarter 1, 2017         |     |          | *                                                |     |     |     |     |     |     | *   | *   |     |     |     |     |     |     | *   |     |      |          |     |          |
| Quarter 2, 2017         |     |          |                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     | *   | *   |     | *    | *        |     |          |
| Quarter 3, 2017         |     |          |                                                  |     | *   |     |     |     | *   | *   | *   |     |     |     |     |     |     |     |     | *    |          |     |          |
| Quarter 4, 2017         |     |          |                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     | *   |     | *    |          |     |          |
| Quarter 1, 2018         |     |          |                                                  |     |     |     |     |     |     |     |     | *   |     |     |     |     |     | *   |     | *    |          |     |          |
| Quarter 4, 2018         |     |          |                                                  |     |     |     |     |     |     |     |     |     | *   |     |     |     | *   |     |     |      |          |     |          |
| Quarter 1, 2020         |     |          |                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     | *   |     |     |      |          |     |          |
| Quarter 2, 2020         |     |          |                                                  |     |     |     |     |     |     |     |     |     |     |     | *   |     |     |     |     |      |          |     |          |
| RADIUM-228              |     |          |                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 2, 2005         | 4   | <u> </u> | _                                                |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 3, 2005         | 4   | <u> </u> |                                                  |     |     |     | _   |     | _   |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 4, 2005         | ┺   | <u> </u> |                                                  |     | _   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 1, 2006         |     |          |                                                  |     | •   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| SELENIUM                |     |          |                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 4, 2002         | ┺   | <u> </u> |                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |          | _   |          |
| Quarter 1, 2003         | 1   | 1        | _                                                |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |          |     | <u> </u> |
| Quarter 2, 2003         | 1   | 1        |                                                  |     | _   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |          |     | <u> </u> |
| Quarter 3, 2003         | 4   | <u> </u> |                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 4, 2003         |     |          | •                                                |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| SODIUM                  | _   |          |                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 46  |      | <b>.</b> |     |          |
| Quarter 4, 2002         | 4   |          |                                                  |     |     |     |     |     | 46  | 40  | 4   |     |     |     |     |     |     |     | *   |      | *        |     |          |
| Quarter 1, 2003         | 4   |          |                                                  | *   |     |     |     |     | *   | *   | *   |     | 4   |     |     |     |     |     |     |      |          |     |          |
| Quarter 2, 2003         | 4   |          |                                                  | *   |     |     | 4   | 4   |     | *   | *   |     | *   |     |     |     |     |     |     |      |          |     |          |
| Quarter 3, 2003         | 4   |          |                                                  |     |     |     | *   | *   | 46  | *   |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 4, 2003         | 4   | <u> </u> |                                                  |     |     |     | *   |     | *   | *   |     |     |     | 40  |     |     |     |     |     |      |          |     |          |
| Quarter 1, 2004         | _   |          |                                                  |     |     |     |     |     | *   | * + |     |     |     | *   |     |     |     |     |     |      |          |     |          |
| Quarter 2, 2004         | 4   |          |                                                  |     |     |     |     |     |     | *   |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 3, 2004         | _   |          |                                                  |     |     |     |     |     | *   | *   |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 4, 2004         | 4   |          |                                                  |     |     |     |     |     | *   |     |     |     |     |     |     |     |     |     | 4   |      |          |     |          |
| Quarter 1, 2005         | 4   | <u> </u> |                                                  |     |     |     |     |     |     | *   |     |     |     |     |     |     |     |     | *   |      |          |     |          |
| Quarter 2, 2005         | 4   |          |                                                  |     |     |     |     |     | 46  | *   |     |     |     |     |     |     |     |     | *   |      |          |     |          |
| Quarter 3, 2005         | 4   | <u> </u> |                                                  |     |     |     |     |     | *   | *   |     |     |     |     |     |     |     |     | *   |      |          |     |          |
| Quarter 4, 2005         |     |          |                                                  |     |     |     |     |     | *   | *   |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 1, 2006         |     |          |                                                  |     |     |     |     |     | *   | *   |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 2, 2006         |     | <u> </u> |                                                  |     |     |     |     |     | *   |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 3, 2006         |     | <u> </u> |                                                  |     |     |     |     |     | *   | *   |     | *   |     |     |     |     |     |     | *   |      |          |     | <u> </u> |
| Quarter 4, 2006         |     | <u> </u> |                                                  |     |     |     |     |     | *   | *   |     |     |     |     |     |     | *   |     |     |      |          |     | <u> </u> |
| Quarter 1, 2007         |     |          |                                                  |     |     |     |     |     | *   |     |     | *   |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 2, 2007         |     |          |                                                  |     |     |     |     |     | *   | *   |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 3, 2007         |     |          |                                                  |     |     |     |     |     | *   |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 4, 2007         |     |          |                                                  |     |     |     |     |     | *   |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 1, 2008         |     |          |                                                  |     |     |     |     |     | *   |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 3, 2008         |     |          |                                                  |     |     |     |     |     |     |     |     | *   |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 4, 2008         |     |          |                                                  |     |     |     |     |     | *   | *   |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 1, 2009         |     |          |                                                  |     |     |     |     |     | *   |     |     | *   |     |     |     |     |     |     | *   |      |          |     |          |
| Quarter 3, 2009         |     |          |                                                  |     |     |     |     |     |     |     |     | *   |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 4, 2009         | 1   |          |                                                  |     |     |     |     |     | *   |     |     | *   |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 1, 2010         | 1   |          |                                                  |     |     |     |     |     |     |     |     | *   |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 2, 2010         | 1   |          |                                                  |     |     |     |     |     |     | *   |     | *   |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 3, 2010         | 1   | t        |                                                  |     |     |     |     |     |     | *   |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 4, 2010         | T   |          |                                                  |     |     |     |     |     | *   | *   |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 1, 2011         | +   | 1        |                                                  |     |     |     |     |     |     | *   |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 2, 2011         | +   | 1        | 1                                                |     |     |     |     |     | *   |     |     |     |     |     |     |     |     |     |     |      |          |     |          |
| Quarter 4, 2011         | +   | <b>!</b> | <del>                                     </del> |     |     |     |     |     | Ė   |     |     |     |     |     |     |     |     |     | *   |      |          |     |          |
|                         |     |          |                                                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |          |     | i        |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Gradient S D D D D U S S S S S D D D D U S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Groundwater Flow System |          |          | UCRS     | S |     |          |          |   |   | Ţ | JRG | 4  |      |                                                  |     |     |                                                  |     |     | LRGA     | Α.  |     |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|----------|----------|---|-----|----------|----------|---|---|---|-----|----|------|--------------------------------------------------|-----|-----|--------------------------------------------------|-----|-----|----------|-----|-----|----------|
| Monitoring Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gradient                | S        |          |          |   | U   | S        | S        | S | S |   |     |    | D    | D                                                | U   | U   | S                                                | D   |     |          |     | U   | U        |
| SOPULM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Monitoring Well         | 386      | _        |          |   | 396 |          |          |   |   |   |     |    |      |                                                  | 220 | 394 |                                                  |     |     |          | 392 | 395 | 397      |
| Quarter 1, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2019 Quarter 2, 2009 Quarter 3, 2000 Quarter 2, 200 | SODIUM                  |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Dauter 4, 2012 Dauter 1, 2013 Dauter 1, 2013 Dauter 2, 2013 Dauter 3, 2013 Dauter 3, 2014 Dauter 4, 2013 Dauter 4, 2013 Dauter 1, 2014 Dauter 2, 2015 Dauter 2, 2016 Dauter 2, 2017 Dauter 2, 2018 Dauter 2, 2019 Dauter 2, 2009 Dauter | Quarter 1, 2012         |          |          |          |   |     |          |          |   |   |   | *   |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Dauter 1, 2013   Quarter 2, 2013   Quarter 3, 2013   Quarter 3, 2013   Quarter 4, 2013   Quarter 4, 2014   Quarter 2, 2014   Quarter 2, 2014   Quarter 3, 2014   Quarter 4, 2014   Quarter 1, 2015   Quarter 1, 2015   Quarter 1, 2015   Quarter 2, 2016   Quarter 2, 2017   Quarter 2, 2017   Quarter 2, 2017   Quarter 2, 2018   Quarter 2, 2019   Quarter 1, 2019   Quarter 2, 2003   Quarter 3, 2016   Quarter 4, 2019   Quarter 2, 2003   Quarter 2, 2004   Quarter 2, 2005   Quarter 2, 2006   Quarter 2, 2007   Quarter 2, 20 | Quarter 3, 2012         |          |          |          |   |     |          |          |   |   |   |     | *  |      |                                                  |     |     |                                                  |     | *   |          |     |     |          |
| Quarter   1,2013   Quarter   2,0013   Quarter   2,0014   Quarter   2,0015   Quarter   2,0016   Quarter   2,0016   Quarter   2,0016   Quarter   2,0017   Quarter   2,0019   Quarter   2,0007   Quarter   2   |                         |          |          |          |   |     |          |          |   |   |   |     | *  |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quanter 2, 2013 Quanter 4, 2013 Quanter 4, 2014 Quanter 2, 2014 Quanter 2, 2014 Quanter 3, 2014 Quanter 3, 2014 Quanter 3, 2014 Quanter 4, 2014 Quanter 3, 2014 Quanter 3, 2015 Quanter 3, 2016 Quanter 3, 2017 Quanter 3, 2016 Quanter 3, 2016 Quanter 3, 2017 Quanter 3, 2018 Quanter 3, 2019 Quanter 3, 2000 Quanter 3, 2003 Quanter 3, 2003 Quanter 3, 2003 Quanter 3, 2003 Quanter 3, 2004 Quanter 4, 2005 Quanter 4, 2005 Quanter 4, 2006 Quanter 6, 2006 Quanter 7, 2006 Quanter 6, 2006 Quanter 7, 2007 Quanter 7, 2006 Quanter 7, 2007 Quanter 7, 2007 Quanter 7, 2008 Quanter 7, 2008 Quanter 8, 2009 Quanter 8, 200 |                         |          |          |          |   |     |          |          |   |   | * |     | *  |      |                                                  |     |     |                                                  |     | *   |          |     |     |          |
| Quarter 4, 2013   Quarter 4, 2015   Quarter 4, 2016   Quarter 4, 2017   Quarter 4, 2017   Quarter 4, 2017   Quarter 4, 2017   Quarter 4, 2006   Quarter 4, 2007   Quarter 4,   |                         |          |          |          |   |     |          |          |   |   |   |     | *  |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 3, 2016 Quarter 1, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2018 Quarter 1, 2017 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 6, 200 |                         |          |          |          |   |     |          |          |   |   |   |     | *  |      |                                                  |     |     |                                                  |     | *   |          |     |     |          |
| Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2020 Quarter 2, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 4, 2030 Quarter 2, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 4, 203 |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Daurier 2, 2014  Daurier 3, 2014  Daurier 4, 2014  Daurier 2, 2015  Daurier 2, 2015  Daurier 2, 2015  Daurier 2, 2016  Daurier 2, 2017  Daurier 2, 2018  Daurier 2, 2018  Daurier 2, 2019  Daurier 2, 2018  Daurier 2, 2019  Daurier 3, 2019  Daurier 3, 2019  Daurier 2, 2019  Daurier 4, 2019  Daurier 4, 2019  Daurier 4, 2019  Daurier 2, 2000  Daurier 2, 2003  Daurier 3, 2004  Daurier 2, 2003  Daurier 1, 2004  Daurier 2, 2003  Daurier 2, 2005  Daurier 2, 2005  Daurier 2, 2005  Daurier 2, 2006  Daurier 2, 2007  Daurier 2, 2008  Daurier 2, 2009  Daurier 2, 2008  Daurier 2, 2009  Daurier 3, 2009  Daurier 4, 2009  Daurier 3, 2009  Daurie |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Doubler 3, 2014 Doubler 4, 2015 Doubler 4, 2016 Doubler 4, 2016 Doubler 4, 2017 Doubler 4, 2016 Doubler 4, 2000 Doubler 4, 2001 Doubler 4, 200 |                         |          |          |          |   |     |          |          |   | * |   | *   |    |      |                                                  |     |     |                                                  |     | *   |          |     |     |          |
| Quarter 2, 2014   Quarter 2, 2015   Quarter 2, 2016   Quarter 2, 2017   Quarter 2, 2017   Quarter 2, 2018   Quarter 2, 2018   Quarter 2, 2018   Quarter 2, 2019   Quarter 2, 2020   Quarter 3, 2020   Quarter 4, 2030   Quarter 4,   |                         |          |          |          |   |     |          |          |   | т |   | *   |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2009 Quarter 2, 2000 Quarter 2, 200 |                         |          |          |          |   |     |          |          |   | * | * |     |    | *    |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Doublet 2, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |          |          |   |     |          |          |   | Ť | Ť |     | т. |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2019 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 200 |                         |          |          |          |   |     |          |          |   |   |   |     | *  | •    |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 1, 2015   Quarter 2, 2016   Quarter 3, 2017   Quarter 2, 2017   Quarter 2, 2017   Quarter 2, 2018   Quarter 1, 2019   Quarter 3, 2019   Quarter 3, 2019   Quarter 3, 2019   Quarter 4, 2019   Quarter 4, 2019   Quarter 2, 2019   Quarter 2, 2019   Quarter 4, 2019   Quarter 4, 2020   Quarter 3, 2020   Quarter 4,   |                         |          |          |          |   |     |          |          |   |   | * |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 STRONTIUM-99 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2033 Quarter 1, 2004 Quarter 2, 2033 Quarter 1, 2004 Quarter 2, 2033 Quarter 1, 2004 Quarter 2, 2030 Quarter 1, 2005 Quarter 2, 2030 Quarter 1, 2006 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Q |                         |          |          |          |   |     |          |          |   | * |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 1, 2016 Quarter 1, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 STRONTIM-90 Quarter 2, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 STRONTIM-90 Quarter 2, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 STRONTIM-90 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 7, |                         |          |          |          |   |     |          |          |   | Ť | Ť | *   | Ψ. |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2020 Quarter 2, 2030 Quarter 1, 2040 Quarter 1, 2040 Quarter 1, 2040 Quarter 2, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 4, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 3, 2030 Quarter 4, 2030 Quarter 5, 2030 Quarter 5, 2030 Quarter 6, 2030 Quarter 7, 2030 Quarter 7, 2030 Quarter 8, 2030 Quarter 9, 203 |                         |          | -        | -        |   |     |          | -        |   |   |   |     | -  |      | -                                                |     |     |                                                  | -   |     | -        |     |     | *        |
| Quarter 2, 2017 Quarter 2, 2018 Quarter 1, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2019 Quarter 5, 2020 Quarter 5, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 7, 2020 Quarter 6, 2020 Quarter 7, 2020 Quarter 8, 2020 Quarter 9, 202 |                         | _        |          |          |   |     | _        |          |   |   | * |     |    | *    |                                                  |     |     |                                                  | *   |     |          |     |     | _        |
| Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 1, 2019 Quarter 1, 2020 Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020  ****  ***  **  **  **  **  **  **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | _        |          |          |   |     | _        |          |   | * |   |     |    | *    |                                                  |     |     |                                                  | _   |     |          |     |     |          |
| Quarter 1, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 4, 202 |                         |          |          |          |   |     |          |          |   | ~ | ~ | ~   |    | *    |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2020 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2002 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 5, 2003 Quarter 6, 2003 Quarter 6, 2003 Quarter 7, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2005 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2004 Quarter 3, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 8, 2009 Quarter 9, 2009 Quarter 9, 2009                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          | -        | _        |   |     |          | _        |   |   |   |     | _  | *    | *                                                |     |     | <del>                                     </del> | _   |     | _        |     |     | -        |
| Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2020 Quarter 4, 2020 Quarter 4, 2020 Quarter 2, 2020 Quarter 3, 2020 Quarter 4, 2020 Quarter 3, 202 |                         | _        |          |          |   |     | _        |          |   |   |   |     |    | *    | _ ^                                              |     |     |                                                  |     |     |          |     |     |          |
| Quarter 4, 2019 Quarter 2, 2020 Quarter 3, 2020 Quarter 2, 2003 Quarter 1, 2004 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 8, 2009 Quarter 8, 2009 Quarter 9, 200 | ` '                     |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 1, 2020 Quarter 2, 2020 Quarter 2, 2020 Quarter 3, 2020 STRONTIUM-90 Quarter 3, 2003 Quarter 4, 2002 Quarter 2, 2003 Quarter 1, 2004 Quarter 3, 2004 Quarter 4, 2006 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2005 Quarter 3, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Q |                         |          |          |          |   |     |          |          |   |   |   |     | *  | т-   |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 2, 2020 Quarter 3, 2020 Quarter 3, 2020 Quarter 1, 2004 Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 2, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 2, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 200 |                         |          |          |          |   |     |          |          |   |   |   | *   |    |      |                                                  |     |     |                                                  |     | *   |          |     |     |          |
| TRONTIUN-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |          |          |          |   |     |          |          |   |   |   |     | т. | *    |                                                  |     |     |                                                  |     |     |          |     |     |          |
| STRONTIUN-90 Quarter 2, 2003 Quarter 4, 2004 Quarter 4, 2002 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 8, 2009 Quarter 8, 2009 Quarter 8, 2009 Quarter 8, 2009 Quarter 9, 2009 Q |                         |          |          |          |   |     |          |          |   |   |   |     | *  | -    |                                                  |     |     |                                                  |     | -   |          |     |     |          |
| Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 200 |                         |          |          |          |   |     |          |          |   |   |   | -   | -  |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 1, 2004  SULPATE  Quarter 1, 2002  Quarter 1, 2003  Quarter 2, 2003  Quarter 2, 2003  Quarter 2, 2003  Quarter 3, 2003  Quarter 1, 2004  Quarter 2, 2006  Quarter 3, 2007  Quarter 4, 2007  Quarter 4, 2007  Quarter 1, 2007  Quarter 2, 2008  Quarter 1, 2009  Quarter 1, 2009  Quarter 2, 2009  Quarter 2, 2009  Quarter 3, 2009  Quarter 2, 2009  Quarter 3, 2009  Quarter 4, 2009  ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |          |          |          |   |     |          |          |   |   | _ |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| SULFATE Quarter 1, 2002 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2009  ** * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009  ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009  ** * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     | *   |          |     |     |          |
| Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 6, 2009 Quarter 7, 200 |                         |          |          |          |   |     |          |          |   |   |   |     | *  | *    |                                                  |     |     | *                                                |     |     |          |     |     |          |
| Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 5, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |          |          |   |     |          |          |   |   | * |     |    |      |                                                  |     |     |                                                  | *   |     |          |     |     |          |
| Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009  ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  | -4- |     |          |     |     |          |
| Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2009  ** * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009  ** * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  | *   |     |          |     |     |          |
| Quarter 3, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     | *                                                |     |     | *        |     |     |          |
| Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009  ** ** ** ** ** ** ** ** ** ** ** ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |          |          |          |   |     |          |          |   | * |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009  ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009  ** * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     | *                                                |     |     |          |     |     |          |
| Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2007 Quarter 7, 2007 Quarter 7, 2007 Quarter 7, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009  * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ` '                     |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     | ***                                              |     |     |          |     |     |          |
| Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     | 3£                                               |     |     |          |     |     |          |
| Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2009 * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | _        |          |          |   |     | _        |          |   |   |   |     |    |      |                                                  |     |     | <u> </u>                                         |     |     | *        |     |     |          |
| Quarter 2, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | _        |          |          |   |     | _        |          |   |   |   |     |    |      |                                                  |     |     | *                                                |     |     |          |     |     |          |
| Quarter 3, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          | <u> </u> | <b> </b> |   |     |          | <b> </b> |   | * | * |     | *  | - Ar | <u> </u>                                         |     |     | -14                                              | *   | 414 | *        |     |     | <u> </u> |
| Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009  ** ** ** ** ** ** ** ** ** ** ** ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |          | -        | -        |   |     |          | -        |   | * | * |     | *  | *    | <del>                                     </del> |     |     |                                                  | *   |     | *        |     |     | -        |
| Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009  **  **  **  **  **  **  **  **  **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | <u> </u> |          |          |   |     | <u> </u> |          |   |   |   | _   |    |      | <b> </b>                                         |     |     |                                                  |     |     | *        |     | _   |          |
| Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     |     | <b>.</b> |     |     |          |
| Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009  ** ** ** ** ** ** ** ** ** ** ** ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |          |          |          |   |     |          |          |   |   |   |     |    |      | <u> </u>                                         |     |     |                                                  |     |     |          |     |     |          |
| Quarter 4, 2007       * * * * * * * * *         Quarter 1, 2008       * * * * * * * * * * *         Quarter 2, 2008       * * * * * * * * * * * * * * * * *         Quarter 3, 2008       * * * * * * * * * * * * * * * * * *         Quarter 4, 2008       * * * * * * * * * * * * * * * * *         Quarter 1, 2009       * * * * * * * * * * * * * * * * *         Quarter 2, 2009       * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 1, 2008         * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |          |          |          |   |     |          |          |   | * |   |     |    |      | <u> </u>                                         |     |     |                                                  | ,,, |     |          |     |     |          |
| Quarter 2, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |
| Quarter 3, 2008     * * * * * * * *       Quarter 4, 2008     * * * * * * *       Quarter 1, 2009     * * * * * * * *       Quarter 2, 2009     * * * * * * * * * *       Quarter 3, 2009     * * * * * * * * * * * * *       Quarter 4, 2009     * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ` '                     |          |          |          |   |     |          |          |   |   |   |     |    |      | <u> </u>                                         |     |     |                                                  |     |     |          |     |     |          |
| Quarter 4, 2008     * * * * * * *       Quarter 1, 2009     * * * * * * *       Quarter 2, 2009     * * * * * * * * *       Quarter 3, 2009     * * * * * * * * * * * * *       Quarter 4, 2009     * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |          |          |          |   |     |          |          | * |   |   | *   |    |      | *                                                |     |     |                                                  |     |     |          |     |     |          |
| Quarter 1, 2009     * * * * * *       Quarter 2, 2009     * * * * * * *       Quarter 3, 2009     * * * * * * * * *       Quarter 4, 2009     * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quarter 3, 2008         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  | *   |     | *        |     |     | L        |
| Quarter 2, 2009     * * * * * * * *       Quarter 3, 2009     * * * * * * * *       Quarter 4, 2009     * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quarter 4, 2008         |          |          |          |   |     |          |          |   |   | * |     | *  | *    |                                                  |     |     | *                                                |     | *   |          |     |     |          |
| Quarter 3, 2009     * * * * * * *       Quarter 4, 2009     * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quarter 1, 2009         |          |          |          |   |     |          |          |   |   | * |     | *  | *    |                                                  |     |     | *                                                | *   | *   |          |     |     |          |
| Quarter 4, 2009 * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quarter 2, 2009         |          |          |          |   |     |          |          |   | * | * |     | *  | *    |                                                  |     |     | *                                                | *   | *   | *        |     |     |          |
| Quarter 4, 2009 * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quarter 3, 2009         |          |          |          |   |     |          |          |   | * | * |     | *  | *    |                                                  |     |     | *                                                | *   | *   | *        |     |     |          |
| Quarter 1, 2010 * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quarter 4, 2009         | *        |          |          |   |     |          |          |   |   | * |     | *  | *    |                                                  |     |     | *                                                | *   | *   |          |     |     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 1, 2010         | *        |          |          |   |     |          |          |   | * | * |     | *  | *    |                                                  |     |     | *                                                |     | *   |          |     |     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |          |          |   |     |          |          |   |   |   |     |    |      |                                                  |     |     |                                                  |     |     |          |     |     |          |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Groundwater Flow System |     |     | UCRS     | S   |     |     |          |       |     | 1    | URGA | 4   |     |          |          |     |          |     |          | LRGA | A   |     |     |
|-------------------------|-----|-----|----------|-----|-----|-----|----------|-------|-----|------|------|-----|-----|----------|----------|-----|----------|-----|----------|------|-----|-----|-----|
| Gradient                | S   | D   | D        | D   | U   | S   | S        | S     | S   | S    | D    | D   | D   | D        | U        | U   | S        | D   | D        | D    | D   | U   | U   |
| Monitoring Well         | 386 | 389 | 390      | 393 | 396 | 221 | 222      | 223   | 224 | 384  | 369  | 372 | 387 | 391      | 220      | 394 | 385      | 370 | 373      | 388  | 392 | 395 | 397 |
| SULFATE                 |     |     |          |     |     |     |          |       |     |      |      |     |     |          |          |     |          |     |          |      |     |     |     |
| Quarter 2, 2010         |     |     |          |     |     |     |          |       | *   | *    |      | *   | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 3, 2010         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 4, 2010         | *   |     |          |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | *   | *        |      |     |     |     |
| Quarter 1, 2011         | *   |     |          |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | *   | *        |      |     |     |     |
| Quarter 2, 2011         | *   |     |          |     |     |     |          |       |     | *    |      | *   | *   | *        |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 3, 2011         | *   |     |          |     |     |     |          |       |     | *    |      | *   | *   | *        |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 4, 2011         | *   |     |          |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 1, 2012         | *   |     |          |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 2, 2012         | *   |     |          |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 3, 2012         | *   |     |          |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 4, 2012         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 1, 2013         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 2, 2013         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   | *        |          |     | *        | *   | *        | *    |     |     |     |
|                         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   | *        |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 3, 2013         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   | *        |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 4, 2013         |     |     |          |     |     |     |          | - N   |     | *    |      |     |     |          |          |     |          |     |          |      |     |     |     |
| Quarter 1, 2014         |     |     |          |     |     |     |          | *     |     |      |      | *   | *   | <u>.</u> |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 2, 2014         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   | *        |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 3, 2014         |     |     | <u> </u> |     |     |     | <u> </u> |       |     | *    |      | *   | *   | *        | <u> </u> |     | *        | *   | *        | *    |     |     |     |
| Quarter 4, 2014         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 1, 2015         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   | <u> </u> | <u> </u> |     | *        | *   | *        | *    |     |     |     |
| Quarter 2, 2015         |     |     | <u> </u> |     |     |     | <u> </u> | . اله |     | *    | *    | *   | *   | *        | *        |     | *        | *   | *        | *    |     |     |     |
| Quarter 3, 2015         |     |     |          |     |     |     |          | *     |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    |     |     |     |
| Quarter 4, 2015         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   | *        |          |     | *        |     | *        | *    |     |     |     |
| Quarter 1, 2016         |     |     |          |     |     |     |          | *     |     | *    |      | *   | *   | *        |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 2, 2016         |     |     |          |     |     |     |          | *     |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    |     |     |     |
| Quarter 3, 2016         |     |     |          |     |     |     |          | *     |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    |     |     |     |
| Quarter 4, 2016         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    |     |     |     |
| Quarter 1, 2017         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    |     |     |     |
| Quarter 2, 2017         |     |     |          |     |     |     |          | *     |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    |     |     |     |
| Quarter 3, 2017         |     |     |          |     |     |     |          | *     |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    |     |     |     |
| Quarter 4, 2017         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    |     |     |     |
| Quarter 1, 2018         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   | *        |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 2, 2018         |     |     |          |     |     |     |          | *     |     | *    | *    | *   | *   | *        | *        |     | *        | *   | *        | *    |     |     |     |
| Quarter 3, 2018         |     |     |          |     |     |     |          | *     |     | *    |      | *   |     | *        | *        |     | *        | *   | *        | *    |     |     |     |
| Quarter 4, 2018         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   | *        |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 1, 2019         |     |     |          |     |     |     |          | *     |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    |     |     |     |
| Quarter 2, 2019         |     |     | 4        |     |     |     |          | *     |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    | 4   |     |     |
| Quarter 3, 2019         |     |     | *        |     |     |     |          | *     |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    | *   |     |     |
| Quarter 4, 2019         |     |     | *        |     |     |     |          |       |     | *    |      | *   | *   | *        |          |     | *        | *   | *        | *    | *   |     |     |
| Quarter 1, 2020         |     |     |          |     |     |     |          | *     |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    | *   |     |     |
| Quarter 2, 2020         |     |     | ,1.      |     |     |     |          | *     |     | *    |      | *   | *   | *        | *        |     | *        | *   | *        | *    | *   |     |     |
| Quarter 3, 2020         |     |     | *        |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | *   | *        | *    | *   |     |     |
| TECHNETIUM-99           |     |     |          |     |     |     |          |       |     |      |      |     |     |          |          |     |          |     | 114      |      |     |     |     |
| Quarter 4, 2002         |     |     |          |     |     |     |          |       |     |      |      |     | 120 |          |          |     | <u>.</u> |     | *        |      |     |     |     |
| Quarter 1, 2003         | 414 |     | ,1.      |     |     |     |          |       |     | ų.   |      |     | *   |          |          |     | *        |     | *        |      |     |     |     |
| Quarter 2, 2003         | *   |     | *        |     |     |     |          |       |     | *    |      |     | *   |          |          |     | *        |     |          | 110  |     |     |     |
| Quarter 3, 2003         |     |     | *        |     |     |     |          |       |     | - JL |      | 110 | *   |          |          |     | *        |     | 10       | *    |     |     |     |
| Quarter 4, 2003         |     |     | *        |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        |     | *        | *    |     |     |     |
| Quarter 1, 2004         |     |     | *        |     |     |     |          |       |     |      |      | *   | *   |          |          |     | *        |     | *        | 110  |     |     |     |
| Quarter 2, 2004         |     |     | *        |     |     |     |          |       |     |      |      | *   | *   |          |          |     | *        |     | *        | *    |     |     |     |
| Quarter 3, 2004         |     |     | *        |     |     |     |          |       |     | ų.   |      | *   | ,1. |          |          |     | *        | ų.  | *        |      |     |     |     |
| Quarter 4, 2004         |     |     | *        |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | *   | *        | ,1.  |     |     |     |
| Quarter 1, 2005         |     |     | *        |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        | L   | <u>.</u> | *    |     |     |     |
| Quarter 2, 2005         |     |     | *        |     |     |     |          |       |     | *    |      |     | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 3, 2005         |     |     | *        |     |     |     |          |       |     | *    |      |     | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 4, 2005         |     |     | *        |     |     |     |          |       |     | *    |      | *   | *   |          |          |     | *        |     | *        | *    |     |     |     |
| Quarter 1, 2006         |     |     |          |     |     |     |          |       |     | *    |      | *   | *   |          |          |     |          |     | *        | *    |     |     |     |
| Quarter 2, 2006         |     |     | *        |     |     |     |          |       |     | *    |      |     | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 3, 2006         |     |     | *        |     |     |     |          |       |     | *    |      |     | *   |          |          |     | *        | *   | *        | *    |     |     |     |
| Quarter 4, 2006         | *   |     |          |     |     |     |          |       |     | *    |      | *   | *   |          |          |     |          |     | *        | *    |     |     |     |
| Quarter 1, 2007         |     |     | *        |     |     |     |          |       |     | *    |      |     | *   |          |          |     | *        |     | *        | *    |     |     |     |
|                         |     |     |          |     |     |     |          |       |     |      |      |     |     |          |          |     |          |     |          |      |     |     |     |
|                         |     |     |          |     |     |     |          |       |     |      |      |     |     |          |          |     |          |     |          |      |     |     |     |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Gradient S D D D U S S S S D D D D U S S S S S D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Groundwater Flow System |          | ,                                                | UCRS | S |   |          |   |   |          | 1 | URGA     | 4        |   |                                                  |          |   |          |   |   | LRGA     | A. |   | _                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|--------------------------------------------------|------|---|---|----------|---|---|----------|---|----------|----------|---|--------------------------------------------------|----------|---|----------|---|---|----------|----|---|--------------------------------------------------|
| Manifering Well 386 389 390 391 396 291 222 231 224 384 360 391 200 394 385 390 370 373 385 391 395 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 396 397 397 397 397 397 397 397 397 397 397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gradient                | S        |                                                  |      |   | U | S        | S | S | S        |   |          |          | D | D                                                | U        | U | S        | D |   |          |    | U | U                                                |
| TECHNET   Move                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Monitoring Well         |          |                                                  |      |   |   |          |   |   |          | _ |          |          | _ |                                                  |          |   |          |   | _ |          |    |   | 397                                              |
| Quarter 3, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2001 Quarter 4, 200 | TECHNETIUM-99           |          |                                                  |      |   |   |          |   |   |          |   |          |          |   |                                                  |          |   |          |   |   |          |    |   |                                                  |
| Ounter 1, 2007 Ounter 1, 2008 Ounter 2, 2008 Ounter 2, 2008 Ounter 3, 2008 Ounter 3, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 5, 2009 Ounter 5, 2009 Ounter 5, 2009 Ounter 5, 2009 Ounter 6, 2009 Ounter 7, 2009 Ounter 6, 2001 Ounter 6, 2010 Ounter 6, 2010 Ounter 6, 2010 Ounter 6, 2010 Ounter 6, 2011 Ounter 7, 2011 Ounter | Quarter 2, 2007         |          |                                                  | *    |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        | * |   | *        |    |   |                                                  |
| Ounter 1, 1908 Ounter 2, 1908 Ounter 3, 1908 Ounter 4, 1908 Ounter 4, 1909 Ounter 4, 1909 Ounter 4, 1909 Ounter 4, 1909 Ounter 3, 1909 Ounter 4, 1909 Ounter 4, 1909 Ounter 4, 1909 Ounter 4, 1901 Ounter 5, 1901 Ounter 6, 1901 Ounter 6, 1901 Ounter 6, 1901 Ounter 7, 1901 Ounter | Quarter 3, 2007         |          |                                                  | *    |   |   |          |   |   |          | * | *        | *        | * |                                                  |          |   | *        |   | * | *        |    |   |                                                  |
| Ounter 2, 2008 Ounter 4, 2008 Ounter 4, 2008 Ounter 5, 2009 Ounter 5, 2009 Ounter 6, 2009 Ounter 7, 2009 Ounter 7, 2009 Ounter 7, 2009 Ounter 6, 2009 Ounter 6, 2009 Ounter 7, 2009 Ounter 7, 2009 Ounter 7, 2010 Ounter 7, 2011 Ounter | Quarter 4, 2007         |          |                                                  | *    |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        |   | * | *        |    |   |                                                  |
| Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 5, 2012 Quarter 6, 2013 Quarter 6, 2013 Quarter 7, 2013 Quarter 7, 2013 Quarter 7, 2014 Quarter 7, 2015 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 201 | Quarter 1, 2008         |          |                                                  | *    |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        | * | * | *        |    |   |                                                  |
| Ounter 4, 2008 Ounter 2, 2009 Ounter 2, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 2, 2010 Ounter 3, 2010 Ounter 4, 2010 Ounter 4, 2010 Ounter 4, 2011 Ounter 4, 2011 Ounter 2, 2011 Ounter 2, 2011 Ounter 2, 2011 Ounter 2, 2011 Ounter 3, 2011 Ounter 4, 2011 Ounter 2, 2011 Ounter 4, 2011 Ounter 4, 2011 Ounter 4, 2011 Ounter 4, 2011 Ounter 5, 2012 Ounter 5, 2012 Ounter 5, 2012 Ounter 6, 2013 Ounter 7, 2013 Ounter 7, 2013 Ounter 8, 2013 Ounter 9, 2014 Ounter 9, 2015 Ounter 9, 2016 Ounter 9, 2016 Ounter 9, 2017 Ounter | Quarter 2, 2008         |          |                                                  | *    |   |   |          |   |   |          | * | *        |          | * |                                                  |          |   | *        |   | * | *        |    |   |                                                  |
| Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2014 Quarter 2, 2015 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2010 Quarter 2, 201 | Quarter 3, 2008         |          |                                                  |      |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        |   |   | *        |    |   |                                                  |
| Quarter 2,2009 Quarter 4,2009 Quarter 4,2009 Quarter 4,2009 Quarter 4,2000 Quarter 4,2010 Quarter 2,2010 Quarter 2,2010 Quarter 2,2010 Quarter 2,2010 Quarter 2,2010 Quarter 2,2010 Quarter 2,2011 Quarter 2,2011 Quarter 3,2010 Quarter 4,2010 Quarter 4,2011 Quarter 3,2010 Quarter 4,2011 Quarter 3,2011 Quarter 3,2011 Quarter 3,2011 Quarter 4,2011 Quarter 4,2011 Quarter 4,2011 Quarter 4,2012 Quarter 3,2012 Quarter 3,2012 Quarter 4,2013 Quarter 4,2013 Quarter 4,2013 Quarter 4,2014 Quarter 4,2014 Quarter 4,2014 Quarter 4,2015 Quarter 4,2015 Quarter 4,2016 Quarter 4,2016 Quarter 4,2016 Quarter 2,2015 Quarter 4,2016 Quarter 4,2016 Quarter 2,2016 Quarter 3,2016 Quarter 2,2017 Quarter 3,2016 Quarter 2,2017 Quarter 3,2016 Quarter 2,2017 Quarter 3,2016 Quarter 2,2017 Quarter 2,2017 Quarter 2,2017 Quarter 3,2016 Quarter 1,2017 Quarter 1,2017 Quarter 1,2019 Quarter 1,2017 Quarter 1,2019 Quarter 2,2016 Quarter 1,2017 Quarter 1,2019 Quarter 1,2019 Quarter 1,2019 Quarter 2,2019 Quarter 2,2000 Quarte | Quarter 4, 2008         |          |                                                  | *    |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        | * | * | *        |    |   |                                                  |
| Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 7, 2018 Quarter 7, 2017 Quarter 8, 2017 Quarter 8, 2017 Quarter 9, 2018 Quarter 9, 2017 Quarter 9, 2018 Quarter 9, 201 | Quarter 1, 2009         |          |                                                  | *    |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        |   |   |          |    |   |                                                  |
| Counter 4, 2009  Counter 2, 2010  Counter 2, 2010  Counter 3, 2010  Counter 4, 2011  Counter 4, 2011  Counter 4, 2011  Counter 4, 2011  Counter 5, 2011  Counter 6, 2011  Counter 6, 2011  Counter 7, 2011  Counter 7, 2011  Counter 8, 2011  Counter 9, 2012  Counter 9, 2012  Counter 9, 2012  Counter 9, 2012  Counter 9, 2013  Counter 1, 2013  Counter 1, 2013  Counter 9, 2014  Counter 9, 2015  Counter 9, 2015  Counter 9, 2015  Counter 9, 2016  Counter 9, 2017  Counter 9, 2019  Counter 9, 2017  Counter 9, 2019  Counter 9, 2017  Counter 9, 2018  Counte | Quarter 2, 2009         |          |                                                  | *    |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        | * |   | *        |    |   |                                                  |
| Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 1, 2012 Quarter 2, 2013 Quarter 3, 2012 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2019 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2019 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 2, 2019 Quarter 2, 201 | Quarter 3, 2009         |          |                                                  | *    |   |   |          |   |   |          | * | *        | *        | * |                                                  |          |   | *        |   |   | *        |    |   |                                                  |
| Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2017 Quarter 4, 2019 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2010 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2017 Quarter 6, 2017 Quarter 7, 2018 Quarter 7, 2018 Quarter 7, 2019 Quarter 7, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 8, 2019 Quarter 8, 201 | Quarter 4, 2009         |          |                                                  | *    |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        |   |   |          |    |   |                                                  |
| Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017  ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quarter 1, 2010         |          |                                                  | *    |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        |   |   |          |    |   |                                                  |
| Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 1, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2017 Quarter 3, 2019 Quarter 4, 2017 Quarter 3, 2019 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2016 Quarter 3, 2018 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 5, 2018 Quarter 6, 2018 Quarter 6, 2018 Quarter 6, 2018 Quarter 6, 2018 Quarter 7, 2018 Quarter 6, 201 | Quarter 2, 2010         |          |                                                  | *    |   |   |          |   |   |          | * |          |          | * |                                                  |          |   | *        | * |   | *        |    |   |                                                  |
| Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 5, 2012 Quarter 6, 2012 Quarter 7, 2013 Quarter 8, 2013 Quarter 9, 2013 Quarter 9, 2013 Quarter 9, 2014 Quarter 9, 2015 Quarter 9, 2016 Quarter 9, 2017 Quarter 9, 2017 Quarter 9, 2018 Quarter 9, 2019 Quarter 9, 201 | Quarter 3, 2010         |          |                                                  | *    |   |   |          |   |   |          | * | *        | *        | * |                                                  |          |   | *        |   |   |          |    |   |                                                  |
| Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2012 Quarter 1, 2013 Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2017 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2010 Quarter 6, 2010 Quarter 8, 2010 Quarter 8, 201 | Quarter 4, 2010         |          |                                                  | *    |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        |   |   |          |    |   |                                                  |
| Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 5, 2014 Quarter 6, 2013 Quarter 7, 2014 Quarter 7, 2015 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2017 Quarter 7, 2017 Quarter 7, 2017 Quarter 7, 2019 Quarter 7, 201 |                         |          |                                                  |      |   |   |          |   |   |          | * |          |          | * |                                                  |          |   | *        |   |   |          |    |   |                                                  |
| Quarter 1, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 5, 2016 Quarter 6, 2017 Quarter 6, 2019 Quarter 7, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 7, 2019 Quarter 1, 2020 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 6, 2019 Quarter 6, 2019 Quarter 7, 201 | Quarter 2, 2011         |          |                                                  | *    |   |   |          |   |   |          | * |          |          | * |                                                  |          |   | *        |   |   | *        |    |   |                                                  |
| Quarter 1, 2011 Quarter 1, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 3, 2011         |          |                                                  | *    |   |   |          |   |   |          | * |          |          | * |                                                  |          |   | *        |   |   | *        |    |   |                                                  |
| Quarter 1, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                                                  | *    |   |   |          |   |   |          |   | *        | *        |   |                                                  |          |   | *        |   |   |          |    |   |                                                  |
| Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 7, 2018 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 6, 2018 Quarter 6, 2017 Quarter 7, 2018 Quarter 7, 2019 Quarter 7, 201 | Quarter 1, 2012         |          |                                                  | *    |   |   |          |   |   |          | * |          |          | * |                                                  |          |   | *        |   |   | *        |    |   |                                                  |
| Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2020 Quarter 1, 2020 Quarter 3, 2020 Quarter 3, 2035 Quarter 3, 2035 Quarter 1, 2030 Quarter 1, 2030 Quarter 2, 2030 Quarter 3, 2035 Quarter 3, 2030 Quarter 3, 2035 Quarter 3, 2035 Quarter 3, 2035 Quarter 3, 2030 Quarter 3, 2035 Quarter 3, 203 | Quarter 2, 2012         |          |                                                  | *    |   |   |          |   |   |          | * |          |          |   |                                                  |          |   |          |   | * | *        |    |   | <b>—</b>                                         |
| Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2014  ** ** ** ** ** ** ** ** ** ** ** ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quarter 3, 2012         |          |                                                  |      |   |   |          |   |   |          |   |          | *        |   |                                                  |          |   |          |   |   |          |    |   |                                                  |
| Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2019 Quarter 4, 2017 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2020 Quarter 3, 2030 Quarter 1, 2017  ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quarter 4, 2012         |          |                                                  |      |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        |   | * | *        |    |   |                                                  |
| Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2019 Quarter 2, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2020 Quarter 3, 2030 Quarter 4, 2040 Quarter 4, 204 | Ouarter 1, 2013         |          |                                                  |      |   |   |          |   |   |          | * |          |          | * |                                                  |          |   | *        |   | * | *        |    |   |                                                  |
| Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 1, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 3, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 3, 2020 Quarter 1, 2010 Quarter 3, 2020 Quarter 3, 2030  ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                       |          |                                                  |      |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        |   | * | *        |    |   |                                                  |
| Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015  **  Quarter 1, 2015  **  Quarter 1, 2015 Quarter 2, 2015  **  Quarter 2, 2015  **  Quarter 3, 2015  **  Quarter 3, 2015  **  Quarter 2, 2016  **  Quarter 3, 2015  **  Quarter 1, 2017  Quarter 2, 2017  **  Quarter 2, 2017  **  Quarter 3, 2017  **  Quarter 4, 2017 Quarter 3, 2018  Quarter 3, 2018  Quarter 2, 2019  Quarter 2, 2019  Quarter 2, 2019  Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2010 Quarter 2, 2019 Quarter 2, 2010 Quarter 2, 2019 Quarter 2, 2010 Quarter 3, 2015  **  **  **  **  **  **  **  **  **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                       |          |                                                  | *    |   |   |          |   |   |          | * |          | *        | * |                                                  |          |   | *        |   | * | *        |    |   |                                                  |
| Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2015 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |          |                                                  | *    |   |   |          |   |   |          |   |          |          |   |                                                  |          |   | *        |   |   | *        |    |   |                                                  |
| Quarter 2, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                                                  | *    |   |   |          |   |   |          | * | *        |          | * |                                                  |          |   | *        |   | * | *        |    |   |                                                  |
| Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 3, 2019 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                       |          |                                                  | *    |   |   |          |   |   |          | * | *        |          | * | *                                                |          |   | *        |   | * | *        |    |   |                                                  |
| Quarter 4, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                                                  | *    |   |   |          |   |   |          | * |          |          | * |                                                  |          |   | *        |   |   | *        |    |   |                                                  |
| Quarter 1, 2015 Quarter 2, 2015 R Quarter 3, 2015 R Quarter 3, 2015 R Quarter 4, 2015 R Quarter 4, 2016 R Quarter 2, 2016 R Quarter 3, 2016 R Quarter 4, 2016 R Quarter 4, 2016 R Quarter 4, 2017 R Quarter 2, 2017 R Quarter 2, 2017 R Quarter 3, 2017 R Quarter 4, 2017 R Quarter 4, 2017 R Quarter 4, 2018 R Quarter 4, 2018 R Quarter 4, 2019 R Quarter 4, 2019 R Quarter 4, 2019 R Quarter 3, 2019 R Quarter 4, 2019 R Quarter 3, 2010 R Quarter 3, 2019 R Quarter 3, 2019 R Quarter 3, 2019 R Quarter 3, 2010 R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |          |                                                  | *    |   |   |          |   |   |          | * | *        | *        | * |                                                  |          |   | *        |   | * | *        |    |   |                                                  |
| Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 R Quarter 1, 2016 R Quarter 3, 2016 R Quarter 3, 2016 R Quarter 3, 2016 R Quarter 3, 2016 R Quarter 4, 2016 R Quarter 2, 2017 R Quarter 2, 2017 R Quarter 2, 2017 R Quarter 2, 2017 R Quarter 3, 2017 R Quarter 3, 2017 R Quarter 4, 2017 R Quarter 4, 2017 R Quarter 3, 2018 R Quarter 4, 2018 R Quarter 4, 2018 R Quarter 4, 2018 R Quarter 4, 2019 R Quarter 3, 2020 R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |          |                                                  | *    |   |   |          |   |   |          | * | *        | *        | * |                                                  |          |   | *        |   |   | *        |    |   |                                                  |
| Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 R Quarter 2, 2016 R Quarter 3, 2016 R Quarter 3, 2016 R Quarter 3, 2016 R Quarter 4, 2016 R Quarter 4, 2017 R Quarter 3, 2017 R Quarter 4, 2017 R Quarter 4, 2017 R Quarter 4, 2018 R Quarter 4, 2018 R Quarter 4, 2018 R Quarter 4, 2019 R Quarter 4, 2019 R Quarter 4, 2019 R Quarter 3, 2019 R Quarter 4, 2019 R Quarter 4, 2019 R Quarter 3, 2019 R Quarter 3, 2019 R Quarter 4, 2019 R Quarter 3, 2019 R Quarter 3, 2019 R Quarter 4, 2019 R Quarter 3, 2019 R R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |          |                                                  | *    |   |   |          |   |   |          |   |          |          |   |                                                  |          |   |          |   |   |          |    |   |                                                  |
| Quarter 4, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1        |                                                  |      |   |   |          |   |   |          |   |          | *        |   |                                                  |          |   |          | * | * |          |    |   | $\vdash$                                         |
| Quarter 1, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1        |                                                  |      |   |   |          |   |   |          |   |          |          |   |                                                  |          |   |          |   |   |          |    |   | $\vdash$                                         |
| Quarter 2, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                                                  |      |   |   |          |   |   |          |   | *        |          |   |                                                  |          |   |          |   | * |          |    |   | $\vdash$                                         |
| Quarter 3, 2016         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |          |                                                  | *    |   |   | *        |   |   |          | * |          |          | * |                                                  |          |   | *        | * |   | *        |    |   |                                                  |
| Quarter 4, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                                                  | *    |   |   |          |   |   |          |   |          | *        |   |                                                  |          |   |          |   |   | *        |    |   |                                                  |
| Quarter 1, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1        |                                                  |      |   |   |          |   |   |          |   | *        |          |   |                                                  |          |   |          | - |   |          |    |   | $\vdash$                                         |
| Quarter 2, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                                                  | *    |   |   |          |   |   |          |   |          |          |   |                                                  |          |   | *        | * |   | *        |    |   | $\vdash$                                         |
| Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                                                  |      |   |   |          |   |   |          |   |          |          |   |                                                  |          |   |          |   |   | *        |    |   |                                                  |
| Quarter 4, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                                                  |      |   |   |          |   |   |          |   | *        |          |   |                                                  |          |   |          |   |   |          |    |   |                                                  |
| Quarter 1, 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          | 1                                                |      |   |   |          |   |   |          |   |          | *        |   | 1                                                |          |   |          |   |   |          |    |   |                                                  |
| Quarter 2, 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1        |                                                  |      |   |   | -        |   |   |          |   | *        | <u> </u> |   |                                                  | -        |   |          |   |   |          |    |   | $\vdash$                                         |
| Quarter 3, 2018       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 1        |                                                  |      |   |   |          |   |   |          |   |          | *        |   |                                                  | -        |   |          |   |   |          |    |   |                                                  |
| Quarter 4, 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                       | 1        |                                                  |      |   |   | -        |   |   |          |   | H        |          |   |                                                  | -        |   |          |   |   |          |    |   | $\vdash$                                         |
| Quarter 1, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                                                  |      |   |   |          |   |   |          |   | *        |          |   |                                                  |          |   |          |   |   |          |    |   |                                                  |
| Quarter 2, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1        |                                                  |      |   |   | -        |   |   |          |   |          |          |   |                                                  | -        |   |          |   |   |          |    |   | $\vdash$                                         |
| Quarter 3, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                       | 1        |                                                  |      |   |   | -        |   |   |          |   |          |          |   |                                                  | -        |   |          |   |   |          |    |   | $\vdash$                                         |
| Quarter 4, 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1        | 1                                                |      |   |   |          |   |   |          |   |          |          |   | 1                                                | -        |   |          |   |   |          |    |   | $\vdash$                                         |
| Quarter 1, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1        |                                                  |      |   |   | -        |   |   |          |   | H        |          |   |                                                  | -        |   |          |   | * |          |    |   | $\vdash$                                         |
| * * * * * * *   * * *   * * *   * * *   * * *   *   * * *   * *   * *   * *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *   *    |                         | 1        | 1                                                |      |   |   |          |   |   |          |   | -        |          |   | 1                                                | -        |   |          |   |   |          |    |   | $\vdash$                                         |
| Quarter 3, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1        |                                                  |      |   |   | -        |   |   |          |   | -        |          |   |                                                  | -        |   |          |   |   |          |    |   | $\vdash$                                         |
| THORIUM-230 Quarter 1, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | $\vdash$ | <del>                                     </del> |      |   |   | $\vdash$ |   |   |          |   | <u> </u> |          |   | <del>                                     </del> | <u> </u> |   |          |   |   |          |    |   | <del>                                     </del> |
| Quarter 1, 2012     *       Quarter 4, 2014     *       Quarter 3, 2015     *       Quarter 1, 2017     *       *     *       *     *       *     *       *     *       *     *       *     *       *     *       *     *       *     *       *     *       *     *       *     *       *     *       *     *       *     *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |          |                                                  |      |   |   |          |   |   |          |   |          |          |   |                                                  |          |   | Ė        |   |   |          |    |   |                                                  |
| Quarter 4, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | *        |                                                  |      |   |   |          |   |   | *        |   |          |          |   | *                                                |          |   |          |   |   |          |    |   |                                                  |
| Quarter 3, 2015     *     *     *     *     *       Quarter 1, 2017     *     *     *     *       THORIUM-234     Quarter 2, 2003     *     *     *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                       |          | <del>                                     </del> | *    |   |   | $\vdash$ |   |   | <u> </u> |   | <u> </u> | <u> </u> |   | +-                                               | <u> </u> |   | $\vdash$ |   |   | <u> </u> |    |   | <del>                                     </del> |
| Quarter 1, 2017 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |          |                                                  |      |   |   |          |   |   | *        | * |          |          | * |                                                  | *        |   |          |   |   |          |    |   |                                                  |
| THORIUM-234 Quarter 2, 2003 *  *  *  *  *  *  *  *  *  *  *  *  *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |          |                                                  | *    |   |   |          |   |   |          |   |          |          |   |                                                  |          |   | *        |   |   |          |    |   |                                                  |
| Quarter 2, 2003 * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |          |                                                  |      |   |   |          |   |   |          |   |          |          |   |                                                  |          |   | Ė        |   |   |          |    |   |                                                  |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |          |                                                  |      |   |   | *        |   |   | *        |   |          |          |   | *                                                |          |   |          |   |   |          |    |   |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                                                  |      |   |   |          |   |   |          |   |          |          |   |                                                  |          |   |          |   |   |          |    |   |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                                                  |      |   |   |          |   |   |          |   |          |          |   |                                                  |          |   |          |   |   |          |    |   |                                                  |

### Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Gradient S. D. D. D. U. S. S. S. S. S. D. D. D. D. D. U. U. S. D. D. D. D. D. U. U. S. D. D. D. D. D. D. U. U. S. D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Groundwater Flow System |          | UCRS | S |   |   |   |   |   | 1 | URG | A |   |   |   |   |   |   |   | LRGA | A. |   |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|------|---|---|---|---|---|---|---|-----|---|---|---|---|---|---|---|---|------|----|---|----------|
| Monitoring Well 386 589 390 393 396 221 222 223 224 384 869 372 387 391 220 394 885 370 373 388 392 393 570 170 180 180 180 180 180 180 180 180 180 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gradient                | S        |      |   | U | S | S | S | S |   |     |   | D | D | U | U | S | D |   |      |    | U | U        |
| TOTAL NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Monitoring Well         | _        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   | 397      |
| Quarter 4, 2001 Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2009 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 6, 200 | TOLUENE                 |          |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 1, 2005 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007  Quarter 3, 2007  Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2001 Quarter 6, 2007 Quarter 6, 2007 Quarter 6, 2008 Quarter 6, 2008 Quarter 6, 2 | Quarter 2, 2014         |          |      |   |   |   |   |   |   | * | *   |   | * |   |   |   |   |   |   |      |    |   |          |
| Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 1, 2005 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007  Quarter 3, 2007  Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2001 Quarter 6, 2007 Quarter 6, 2007 Quarter 6, 2008 Quarter 6, 2008 Quarter 6, 2 | TOTAL ORGANIC CARBON    |          |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 200 | Quarter 4, 2002         |          |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      | *  |   |          |
| Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2005 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2000 Quarter 3, 2001 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 200 | Quarter 1, 2003         |          |      | * |   |   |   |   |   | * | *   |   |   |   |   |   |   | * | * |      | *  |   |          |
| Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2005 Quarter 4, 2005 Quarter 5, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 9, 2006 Quarter 9, 2006 Quarter 9, 2007 Quarter 9, 2007 Quarter 9, 2006 Quarter 9, 2008 Quarter 9, 2008 Quarter 9, 2009 Quarter 9, 2001 Quarter 9, 2001 Quarter 9, 2001 Quarter 9, 2009 Quarter 9, 2001 Quarter 9, 2006 Quarter 9, 2001 Quarter 9, 2006 Quarter 9, 2007 Quarter 9, 2006 Quarter 9, 2006 Quarter 9, 2007 Quarter 9, 2006 Quarter 9, 200 | Quarter 2, 2003         |          |      |   |   |   |   |   |   | * | *   |   | * |   |   |   |   |   |   |      | *  |   |          |
| Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007  Quarter 3, 2007  Quarter 3, 2007  Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2007  Quarter 3, 2007  Quarter 3, 2007  Quarter 4, 2008 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 5, 2001 Quarter 6, 2009 Quarter 6, 2001 Quarter 7, 2001 Quarter 7, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2001 Quarter 3, 2001 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2001 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2001 Quarter 5, 2001 Quarter 6, 2008 Quarter 6, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter  | Quarter 3, 2003         |          |      |   |   |   | * | * | * | * | *   | * |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2001 Quarter 7, 2009 Quarter 7, 2001 Quarter 7, 2001 Quarter 7, 2009 Quarter 7, 200 | Quarter 4, 2003         |          |      |   |   |   | * |   | * | * |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 5, 2007 Quarter 5, 2007 Quarter 5, 2006 Quarter 6, 2007 Quarter 7, 2008 Quarter 7, 2008 Quarter 7, 2008 Quarter 7, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 7, 2006 Quarter 7, 2008 Quarter 7, 2009 Quarter 7, 200 | Quarter 1, 2004         |          |      |   |   |   |   |   |   | * |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2006 Quarter 4, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2008 Quarter 6, 2008 Quarter 6, 200 | Quarter 2, 2004         |          |      |   |   |   |   |   |   | * | *   |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2007  * Quarter 4, 2007 Quarter 4, 2005  * Quarter 1, 2006  * Quarter 1, 2006  * Quarter 1, 2006  * Quarter 1, 2007  * Quarter 2, 2006  * Quarter 1, 2007  * Quarter 1, 2006  * Quarter 1, 2007  * Quarter 1, 2007  * Quarter 1, 2006  * Quarter 1, 2007  * Quarter 1, 2006  * Quarter 1, 2006  * Quarter 1, 2006  * Quarter 1, 2007  * Quarter 1, 2007  * Quarter 1, 2007  * Quarter 2, 2006  * Quarter 1, 2007  * Quarter 2, 2007  * Quarter 2, 2007  * Quarter 2, 2007  * Quarter 2, 2009  * Quarter 1, 2009  * Quarter 2, 2000  * Quarter 1, 2000  * Quarter 1, 2000  * Quarter 1, 2000  * Quarter 1, 2000  * Quarter 2, 2000  * Quarter 2, 2000  * Quarter 2, 2000  * Quarter 3, 2000  * Quarter 2, 2000  * Quarter 3, 2000  * Quarter 2, 2000  * Quarter 2, 2000  * Quarter 3, 2000  * Quarter 2, 2000  * Quarter 3, 2000  * Quarter 3, 2000  * Quarter 3, 2000  * Quarter 3, 2000  * Quarter 4, 2000  * Quarter 2, 2000  * Quarter 3, 200 | Quarter 3, 2004         |          |      |   |   |   |   |   |   | * |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2007  Quarter 2, 2006 Quarter 1, 2007  Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012  Provided Barbard Ba | Quarter 4, 2004         |          |      |   |   |   |   |   |   | * |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2007  **  Quarter 3, 2001 Quarter 3, 2012  **  Quarter 3, 2016  Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003  **  Quarter 3, 2004  Quarter 2, 2004 Quarter 3, 2005  **  Quarter 3, 2006  **  Quarter 4, 2005  Quarter 4, 2005  Quarter 3, 2006  Quarter 4, 2006  Quarter 3, 2006  Quarter 4, 2007  Quarter 3, 2006  Quarter 4, 2006  Quarter 4, 2006  Quarter 3, 2006  Quarter 4, 2006  Quarter 4, 2006  Quarter 4, 2007  Quarter 4, 2008  Quarter 4, 2008  Quarter 4, 2009  Quarter 4, 2009  Quarter 4, 2009  Quarter 2, 2010  Quarter 3, 2010  Quarter 1, 2010  **  Quarter 3, 2010  Quarter 1, 2010  **  Quarter 3, 2010  Quarter 4, 2010  Quarter 4, 2010  Quarter 4, 2010  Quarter 4, 2010  Quarter 2, 2010  Quarter 3, 2010  Quarter 4, 2010  Quarter 5, 2010  Quarter 6, 2010  Quarter 7 | Quarter 1, 2005         | 1        |      |   |   |   |   |   |   | * |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 ** ** ** ** ** ** ** ** ** ** ** ** **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quarter 2, 2005         |          |      |   |   |   |   |   |   | * |     |   |   |   |   |   |   |   |   |      | *  |   |          |
| Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2006 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2000 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2010 Quarter 4, 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 3, 2005         |          |      |   |   |   |   |   |   | * |     | * |   |   |   |   |   |   |   |      | *  |   |          |
| Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007  ** Quarter 3, 2007  **  **  **  **  **  **  **  **  **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quarter 4, 2005         | 1        |      |   |   |   |   |   |   | * |     |   |   |   |   |   |   |   |   |      | *  |   |          |
| Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007  *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quarter 1, 2006         | t        |      |   |   |   |   |   |   | * |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 4, 2006 Quarter 1, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 2, 2006         | t        |      |   |   |   |   |   |   | * |     | * |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 1, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 4, 2006         | 1        |      |   |   |   |   |   |   |   |     |   |   |   |   |   | * |   |   |      |    |   |          |
| Quarter 2, 2010 Quarter 3, 2007  **    * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quarter 1, 2007         | *        |      |   |   |   |   |   |   | * |     |   |   |   |   |   |   |   |   |      |    |   | t        |
| Quarter 3, 2011 Quarter 3, 2012 * Quarter 3, 2016 TOTAL ORGANIC HALIDES Quarter 1, 2002 Quarter 1, 2003 * Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 * Quarter 3, 2005 * Quarter 2, 2005 * Quarter 2, 2005 * Quarter 1, 2005 * Quarter 1, 2006 * Quarter 1, 2006 * Quarter 1, 2006 * Quarter 2, 2006 * Quarter 1, 2006 * Quarter 2, 2006 * Quarter 2, 2006 * Quarter 3, 2007 * Quarter 2, 2007 * Quarter 3, 2007 * Quarter 4, 2007 * Quarter 4, 2007 * Quarter 4, 2007 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 3, 2009 * Quarter 3, 2009 * Quarter 3, 2009 * Quarter 3, 2009 * Quarter 2, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 2, 2010 * Quarter 3, 2009 * Quarter 3, 2010 * Quarter 4, 2010 * Quarter 3, 2010 * Quarter 4, 2010 * Quarter 5, 2010 * Quarter 6, 2010 * Quarter 6, 2010 * Quarter 6, 2010 * Quarter 7, 2010 * Quarter 8, 2010 * Quarter 8, 2010 * Quarter 9, 2010 *  |                         | *        |      |   |   | * | * | * | * |   |     |   | * | * |   |   | * |   |   |      |    |   | $\vdash$ |
| Quarter 3, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1        |      |   |   |   |   |   |   |   | *   |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 3, 2016  TOTAL ORGANIC HALIDES  Quarter 4, 2002  Quarter 2, 2003  **  Quarter 3, 2004  Quarter 2, 2004  Quarter 1, 2005  **  Quarter 2, 2005  Quarter 2, 2005  Quarter 2, 2005  Quarter 4, 2005  Quarter 4, 2005  Quarter 1, 2006  Quarter 1, 2006  Quarter 1, 2006  Quarter 1, 2006  Quarter 2, 2006  **  Quarter 1, 2006  Quarter 2, 2006  **  Quarter 2, 2006  **  Quarter 3, 2006  Quarter 4, 2007  **  Quarter 2, 2007  Quarter 3, 2007  Quarter 3, 2007  Quarter 4, 2008  Quarter 4, 2008  Quarter 4, 2008  Quarter 1, 2008  Quarter 1, 2009  Quarter 2, 2009  **  Quarter 2, 2009  Quarter 3, 2009  Quarter 3, 2009  Quarter 3, 2009  Quarter 2, 2009  Quarter 2, 2009  Quarter 2, 2009  Quarter 3, 2009  Quarter 2, 2009  Quarter 2, 2009  Quarter 2, 2009  Quarter 2, 2009  Quarter 3, 2009  Quarter 2, 2010  Quarter 3, 2010  Quarter 4, 2010  Quarter 4, 2010  Quarter 1, 2011  X  Quarter 1, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   | 1        |
| TOTAL ORGANIC HALIDES Quarter 1, 2002 Quarter 1, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 1        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   | * |      |    |   |          |
| Quarter 4, 2002 Quarter 1, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                       |          |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 1, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   | * | * |      | *  |   |          |
| Quarter 3, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1        |      | * |   |   |   |   |   |   |     |   |   |   |   |   |   |   | - |      |    |   | 1        |
| Quarter 2, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | $\vdash$ |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   | -        |
| Quarter 3, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                       | $\vdash$ |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 1, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      | -  |   |          |
| Quarter 2, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 3, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 4, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 1, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 2, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 3, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 4, 2006 Quarter 1, 2007  * Quarter 2, 2007  * Quarter 3, 2007  * Quarter 4, 2007  * Quarter 4, 2007  * Quarter 4, 2008  * Quarter 4, 2008  * Quarter 4, 2008  * Quarter 4, 2008  * Quarter 2, 2009  * Quarter 3, 2009  * Quarter 3, 2009  * Quarter 4, 2009  * Quarter 4, 2009  * Quarter 4, 2009  * Quarter 5, 2009  * Quarter 6, 2009  * Quarter 7, 2009  * Quarter 1, 2010  * Quarter 2, 2010  * Quarter 2, 2010  * Quarter 3, 2010  * Quarter 4, 2010  * Quarter 4, 2010  * Quarter 4, 2010  * Quarter 4, 2010  * Quarter 1, 2010  * Quarter 1, 2010  * Quarter 1, 2010  * Quarter 2, 2010  * Quarter 3, 2010  * Quarter 4, 2010  * Quarter 1, 2010  * Quarter 1, 2010  * Quarter 1, 2010  * Quarter 1, 2010  * Quarter 2, 2010  * Quarter 3, 2010  * Quarter 1, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quarter 3, 2006         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 1, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 4, 2006         | 1        |      |   |   |   |   |   |   |   |     |   |   |   |   |   | * |   |   |      |    |   |          |
| Quarter 2, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 1, 2007         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 3, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 2, 2007         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 4, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 3, 2007         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 1, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 4, 2007         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      | *  |   |          |
| Quarter 4, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 1, 2008         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 1, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 4, 2008         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 2, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 4, 2008         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 3, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 1, 2009         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 4, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 2, 2009         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      | *  |   |          |
| Quarter 1, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 3, 2009         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 2, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 4, 2009         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 3, 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 1, 2010         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 4, 2010 * Quarter 1, 2011 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quarter 2, 2010         |          |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 1, 2011 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quarter 3, 2010         |          |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 4, 2010         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
| Quarter 3, 2013 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quarter 1, 2011         | *        |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 3, 2013         |          |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      | *  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |      |   |   |   |   |   |   |   |     |   |   |   |   |   |   |   |   |      |    |   |          |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Secondary   Seco   | Groundwater Flow System |     |     | UCRS | S   |     |     |          |          |     | 1        | URGA | 4   |          |     |          |          |          |     |     | LRG      | Α.  |     |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----|-----|------|-----|-----|-----|----------|----------|-----|----------|------|-----|----------|-----|----------|----------|----------|-----|-----|----------|-----|-----|----------|
| BRICHLOROSTHUNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gradient                | S   | _   | _    |     | U   | S   | S        | S        | S   |          |      |     | D        | D   | U        | U        | S        | D   |     |          | _   | U   | U        |
| Quarter 1, 2002   Quarter 2, 2003   Quarter 2, 2003   Quarter 2, 2004   Quarter 2, 2005   Quarter 2, 2006   Quarter 2, 2007   Quarter 2, 2008   Quarter 2, 2009   Quarter 2,   | Monitoring Well         | 386 | 389 | 390  | 393 | 396 | 221 | 222      | 223      | 224 | 384      | 369  | 372 | 387      | 391 | 220      | 394      | 385      | 370 | 373 | 388      | 392 | 395 | 397      |
| Dauter 1, 2003 Dauter 2, 2003 Dauter 3, 2003 Dauter 4, 2004 Dauter 5, 2004 Dauter 6, 2004 Dauter 6, 2004 Dauter 6, 2004 Dauter 7, 2004 Dauter 9, 2005 Dauter 1, 2005 Dauter 2, 2005 Dauter 2, 2005 Dauter 2, 2006 Dauter 3, 2007 Dauter 3, 2007 Dauter 3, 2007 Dauter 4, 2007 Dauter 4, 2007 Dauter 1, 2008 Dauter 2, 2008 Dauter 2, 2008 Dauter 2, 2008 Dauter 2, 2008 Dauter 3, 2009 Dauter 3, 2009 Dauter 4, 2009 Dauter 4, 2009 Dauter 4, 2010 Dauter 5, 2010 Dauter 6, 2010 Dauter 6, 2010 Dauter 7, 2010 Dauter 7, 2010 Dauter 8, 2010 Dauter 8, 2010 Dauter 9, 2010 Dauter 9, 2010 Dauter | TRICHLOROETHENE         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 2, 2003   Quarter 3, 2005   Quarter 3, 2004   Quarter 3, 2005   Quarter 3, 2006   Quarter 3, 2007   Quarter 4, 2008   Quarter 4, 2009   Quarter 4,   | Quarter 4, 2002         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     | •   |          |
| Jamers 2, 2003  Jamers 4, 2004  Jamers 1, 2004  Jamers 2, 2004  Jamers 3, 2004  Jamers 4, 2005  Jamers 4, 2005  Jamers 2, 2005  Jamers 3, 2005  Jamers 3, 2005  Jamers 4, 2005  Jamers 4, 2005  Jamers 4, 2005  Jamers 2, 2006  Jamers 2, 2006  Jamers 3, 2007  Jamers 3, 2007  Jamers 3, 2007  Jamers 3, 2007  Jamers 4, 2008  Jamers 4, 2009  Jamers 4, 2010  Jamers 4, 2010  Jamers 4, 2010  Jamers 4, 2010  Jamers 4, 2011  Jamers 4, 2015  Jamers 7, 2016  Jamers 7, 2016  Jamers 7, 2016  Jamers 7, 2017  Jamers 7, 2017  Jamers 7, 2017  Jamers 7, 2017  Jamers 7, 2016  Jamers 7, 2016  Jamers 7, 2016  Jamers 7, 2017  Jamers 7, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quarter 1, 2003         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     | •   |          |
| Quarter 4, 2003   Quarter 2, 2004   Quarter 2, 2004   Quarter 2, 2004   Quarter 2, 2004   Quarter 3, 2005   Quarter 4, 2005   Quarter 4, 2006   Quarter 4, 2006   Quarter 4, 2006   Quarter 4, 2007   Quarter 4, 2008   Quarter 4, 2009   Quarter 4,   | Quarter 2, 2003         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| 20amer 2, 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quarter 3, 2003         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 4, 2003         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     | •   |          |
| Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2010 Quarter 4, 201 | Quarter 1, 2004         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Dautrer 4, 2004  Dautrer 2, 2005  Dautrer 3, 2005  Dautrer 1, 2005  Dautrer 1, 2006  Dautrer 1, 2006  Dautrer 2, 2006  Dautrer 2, 2006  Dautrer 2, 2007  Dautrer 2, 2007  Dautrer 3, 2007  Dautrer 4, 2007  Dautrer 2, 2008  Dautrer 2, 2008  Dautrer 2, 2008  Dautrer 2, 2008  Dautrer 3, 2008  Dautrer 3, 2008  Dautrer 4, 2008  Dautrer 4, 2008  Dautrer 4, 2009  Dautrer 4, 2009  Dautrer 2, 2009  Dautrer 3, 2009  Dautrer 4, 2009  Dautrer 4, 2009  Dautrer 4, 2019  Dautrer 4, 2010  Dautrer 4, 2010  Dautrer 4, 2010  Dautrer 4, 2011  Dautrer 4, 2011  Dautrer 4, 2011  Dautrer 4, 2012  Dautrer 4, 2013  Dautrer 4, 2013  Dautrer 4, 2013  Dautrer 4, 2013  Dautrer 4, 2014  Dautrer 4, 2015  Dautrer 2, 2016  Dautrer 2, 2016  Dautrer 3, 2014  Dautrer 4, 2015  Dautrer 2, 2016  Dautrer 3, 2017  Dautrer 3, 2016  Dautrer 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 2, 2004         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Damer   1, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 3, 2004         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     | •   |          |
| Daurier 2, 2005   Daurier 3, 2005   Daurier 4, 2005   Daurier 3, 2005   Daurier 3, 2006   Daurier 4, 2006   Daurier 2, 2006   Daurier 2, 2006   Daurier 2, 2006   Daurier 2, 2007   Daurier 4, 2007   Daurier 4, 2007   Daurier 2, 2008   Daurier 3, 2008   Daurier 4, 2009   Daurier 4, 2010   Daurier 4, 2011   Daurier 4, 2010   Daurier 4, 2011   Daurier 4, 2011   Daurier 4, 2011   Daurier 4, 2010   Daurier 4, 2 | Quarter 4, 2004         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Daumer 3, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quarter 1, 2005         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Daurier 4, 2005  Daurier 2, 2006  Daurier 2, 2006  Daurier 2, 2007  Daurier 2, 2007  Daurier 3, 2007  Daurier 4, 2007  Daurier 2, 2008  Daurier 2, 2008  Daurier 2, 2008  Daurier 3, 2008  Daurier 4, 2008  Daurier 1, 2009  Daurier 4, 2010  Daurier 4, 2011  Daurier 4, 2011  Daurier 4, 2012  Daurier 4, 2013  Daurier 4, 2013  Daurier 4, 2014  Daurier 4, 2015  Daurier 4, 2015  Daurier 2, 2016  Daurier 4, 2016  Daurier 1, 2016  Daurier 1, 2016  Daurier 2, 2017  Daurier 3, 2016  Daurier 2, 2017  Daurier 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quarter 2, 2005         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 1, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 3, 2005         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 2, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 4, 2005         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2016 Quarter 6, 2017 Quarter 6, 2017 Quarter 6, 2016 Quarter 6, 2016 Quarter 6, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 1, 2006         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 4, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 2, 2006         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 1, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 6, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 2, 2007         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 3, 2007         | t   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 6, 2016 Quarter 6, 2016 Quarter 7, 2016 Quarter 7, 2017 Quarter 6, 2018 Quarter 6, 2019 Quarter 7, 201 | Quarter 4, 2007         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 7, 2011 Quarter 7, 2012 Quarter 7, 2012 Quarter 7, 2013 Quarter 7, 2013 Quarter 7, 2013 Quarter 7, 2013 Quarter 7, 2014 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2016 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 1, 2008         | t   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2010 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2012 Quarter 6, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 6, 2012 Quarter 6, 2012 Quarter 6, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 2, 2008         | 1   |     |      |     |     |     | 1        | 1        |     | 1        |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 3, 2008         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 2, 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 1, 2019 Quarter 2, 2011 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2016 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          | _    |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 5, 2017 Quarter 5, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 9, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     | Ē   |          |
| Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     | _   |          |
| Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          | -        |          |     |     |          |     | -   |          |
| Quarter 4, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          | _    |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          | -        |          |     |     |          |     |     |          |
| Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | -   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     | -        |          |          |     |     |          |     |     | <u> </u> |
| Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ╂—  |     |      |     |     | _   |          |          |     |          |      |     | -        |     |          |          | <u> </u> |     |     | -        |     |     | <u> </u> |
| Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     | -        |          |          |     | -   |          |     |     | <u> </u> |
| Quarter 4, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                     | 1   |     |      |     |     |     | <u> </u> | <u> </u> |     | <u> </u> |      |     |          |     |          |          |          |     |     |          |     |     | <u> </u> |
| Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     | -        |          |          |     |     |          |     |     | <u> </u> |
| Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     | <u> </u> | <u> </u> |     | <u> </u> |      |     |          |     |          |          |          |     |     |          |     |     | <u> </u> |
| Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1_  |     |      |     |     |     | <u> </u> | <u> </u> |     | <u> </u> |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1_  |     |      |     |     |     | <u> </u> | <u> </u> |     | <u> </u> |      |     |          |     | _        |          |          |     |     |          |     |     |          |
| Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1_  |     |      |     |     |     |          |          |     |          |      |     |          |     |          | _        |          |     |     |          |     |     |          |
| Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     | <u> </u> |     |          |          |          |     |     | <u> </u> |     |     |          |
| Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     | <u> </u> |     |          |          |          |     |     | <u> </u> |     |     |          |
| Quarter 4, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 1   |     |      |     |     |     |          |          |     |          |      |     | <u> </u> |     |          | <u> </u> |          |     |     | <u> </u> |     |     |          |
| Quarter 1, 2017         Image: Im                                 | Quarter 3, 2016         | 1   |     |      |     |     |     |          |          |     |          |      |     | L        |     | <u> </u> |          |          |     |     | L        |     |     |          |
| Quarter 2, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 4, 2016         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 3, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 1, 2017         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 2, 2017         | 1   |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
| Quarter 4, 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 3, 2017         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quarter 4, 2017         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |     |     |      |     |     |     |          |          |     |          |      |     |          |     |          |          |          |     |     |          |     |     |          |

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

| Groundwater Flow System                |        |       | UCRS   | S     |        |         |         |         |         | Ī       | URG/  | Α.  |     |     |     |     |     |     |     | LRGA | A   |     |     |
|----------------------------------------|--------|-------|--------|-------|--------|---------|---------|---------|---------|---------|-------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|
| Gradient                               | S      | D     | D      | D     | U      | S       | S       | S       | S       | S       | D     | D   | D   | D   | U   | U   | S   | D   | D   | D    | D   | U   | U   |
| Monitoring Well                        | 386    | 389   | 390    | 393   | 396    | 221     | 222     | 223     | 224     | 384     | 369   | 372 | 387 | 391 | 220 | 394 | 385 | 370 | 373 | 388  | 392 | 395 | 397 |
| TRICHLOROETHENE                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 1, 2018                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 2, 2018                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 3, 2018                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 4, 2018                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 1, 2019                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 2, 2019                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 3, 2019                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 4, 2019                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 1, 2020                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 2, 2020                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 3, 2020                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| TURBIDITY                              |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 4, 2002                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      | *   |     |     |
| Quarter 1, 2003                        |        |       |        |       |        |         | *       |         |         |         |       | *   |     | *   |     |     |     |     |     |      |     |     |     |
| URANIUM                                |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 4, 2002                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     | *   | *   |      |     |     |     |
| Quarter 1, 2003                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     | *   |      |     |     |     |
| Quarter 4, 2003                        |        |       |        |       |        |         | *       |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 1, 2004                        |        |       |        |       |        |         | *       | *       | *       |         |       |     |     | *   |     |     | *   |     |     |      |     |     |     |
| Quarter 4, 2004                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     | *   |     |     |      |     |     |     |
| Quarter 4, 2006                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     | *   |      | *   |     |     |
| ZINC                                   |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 3, 2003                        |        |       |        |       |        |         |         |         |         |         |       | *   |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 4, 2003                        |        |       |        |       |        |         | *       |         | *       |         |       | *   |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 4, 2004                        |        |       |        |       |        |         | *       |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| Quarter 4, 2007                        |        |       |        |       |        |         | *       | *       | *       |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
|                                        |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |
| * Statistical test results indicate an | elevat | ed co | ncenti | ation | (i.e., | a stati | sticall | ly sigr | nificar | nt inci | ease) |     |     |     |     |     |     |     |     |      |     |     |     |
| MCL Exceedance                         |        |       |        |       |        |         |         |         |         |         |       |     |     |     |     |     |     |     |     |      |     |     |     |

Previously reported as an MCL exceedance; however, result was equal to MCL.

UCRS = Upper Continental Recharge System
URGA = Upper Regional Gravel Aquifer
LRGA = Lower Regional Gravel Aquifer
S = Sidegradient; D = Downgradient; U = Upgradient



# APPENDIX H METHANE MONITORING DATA



### CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

| Date: 09/0                                                         | 9/2020                 | Time:        | 0730                       | Monitor:                      | Robe     | ert Kirby          |
|--------------------------------------------------------------------|------------------------|--------------|----------------------------|-------------------------------|----------|--------------------|
| Weather Condition<br>Sunny, Slight Wind a                          |                        |              | I                          | W                             | I        |                    |
| Monitoring Equipn                                                  | nent::                 |              |                            |                               |          |                    |
| RAE Systems, Multi-F                                               |                        |              | 19010.000                  |                               |          | Pooding            |
|                                                                    | Monit                  | toring Loc   | cation                     |                               |          | Reading<br>(% LEL) |
| Ogden Landing<br>Road Entrance                                     | Checked at grou        | and leve     | əl                         |                               |          | 0                  |
| North Landfill Gate                                                | Checked at grou        | and leve     | el                         |                               |          | 0                  |
| West Side of<br>Landfill:<br>North 37° 07.652'<br>West 88° 48.029' | Checked at ground      | d level      |                            |                               |          | 0                  |
| East Side of<br>Landfill:<br>North 37° 07.628'<br>West 88° 47.798' | Checked at ground      | d level      |                            |                               |          | 0                  |
| Cell 1 Gas Vent (17)                                               |                        | 6 7<br>0 0 0 |                            | 13   14   15   6<br>0   0   0 | 16 17    | 0                  |
| Cell 2 Gas Vent (3)                                                | 1 2 3<br>0 0 0         |              |                            |                               |          | 0                  |
| Cell 3 Gas Vent (7)                                                | 1 2 3 4 5<br>0 0 0 0 0 | 6 7<br>0 0   |                            |                               |          | 0                  |
| Landfill Office                                                    | Checked at floor       | ·level       |                            |                               |          | 0                  |
| Suspect or Problem<br>Areas                                        | There was a broken     | vent on co   | ell #3. I reported it to t | he landfill ma                | nager.   | NA                 |
| Remarks:                                                           |                        |              |                            |                               |          |                    |
| ALL VENT                                                           | TS CHECKED 1" FROM     | THE MO       | UTH OF VENT                |                               |          |                    |
|                                                                    |                        |              |                            |                               |          |                    |
|                                                                    |                        |              |                            |                               |          |                    |
|                                                                    |                        |              |                            |                               |          | :                  |
|                                                                    |                        |              |                            |                               |          |                    |
| Performed by:                                                      | <i>A</i>               |              | -                          |                               |          |                    |
| Performed by:                                                      | Raft /5                |              |                            | ///                           | 16/20    |                    |
|                                                                    | Signatu                | ıre          |                            |                               | <i>-</i> | Date               |

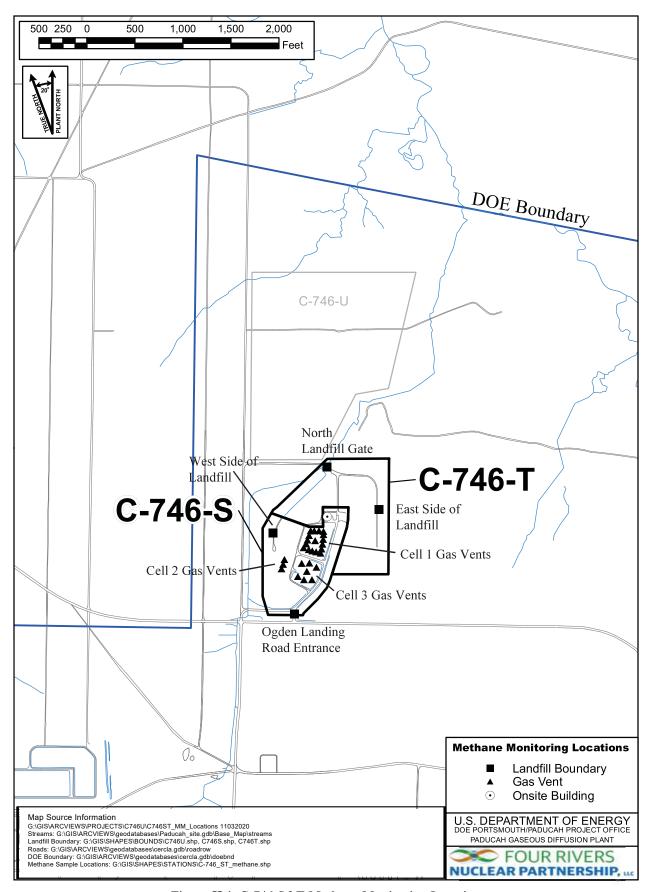



Figure H.1. C-746-S&T Methane Monitoring Locations

# APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS



Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

### SURFACE WATER SAMPLE ANALYSIS

| Monitoring Po                             | int  | (KPDES Discharge Number, or "U | JPST        | REAM", or "D          | OWNSTREAM")      | L135 UPSTRE                                 | AM                                 | L154 DOWNSTI                                | REAM             | L136 AT SI                                  | TE               | $\setminus$                    |                  |
|-------------------------------------------|------|--------------------------------|-------------|-----------------------|------------------|---------------------------------------------|------------------------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|--------------------------------|------------------|
| Sample Seque                              | nce  | #                              |             |                       |                  | 1                                           |                                    | 1                                           |                  | 1                                           |                  |                                |                  |
| If sample is                              | a B  | lank, specify Type: (F)ield, ( | T) r:       | ip, (M)ethod          | , or (E)quipment | NA                                          |                                    | NA                                          |                  | NA                                          |                  |                                |                  |
| Sample Date                               | and  | Time (Month/Day/Year hour: m   | inu         | tes)                  |                  | 9/2/2020 07:2                               | 26                                 | 9/2/2020 07:                                | 13               | 9/28/2020 07                                | 7:02             |                                |                  |
| Duplicate ("                              | Y" ( | or "N") <sup>1</sup>           |             |                       |                  | N                                           |                                    | N                                           |                  | N                                           |                  |                                |                  |
| Split ('Y' o                              | r "1 | N") <sup>2</sup>               |             |                       |                  | N                                           |                                    | N                                           |                  | N                                           |                  |                                |                  |
| Facility Sample ID Number (if applicable) |      |                                |             |                       | L135SS4-20       | R                                           | L154US4-20R                        |                                             | L136SS4-20R      |                                             |                  | $\overline{T}$                 |                  |
| Laboratory Sa                             | amp] | Le ID Number (if applicable)   |             |                       |                  | 520385001                                   |                                    | 520388002                                   | 2                | 52266900                                    | 1                |                                | $\overline{I}$   |
| Date of Analy                             | ysis | s (Month/Day/Year)             |             |                       |                  | 9/21/2020                                   |                                    | 9/21/2020                                   |                  | 9/30/2020                                   | )                |                                |                  |
| CAS RN <sup>3</sup>                       |      | CONSTITUENT                    | T<br>D<br>4 | Unit<br>OF<br>MEASURE | METHOD           | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | F<br>L<br>A<br>G<br>S <sup>7</sup> | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQI | F<br>L<br>A<br>G |
| A200-00-0                                 | 0    | Flow                           | Т           | MGD                   | Field            |                                             | *                                  |                                             | *                |                                             | *                |                                |                  |
| 16887-00-6                                | 2    | Chloride(s)                    | Т           | MG/L                  | 300.0            | 3.6                                         |                                    | 3.85                                        |                  | 3.44                                        |                  |                                |                  |
| 14808-79-8                                | 0    | Sulfate                        | Т           | MG/L                  | 300.0            | 5.93                                        |                                    | 7.54                                        |                  | 9.06                                        |                  |                                |                  |
| 7439-89-6                                 | 0    | Iron                           | Т           | MG/L                  | 200.8            | 0.997                                       |                                    | 0.827                                       |                  | 0.0751                                      | J                |                                |                  |
| 7440-23-5                                 | 0    | Sodium                         | Т           | MG/L                  | 200.8            | 4.65                                        |                                    | 4.35                                        |                  | 0.972                                       |                  | <u> </u>                       |                  |
| s0268                                     | 0    | Organic Carbon <sup>6</sup>    | Т           | MG/L                  | 9060             | 11.4                                        |                                    | 14.4                                        |                  | 26.9                                        |                  |                                |                  |
| s0097                                     | 0    | BOD <sup>6</sup>               | Т           | MG/L                  | not applicable   |                                             | *                                  |                                             | *                |                                             | *                | 1/                             |                  |
| s0130                                     | 0    | Chemical Oxygen Demand         | т           | MG/L                  | 410.4            | 42.7                                        |                                    | 36.3                                        |                  | 138                                         | *                | $\sqrt{}$                      | _                |

<sup>1</sup>Respond "Y" if the sample was a duplicate of another sample in this report

- \* = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

<sup>&</sup>lt;sup>2</sup>Respond "Y" if the sample was split and analyzed by separate laboratories.

<sup>&</sup>lt;sup>3</sup>Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

<sup>&</sup>lt;sup>4</sup>"T" = Total; "D" = Dissolved

<sup>&</sup>lt;sup>5</sup>"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

<sup>&</sup>lt;sup>6</sup>Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required <sup>7</sup>Flags are as designated, do not use any other type. Use "\*," then describe on "Written Comments" page.

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

### SURFACE WATER SAMPLE ANALYSIS - (Cont.)

| Monitoring Po       | oint | : (KPDES Discharge Number, or | ז" ב        | JPSTREAM" or          | "DOWNSTREAM") | L135 UPSTRE                                 | EAM              | L154 DOWNSTF                                | REAM             | L136 AT S                                   | ITE              |                                             |          |
|---------------------|------|-------------------------------|-------------|-----------------------|---------------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|------------------|---------------------------------------------|----------|
| CAS RN <sup>3</sup> |      | CONSTITUENT                   | T<br>D<br>4 | Unit<br>OF<br>MEASURE | METHOD        | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | F<br>L<br>A<br>G | DETECTED<br>VALUE<br>OR<br>PQL <sup>5</sup> | A G S    |
| S0145               | 1    | Specific Conductance          | т           | µнмs/см               | Field         | 269                                         |                  | 252                                         |                  | 147                                         |                  |                                             |          |
| s0270               | 0    | Total Suspended Solids        | Т           | MG/L                  | 160.2         | 28                                          | *                | 11.9                                        | *                | 4.2                                         | J                |                                             |          |
| s0266               | 0    | Total Dissolved Solids        | Т           | MG/L                  | 160.1         | 166                                         |                  | 170                                         |                  | 123                                         |                  |                                             |          |
| S0269               | 0    | Total Solids                  | Т           | MG/L                  | SM-2540 B 17  | 209                                         |                  | 182                                         |                  | 156                                         |                  |                                             |          |
| S0296               | 0    | рН                            | Т           | Units                 | Field         | 7.64                                        |                  | 7.88                                        |                  | 6.95                                        |                  |                                             |          |
| 7440-61-1           |      | Uranium                       | т           | MG/L                  | 200.8         | 0.0103                                      |                  | 0.00759                                     |                  | 0.000179                                    | J                | \ /                                         |          |
| 12587-46-1          |      | Gross Alpha $(\alpha)$        | Т           | pCi/L                 | 9310          | 22.9                                        | *                | 5.05                                        | *                | 2.53                                        | *                |                                             |          |
| 12587-47-2          |      | Gross Beta (β)                | т           | pCi/L                 | 9310          | 27.7                                        | *                | 31.4                                        | *                | 13.7                                        | *                | X                                           |          |
|                     |      |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                  |                                             |          |
|                     |      |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                  |                                             |          |
|                     |      |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                  |                                             |          |
|                     |      |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                  |                                             |          |
|                     |      |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                  |                                             |          |
|                     |      |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                  |                                             |          |
|                     |      |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                  |                                             | <u> </u> |
|                     |      |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                  |                                             |          |
|                     |      |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                  |                                             | $\Box$   |
|                     |      |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                  |                                             |          |
|                     |      |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                  |                                             |          |
|                     |      |                               |             |                       |               |                                             |                  |                                             |                  |                                             |                  |                                             | \        |

### RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

| Finds/Unit:    | KY8-890-008-982 / 1 |
|----------------|---------------------|
| LAB ID:        | None                |
| For Official U | se Only             |

## SURFACE WATER WRITTEN COMMENTS

| Monitorin<br>Point | g Facility<br>Sample ID | Constituent                    | Flag | Description                                                                                   |
|--------------------|-------------------------|--------------------------------|------|-----------------------------------------------------------------------------------------------|
| L135               | L135SS4-20R             | Flow Rate                      |      | Analysis of constituent not required and not performed.                                       |
|                    |                         | Biochemical Oxygen Demand (BOD |      | Analysis of constituent not required and not performed.                                       |
|                    |                         | Suspended Solids               | *    | Duplicate analysis not within control limits.                                                 |
|                    |                         | Alpha activity                 |      | TPU is 10.6. Rad error is 9.86.                                                               |
|                    |                         | Beta activity                  |      | TPU is 10.9. Rad error is 9.9.                                                                |
| L154               | L154US4-20R             | Flow Rate                      |      | Analysis of constituent not required and not performed.                                       |
|                    |                         | Biochemical Oxygen Demand (BOD |      | Analysis of constituent not required and not performed.                                       |
|                    |                         | Suspended Solids               | *    | Duplicate analysis not within control limits.                                                 |
|                    |                         | Alpha activity                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.21. Rad error is 6.15. |
|                    |                         | Beta activity                  |      | TPU is 12. Rad error is 10.8.                                                                 |
| L136               | L136SS4-20R             | Flow Rate                      |      | Insufficient flow to collect a sample.                                                        |
|                    |                         | Biochemical Oxygen Demand (BOD |      | Insufficient flow to collect a sample.                                                        |
|                    |                         | Chemical Oxygen Demand (COD)   | *    | Duplicate analysis not within control limits.                                                 |
|                    |                         | Alpha activity                 | U    | Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.19. Rad error is 4.17. |
|                    |                         | Beta activity                  |      | TPU is 7.25. Rad error is 6.89.                                                               |



# APPENDIX J ANALYTICAL LABORATORY CERTIFICATION





## **Accredited Laboratory**

A2LA has accredited

### GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

### **Environmental Testing**

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DOD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

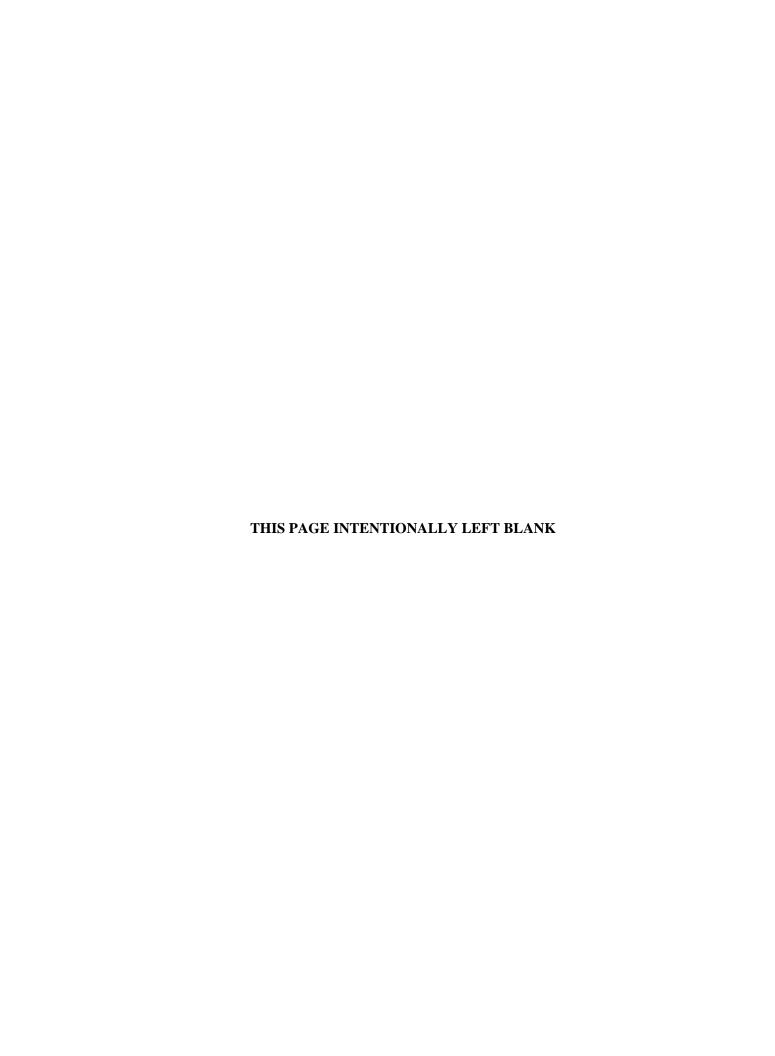


# APPENDIX K LABORATORY ANALYTICAL METHODS



#### LABORATORY ANALYTICAL METHODS

| Analytical Method                            | Preparation Method       | Product                                                                            |
|----------------------------------------------|--------------------------|------------------------------------------------------------------------------------|
| SW846 8260B                                  |                          | Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer            |
| SW846 8011                                   | SW846 8011 PREP          | Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and 1,2,3- |
|                                              |                          | Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011                    |
| SW846 3535A/8082                             | SW846 3535A              | Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD             |
| SW846 6020                                   | SW846 3005A              | Determination of Metals by ICP-MS                                                  |
| SW846 7470A                                  | SW846 7470A Prep         | Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer                 |
| SW846 9060A                                  |                          | Carbon, Total Organic                                                              |
| SW846 9012B                                  | SW846 9010C Distillation | Cyanide, Total                                                                     |
| EPA 300.0                                    |                          | Ion Chromatography Iodide                                                          |
| SW846 9056                                   |                          | Ion Chromatography                                                                 |
| EPA 160.1                                    |                          | Solids, Total Dissolved                                                            |
| EPA 410.4                                    |                          | COD                                                                                |
| Eichrom Industries, AN-1418                  |                          | AlphaSpec Ra226, Liquid                                                            |
| DOE EML HASL-300, Th-01-RC Modified          |                          | Th-01-RC M, Th Isotopes, Liquid                                                    |
| EPA 904.0/SW846 9320 Modified                |                          | 904.0Mod, Ra228, Liquid                                                            |
| EPA 900.0/SW846 9310                         |                          | 9310, Alpha/Beta Activity, liquid                                                  |
| EPA 905.0 Modified/DOE RP501 Rev. 1 Modified |                          | 905.0Mod, Sr90, liquid                                                             |
| DOE EML HASL-300, Tc-02-RC Modified          |                          | Tc-02-RC-MOD, Tc99, Liquid                                                         |
| EPA 906.0 Modified                           |                          | 906.0M, Tritium Dist, Liquid                                                       |




# APPENDIX L MICROPURGING STABILITY PARAMETERS



## Micro-Purge Stability Parameters for the C-746-S&T Landfills

|                                 |              |                       | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , ,          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |              |            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|--------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |              |                       | July State S | 10           | A CHICK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |              |            | July Leiter Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ilitil Jiggild |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |              | Conductive Conductive | igited de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | A of Special States of the Special States of the Special Speci |                                    |              | Conduc     | deligited by the state of the s | ill            | Line Control of the C |
|                                 | Ś            | STATE THE             | STATE STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 711 /24      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |              |            | Start Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | Zouth.       | CORU                  | SHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jisse.       | (Tutor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | L'ettik      | COMU       | 18th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dissu          | Ling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1W220                           |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ate Collected: 7/28/2020<br>015 | 63.7         | 356                   | 6.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.68         | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date Collected: 7/28/2020<br>0620  | 63.0         | 397        | 5.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.27           | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18                              | 64.6         | 355                   | 6.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.39         | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0623                               | 64.3         | 392        | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.86           | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 021                             | 64.8         | 354                   | 6.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.41         | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0626                               | 64.3         | 396        | 6.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.81           | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IW222                           |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW223                              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ate Collected: 7/28/2020        | 62.5         | 272                   | 6.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.14         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date Collected: 7/28/2020          | 64.0         | 200        | 6.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.20           | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 739<br>742                      | 63.5<br>64.9 | 372<br>369            | 6.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.14<br>2.93 | 8.8<br>4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0701<br>0704                       | 64.0<br>65.3 | 380<br>380 | 6.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.28<br>3.47   | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 745                             | 65.1         | 369                   | 6.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.93         | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0707                               | 65.6         | 376        | 6.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.40           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| W224                            | 03.1         | 307                   | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.70         | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MW369                              | 03.0         | 370        | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.10           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ate Collected: 7/28/2020        |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Collected: 7/20/2020          |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 320                             | 63.0         | 430                   | 6.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.27         | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0636                               | 62.9         | 383        | 6.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.35           | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 23                              | 64.3         | 435                   | 6.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.74         | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0639                               | 64.0         | 374        | 6.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.25           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 326                             | 64.7         | 432                   | 6.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.72         | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0642                               | 64.1         | 373        | 6.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.21           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| W370                            |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW372                              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ate Collected: 7/23/2020<br>719 | 62.5         | 450                   | 6.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 205          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date Collected: 7/23/2020<br>0837  | 62.6         | 764        | 6.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.43           | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 719                             | 62.5         | 450                   | 6.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.85         | 0.8<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0837<br>0840                       | 62.6         | 764        | 6.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.76           | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25                              | 64.2         | 452                   | 6.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.86         | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0843                               | 65.1         | 770        | 6.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.78           | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| W373                            |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW384                              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ate Collected: 7/23/2020        |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Collected: 7/27/2020          |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17                              | 63.6         | 849                   | 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.75         | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0813                               | 62.3         | 450        | 6.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.76           | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20                              | 64.7         | 858                   | 6.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.40         | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0816                               | 64.1         | 447        | 6.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.65           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 23                              | 65.0         | 859                   | 6.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.41         | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0819                               | 64.6         | 446        | 6.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.68           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| W385<br>te Collected: 7/27/2020 |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW386<br>Date Collected: 7/27/2020 |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 48                              | 62.6         | 507                   | 6.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.55         | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0922                               | 62.7         | 561        | 6.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.43           | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 51                              | 62.9         | 507                   | 6.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.22         | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0925                               | 64.6         | 562        | 6.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.22           | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 54                              | 63.5         | 507                   | 6.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.18         | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0928                               | 64.9         | 562        | 6.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.24           | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| W387                            |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW388                              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| te Collected: 7/27/2020         |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Collected: 7/27/2020          |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 01                              | 62.8         | 595                   | 6.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.89         | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0738                               | 63.4         | 420        | 6.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.57           | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| )4                              | 63.7         | 604                   | 6.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.35         | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0741                               | 64.9         | 420        | 6.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.48           | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| )7                              | 64.1         | 604                   | 6.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.29         | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0744                               | 65.1         | 421        | 6.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.49           | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| W390<br>te Collected: 7/27/2020 |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW391<br>Date Collected: 7/29/2020 |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25                              | 63.5         | 714                   | 6.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.48         | 20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0616                               | 63.7         | 409        | 6.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.36           | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 28                              | 64.0         | 713                   | 6.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.17         | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0619                               | 64.0         | 405        | 6.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.54           | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 31                              | 64.2         | 707                   | 6.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.22         | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0622                               | 64.2         | 407        | 6.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.50           | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| W392                            |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW393                              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ate Collected: 7/29/2020        |              | 42.1                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.20         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date Collected: 7/29/2020          | (0.0         | 4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 52                              | 62.3         | 434                   | 6.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.29         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0725                               | 62.3         | 415        | 6.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.92           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 55<br>58                        | 63.0         | 439<br>439            | 6.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.99         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0728<br>0731                       | 63.2         | 404<br>406 | 6.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.94<br>1.90   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 08<br>W394                      | 03.3         | 439                   | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.93         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MW395                              | 03.3         | 400        | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.90           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| te Collected: 7/29/2020         |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Collected: 7/29/2020          |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| )2                              | 61.9         | 387                   | 6.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.97         | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0838                               | 61.9         | 357        | 6.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.01           | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 05                              | 62.1         | 379                   | 6.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.69         | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0841                               | 62.7         | 357        | 6.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.86           | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 08                              | 62.9         | 379                   | 6.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.60         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0844                               | 63.2         | 354        | 6.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.82           | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| W396                            |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW397                              |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| te Collected: 7/29/2020         |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Collected: 7/27/2020          |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12                              | 61.7         | 703                   | 6.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.22         | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1001                               | 63.1         | 351        | 6.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.99           | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15                              | 62.9         | 714                   | 6.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.14         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1004                               | 64.9         | 321        | 6.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.67           | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 018                             | 63.4         | 715                   | 6.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.08         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1007                               | 65.2         | 322        | 6.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.65           | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |              | l                     | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MW369 Resample                     |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Collected: 7/23/2020          |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0656                               | 62.9         | 369        | 6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.97           | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0030                               | 02.7         | 307        | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0659                               | 63.2         | 372        | 6.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.65           | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 |              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

